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CMCS-École Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland.
e-mail: alfio.quarteroni@epfl.ch

Keywords: PDE in connection with control problems, Domain Decomposition
Methods, Heterogeneous Problems.

AMS Subject Classification: 35B37, 65N55

Abstract

New domain decomposition methods (DDM) based on optimal control
approach are introduced for the coupling of first and second order equations
on overlapping subdomains. Several cost functionals and control functions
are proposed. Uniqueness and existence results are proved for the coupled
problem, and the convergence of iterative processes is analyzed.

∗The work was supported by the Russian Foundation for Basic Research (04-01-00615) and
it was partly carried out while the first author was visiting the IACS at EPFL.

1



1 Introduction

In the past decade, there has been a considerable attention to the so-called het-
erogeneous domain decomposition approach for advection-diffusion equations
that are dominated by the advection term: the computational domain is split
into two parts, in the one embodying the regions where steep layers occur the
original equation is solved in its integrity, whereas in the other the viscous (dif-
fusion) term is dropped, so the problem reduces to its advective part. Obviously,
the new heterogeneous differential problem can only be regarded as an approx-
imation of the original one. However, when the two subdomains are separated
by a sharp interface, if suitable interface conditions are imposed at the interface
itself, then the solution of the reduced heterogeneous problem converges to the
one of the original complete problem when the Péclet number (i.e. the ratio
between the viscous and the convective term) tends to zero [4]. In this paper
we analyse a mathematical formulation of the heterogeneous advection diffusion
problem on overlapping subdomains based on an optimal control approach. The
optimal control for domain decomposition methods have already been advocated
to solve the coupling between heterogeneous equations (see [3, 18, 19]) and they
have been analysed to solve homogeneous elliptic problems (see [10, 11, 12]).
The idea consists of introducing a control function on the subdomain interfaces
which have the role of guaranteeing that the two solutions match on the region
of overlap. The use of control approach for heterogeneous advection-diffusion
operators was introduced in [5] for both overlapping and non-overlapping sub-
domain decompositions. In this paper we generalize the results of [5] in the case
of overlapping partitions. From one hand, we introduce a further distributed
control function whose support is in the overlapping region. Moreover, we pro-
pose iterative methods for the solution of the control problems and analyse their
convergence properties.
This paper provides a mathematical set up for the treatment of heterogeneous
operators in overlapping subdomains. Some preliminary results concerned with
the theory here developed appeared in [2].
Since our analysis is carried out at the differential level, the proposed approach
is prone to be adopted in the framework of any kind of numerical approximations
(in particular, those based on the finite element method).
An outline of the paper is as follows. In Sect. 2 we introduce the heterogeneous
advection-diffusion problem through control at the boundary and we provide
conditions on the data and the subdomain decomposition that guarantee the
exact controllability (yielding the solutions in the two subdomains that coincide
on the overlapping region). In Sect. 3 we formulate the problem as an optimal
control problem in which we aim at minimizing the L2-norm of the error on the
overlapping region. We analyse the existence of a solution, then we propose an
iterative method and analyse its convergence. In Sect. 4 we introduce a further
control function, distributed in the overlapping region. This is a novel approach:
we also propose and analyse an iterative method for the approximation of the
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Figure 1: A first possible decomposition, p = 1 on the left and p = 2 on the
right

corresponding solution. In Sect. 5 we compare numerical results obtained with
both 2-controls and 3-controls approaches. In Sect. 6 we change the role of
the boundary control at the interface: the controls are used to enforce on one
interface the continuity of the solution, on the other the continuity of the flux.
Finally, in Sect. 7 we apply the previous approach to the case of second order
elliptic equations.

2 Problem statements

Let Ω be a two-dimensional domain with the boundary Γ := ∂Ω which is assumed
to be Lipschitz-continuous and piecewise of class C (2). Its closure is Ω = Ω ∪ Γ.
We use the following notations (see Fig.1-3 for some examples): Ω1 and Ω2 are
two, not necessarily connected, subsets of Ω such that

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 6= ∅, Ω12 = Ω1 ∩ Ω2,

Γk = ∂Ωk ∩ Γ, Sk = ∂Ωk \ Γk, k = 1, 2.

Note that Ω12 can be regarded as the union of p disconnected subdomains Ω
(j)
12

with j = 1, ..., p: Ω12 = ∪p
j=1Ω

(j)
12 (see Fig. 1). We consider two situations: when

Γ1 ∩ Γ2 6= ∅ (as in the case of Fig. 1) and Γ1 ∩ Γ2 = ∅ (as in Figs. 2-3). We
assume that ∂Ω1, ∂Ω2 are piecewise of class C (2) and Lipschitz-continuous.

Let n = (n1, n2) be the outward unit normal on Γ, τ = (n2,−n1) the tangent
vector; b = (b1, b2) is a vector with smooth components. We define

bk
n := b · n =

2
∑

i=1
bini on ∂Ωk, bk

n = (bk
n)+ − (bk

n)−,

(bk
n)+ = (|bk

n| + bk
n)/2, (bk

n)− = (|bk
n| − bk

n)/2, k = 1, 2,

and

S−
k = Sk ∩ {(bk

n)− 6= 0}, S+
k = Sk ∩ {(bk

n)+ 6= 0},

Γ−
k = Γk ∩ {(bk

n)− 6= 0}, Γ+
k = Γk ∩ {(bk

n)+ 6= 0}.
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We will use the real spaces L2(Ω), L2(Ωk), L
2(Γ), . . . , L2(Γk), k = 1, 2 as well as

the following spaces: L2(w;S−
k ) is the space of functions u such that for k = 1, 2

L2(w;S−
k ) is the space of functions u : ‖u‖L2(w;S−

k
) :=







∫

Sk

w|u|2dΓ







1/2

< ∞,

for w = (bk
n)− and w = (bk

n)+. For simplicity, in the sequel we will use the
following notations:

L2(S−
k ) := L2((bk

n)−;S−
k ) and L2(S+

k ) := L2((bk
n)+;S+

k ).

Let us consider the differential operators

L1u1:=div(bu1) + b0u1 in Ω1,

L2u2:= − ν∆u2 + div(bu2) + b0u2 in Ω2,
(1)

where ν = const > 0, b and b0 are given such that (b0 + (divb)/2) ≥ µ0 =
const > 0, ∀x ∈ Ω. f is a given function defined in Ω, g is a given function
defined on ∂Ω and χ12 is the characteristic function of Ω12. In the sequel, the
product of a function u ∈ L2(Ω12) by χ12 will be considered as the prolonga-
tion by zero of u onto Ωk\Ω12 for k = 1, 2. Moreover we assume that all data
b, f0, f, g in (1) are smooth in Ω. Each operator Lk is defined on smooth
functions in Ωk (k = 1, 2).

We look for the solutions to the problem

L1u1 = f in Ω1, (b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,
(2)

where λ1 and λ2 are the controls and they are chosen so that u1 and u2 adjust in
the best possible way on Ω12, thus we search for convenient, both mathematically
and physically, conditions on u1 and u2 on Ω12.
The reasonable request that

u1 = u2 in Ω12 (3)

is not necessarily the right answer to our question. As a matter of fact, due to
the heterogeneous nature of the problem, the ambition to have u1 = u2 in Ω12 is
too strong. For this reason we look for a relaxed form of the condition (3), e.g.
in a least square sense, that means to minimize the difference u1 − u2 on Ω12:

inf
λ1,λ2

J0(λ1, λ2) (4)

5



where

J0(λ1, λ2) :=
1

2

∫

Ω

χ12(u1(λ1) − u2(λ2))
2dΩ,

and χ12 is the characteristic function of Ω12.
Note that in some places we will use also the notation J0(u1, u2) instead of
J0(λ1, λ2), referring to the same cost functional.
Problem (2),(3) is an exact controllability problem, while problem (2),(4) is an
optimal control problem, which can be considered also as a weak statement of
(2),(3). We denote by λ = (λ1, λ2) the vector of ”controls” λ1, λ2.

The minimum problem (4) could be replaced by

inf
λ1,λ2

Jα(λ1, λ2) = inf
λ1,λ2





1

2



α

∫

S1

(b1
n)−λ2

1dΓ + α

∫

S2

λ2
2dΓ



+ J0(λ1, λ2)



 , α ≥ 0.

(5)
In this case, we name (2),(5) the regularized version of (2),(4).

Statements of both problems (2),(3) and (2),(4) use the decomposition of Ω
onto Ω1, Ω2 with overlapping and will therefore be considered as heterogeneous
domain decomposition methods (DDM) with overlapping.

3 Analysis of DDM with two control functions

The variational equations (”optimality conditions”) corresponding to problem
(2),(4) read as follows: find u1, u2, λ1, λ2, q1 and q2 such that



































































L1u1 = f in Ω1,

(b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,

L
(0)∗
1 q1 = χ12(u1 − u2) in Ω1,

(b1
n)+q1 = 0 on Γ1, (b1

n)+q1 = 0 on S1,

L
(0)∗
2 q2 = −χ12(u1 − u2) in Ω2, q2 = 0 on ∂Ω2,

(b1
n)−q1 = 0 on S1, −ν

∂q2

∂n
= 0 on S2,

(6)

where the operator L
(0)
k (for k = 1, 2) is defined as in (1) on smooth functions

which satisfy homogeneous boundary conditions on ∂Ωk, while L
(0)∗
k is its adjoint

operator.
We consider problem (2) and suppose that λk (for k = 1, 2) are known. For

k = 1, 2 we decompose the solutions uk in a linear plus an affine part uk = uλ
k+uf

k
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as follows:

L1u
f
1 = f in Ω1,

(b1
n)−uf

1 = (b1
n)−g on Γ1, (b1

n)−uf
1 = (b1

n)−g̃1 on S1,

L2u
f
2 = f in Ω2, uf

2 = g on Γ2, uf
2 = g̃2 on S2,

L1u
λ
1 = 0 in Ω1,

(b1
n)−uλ

1 = 0 on Γ1, (b1
n)−uλ

1 = (b1
n)−λ̃1 on S1,

L2u
λ
2 = 0 in Ω2, uλ

2 = 0 on Γ2, uλ
2 = λ̃2 on S2,

(7)

where g̃k is a given extension of g onto Sk (for k = 1, 2), such that

g2 := {g on Γ2, g̃2 on S2} ∈ H1/2(∂Ω2),

g1 := {g on Γ1, g̃1 on S1} ∈ L2(S−
1 ∪ Γ−

1 ),

λ̃k := λk − g̃k on Sk, uλ
k := uk(λ̃k), k = 1, 2.

(8)

Now (5) has the following formi for any α ≥ 0 :

inf
λ̃1,λ̃2





1

2



α

∫

S1

(b1
n)−(λ̃1 + g̃1)

2dΓ + α

∫

S2

(λ̃2 + g̃2)
2dΓ



+ J0(λ̃1, λ̃2)



 , (9)

where

J0(λ̃1, λ̃2) :=
1

2

∫

Ω
χ12(u1(λ̃1) − u2(λ̃2) − F )2dΩ, F = −χ12(u

f
1 − uf

2). (10)

Setting D(A) := Λ = L2(S−
1 ) × H

1/2
00 (S2), we define the linear operator

A : L2(S−
1 ) × L2(S2) → L2(Ω12), Aλ̃ := χ12(u

λ
1 − uλ

2), (11)

and its adjoint operator

A∗ : L2(Ω12) → L2(S−
1 ) × L2(S2), A∗ : w 7→ µ, (12)

such that:

L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2, q2 = 0 on ∂Ω2,

µ = (µ1, µ2), µ1 = (b1
n)−q1|S1

, µ2 = −ν
∂q2

∂n
|S2

,

and
F = −χ12(u

f
1 − uf

2). (13)
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Problem (2),(3) can be written as

find λ̃ ∈ Λ : Aλ̃ = F, (14)

while problem (6) can be written as

find λ̃ ∈ Λ : A∗Aλ̃ = A∗F. (15)

In this section we analyse the well-posedeness of this latter problem. The
study of existence and uniqueness of solution for problem (2),(4) will be carried
out by using the properties of problem (2),(3).

Let us prove the first proposition.

Proposition 3.1 Problem (2),(3) does not have a solution in general, without
introducing specific restriction on the data of the problem itself.

Proof. The proof is based on the uniqueness continuation theorem in the case of
Figure 1, and on the index theory for cases like those illustrated in Figure 2 and Figure
3.
Assume that Ω12 is a connected set, ∆Γ = Γ1∩Γ2, ∆Γ ⊂ ∂Ω12, meas(∆Γ) > 0, bn 6= 0 on
∆Γ, g ≡ 0 on Γ, f ≡ 0 on ∆Γ, f > 0 in Ω12 and (2),(3) has a solution {u1, u2, λ1, λ2}.
Note that, if {u1, u2, λ1, λ2} is a smooth solution of (2),(3) then we can consider the
equation L1u1 = f on ∆Γ and find

bn

∂u1

∂n
+ bτ

∂u1

∂τ
+ µu1 = f on ∆Γ,

where µ = b0 + divb, bn = b · n, bτ = b · τ , and n is outward unit normal to ∆Γ.
Since u1 = u2 = u in Ω12 from the equations in Ω1, Ω2 we obtain:

L1u = f in Ω12, u = 0 on ∆Γ, ν∆u = 0 in Ω12,

L1u|∆Γ = f |∆Γ = 0 =⇒ bn

∂u

∂n

∣

∣

∣

∣

∣

∆Γ

+ µu|∆Γ + bτ

∂u

∂τ

∣

∣

∣

∣

∣

∆Γ

= bn

∂u

∂n

∣

∣

∣

∣

∣

∆Γ

= 0.

So, u would be the solution of following Cauchy problem:

∆u = 0 in Ω12, u =
∂u

∂n
= 0 on ∆Γ.

According to the uniqueness continuation theorem [7], u = 0 in Ω12. Hence, uk = 0 in
Ω12, λk = 0, k = 1, 2 and f = 0 in Ω12, which contradicts the assumption f > 0 in Ω12.

Let us now consider another counter-example. Assume that Ω12 is a multi connected

domain with boundary ∂Ω12 =
⋃p

j=0 ∂Ω
(j)
12 , where ∂Ω

(0)
12 is the outer part of ∂Ω12 (see

Figs. 2 - 3, in particular ∂Ω
(0)
12 = S1 in Fig. 2).

Suppose that |b| 6= 0 on ∂Ω12 and

æ = 2(P − p + 1) < 0, where P =
1

2π

p
∑

j=0

{arg(b1 − ib2)},
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where æ is the ”index” of the problem considered in Ω12 [16]. Assume that problem
(2),(3) has a solution, then u = u1 = u2 is the solution in Ω12 of the following Poincaré
problem:

∆u = 0 in Ω12, b · ∇u + µu = f on ∂Ω12.

Existence of a solution for this problem can be proved if we impose a number of restric-

tions on f and the ”index” æ must be nonnegative. There are further counter-examples

which prove the non-existence of solutions of (2),(3) in general case. �

Introduce the following types of assumption:
I.







Ω12 =
p
⋃

j=1
Ω

(j)
12 ∆Γ =

p
⋃

j=1
∆Γ(j), ∆Γ(j) ⊂ ∂Ω

(j)
12 , p < ∞,

meas(∆Γ(j)) > 0, bn 6= 0 on ∆Γ(j), (see Fig. 1, with p = 1 or p = 2),

(16)

II.














Ω12 is finite, µ = b0 + divb ≥ 0 on ∂Ω12, µ 6= 0 on ∂Ω12,

the direction b at any point of ∂Ω12 forms with the outward normal

to ∂Ω12 an acute angle.

(17)

III.















Ω12 =

p
⋃

j=1

Ω
(j)
12 , bn 6= 0 on ∂Ω12,

µ

bn
−

1

2

∂

∂τ

(

bτ

bn

)

> 0 on ∂Ω12,

where
∂

∂τ
is the derivative along ∂Ω12

(18)

Let us prove the second proposition.

Proposition 3.2 If problem (2),(3) has a solution and one of the assumptions
I-III is fulfilled, then this solution is unique.

Proof. Let us assume that the data are such that problem (2),(3) admits at least one
solution.

Let the assumption (16) be fulfilled and {u
(1)
1 , u

(1)
2 , λ

(1)
1 , λ

(1)
2 }, {u

(2)
1 , u

(2)
2 , λ

(2)
1 , λ

(2)
2 }

be two possible solutions of (2),(3). By setting u1 = u
(1)
1 − u

(2)
1 , u2 = u

(1)
2 − u

(2)
2 ,

λ1 = λ
(1)
1 − λ

(2)
1 and λ2 = λ

(1)
2 − λ

(2)
2 , we obtain the following boundary value problems

in Ω12 for u = u1 = u2:

∆u = 0 in Ω12, bn

∂u

∂n
+ bτ

∂u

∂τ
+ µu = 0 on ∂Ω12, (19)

∆u = 0 in Ω
(j)
12 , u =

∂u

∂n
= 0 on ∆Γ(j), j = 1, . . . , p. (20)

From (20) and the uniqueness continuation theorem we obtain: u = 0 in Ω
(j)
12 , j =

1, . . . , p. Hence, λ1 = 0, λ2 = 0 and u1 = 0 in Ω1, u2 = 0 in Ω2, i.e. the solution of
(2),(3) is unique.

9



Suppose now that assumption (17) is fulfilled. From the theory of boundary-value
problems with oblique derivative [15], we conclude that problem (19) has a trivial solu-
tion. Then: λk = 0, uk = 0 in Ωk, k = 1, 2 and the uniqueness of solution (2),(3) takes
place.

Finally, let the assumption (18) be valid. Then for the solution of (19) we have the
following well-known relations:

0 = −

∫

Ω12

∆uudΩ =

∫

Ω12

|∇u|2dΩ −

∫

∂Ω12

∂u

∂n
udΓ.

Using boundary condition from (19) we obtain:

0 =

∫

Ω12

|∇u|2dΩ +

∫

∂Ω12

(

bτ

bn

∂u

∂τ
+

µ

bn

u

)

udΓ =

=

∫

Ω12

|∇u|2dΩ +

∫

∂Ω12

(

µ

bn

−
1

2

∂

∂τ

(

bτ

bn

))

u2dΓ.

Hence, u = 0 in Ω12, λk = 0, uk = 0 in Ωk, k = 1, 2 and the solution of (2),(3) is

unique. �

Remark 3.1 Since, for a linear operator A, Ker(A) = Ker(A∗A), then the
statement of Prop. 3.2 gives also the uniqueness of solution of problem (2),(4)
or equivalently of (6).

The assertions of Propositions 3.1 - 3.2 will be used in the next Proposition
while analysing problem (2),(4). Let us note also that analogous assertions
can be proved for the case Ω ⊂ R

n, n > 2, and for a system of equations of
type (2),(3). The results of the Cauchy problems, the problems of the oblique
derivative and Poincare problem are still useful in proving these assertions.

Proposition 3.3 The following assertions hold true.

1. Problem (2),(4) (or equivalently (6)) has not a solution in general.

2. If problem (2),(4) (or equivalently (6)) has a solution, then in general case
inf
λ

J0(λ1, λ2) > 0, i.e. u1 6= u2 in Ω12.

3. If one of the assumptions I-III is satisfied and problem (2),(4) (or equiva-
lently (6)) has a solution then this solution is unique.

Proof. 1. Consider the following adjoint problem with homogeneous boundary
conditions: find q1, q2, w s.t.















L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2, q2 = 0 on ∂Ω2,

(b1
n)−q1 = 0 on S1, −ν

∂q2

∂n
= 0 on S2.

(21)
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To simplify notations let us replace −q2 by q2 in (21).
Assume that meas(S−

1 ) = 0, in this case the control function λ1 is not needed in the
solution of problem (2),(4). Let us consider any smooth function q̃2 defined on Ω2

with compact support in Ω12 such that dist(∂Ω12, supp(q̃2)) ≥ ε = const > 0, where
0 < ε � dim(Ω12).

Let w̃ be defined on Ω12 such that w̃ = χ12L
(0)∗
2 q̃2. Note that supp(w̃) ⊂ Ω12, then we

extend it by zero in Ω1 and solve L
(0)∗
1 q̃1 = χ12w̃.

It is easy to see, that q̃1 6= q̃2 in Ω12, in general.
We anticipate that the relation ”(b1

n)−q̃1 = 0 on S1” does not provide any information
since (b−1

n )− = 0 on S1, so the adjoint problem (21) has an infinite set of nontrivial
solutions q̃1, q̃2, w̃.
Now, suppose that g ≡ 0 in (2),(3) and let us consider f as the solution of the following

equation: Tf := χ12((L
(0)
1 )−1f − (L

(0)
2 )−1f) = w̃ in Ω. It is easy to see that ker(T ) =

{0}.

Assume now that, for this f , problem (2),(4) has a solution uk = uλ
k + uf

k , for k = 1, 2,

where uλ
k is the linear component of uk generated by λ̃k, while uf

k is generated by both
f and gk. Then

J0(λ1, λ2) =
1

2
‖χ12(u1(λ1) − u2(λ2))‖

2
L2(Ω) =

1

2
‖Aλ̃ − F‖2

L2(Ω),

Since L
(0)
k uk(λ̃k) = 0, for k = 1, 2, we have

(Aλ̃, F )L2(Ω12) = (χ12u1(λ̃1), w̃)L2(Ω) − (χ12u2(λ̃2), w̃)L2(Ω)

= (u1(λ̃1), L
(0)∗
1 q̃1)L2(Ω1) − (u2(λ̃2), L

(0)∗
2 q̃2)L2(Ω2) = 0.

(22)

Therefore F ∈ ker(A∗) (remember that L2(Ω12) = R(A) ⊕ ker(A∗)), the functional J0

takes the following form

J0(λ1, λ2) =
1

2
‖χ12(u1(λ1) − u2(λ2))‖

2
L2(Ω) =

1

2

(

‖Aλ̃‖2
L2(Ω) + ‖F‖2

L2(Ω)

)

and problem (2),(4) has not a solution either [21]. In other words, we note that λ̃ is the
solution of inf λ̃1,λ̃2

J0(λ̃1, λ̃2) iff there exists λ̃ such that A∗Aλ̃ = A∗F . But (22) implies

that F := w̃ ∈ R(A)⊥ = R(A)
⊥

[6, pag. 58] and then R(A)
⊥

6= {0}. Recalling that

L2(Ω12) = R(A) ⊕ R(A)
⊥

, it follows that F 6∈ R(A), thus (6) (and therefore (2),(4))
might not have a solution.

2. Assume that problem (2),(4) has a solution such that J0(λ1, λ2) = 0. Then
u1 = u2 in Ω12. However we know from Prop. 2.1 that this is not possible in the general
case.

3. We note that (2),(4) is equivalent to (6) and that (6) has a unique solution if and
only if (2),(3) has a unique solution; then, from Prop. 2.2, if (2),(4) has a solution and
I-III are satisfied, then this solution is unique.

�

3.1 Iterative algorithm

The simpler way to solve (6) (or equivalently (15)) is to consider the gradient
method applied to the minimization problem inf

λ̃1,λ̃2

J0(λ̃1, λ̃2). It reads: for a
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given λ̃
0
, for m = 0, 1, ...., find ũm

k , λ̃m+1
k (k = 1, 2), such that



















L1ũ
m
1 = 0 in Ω1, (b1

n)−ũm
1 = 0 on Γ1, (b1

n)−ũm
1 = (b1

n)−λ̃m
1 on S1,

L2ũ
m
2 = 0 in Ω2, ũm

2 = g on Γ2, ũm
2 = λ̃m

2 on S2,

λ̃
m+1

= λ̃
m
− γmJ ′

0(λ̃
m
1 , λ̃m

2 ),

(23)

where {γm} are suitable relaxation parameters to be chosen according to con-
vergence criteria ([1, 14, 17, 20, 22]).

For the functions uk = uλ
k + uf

k , with λk = λ̃k + g̃k, (k = 1, 2) the gradient
method reads: for a given λ0, for m = 0, 1, ..., find um

1 , um
2 , λm+1

1 and λm+1
2

solutions of


























L1u
m
1 = f in Ω1,

(b1
n)−um

1 = (b1
n)−g on Γ1, (b1

n)−um
1 = (b1

n)−λm
1 on S1,

L2u
m
2 = f in Ω2, um

2 = g on Γ2, um
2 = λm

2 on S2,

λm+1 = λm − γmJ ′
0(u

m
1 , um

2 ).

(24)

If the relaxation parameters {γm} are chosen to satisfy a minimization pro-
cedure, algorithm (23) is in fact a minimization procedure for solving (2),(4) and
it can be rewritten as: for a given λ0, for m = 0, 1, ..., find um

1 , um
2 , λm+1

1 , λm+1
2 ,

qm
1 and qm

2 such that































































L1u
m
1 = f in Ω1,

(b1
n)−um

1 = (b1
n)−g on Γ1, (b1

n)−um
1 = (b1

n)−λm
1 on S1,

L2u
m
2 = f in Ω2, um

2 = g on Γ2, um
2 = λm

2 on S2,

L
(0)∗
1 qm

1 = χ12(u
m
1 − um

2 ) in Ω1, (b1
n)+qm

1 = 0 on ∂Ω1,

L
(0)∗
2 qm

2 = −χ12(u
m
1 − um

2 ) in Ω2, qm
2 = 0 on ∂Ω2,

(b1
n)−λm+1

1 = (b1
n)−λm

1 − γm(b1
n)−qm

1 on S1,

λm+1
2 = λm

2 + γmν
∂qm

2

∂n on S2.

(25)

According to the general theory of iterative methods [14], if ker(A∗A) = {0},
the coefficients γm can be chosen in the interval γm ∈ (0, 2/‖A‖2). If problem
(2),(3) is dense solvable (see Definition 4.1 in Section 4), the choice [1]

γm =
1

2

J0(λ
m
1 , λm

2 )
∫

S1
(b1

n)−(qm
1 )2dΓ +

∫

S2
(ν

∂qm

2

∂n )2dΓ
(26)

is the one that guarantees the minimization of functional (4).
Alternative strategies are usable as well, for instance, solving system (15) by the
Conjugate Gradient method, in which case the choice of the relaxation parame-
ters is automatic.
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Proposition 3.4 If problem (2),(4) (or equivalently (6)) has a unique solution
and the iterative process (23) (or equivalently (25)) is convergent, then in general

lim
m→∞

‖um
1 − um

2 ‖L2(Ω12) ≥ const > 0, (27)

i.e. um
1 , um

2 don’t coincide in Ω12, in general, as m → ∞.

Proof. This statement follows from both second assertion of proposition 3.3 and

convergence of the iterative process (24) (or equivalently (25)) when the relaxation

parameters γm are chosen appropriately [1, 14, 22]. �

For any α > 0, the regularized problem (2),(5) has a unique solution {u1(α),
u2(α), λ1(α), λ2(α)}. As a matter of fact, the corresponding optimality condi-
tions are given by (6) where the last row is replaced by

α(b1
n)−λ1 + (b1

n)−q1 = 0 on S1, αλ2 − ν
∂q2

∂n
= 0 on S2, (28)

and coherently, equation (15) will be replaced by

find λ̃ ∈ Λ : (αI + A∗A)λ̃ = A∗F. (29)

It is evident that problem (29) is well posed for any α > 0.
The associated iterative process will converge: um

k (α) → uk(α), λm
k (α) → λk(α)

when m → ∞, for k = 1, 2 and for any α > 0 (m denotes the iteration in the

iterative process). Nevertheless, we cannot prove that uk(α) → u
(0)
k , λk(α) →

λ
(0)
k when α → 0, for k = 1, 2, where {u

(0)
1 , u

(0)
2 , λ

(0)
1 , λ

(0)
2 } is the solution of

(2),(4).
As a matter of fact, if problem (2),(4) admits several solutions, then {u1(α),
u2(α), λ1(α), λ2(α)} will converge to that solution that minimizes the norm of
(λ1, λ2) (see [1]). However, if problem (2),(4) has not a solution, we can not
expect the convergence of the iterative process.
From Proposition 3.4 we can draw the following conclusion: in order for the
property lim

m→∞
‖um

1 −um
2 ‖ = 0 to hold, the statement (2),(4) has to be modified.

One possibility, which consists of introducing a third control (besides λ1 and
λ2), will be investigated in the next section.

4 DDM with three control functions

In this section we propose and analyze a domain decomposition algorithm to
approximately solve problem (2),(3) with a perturbed equation in Ω1, by making
use of three control functions.

Let ω be a smooth function in Ω such that

0 ≤ ω(x) ≤ 1 in Ω, ω = 0 in Ω\Ω12, ω > 0 in Ω12.
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Let us consider the following control problem: find uk, λk for k = 1, 2 and
v ∈ L2(Ω12) s.t.

L1u1 = f + ωv in Ω1,

(b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,

(30)

with the constraint
u1 = u2 in Ω12. (31)

The optimal control problem that we associate with (30),(31) reads: find
uk(α), λk(α), for k = 1, 2 and v(α) (that we will still denote for simplicity as
uk, λk (for k = 1, 2), and v) which satisfy both boundary value problem (30)
and

inf
λ1,λ2,v

Jα(λ1, λ2, v), (32)

where

Jα(λ1, λ2, v) =
1

2



α

∫

S1

(b1
n)−λ2

1dΓ + α

∫

S2

λ2
2dΓ + α

∫

Ω

ωv2dΩ +

∫

Ω

χ12(u1 − u2)
2dΩ



 ,

(33)
and α ≥ 0 is a regularization parameter. (Even for α = 0 the solution to
(30),(32) does not necessarily coincide with that of (30),(31).)

In the sequel we identify L2(Ω12) with the subspaces L2
0(Ωk) = {u : u ∈

L2(Ωk), u ≡ 0 in Ωk\Ω12}, for both k = 1, 2.
If α = 0, (30),(32) represent the weak statement of problem (30),(31).

The minimization requirement (32) yields the set of optimality conditions find
λ1, λ2, v, u1, u2, q1, q2 such that







































































L1u1 = f + ωv in Ω1,

(b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,

L
(0)∗
1 q1 = χ12(u1 − u2) in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12(u1 − u2) in Ω2, q2 = 0 on ∂Ω2,

α(b1
n)−λ1 + (b1

n)−q1 = 0 on S1,

αλ2 − ν ∂q2

∂n = 0 on S2, αωv + ωq1 = 0 in Ω1.

(34)

We consider the Gradient method to solve (34): for any given λ0
1, λ0

2, v0, for
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m ≥ 0 we look for um
1 , um

2 , qm
1 , qm

2 , λm+1
1 , λm+1

2 , vm+1 such that























































































L1u
m
1 = f + ωvm in Ω1,

(b1
n)−um

1 = (b1
n)−g on Γ1, (b1

n)−um
1 = (b1

n)−λm
1 on S1,

L2u
m
2 = f in Ω2, um

2 = g on Γ2, um
2 = λm

2 on S2,

L
(0)∗
1 qm

1 = χ12(u
m
1 − um

2 ) in Ω1, (b1
n)+qm

1 = 0 on ∂Ω1,

L
(0)∗
2 qm

2 = −χ12(u
m
1 − um

2 ) in Ω2, qm
2 = 0 on ∂Ω2,

(b1
n)−λm+1

1 = (b1
n)−λm

1 − γm(α(b1
n)−λm

1 + (b1
n)−qm

1 ) on S1,

λm+1
2 = λm

2 − γm

(

αλm
2 − ν

∂qm
2

∂n

)

on S2,

vm+1 = vm − γm(αvm + qm
1 ) in Ω12

(35)

The parameters {γm} have to be chosen to get convergence of (35) (see [1, 14,
22]).

In the following we use the notion of ”dense solvability” for problem (30),(31)
(see [8]).

Definition 4.1 We say that problem (30),(31) is densely solvable (or equiva-
lently, that the property of dense solvability holds for (30),(31)) if for any ε1 > 0
there exist λ̂1, λ̂2, v̂ such that the problem















L1û1 = f + ωv̂ in Ω1,

(b1
n)−û1 = (b1

n)−g on Γ1, (b1
n)−û1 = (b1

n)−λ̂1 on S1

L2û2 = f in Ω2, û2 = g on Γ2, û2 = λ̂2 on S2

(36)

has solution û1, û2 s.t.
‖û1 − û2‖L2(Ω12) ≤ ε1. (37)

This is also referred to as a property of ”approximate controllability” for problem
(30),(31) (see [9], [23]).

As done in the previous section, we want to rewrite problem (30),(32) through

linear operators. Therefore, we set D(A) := Λ = L2(S−
1 ) × H

1/2
00 (S2) × L2(Ω12)

and we define the linear operator

A : L2(S−
1 ) × L2(S2) × L2(Ω12) → L2(Ω12), Aλ̃ := χ12(u

λ
1 − uλ

2), (38)

where λ̃ = (λ̃1, λ̃2, v) and where uλ
1 , uλ

2 are the solutions of

L1u
λ
1 = ωv in Ω1, (b1

n)−uλ
1 = 0 on Γ1, (b1

n)−uλ
1 = (b1

n)−λ̃1 on S1,

L2u
λ
2 = 0 in Ω2, uλ

2 = 0 on Γ2, uλ
2 = λ̃2 on S2.

(39)
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The adjoint operator of A is

A∗ : L2(Ω12) → L2(S−
1 ) × L2(S2) × L2(Ω12), A∗ : w 7→ µ, (40)

such that:

L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2, q2 = 0 on ∂Ω2,

µ = (µ1, µ2, µ3), µ1 = (b1
n)−q1|S1

, µ2 = −ν
∂q2

∂n
|S2

, µ3 = ωv|Ω12
.

Given F as in (13), problem (30),(31) can be written again like (14), while
problem (30),(32) can be written like (29).

Let us consider uniqueness of solution for problem (30),(31). Should two

solutions {u
(1)
1 , u

(1)
2 , λ

(1)
1 , λ

(1)
2 , v(1)} and {u

(2)
1 , u

(2)
2 , λ

(2)
1 , λ

(2)
2 , v(2)} exist, their

difference u1 = u
(1)
1 − u

(2)
1 , ... , v = v(1) − v(2) would satisfy the equations















L1u1 = ωv in Ω1, (b1
n)−u1 = 0 on Γ1, (b1

n)−u1 = (b1
n)−λ1 on S1,

L2u2 = 0 in Ω2, u2 = 0 on Γ2, u2 = λ2 on S2,

u1 = u2, in Ω12.

(41)

From (41), for u = u1 = u2 in Ω12 we obtain the following boundary value
problem







L2u = 0 in Ω12,

L1u = bn
∂u

∂n
+ bτ

∂u

∂τ
+ µu = ωv = 0 on ∂Ω12.

(42)

If the assumption (16) is fulfilled, then we have:

L2u = 0 in Ω12, u =
∂u

∂n
= 0 on ∆Γ(j), j = 1, . . . , p,

thus u = 0 in Ω12 from the uniqueness continuation theorem.
Hence, v = 0, λk = 0, uk = 0 in Ωk, k = 1, 2, i.e. the uniqueness of solutions of
(30),(31) takes place.
The same conclusion holds when assumption (17) or (18) hold instead of (16).
Moreover, the uniqueness of solution of (30),(31) implies the uniqueness of solu-
tion also for problem (34) (or equivalently (30),(32)) for α = 0. The uniqueness
results for (34) (or (30), (32)) when α > 0 follow from well-posedeness of equa-
tion (29) [1].

Let us formulate the following proposition.

Proposition 4.1 The following statements hold true:
1. Problem (30),(31) is densely solvable.
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2. For any α > 0, problem (30),(32) has the unique solution uk = uk(α),
λk = λk(α), k = 1, 2, v = v(α) and

‖χ12(u1 − u2)‖L2(Ω) → 0, α → +0.

3. If problem (30),(31) has the unique solution u
(0)
k , λ

(0)
k , k = 1, 2, v(0), then

uk(α) → u
(0)
k , λk(α) → λ

(0)
k , k = 1, 2, v(α) → v(0) as α → +0,

where, for any α > 0, uk(α), λk(α), for k = 1, 2, v(α) is the unique solution of
(30),(32).

4. If {um
k (α)}, {λm

k (α)}, k = 1, 2, {vm(α)} are calculated by convergent
iterative process (35) then for any ε2 > 0 there are a small α > 0 and suf-
ficiently large m = M � 1 such that ‖χ12(u

M
1 (α) − uM

2 (α))‖L2(Ω) ≤ ε2, i.e.

uM
k (α), λM

k (α), k = 1, 2, vM (α) can be considered as an approximate solution
of (30),(31).

5. If (30),(31) has the unique solution u
(0)
k , λ

(0)
k , k = 1, 2, v(0) then

um
k (α) → u

(0)
k , λm

k (α) → λ
(0)
k (k = 1, 2), vm(α) → v(0) as α → 0 and m → ∞

and for sufficiently small α > 0 and large m = M � 1 the functions uM
k (α), λM

k (α)

(for k = 1, 2), vM (α) can be chosen as approximations of u
(0)
k , λ

(0)
k (for k = 1, 2),

v(0).

Proof. 1. Let us consider the homogeneous adjoint problem, corresponding to
(30),(31): find q1, q2, w s.t.























L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2, q2 = 0 on ∂Ω2,

(b1
n)−q1 = 0 on S1, −ν

∂q2

∂n
= 0 on S2, ωq1 = 0 in Ω1.

(43)

From the last relation we obtain: q1 = 0 in Ω12. Now, using the equations in Ω1 and
Ω2 we conclude also that w = 0 in Ω12, qk = 0 in Ωk, k = 1, 2. So, the adjoint problem
(43) admits only the trivial solution, that is ker(A∗) = {0}. If we apply the theory of
operator equations [8, 1], ker(A∗) = {0} implies the dense solvability of (30),(31).

2. If α > 0, existence and uniqueness of solution for problem (30),(32), (or equiva-
lently (34)) is proved by invoking the results of [1]. As a matter of fact, if F is given as
in (13), A as in (38) and A∗ as in (40), problem (29) (or equivalently (30),(32)) has a
unique solution λ̃ = (λ̃1, λ̃2, v) for any α > 0.
Besides, the solutions uk = uk(α), λk = λk(α), for k = 1, 2, v = v(α) of (30), (32), for
sufficiently small α > 0 can be chosen as ”regularized approximations” of the solutions
of (30),(31) such that (see [1]):














L1u1 = f + ωv in Ω1, (b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,

J0(λ1, λ2) = 1
2‖χ12(u1(λ1) − u2(λ2))‖2

L2(Ω) ≤ ε1

(44)
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and
‖χ12(u1(α) − u2(α))‖2

L2(Ω) → 0 as α → +0. (45)

3. If we apply the Tikhonov’s regularization method to equation (29) (see [1, 20, 21]),
we can prove the convergence

λ(α) → λ(0) as α → +0.

Since the operator A is bounded and, by assumption, problem (30),(31) has a unique
solution, then

uk(α) → u
(0)
k as α → +0, k = 1, 2

as well.
4. This statement follows from both second assertion of the present Proposition and

convergence of the iterative process (35) when the relaxation parameters γm are chosen
appropriately (see [1, 14, 22]).

5. This statement is a consequence of the previous steps of the present proposition.

�

Remark 4.1 Since ‖χ12(u1 − u2)‖
2
L2(Ω) → 0 as α → +0, the right hand side of

the adjoint problem vanishes when α → +0, therefore we have the convergence
result

‖b · ∇q1‖L2(Ω1) + ‖q1‖L2(Ω1) + ‖q2‖L2(Ω2) → 0, ‖q2‖H1(Ω2) → 0, α → +0

and

‖q2‖H2(Ω2) → 0, α → +0 if Ω2 is convex or ∂Ω2 is smooth.

Remark 4.2 We draw attention to the following point: if ‖u1 − u2‖L2(Ω12) →
0, α → +0 or ‖um

1 − um
2 ‖L2(Ω12) → 0 as ”α → +0, m → ∞” then we don’t

expect the convergence of both v(α) and vm(α) to zero as α → +0, m → ∞
in general case (because in this case it can be in contradiction with results from
Propositions 3.1 - 3.2).

5 Numerical results

We consider the heterogeneous problem (2) in the one-dimensional domain Ω =
(0, 1), with b0 = 0, f = 1, and homogeneous Dirichlet boundary conditions on
∂Ω. The coefficients ν and b, as well as the subdomain partition will be specified
below. For the 3-controls approach we chose ω ≡ χ12 in Ω12.
In order to discretize the differential problem, we consider a spectral element ap-
proach ([13]), where we denote by N the polynomial degree in each subdomain.
After space discretization, both 2-controls approach (2),(4) and 3-controls ap-
proach (30),(32) are solved by Bi-CGStab iterations.

In Figure 4 we show the numerical solution obtained with both 2-controls
(dashed line) and 3-controls (solid line), for ν = 1, b = 1 at left and ν = 10−2,
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b = 1 at right. For both cases the domain partition is Ω1 = (0, 0.6) and
Ω2 = (0.3, 1). Note that, for the choice b = 1, we have S−

1 = ∅, thus no con-
trol function λ1 is needed on S1. The regularization parameter is α = 0 in both
cases, the same solution is obtained also for small α > 0. We decompose both Ω1

and Ω2 in two spectral elements and the common element discretizes the overlap
Ω12. The polynomial degree used is N = 16 in each element of both Ω1 and Ω2

when ν = 1, while it is N = 16 in each element of Ω1 and N = 24 in Ω2 \ Ω12

when ν = 10−2. As we can see the solution obtained with 3-controls matches on
the overlap Ω12 also with large viscosity ν = 1. The dimension of system (29)
is n = 1 for the 2 controls approach, while it is n = N for the 3 controls approach.

In Figure 5 we show the numerical solution obtained with both 2 controls
(dashed line) and 3 controls (solid line), for ν = 1, b = −1 at left and ν = 10−2,
b = −1 at right. The regularization parameter is α = 0 in both cases, the same
solution is obtained also for small α > 0. The decomposition of Ω is the same
used for the test case described in the previous figure. The polynomial degree
used is N = 16 in each element of both Ω1 and Ω2 and for both ν = 1 and
ν = 10−2. In this case the dimension of system (29) is n = 2 for the 2 controls
approach, while it is n = N + 1 for the 3 controls approach.

For simplicity of notation we set

Ĵ2,α = inf
λ1,λ2

Jα(λ1, λ1) and Ĵ3,α = inf
λ1,λ2,v

Jα(λ1, λ1, v). (46)

From Figure 6 we note that both Ĵ2,α and Ĵ3,α vanish as the viscosity tends to
zero. But, as shown in Figure 7 for fixed viscosity and for increasing polynomial
degree N , the values Ĵ2,α is positive and bounded from below, while the value
Ĵ3,α tends to zero.

Finally, in Figure 8 both Ĵ2,α and Ĵ3,α are plotted versus the size of the
overlap.

We consider now some two-dimensional cases.
Test case #1. We consider the following data:

Ω = (−1, 1)2, Ω1 = (−1, .8) × (−1, 1), Ω2 = (.7, 1) × (−1, 1), (47)

~b = [y, 0]t, b0 = 1, f ≡ 1. (48)

We impose homogeneous Dirichlet conditions on the right vertical side of Ω,
g ≡ 1 on {−1} × (0, 1] and null normal derivative on the horizontal sides of Ω
and on {−1} × [−1, 0]. In this case we have S−

1 = {.8} × [−1, 0). Along the y
coordinate the mesh is uniform, while along the x coordinate the mesh is finer
near the boundary layer, in particular we have used polynomial degree N = 5
along the y− direction and N = 12 along the x− direction. Ω1 is decomposed
in 2 × 3 spectral elements, while Ω2 is decomposed in 4 × 3 spectral elements.
The numerical solution obtained with viscosity ν = 10−2 and ν = 10−3 for the
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Figure 4: Numerical solutions obtained with 2 controls (dashed line) and 3
controls (solid line) for ν = 1, b = 1 at left and for ν = 10−2, b = 1 at right.
Ω1 = (0, 0.6), Ω2 = (0.3, 1).
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Figure 5: Numerical solutions obtained with 2 controls (dashed line) and 3
controls (solid line) for ν = 1, b = −1 at left and for ν = 10−2, b = −1 at right.
Ω1 = (0, 0.6), Ω2 = (0.3, 1).
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Ĵ2,α
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Figure 6: The minimum values Ĵ2,α and Ĵ3,α versus the viscosity ν, obtained
with b = 1 at left and b = −1 at right. For both cases, α = 0 and Ω1 = (0, 0.6),
Ω2 = (0.3, 1). The polynomial degree N is chosen inside the spectral elements
in order to guarantee absence of oscillations. Ω is decomposed in 3 spectral
elements as for the test cases presented in the previous pictures.
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Ĵ3,α

Figure 7: The minimum values Ĵ2,α and Ĵ3,α versus the polynomial degree N ,
obtained with b = 1 at left and b = −1 at right. For both cases, ν = 0.1, α = 0
and Ω1 = (0, 0.6), Ω2 = (0.3, 1). Ω is decomposed in 3 spectral elements as for
the test cases presented in the previous pictures.
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Figure 8: The minimum values Ĵ2,α and Ĵ3,α versus the size of the overlap,
obtained with ν = 0.1, b = 1 at left and ν = 0.01, b = −1 at right. For both
cases α = 0, we have decomposed Ω in 20 equal spectral elements of equal size
H = 0.5 and N = 4 in each element, Ω1 = (0, 0.6) and Ω2 = (x2, 1). The size of
the overlap is meas(Ω12) = 0.6 − x2.

2-controls approach is shown in Figure 9, while in Figure 10 we report the solu-
tion of the 3-controls approach.
The numerical solution of the minimum problem is computed by BiCG-Stab
iterations. The stopping criterion is that the norm of the normalized residual be
below a tolerance ε = 10−6. In Table 1 we show the number of iterations needed
to solve the minimum problem for both 2-controls and 3-controls approaches,
as well as the minimum values Ĵ2,α(λ1, λ2) and Ĵ3,α(λ1, λ2, v), defined in (46),
versus the viscosity ν. We may observe that, for the 2-controls approach, the
number of Bi-CGStab iterations is independent of the viscosity, while Ĵ2,α(λ1, λ2)
decreases for vanishing viscosities. On the other hand, the number of BiCG-Stab
iterations required by the 3-controls approach decreases when the viscosity van-
ishes and it is considerably larger than for the 2-controls approach. Note that
the dimension n of system (29) for the 3-controls approach is larger than for the
2-controls approach. As a matter of fact, the third control v is defined on the
whole overlapping region Ω12. For the discretization used in this test case, we
have n = 24 for the 2-controls approach and n = 193 for the 3-controls approach.
The minimum values Ĵ3,α(λ1, λ2, v) do not depend on the viscosity. We remark
that when we impose a more restrictive tolerance for the stopping criterion of
BiCG-Stab iterations (say ε = 10−12), the minimum values Ĵ3,α(λ1, λ2, v) are
about 10−24 for any value of ν, confirming the second assertion of Proposition
4.1.
In the case of the 3-controls approach, if we replace the BiCG-Stab stopping
criterion on the residual with Jα(λ1, λ2, v) ≤ Ĵ2,α(λ1, λ2), where Ĵ2,α(λ1, λ2) is
the minimum obtained for the same value of the viscosity by the 2-controls ap-
proach, then the numerical solution obtained is very poorly resolved and presents
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Figure 9: Test case #1. Numerical solution for ν = 10−2 (left) and ν = 10−3

(right) obtained through the 2-controls approach with α = 0. The overlap
is Ω12 = (.7, .8) × (−1, 1). The minimum values of the cost functional J are
Ĵ2,α = 5.67 · 10−5 for ν = 10−2 and Ĵ2,α = 4.92 · 10−7 for ν = 10−3.

2-controls 3-controls

ν #it Ĵ2,α #it Ĵ3,α

0.1 18 8.71 · 10−4 319 2.83 · 10−11

0.01 15 5.85 · 10−5 276 1.97 · 10−11

0.001 18 4.92 · 10−7 220 5.81 · 10−11

0.0001 18 9.79 · 10−9 190 2.45 · 10−11

Table 1: Number of BiCG-Stab iterations needed to satisfy the stopping criterion
on the residual with tolerance ε = 10−6 and the obtained minimum values for
the cost functionals J2(λ1, λ2) and J3(λ1, λ2, v).

oscillations inside the domain Ω1.
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Figure 10: Test case #1. Numerical solution for ν = 10−2 (left) and ν = 10−3

(right) obtained through the 3-controls approach with α = 0. The overlap
is Ω12 = (.7, .8) × (−1, 1). The minimum values of the cost functional J are
Ĵ3,α = 1.97 · 10−11 for ν = 10−2 and Ĵ3,α = 5.81 · 10−11 for ν = 10−3.

Test case #2. We consider now a rectangular domain Ω with two circular
holes, as described in Figure 11, and the following data

~b = [1, 0]t, b0 = 10−1, f ≡ 0. (49)

The solution is given u = 1 on the left vertical side of Ω, that is the inflow
external boundary for Ω1, while it is u = 0 on the boundaries of the holes.

The space discretization is performed with conformal quadrilateral spectral
elements with polynomial degree N = 8 in each direction. The numerical solu-
tion obtained through the 3-controls approach, for ν = 0.05, is shown in Figure
12.

6 Domain decomposition algorithms with ”mixed -

type” controls

We investigate domain decomposition algorithms based on optimal control ap-
proaches with different types of controls on S−

1 , S−
2 and in Ω12. We consider the

following optimal control problem: find u1, u2, λ1, λ2, v s.t.

L1u1 = f + ωv in Ω1,

(b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2,

u2 = g on Γ2,

(

ν
∂u2

∂n
+ (b2

n)−u2

)

= (b2
n)−λ2 on S2,

(50)
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Figure 11: The computational domain for test case #2.

inf
λ1,λ2,v

Jα(u1, u2, λ1, λ2, v), (51)

where ω and Jα have been defined in the previous section, with the exception

that now the term

∫

S2

λ2
2dΓ is replaced by

∫

S2

(b2
n)−λ2

2dΓ.

The variational equations corresponding to (51) are











































L
(0)∗
1 q1 = χ12(u1 − u2) in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12(u1 − u2) in Ω2,

q2 = 0 on Γ2,

(

ν
∂q2

∂n
+ (b2

n)+q2

)

= 0 on S2,

α(b1
n)−λ1 + (b1

n)−q1 = 0 on S1, α(b2
n)−λ2 + (b2

n)−q2 = 0 on S2,

αωv + ωq1 = 0 on Ω1.

(52)
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Figure 12: Test case #2. The 3-controls solution when ν = 0.05. No regular-
ization is done on the problem, i.e. α = 0. The interfaces S1 and S2 are drawn
over the solution.

The iterative process that we propose to solve (52), is: for any given λ0
1, λ0

2,



















































































































L1u
m
1 = f + ωvm in Ω1,

(b1
n)−um

1 = (b1
n)−g on Γ1, (b1

n)−um
1 = (b1

n)−λm
1 on S1,

L2u
m
2 = f in Ω2,

um
2 = g,

(

ν
∂um

2

∂n
+ (b2

n)−um
2

)

= (b2
n)−λm

2 on S2,

L
(0)∗
1 qm

1 = χ12(u
m
1 − um

2 ) in Ω1, (b1
n)+qm

1 = 0 on ∂Ω1,

L
(0)∗
2 qm

2 = −χ12(u
m
1 − um

2 ) in Ω2,

qm
2 = 0 on Γ2,

(

ν
∂qm

2

∂n
+ (b2

n)+qm
2

)

= 0 on S2,

(b1
n)−λm+1

1 = (b1
n)−λm

1 − γm(α(b1
n)−λm

1 + (b1
n)−qm

1 ) on S1,

(b2
n)−λm+1

2 = (b2
n)−λm

2 − γm(α(b2
n)−qm

2 + (b2
n)−qm

2 ) on S2,

ωvm+1 = ωvm − γm(αωvm + ωqm
1 ) in Ω1, m = 0, 1, . . . .

(53)

Proposition 6.1 The assertions of Proposition 4.1 hold true for both problem
(50),(31) and (50),(51) (instead of (30),(31) and (30),(32), respectively) and
for the process (53) (instead of (35)).

Proof. We have to prove that problem (50),(31) is densely solvable. Let us consider
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the adjoint problem, find q1, q2, w such that































L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2,

q2 = 0 on Γ2,

(

ν
∂q2

∂n
+ (b2

n)+q2

)

= 0 on S2,

(b1
n)−q1 = 0 on S1, (b2

n)−q2 = 0 on S2, ωq1 = 0 in Ω1.

(54)

The latter relation implies that q1 = 0 in Ω1. Therefore, w = 0 in Ω12 and the function
q2 satisfies the following equations:

L
(0)∗
2 q2 = 0 in Ω2, q2 = 0 on Γ2,

(

ν
∂q2

∂n
+ (b2

n)+q2

)

= 0 on S2,

(b2
n)−q2 = 0 on S2.

Hence, if q2 = 0 in Ω2, problem (54) has the trivial solution, and we conclude that the
boundary value problem (50),(31) is densely solvable.

The other steps of the proof can be carried out following the proof of Proposition

4.1. �

7 Domain decomposition algorithm for the second

order elliptic equations

We revisit the control approach developed in the previous sections for heteroge-
neous domain decomposition methods in the case of a ”standard” (homogeneous)
domain decomposition method for elliptic equations.

Let us consider in Ω ⊂ R
2 the Dirichlet problem for the second order equation

given by

Lu := −
2
∑

i,j=1

∂

∂xi

(

aij
∂u

∂xj

)

+∇· (bu)+ b0u = f in Ω, u = 0 on ∂Ω, (55)

where aij are bounded smooth functions such that

2
∑

i,j=1

aijξiξj ≥ C0|ξ|
2 ∀ξ ∈ R

2, x ≡ (x1, x2) ∈ Ω

with C0 = const > 0 and conditions on b, b0 as before.

We introduce the decomposition of Ω onto two overlapping subsets as in

Figs. 1 - 3. To simplify our considerations we assume each subdomain Ω
(j)
12

to be convex or ∂Ω
(j)
12 is smooth, for j = 1, ..., p. Let us consider the ”exact

27



controllability problem”: find u1, u2, λ1, λ2, v such that















































Lu1 = f + χ12v in Ω1, u1 = 0 on Γ1,
(

∂u1

∂nL
+ (b1

n)−u1

)

= (b1
n)−λ1 on S1,

Lu2 = f in Ω2, u2 = 0 on Γ2,
(

∂u2

∂nL
+ (b2

n)−u2

)

= (b2
n)−λ2 on S2,

u1 = u2 in Ω12,

(56)

where ∂u/∂nL =
2
∑

i,j=1
aijni∂u/∂xj , n = (n1, n2) is the outward unit normal

vector on the boundary. The weak statement of (56) reads: find uk ∈ H1
Γk

(Ωk),

λk ∈ L2(S
−
k ), v ∈ L2(Ω12) s.t.



































a1(u1, û1) = (f, û1)L2(Ω1) +

∫

S1

(b1
n)−λ1û1dΓ + (χ12v, û1)L2(Ω1) ∀û1 ∈ H1

Γ1
(Ω1),

a2(u2, û2) = (f, û2)L2(Ω2) +

∫

S2

(b2
n)−λ2û2dΓ ∀û2 ∈ H1

Γ2
(Ω2),

J0(u1, u2) :=
1

2
‖χ12(u1 − u2)‖

2
L2(Ω) = 0

(57)
where

H1
Γk

(Ωk) = {u ∈ H1(Ωk), u = 0 on Γk},

ak(uk, ûk) =

∫

Ωk





2
∑

i,j=1

aij
∂uk

∂ξj

∂ûk

∂ξi
− ukb · ∇ûk + b0ukûk



 dΩ

+

∫

Sk

(bk
n)+ukûkdΓ, k = 1, 2.

(58)

The optimal control problem reads as follows: find uk = uk(α) ∈ H1
Γk

(Ωk),

λk = λk(α) ∈ L2(S
−
k ), k = 1, 2 and v = v(α) ∈ L2(Ω12) s.t.











































a1(u1, û1) = (f, û1)L2(Ω1) +

∫

S1

(b1
n)−λ1û1dΓ + (χ12v, û1)L2(Ω1)

∀û1 ∈ H1
Γ1

(Ω1),

a2(u2, û2) = (f, û2)L2(Ω2) +

∫

S2

(b2
n)−λ2û2dΓ ∀û2 ∈ H1

Γ2
(Ω2),

inf
λ1,λ2,v

Jα(λ1, λ2, v),

(59)

28



where

Jα(λ1, λ2, v) =
1

2
α

∫

S1

(b1
n)−λ2

1dΓ +
1

2
α

∫

S2

(b2
n)−λ2

2dΓ

+
1

2
α

∫

Ω12

χ12v
2dΩ +

1

2
‖χ12(u1 − u2)‖

2
L2(Ω).

The variational equations corresponding to (59) are:



























































































a1(u1, û1) = (f, û1)L2(Ω1) +

∫

S1

(b1
n)−λ1û1dΓ + (χ12v, û1)L2(Ω1)

∀û1 ∈ H1
Γ1

(Ω1),

a2(u1, û2) = (f, û2)L2(Ω2) +

∫

S2

(b2
n)−λ2û2dΓ ∀û2 ∈ H1

Γ2
(Ω2),

a1(q̂1, q1) = (χ12(u1 − u2), q̂1)L2(Ω1) ∀q̂1 ∈ H1
Γ1

(Ω1),

a2(q̂2, q2) = −(χ12(u1 − u2), q̂2)L2(Ω1) ∀q̂2 ∈ H1
Γ2

(Ω2),

α(b1
n)−λ1 + (b1

n)−q1 = 0 a. e. on S1,

α(b2
n)−λ2 + (b2

n)−q2 = 0 a. e. on S2,

αχ12v + χ12q1 = 0 in Ω1.

(60)

The following iterative process is similar to those proposed in the previous sec-
tions: if λ0

1, λ0
2, v0 are given, then the functions λm+1

1 , λm+1
2 , vm+1 are obtained

from the solution of:


















































































a1(u
m
1 , û1) = (f, û1)L2(Ω1) +

∫

S1

(b1
n)−λm

1 û1dΓ + (χ12v
m, û1)L2(Ω1)

∀û1 ∈ H1
Γ1

(Ω1),

a2(u
m
2 , û2) = (f, û2)L2(Ω2) +

∫

S2

(b2
n)−λm

2 û2dΓ ∀û2 ∈ H1
Γ2

(Ω2),

a1(q̂1, q
m
1 ) = (χ12(u

m
1 − um

2 ), q̂1)L2(Ω1) ∀q̂1 ∈ H1
Γ1

(Ω1),

a2(q̂2, q
m
2 ) = −(χ12(u

m
1 − um

2 ), q̂2)L2(Ω2) ∀q̂2 ∈ H1
Γ2

(Ω2),

(b1
n)−λm+1

1 = (b1
n)−λm

1 − γm(α(b1
n)−λm

1 + (b1
n)−qm

1 ) on S1,

(b2
n)−λm+1

2 = (b2
n)−λm

2 − γm(α(b2
n)−λm

2 + (b2
n)−qm

2 ) on S2,

χ12v
m+1 = χ12v

m − γm(αχ12v
m + χ12q

m
1 ) on Ω1,

(61)

for m = 0, 1, . . . and for suitable parameters {γm}.
Let us analyze the convergence of solutions given by (61) to the solution of

(55) as α → +0 and m → ∞. The following statement holds true.
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Proposition 7.1 Problem (56) (or equivalently (57)) as a unique solution and

it is densely solvable. Moreover, if u(0) is the solution of (55), and u
(0)
k ≡ u(0) in

Ωk, um
k (α), λm

k (α), (for k = 1, 2) vm(α) is the solution obtained by the iterative
algorithm (61), then

2
∑

k=1

‖u
(0)
k − um

k (α)‖H1(Ωk) → 0 as α → +0, m → ∞. (62)

Proof. Under the assumptions imposed on b, b0, f, Ω in Section 2, problem (55)
has a unique solution u ∈ H1

0 (Ω). Hence the same function u is also solution of problem
(56) (or equivalently (57)) when v ≡ 0. Assume that (56) has another solution ũ. Then
the difference û = u − ũ satisfies the following equations























Lû1 = χ12v in Ω1, û1 = 0 on Γ1,

(

∂û1

∂nL

+ (b1
n)−û1

)

= (b1
n)−λ1 on S1,

Lû2 = 0 in Ω2, û2 = 0 on Γ2,

(

∂û2

∂nL

+ (b2
n)−û2

)

= (b2
n)−λ2 on S2,

û1 = û2 in Ω12.

Since the differential operators in the first and second equations coincide, then using the
latter equality we conclude: v = 0 in Ω12. (This conclusion can be obtained also from
the weak statement (57) of problem (56)). Now, let us consider the following integral

I(u, û) ≡

∫

Ω





2
∑

i,j=1

aij

∂u

∂xi

∂û

∂xj

− ub · ∇û + b0uû



 dΩ ∀û ∈ H1
0 (Ω),

where uk = u|Ωk
for k = 1, 2 and u1 = u2 = u in Ω12. Integrating by parts we have:

I(u, û) = (Lu1, û)L2(Ω1\Ω12) + (Lu2, û)L2(Ω2\Ω12) + (Lu, û)L2(Ω12
)+

+

∫

S1

(

−
∂u2

∂nL

+
∂u

∂nL

)

ûdΓ +

∫

S2

(

−
∂u1

∂nL

+
∂u

∂nL

)

ûdΓ,

where Luk = 0 in Ωk\Ω12, k = 1, 2 and Lu = 0 in Ω12. Since

u1 = u2 = u in Ω12,
∂u

∂nL

=
∂u1

∂nL

on S2,
∂u

∂nL

=
∂u2

∂nL

on S1,

then I(u, û) = 0. If we set û = u, then

I(u, u) =

∫

Ω





2
∑

i,j=1

aij

∂u

∂xi

∂u

∂xj

+

(

b0 +
1

2
divb

)

u2



 dΩ = 0

and u = 0 in Ω, uk = 0 in Ωk, k = 1, 2, λ1 = 0 on S−
1 , λ2 = 0 on S−

2 i.e. the solution of
(56) (or equivalently (57)) is unique.

Let us consider now the weak statement of the adjoint problem with homogeneous
boundary conditions: find q1, q2, w s.t.















a1(q̂1, q1) = (χ12w, q̂1)L2(Ω1) ∀q̂1 ∈ H1
Γ1

(Ω1),

a2(q̂2, q2) = −(χ12w, q̂2)L2(Ω2) ∀q̂2 ∈ H1
Γ2

(Ω2),

(b1
n)−q1 = 0 a. e. on S1, (b2

n)−q2 = 0 a. e. on S2, χ12q1 = 0 in Ω1.

(63)
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Since χ12q1 = 0 in Ω1 then q1 = 0 in Ω12 and w = 0. If we set q̂2 = q2 then:

a2(q2, q2) =

∫

Ω2

(

2
∑

i,j=1

aij

∂q2

∂xi

∂q2

∂xj

+

(

b0 +
1

2
divb

)

q2
2

)

dΩ +
1

2

∫

S2

(b2
n)+q2

2dΓ = 0

and q2 = 0 in Ω2, q1 = 0 in Ω1, w = 0, i.e. problem (61) has the trivial solution. This
means that problem (56) (or equivalently (57)) is densely solvable and the following
relation holds true (see [1]):

2
∑

k=1

(

‖u
(0)
k − uk(α)‖H1(Ωk) + ‖λ

(0)
k − λk(α)‖L2(S−

k
)

)

+ ‖χ12v(α)‖L2(Ω)+

+‖χ12(u1(α) − u2(α))‖L2(Ω) → 0 as α → +0, (64)

where uk(α), λk(α), k = 1, 2 and v(α) is the solution of the optimal control problem

(59) for α > 0, while u
(0)
k , λ

(0)
k , k = 1, 2 and v(0) ≡ 0 denotes the solution of the exact

controllability problem (56).

The convergence estimate (62) follows by the convergence of the iterative method (61),

for suitable relaxation parameters γm ([1, 14, 22]). �

Remark 7.1 The results proved in Proposition 7.1 remain valid for Ω ⊂ R
3

and for elliptic systems.
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1982. Translated from the Russian by A. Iacob, With an introduction by I.
Gohberg.

[9] J.-L. Lions. Remarks on approximate controllability. J. Anal. Math.,
59:103–116, 1992. Festschrift on the occasion of the 70th birthday of Shmuel
Agmon.

[10] J.L. Lions and O. Pironneau. Algorithmes parallèles pour la solution de
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