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Abstract

In this paper we introduce some basic differential models for the de-
scription of blood flow in the circulatory system. We comment on their
mathematical properties, their meaningfulness and their limitation to yield
realistic and accurate numerical simulations, and their contribution for a
better understanding of cardiovascular physio-pathology.
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1 Introduction

The cardiovascular system has the task of supplying the human organs with
blood. Its main components are the heart, the arteries and the veins. The
so-called large (systemic) circulation brings oxygenated blood from the left ven-
tricle via the aorta to the various organs through the arterial system, then brings
it back through the venous system and the vena cava to the right atrium.
The small circulation is the one between the heart and the lungs. Blood is
pumped from the right ventricle via the pulmonary artery to the lungs at a peak
pressure of about 4kPa. Venous blood enters the pulmonary system, gets oxy-
genated and returns to the left heart atrium (see Fig 1).
In the past decade, the application of mathematical models, seconded by the

Figure 1: The human heart. Courtesy of the Texas Heart R©Institute.

use of efficient and accurate numerical algorithms, has made impressive progress
in the interpretation of the circulatory system functionality, in both physiologi-
cal and pathological situations, as well as in the perspective of providing patient
specific design indications to surgical planning.
This has called for the development of a new field of applied mathematics: how-
ever, although many substantial achievements have been made in the field of
modeling, mathematical and numerical analysis, and scientific computation,
where a variety of new concepts and mathematical techniques have been in-
troduced, most of the difficulties are still on the ground and represent major
challenges for the years to come.
The main impulse to develop this field of study is the increasing demand from
the medical community for scientifically rigorous and quantitative investigations
of cardiovascular diseases, which are responsible today for about the 40% od
deaths in industrialized societies. The 3/4 of them are related to atherosclero-
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sis, which manifests as, e.g., stroke, myocardial infarction or peripheral vascular
diseases. For example, in vascular surgery, arterial bypass grafting is a common
practice to treat coronary artery and peripheral vascular diseases. Nonetheless,
over 50% of coronary artery bypass grafts fail within 10 years and more than
25% of infra-inguinal grafts within 5 years (see [9], [31], [96]). The principal
cause is neo-intimal hyperplasia that may degenerate in atherosclerosis. A bet-
ter understanding of local haemodynamics, like the detection of regions of low
wall shear stress and of high residence time for blood particles, is of utmost
importance to assess its correlation with atherogenesis ([11]).
The vascular system is highly complex and able to regulate itself: an exces-
sive decrease in blood pressure will cause the smaller arteries (the arterioles) to
contract and the heart rate to increase, whereas an excessive blood pressure is
counter-reacted by a relaxation of the arterioles (which causes a reduction of
the periphery resistance to the flow) and a decrease of the heart beat. Yet, it
may happen that some pathological conditions develop. For example, the ar-
terial wall may become more rigid, due to illness or excessive smoking habits,
fat may accumulate in the arterial walls causing a reduction of the vessel sec-
tion (a stenosis) and eventually an aneurysm may develop. The consequence of
these pathologies on the blood field as well as the possible outcome of a sur-
gical intervention to cure them may be studied by numerical simulations, that
are less invasive than in-vivo investigation, and far more accurate and flexible
than in-vitro experiments. Numerical models require patient’s data (the ini-
tial and boundary conditions for the PDE systems, as well as geometrical data
to characterize the shape of the computational domain) that can be generated
by radiological acquisition through, e.g., computer tomography, magnetic reso-
nance, doppler anemometry, etc. Besides their employment in medical research,
numerical models of vascular flows can provide a virtual experimental platform
to be used as training system. For instance, a technique now currently used to
cure a stenosis is angioplasty, which consists of inflating a balloon positioned in
the stenotic region by the help of a catheter. The balloon should squash the
stenosis and approximately restore the original lumen area. The success of the
procedure depends, among other factors, on the sensitivity of the surgeon and
his ability of placing the catheter in the right position. A training system which
couples virtual reality techniques with the simulation of the flow field around
the catheter, the balloon and the vessel walls, employing geometries extracted
from real patients, could well serve as training bed for new vascular surgeons. A
similar perspective could provide specific design indications for the realization of
surgical operations. For instance, numerical simulations could represent a tool
for the design of new prototypes, or for devising prosthetic devices by the help of
shape optimization theory. In particular, shape optimization has been used for
minimizing the downstream vorticity in coronary by-pass grafts (see [1, 76, 85]).
These numerical investigations can help the surgeon in understanding how the
different surgical solutions may affect blood circulation and guide the choice of
the most appropriate procedure for a specific patient. In such “virtual surgery”
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environments, the outcome of alternative treatment plans for the individual pa-
tient can be foreseen by simulations, yielding a new paradigm of the clinical
practice which is referred to as “predictive medicine” (see [92]).
In this presentation we will address some of the most basic models that are used
to describe blood flow dynamics in local arterial environments (Sect. 2) and to
predict the vessel wall deformation in compliant arteries (Sect. 3). Then we
will introduce appropriate geometrical multiscale models that integrate three-
dimensional, one-dimensional and zero-dimensional models for the simulation of
blood circulation in the whole arterial tree (Sect. 4). Finally, in Sect. 5 we con-
sider the problem of modeling biochemical processes occurring across the several
layers of the arterial wall.

2 Mathematical models for local blood flow dynamics

The mathematical equations of fluid dynamics are the key components of haemo-
dynamics modeling. Rigorously speaking, blood is not a fluid but a suspension
of particles in a fluid called plasma, which is made of water for the 90 − 92%,
proteins (like serum albumin, globulins and fibrinogen) for the 7% and inorganic
constituents for the rest. The most important blood particles are red cells, white
cells and platelets. Red cells (erythrocytes) are responsible for the exchange of
oxygen and carbon-dioxide with the cells. They are about 4 − 6 · 106 biconcave
disks per mm3 and provide the 45% of blood volume; they are made by the 65%
of water, the 3% of membrane components, and around the 32% by haemoglobin.
White cells (leukocytes), play a major role in the human immune system: they
are (roughly) spherical, and are 4− 11 · 103 per mm3. Platelets (thrombocytes)
are the main responsible for blood coagulation: they are rounded or oval disks
and there are 3 − 5 · 105 per mm3.
Rheological models in smaller arterioles and capillaries should account for the
presence of blood cells since their size becomes comparable to that of the vessel.
In this section, however, we will bound our investigation to flow in large and
medium sized vessels.
The principal quantities which describe blood flow are the velocity u and pres-
sure P . Knowing these fields allows the computation of the stresses to which an
arterial wall is subjected due to the blood movement. When addressing fluid-
structure interaction problems (see Sect. 3), the displacement of the vessel wall
due to the action of the flow field is another quantity of relevance. Pressure,
velocity and vessel wall displacement will be functions of time and the spatial
position. Accounting for temperature variation may be relevant in some partic-
ular context, for instance in the hyperthermia treatment, where some drugs are
activated through an artificial localized increase in temperature (see [47, 28]).
Temperature may also have a notable influence on blood properties, in partic-
ular on blood viscosity. Yet, this aspect is relevant only in the flow through
very small arterioles/veins and in the capillaries, a subject which is covered only
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partially in these notes. Another aspect related with blood flow modeling is the
chemical interaction with the vessel wall, which is relevant both for the physi-
ology of the blood vessels and for the development of certain vascular diseases.
Not mentioning the potential relevance of such investigation for the study of the
propagation/absorption of pharmaceutical chemicals. A short account will be
given in Sect. 5.
A major feature of blood flow is represented by its pulsatility. With some ap-
proximation one may think the blood flow to be periodic in time. Yet, this is
usually true only for relatively short periods, since the various human activities
require to change the amount of blood sent to the various organs. The cardiac
cycle features two distinct phases. The systolic phase, when the heart pumps
the blood into the arterial system, is characterized by the highest flow rate. The
diastolic phase is when the heart is filling up with the blood coming from the
venous system and the aortic valve is closed. Fig. 2 illustrates a typical flow
rate curve of a large artery during the cardiac cycle. Pulsatility induces flow re-
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Figure 2: A typical flow rate in an artery during the cardiac cycle.

versal which manifests near arterial walls, a phenomenon that can enhance the
appearance of stenoses in specific vascular districts, like the carotid bifurcation
(see Fig 3).
To simplify our presentation, in this section we will introduce the flow equa-

tions in a “truncated” blood vessel like the one illustrated in Fig. 4, which
is representative of a small portion of the arterial system. We will make the
further assumption that the vessel is rigid, thus the flow domain, denoted by
Ω, is independent of time. (This unphysical restriction will be removed in next
section where we will specifically address the interaction between blood flow and
arterial wall deformation.) If we denote by ρ = ρ(x, t) the blood density and by
u = u(x, t) the blood velocity, the principle of conservation of mass yields the
continuity equation

∂tρ + div(ρu) = 0 for x ∈ Ω, t > 0 (1)

where ∂t is the partial derivative w.r.t. t, while divu =
∑3

i=1 ∂xi
ui is the spatial

divergence of the vector field u.
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Figure 3: Recirculation in the carotid bifurcation. On the left we illustrate the
location of the carotid bifurcation. The image on the right shows the particle
path during the diastolic period in a model of the carotid bifurcation. A strong
recirculation occurs inside the carotid sinus. The image on the left is courtesy
of vesalius.com.

In large and medium size vessels the blood density can be assumed to be con-
stant, then from (1) we derive the kinematic constraint

div(u) = 0 in Ω, (2)

which in view of the Euler expansion formula implies flow incompressibility.
On the other hand, the principle of conservation of momentum, which states
that body forces, applied surface forces and internal “cohesion” forces must be
in equilibrium, writes

ρ
Du

Dt
− div(T) = ρf for x ∈ Ω, t > 0, (3)

where Du
Dt = ∂tu + (u · ∇)u is the fluid acceleration (∇ is the spatial gradient),

f is the specific body force (e.g., f = −ge3 where e3 represents the unit vector
in the vertical direction and g the gravitational acceleration), while T is the
Cauchy stress tensor (see [3] and [86]). The system (2),(3) can be closed by
using a constitutive law that relates the Cauchy stress to kinematic quantities
(velocity and pressure), and which is peculiar to the specific rheological behavior
of the fluid under consideration. In large and medium size vessel, blood behaves
as a Newtonian incompressible fluid, where we have

T = −P I + 2µD(u); (4)

P is a scalar function (the pressure), I is the identity matrix, µ is the dynamic

viscosity, D(u) = 1
2(∇u + ∇uT ) is the strain rate tensor, Dij = 1

2( ∂ui

∂xj
+

∂uj

∂xi
),
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Figure 4: An example of a computational domain made of a section of the
vascular system. We need to provide proper boundary conditions at inflow Γin,
outflow Γout and wall Γw.

i, j = 1, . . . , 3. Then (3) becomes

∂tu + (u · ∇)u + ∇p − 2div(νD(u)) = f (5)

where p = P
ρ is a scaled pressure and ν = µ

ρ is the kinematic viscosity. More
in general, ν may depend on kinematic quantities. Several models have been
proposed in this respect, as we will see later in this section.
The Navier-Stokes system of continuity and momentum equations must be closed
by initial conditions on velocity, say u = u0 for x ∈ Ω and t = 0, and boundary
conditions on the domain boundary, for all t > 0. Mathematically admissible
boundary conditions are of either Dirichlet or Neumann type

u = g on ΓD, T · n = ϕ on ΓN , (6)

respectively, where n is the unit outward normal vector on ∂Ω, ΓD ∪ ΓN = ∂Ω,
and either ΓD or ΓN may be empty. The conditions to apply are normally driven
by physical considerations. For instance, for a viscous fluid (µ > 0), we have to
impose the homogeneous Dirichlet condition u = 0 at a solid fixed boundary,
like the vessel wall Γw in Fig.4. When we will consider the coupled problem
between fluid and vessel wall, Γw will deform, hence the homogeneous Dirichlet
condition will be replaced by u = w, where w is the (unknown) wall velocity.
When dealing with an artificial boundary, that is a boundary which truncates
the space occupied by the fluid (for computational reasons) like the sections Γin

and Γout in Fig.4, the choice of appropriate conditions is often more delicate
and should in any case guarantee the well-posedness of the resulting differential
problem. We anticipate the fact (without providing the proof) that this choice
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of boundary conditions, with the hypothesis that at Γout the velocity satisfies
everywhere the condition u ·n > 0, is sufficient to guarantee that the solution of
the Navier-Stokes problem exists and is continuously dependent from the data
(initial solution, boundary conditions, forcing terms), provided that the initial
data and the forcing term be sufficiently small.
Unfortunately, the homogeneous Neumann condition is rather unphysical for the
case of a human vessel. As a matter of fact, it completely neglects the presence of
the remaining part of the circulatory system. The issue of devising appropriate
boundary conditions on artificial boundaries of deformable arteries is still open
and is the subject of active research. A possibility is provided by coupling the
Navier-Stokes equations on a specific portion of the artery with reduced models,
which are able to represent, although in a simplified way, the presence of the
remaining part of the circulatory system. Techniques of this type has been used
and analyzed in [32, 33]. An account will be given in Sect. 4
Normally, on arterial sections like Γin and Γout only “averaged” data are avail-
able (mean velocity and mean pressure instead of a vector condition like that in
(6)), which are therefore insufficient for a “standard” treatment of the mathe-
matical problem. One has thus to devise alternative formulations for the bound-
ary conditions which, on one hand, reflect the physics and exploit the available
data, and, on the other hand, permit to formulate a mathematically well posed
problem. In these notes we will not investigate this particular aspect, which is
however illustrated and analyzed in [34, 97, 98].
Now we will make some considerations on the behavior of blood flow. Most
often, it is laminar. Characteristic values of the Reynolds number, Re = ρUL

µ ,
where U is a representative mean flow velocity and L is a linear length of the
vessel at hand, are given in Table 1. In normal physiological situations, the val-

Vessel Number Diameter Area Wall Velocity Average
[cm] [cm2] thickness [cm/s] Reynolds

[cm] number

Aorta 1 2.5 4.5 0.2 48 3400
Arteries 159 0.4 20 0.1 45 500

Arterioles 400 0.005 5.7 · 107 0.002 5 0.7
Capillaries 4500 0.0008 1.6 · 1010 0.0001 0.1 0.002
Venules 4000 0.002 1.3 · 109 0.0002 0.2 0.01
Veins 40 0.5 200 0.05 10 140

Vena cava 18 3 0.15 3300 38 3300

Table 1: Some representative values of velocity, vessel size, average Reynolds
numbers, cross-sectional area and thickness of blood vessels.

ues of the Reynolds number reached in the cardiovascular system do not allow
the formation of full scale turbulence. Some flow instabilities may occur only at
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the exit of the aortic valve and limited to the systolic phase. In this region the
Reynolds number may reach the value of few thousands only for the portion of
the cardiac cycle corresponding to the peak systolic velocity, however, there is
not enough time for a full turbulent flow to develop.
When departing from physiological conditions, there are several factors that may
induce transition from laminar to turbulent flows. For instance, the increase of
flow velocity because of physical exercise, or due to the presence of a stenotic
artery or a prosthetic implant such as a shunt, may induce an increase of the
Reynolds number and lead to turbulence. Smaller values of blood viscosity also
raise the Reynolds number; this may happen in the presence of severe anemia,
when the hematocrit drops sharply (and so does the viscosity).
The rheological behavior of blood flow is complex to describe, and is still a sub-
ject of investigation. Nonetheless, a few peculiar phenomena are worth being
mentioned. Red blood cells tend to aggregate by attaching each other side by
side (resembling stacks of coins) forming rouleaux. Under shear stress, red blood
cells can deform into a variety of shapes (for instance they become ellipsoids)
without modifying their volume or surface area. Both aggregation and deforma-
bility affect the rheological properties of blood flow, and, particularly, blood
viscosity at low shear rates and its sedimentation velocity.
In general terms, blood is a non-Newtonian fluid. At low shear rates, viscoelastic
effects become relevant. In small capillaries, at small Reynolds and Womersley
number, viscous effects become predominant, whereas inertial forces become
negligible. The Womersley number is defined as α = R(ω/ν)1/2, where R is
the radius, ω is the angular frequency of the oscillatory motion and ν is the
kinematic viscosity. Below a critical vessel caliber (about 1 mm), blood viscos-
ity becomes dependent on the vessel radius and decreases very sharply. This is
known as Fahraeus-Lindquist effect: red blood cells move to the central part of
the capillary whereas the plasma stay in contact with the vessel wall. This layer
of plasma facilitates the movement of the red cells, thus causing a decrease of
the apparent viscosity. High shear rate and increased blood cell deformation are
further important factors that explain viscoelastic behavior.
Some blood diseases may severely alter the rheological behavior of blood. For in-
stance thalassemia causes red blood cells to become less deformable. In leukemia
there is an increased number of poorly deformable white blood cells. In hyper-
tension the haematocrit increases leading to a significant high blood viscosity
with elevated total plasma protein, albumin, globulin and fibrinogen. See [56].
To account for these phenomena we have to abandon the Newtonian law (4). In
generalized Newtonian fluids, the viscosity µ is assumed to depend on the shear
rate γ̇, a measure of the rate of shear deformation. For a simple shear flow in a
straight channel (see Fig. 5), γ̇ = U/h is just the gradient of velocity. More in

general, γ̇ =
√

1
2 tr(B2), where B = D(u) − tr(D(u))I is the off-diagonal part

of the strain rate tensor.
A simple model is given by the so-called Power-Law µ(γ̇) = kγ̇n−1, where n is
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Figure 5: Schematic example of a simple shear flow in a straight channel.

named the power-law index. The flow is shear thinning if n < 1 and shear thick-
ening if n > 1. (Shear thinning fluids are those for which viscosity decreases as
the shear rate increases.) The Prandtl-Eyring model, µ(γ̇) = µ0sinh−1(λγ̇)/λγ̇
where λ is a material constant, the Powell-Eyring model, µ(γ̇) = µ∞ + (µ0 −
µ∞)sinh−1(λγ̇)/λγ̇, the Cross-model µ(γ̇) = µ∞ + (µ0 − µ∞)/(1 + (λγ̇)(1−n)),
the Carreau model µ(γ̇) = µ∞ + (µ0 − µ∞)/(1 + (λγ̇)2)(1−n)/2, represent other
noticeable examples of generalized Newtonian models.
Blood is in general modeled as a shear thinning, nonlinear viscoelastic flow.
More complicated models are the shear thinning generalized Oldroyd-B models,
where T = −P I + τ and τ satisfies the differential problem

τ+λ1[τ̇−(∇u)τ−τ (∇uT )] = µ(D(u))D(u)+λ2[Ḋ(u)−(∇u)D(u)−D(u)(∇uT )]

where λ1, λ2 are material constants that characterize the model. For a discussion
on rheological properties of blood flow we refer, e.g., to [12, 38, 39, 94, 57]. For
a more thorough mathematical analysis of Oldroyb-B models see, e.g., [102, 4,
83, 68, 40, 41, 71].

3 Mathematical models for local blood-flow dynam-

ics in compliant vessels

In human physiology, the arterial walls deform under the action of the flow
field. This aspect is relevant especially for large or even relatively large vessels,
whereas in arterioles and capillaries the movement of the wall may be considered
negligible. In the aorta, for example, the radius may vary in a range of 5% to
10% between diastole and systole. This is quite a large displacement, which af-
fects the flow field. The fluid wall interaction problem is the responsible for the
propagation of pulse pressure waves. Indeed, no propagative phenomena would
otherwise occur in an incompressible fluid like blood. This interaction prob-
lem is a particular instance of the more general fluid-structure interaction (FSI)
problem (the solid structure being here the vessel wall). It is indeed a rather
complex one, since the time scales associated to the interaction phenomena are
two orders of magnitude greater than those associated to the bulk flow field.
The vascular wall has a very complex nature; devising an accurate model for its
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Figure 6: Velocity profiles computed in a carotid bifurcation during systole and
diastole (courtesy of M. Prosi).

mechanical behavior is rather difficult. Its structure is indeed formed by many
layers with different mechanical characteristics [38, 48]. The most important are
the endothelium (of about 2 microns, with anti-adhesive function), the tunica
intima (of 10 microns, made of connective tissue), the internal elastic lamina,
of 2 microns, the media (of about 300 microns, with structural functions) and
the adventitia, where the vasa vasorum stand (see Fig. 7). Unfortunately, ex-
perimental results obtained by specimens are only partially significant. Indeed,
the vascular wall is a living tissue with the presence of muscular cells which
contribute to its mechanical behavior. It may then be expected that the dead
tissue used in the laboratory will have different mechanical characteristics than
the living one. Moreover, the arterial mechanics depends also on the type of the
surrounding tissues, an aspect almost impossible to reproduce in a laboratory.
It is the role of mathematical modeling to find reasonable simplifying assump-
tions by which major physical characteristics remain present, yet the problem
becomes amenable to numerical analysis and computational solution.
The geometry of a portion of an artery where no branching is present may be
described by using a curvilinear cylindrical coordinate system (r, θ, z) with the
corresponding base unit vectors er, eθ, and ez, where ez is aligned with the axis
of the artery, as shown in Fig. 10. (In this figure, R indicates the radius of the
lumen.) Clearly, the vessel structure may be studied using full three dimensional
models, which may also account for its multilayered nature. However, it is com-
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Figure 7: The vessel wall is formed by many layers made of tissues with different
mechanical characteristics. Image taken from “Life: the Science of Biology” by
W.K. Purves et al., fourth edition, published by Sinauer Associates Inc. and
W.H. Freeman and Company.

mon practice to resort to simplified 2D or even 1D mechanical models in order to
reduce the overall computational complexity when the final aim is to study the
coupled fluid-structure problem. A 2D model may be obtained by either resort-
ing to a shell-type description or considering longitudinal sections (θ =const.) of
the vessels. In the first case we exploit the fact that the effective wall thickness
is relatively small to reduce the whole structure to a surface. A rigorous mathe-
matical derivation (for the linear case) may be found in [15]. In the second case
we neglect the variations of the stresses in the circumferential direction. In this
way we are able to eliminate all terms containing derivatives with respect to θ
in the equations and we may consider each plane θ = const. independently. The
resulting displacement field will depend only parametrically on θ. If, in addition,
we assume that the problem has an axial symmetry (which implies the further
assumption of a straight axis) the dependence on θ is completely neglected. In
this case, also the fluid would be described by a 2D axi-symmetric model (see
[25]).
The simplest models, called 1D models, are derived by making the same as-
sumption on the wall thickness made for the shell model, yet starting from a 2D
model. The structure will then be represented by a line on a generic longitudinal
section. Even with all these simplifying assumptions an accurate model of the
vessel wall mechanics is rather complex.
A three-dimensional model that describes the complete coupled system made of
the equations of blood flow and those for the vessel wall deformation can be de-
rived by adopting a coupled Eulerian-Lagrangian approach (differently to what
done in Sect.2 where the vessel walls were considered as being rigid).
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With this purpose, we denote by Ω̂ a reference domain (corresponding, e.g., to a
specific portion of an arterial vessel at rest, or else at an initial time). We write
¯̂
Ω =

¯̂
Ωs ∪

¯̂
Ωf , where Ω̂f is the portion of the domain occupied by the fluid (i.e.

the lumen) while Ω̂s corresponds to the portion of the solid vessel wall (see Fig.9
for a two dimensional representation). In a given time interval [0, T ] the domain

Γ̂in Γ̂out → Af (x̂, t)
Ω̂f

Ω̂s

Γ̂

Ω̂

Γin(t) Γout(t)

Ωs

Γ(t)

Ωf (t)

Ω(t)Ls(x̂, t)

Figure 9: Parametrization of the domain.

deformation is described through a couple of functions:

Ls : Ω̂s × [0, T ] → Ωs(t), Af : Ω̂f × [0, T ] → Ωf (t),

where Ωs(t) denotes the domain occupied by the solid (the vessel wall) and
Ωf (t) that occupied by the fluid at time t. The computational domain in which
we aim at solving the coupled fluid-wall problem at time t is then Ω(t) s.t.
Ω̄(t) = Ω̄s(t) ∪ Ω̄f (t). Note that the boundary ∂Ω(t) of Ω(t) is made of a
physical boundary (the external surface of the vessel wall, that has deformed)
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plus a virtual boundary (the vertical walls in the domain of Fig.9) that has not
changed its position from its reference state. In fact, Ls is the Lagrangian trans-
formation of the solid domain: the domain displacement is described by the law
η(x̂, t) = Ls(x̂, t) − x̂ for all x̂ ∈ Ω̂s, and the velocity of any point x̂, given by
∂tL

s(x̂, t) = ∂tη(x̂, t), is denoted by η̇(x̂, t).
Within the fluid domain Ωf (t), Af is a transformation such that Af |Γ̂ = Ls|Γ̂
but which otherwise does not follow the material trajectories. The set of trans-
formation {Ls, Af} is in fact an Arbitrary Lagrangian Eulerian transformation
(ALE) that, at each time t, is capable to retrieve the actual position of the com-
putational domain Ω(t) starting from the reference domain Ω̂. Let us denote
by

Fs(x̂, t) = ∇x̂Ls(x̂, t) = I + ∇x̂η(x̂, t) and Ff (x̂, t) = ∇x̂Af (x̂, t)

the gradients of the two maps, called the deformation tensors, and by

Js(x̂, t) = detFs(x̂, t) and Jf (x̂, t) = detFf (x̂, t)

their determinants. The fluid domain velocity is denoted by ŵ(x̂, t) = ∂tA
f (x̂, t).

Note that, still referring to the case depicted in Fig.9, on the vertical (virtual)
boundaries it is ŵ · n = 0, whereas on Γ̂ we have ŵ = η̇.
The structural deformation can be modeled in many different ways, as we have
anticipated at the beginning of this section. Here we will consider the following
model

ρs ∂2
η

∂t2
− divx̂(FsΣs) = 0 in Ω̂s, t > 0

where Σs is the second Piola-Kirchoff stress tensor. It depends on the Green-
St.Venant strain tensor E = 1

2((Fs)TFs − I), according to a constitutive law

characteristic of the solid structure at hand. Typically, Σs = ∂Ψ
∂E

, where Ψ is
the density of a given elastic energy. Finally, ρs is the density of the structure
in the reference configuration. By combining this equation with the Navier-
Stokes equations (2)-(3) for the fluid we end up with the following coupled
fluid-structure problem, for all t > 0:

ŵ = H(η̇|Γ̂) in Ω̂f , w = ŵ ◦ (Af )−1, (7)

ρf ∂u

∂t|x̂
+ ρf (u − w) · ∇u + div(Tf ) = ρf f in Ωf (t), (8)

div(u) = 0 in Ωf (t), (9)

ρs ∂2
η

∂t2
− divx̂(FsΣs) = 0 in Ω̂s, (10)

u = η̇ ◦ (Ls)−1 on Γ(t), (11)

FsΣs · n̂s = JfTf · (Ff )−T · n̂s on Γ̂, (12)
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where n̂s denotes the outward unit vector on Γ̂, ∂
∂t|

x̂

represents the ALE time

derivative (see [75]) and H(.) denotes any continuous extension operator from Γ̂
to the fluid domain Ω̂f (for instance the harmonic extension, or else the exten-
sion by the linear elasticity operator).
This coupled problem needs to be completed with the initial conditions on
u, η and η̇ as well as by suitable boundary conditions on ∂Ωs(t)\Γ(t) and
∂Ωf (t)\Γ(t).
At the best of our knowledge, a complete mathematical analysis of the coupled
fluid-structure problem (7)-(12) is not available yet. In the steady case, for
small enough applied forces, existence of regular solutions is proven in [44]. In
the unsteady case, local solvability in time is proven in the simple case where
the structure is a collection of rigid moving bodies in [45]. See also [27]. Formu-
lations based on optimal control on simpler models have been investigated, e.g.,
in [55, 72, 66, 67, 103, 104].
As previously mentioned, simpler models than (10) can be adopted to describe
the vessel deformation. Of special interest are models based on a single spatial
coordinate, the one along the longitudinal axis, which usually describes the ra-
dial deformation of the vessel wall. These models are based on the following
further simplifying assumptions.
Small thickness and plain stresses. The vessel wall thickness h is sufficiently
small to allow a shell-type representation of the vessel geometry. In addition, we
will also suppose that it is constant in the reference configuration. The vessel
structure is subjected to plain stresses.
Cylindrical reference geometry and radial displacements. The reference vessel
configuration is described by a circular cylindrical surface with straight axes.
Indeed, this assumption may be partially dispensed with, by assuming that the
reference configuration is “close” to that of a circular cylinder. The model here
derived may be supposed valid also in this situation. The displacements are only
in the radial direction.
Small deformation gradients. We assume that the deformation gradients are
small, so that the structure basically behaves like a linear elastic solid and ∂R

∂θ

and ∂R
∂z remain uniformly bounded during the motion.

Incompressibility. The vessel wall tissue is incompressible, i.e. it maintains its
volume during the motion. This is a reasonable assumption since biological tis-
sues are indeed nearly incompressible.
Under the above assumptions we can derive the following one dimensional model
that describes the radial displacement η = ηer of the arterial wall (see [75]):

ρs ∂2η

∂t2
− a

∂2η

∂z2
+ bη − c

∂3η

∂t∂z2
= g 0 < z < L, t > 0, (13)

where z denotes the longitudinal space coordinate (aligned along the vessel axis),
L the length of the vessel at rest, while a, b and c are suitable coefficients which
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depend on material properties. Precisely:

a =
σz

h
, b =

E

(1 − ς2)R2
0

,

while c is a positive coefficient that accounts for viscoelastic effects, R0 is the
radius of the cylindrical vessel at rest and h is the thickness of the vessel wall at
rest, ς is the Poisson ratio, E is the Young modulus, while σz is the magnitude
of the longitudinal stress.
The first term in (13) models the inertia, the second one the shear, the third
one the elasticity, the fourth one the viscoelastic damping. Finally, g accounts
for the forcing terms.
When the one-dimensional wall model (13) is used instead of (10), the cou-
pled fluid-structure model is made of equations (7)-(9), plus the equilibrium
equation (13) where the source term g is the projection along the radial direc-
tion of the normal stress of the fluid on the right hand side of (12), that is
g = JfTf · (Ff )−T · n̂s · er; the equation (11) now reads u ◦ Af = η̇er on Γ̂.
When supplemented by suitable boundary and initial conditions, this coupled
system satisfies an a priori estimate stating that the kinematic energy of the
fluid plus the elastic energy of the 1D vessel is controlled by the initial data and
the source term (see [75]). A result of existence of strong solutions in the case
of periodic conditions in space is given in [5].
The numerical solution of a coupled fluid-structure nonlinear problem like (7)-
(12) (or that discussed above based on the one dimensional model (13) for the
radial vessel deformation) poses many challenges. After space discretization (e.g.
by the finite element method, see [77]) one obtains a coupled nonlinear algebraic
system.
Since the density of the structure is comparable to that of the fluid, the stabil-
ity of numerical simulations of fluid-structure interactions relies heavily on the
accuracy in solving the nonlinear coupled problem at each time step [23, 59,
60, 70, 88]. Ideally, implicit schemes should be used as they would guarantee
energy conservation (up to the dissipation terms) and therefore numerical sta-
bility. This is outlined on a simplified fluid-structure interaction problem in [13],
where implicit and staggered algorithms are analyzed by taking into account the
so-called added-mass effect. In particular it is shown that numerical instabilities
may occur when using loosely coupled time-advancing schemes. To account for
the nonlinear coupling between fluid and structure, common strategies rely on
fixed point methods [14]. Several ad-hoc variants have been proposed, includ-
ing steepest descent algorithms in [88], Aitken-like acceleration formulas [63, 64],
and transpiration boundary conditions [23] to avoid the computation of the fluid
matrices at each sub-iteration. Yet, in general, these methods are slow, and in
some cases may even fail to converge [70, 13, 25]. A more radical approach
consists of using Newton based methods, owing to their potentially faster con-
vergence [25, 29, 46, 61]. However, since they demand the evaluation of the
Jacobian associated to the fluid-solid coupled state equations, a critical step is

16



the evaluation of the cross Jacobian [93], which expresses the sensitivity of the
fluid state to solid motions. This evaluation can be made inexactly, either by
resorting to finite difference approximation of derivatives (see, e.g., [93]), or by
barely replacing the tangent operator of the coupled system with a simpler one
[42, 43]. However, either approximation may seriously compromise the conver-
gence rate. Acceleration techniques using Krylov spaces have been proposed in
[26, 46, 62]. A Newton method with exact Jacobian has been investigated both
mathematically and numerically in [29].
Methods based on a fractional-step solution of the coupled system are proposed
in [30]. In this case, the coupling conditions (11) and (12) are not exactly en-
forced. The diffusion term of the momentum equations are advanced first from
the time step tn to tn+1 = tn + δt (δt > 0 being the time-step), and the normal
component of the continuity equation (11) is imposed; then the equation for
the solid structure (10) is coupled with the projection step of the Navier-Stokes
equations, and the stress continuity equation (12) is enforced.
Another strategy is mutuated from domain decomposition techniques (see [78])
and is proposed in [24]. The global coupled problem (7)-(12) is reduced to a
(generally nonlinear) interface equation, the so-called pseudo-differential Steklov-
Poincaré equation, where the only unknown is the displacement of the interface
separating the fluid and the structure. At any time-step, after space discretiza-
tion, the aim is to exploit the physically decoupled structure of the original
problem, in such a way that the solution is obtained through a sequence of in-
dependent solves involving each subproblem separately.
A preliminary approach in this direction can be found in [88, 65], where the
coupling between Stokes equations and a linearized shell model is considered.
The analysis of the Steklov-Poincaré operators associated to the fluid and shell
models is developed, and a Richardson scheme in which the shell operator acts
as preconditioner is proposed and tested. Another instance is presented by
Mok and Wall [63], who proposed an iterative substructuring method requiring,
at each step, the independent solution of a fluid and a structure subproblem,
supplemented with suitable Dirichlet or Neumann boundary conditions on the
interface.
As it was observed, one of the advantages of the Steklov-Poincaré approach
is that the whole problem is reduced to an equation involving only interface
variables. In this respect, it can be regarded as a special instance of heteroge-
neous domain decomposition, arising whenever in the approximation of certain
physical phenomena two (or more) different kinds of boundary value problems
hold within two disjoint subregions of the computational domain (see, e.g., [78]).
The key to efficiency is to set up convenient preconditioners for the discretized
Steklov-Poincaré equation, as done in [24]. In Fig.10 we plot the numerical sim-
ulation of the wall deformation of a straight cylindrical vessel at two different
time-instants of the cardiac beat. The colors (gray scales) indicate pressure iso-
values. In Fig.11 the same kind of simulation is reported for a carotid artery.
Arrows indicate the blood velocity field.
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Figure 10: Pressure wave propagation in a straight vessel (simulation by G.
Fourestey).

Figure 11: (From [24]). Structure deformation of a carotid artery and velocity
at time t = 10ms (left) and t = 20ms (right).

4 Modeling the whole circulatory system

So far we have shown how to set-up mathematical models to simulate local phe-
nomena. In fact, a change of perspective is mandatory if we want to investigate
processes that occur on the vascular tree at large: instances include the propa-
gation of the pressure pulse from heart to periphery, the self-regulation process
that governs the dynamics of blood solutes (oxygen, drugs, etc.), the aging ef-
fects on the arterial elasticity, the overload on the heart induced by the implant
of an endovascular prosthesis, the regulating processes that the body activates
to contrast severe changes in external conditions, etc.
Modeling these processes requires to integrate multiple scales in space and time,
and to account for the correlation between actions and reactions in different
cardiovascular compartments.
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The simulation of a large part of the circulatory system by solving the three-
dimensional Navier-Stokes equations everywhere would require the availability
of a large set of morphological data (quite difficult to obtain), not to mention the
computational costs that would be out of reach. On the other hand, the richness
of detail intrinsic to a 3D model may not be necessary when one is primarily
interested in the simulation of global flow features. Rather, suitable hierarchies
of reduced models, made of networks of 1D pipes and lumped parameter circuits
carrying different level of detail, can be developed to provide sufficiently reliable
answers to our questions.
By exploiting the fact that, at least locally, an artery is a quasi-cylindrical vessel
and that blood flows mainly in the axial direction, we build a simplified model
that neglects the transversal components of the velocity, assumes that the wall
deforms along the radial direction only, and describes the fluid-structure interac-
tion blood flow problem in terms of two scalar functions: the measure A(z, t) of
a generic axial section A(z) of the vessel and the mean flux Q(z, t) =

∫

A(z) uzdσ.

Here, z indicates the axial coordinate (see Fig. 12, left). Under simplifying, yet
realistic, hypotheses the following one dimensional (1D) model is obtained [75]:

∂A
∂t + ∂Q

∂z = 0,

∂Q
∂t + ∂A

∂ρ
∂p
∂A − αū2

z
∂A
∂z + 2αūz

∂Q
∂z + KR

(

Q
A

)

Q = 0,

z ∈ (0, L), t > 0 (14)

which describes the flow of a Newtonian fluid in a compliant straight cylindri-
cal pipe of length L. Here, ūz = A−1

∫

A uzdσ is the mean axial velocity and
α = (Aū2)−1

∫

A u2
zdσ is the Coriolis coefficient. The pressure is assumed to

be function of A according to a constitutive law that specifies the mechanical
behavior of the vascular tissue. Different models can be obtained by choosing
different pressure-area laws. Finally, KR is a parameter accounting for the vis-
cosity of the fluid. For the analysis of the hyperbolic system (14) see [75] and
[10].
In this simple (and most popular) one dimensional model the vessel mechanics is
overly simplified. In practice, it is reduced to an algebraic relationship between
the mean axial pressure (more precisely the average intra-mural pressure) and
the area of the lumen. However, one may also account for other mechanical
properties such as viscoelasticity, longitudinal pre-stress, wall inertia. In the
latter case, the relation between pressure and vessel area is governed by a dif-
ferential equation. Yet, it is still possible, at a price of some simplifications, to
recover again a system of two partial differential equations [35, 33]. By so doing,
the wall inertia introduces an additional dispersive term, while viscoelasticity
contributes with a dissipation term. The treatment of these additional terms
is problematic as further boundary conditions would be required. However, for
physiological situations inertia and viscoelastic effects are not very important.
Further improvements account for tapering and curvature (the latter cannot be
neglected in arterial vessels such as the coronaries, the aortic arch, etc.). The
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model becomes fairly more involved, an account is given, e.g., in [54, 84]. At

A

0

z

L

Ω1

Ω3Ω2

uz

Figure 12: Left: Representation of an arterial cylindrical segment. Right: Sketch
of a bifurcation

some extent, the arterial system in its entirety can be regarded as a network of 1D
pipes, each of these being modeled by the hyperbolic system (14) (or its variants
that account for curved vessels), supplemented by suitable matching conditions
at the branching or bifurcation points (like in Fig. 12, right) ensuring mass and
energy conservation (see [75]). Its mathematical investigation would require the
analysis of nonlinear hyperbolic systems on networks (see, e.g., [19, 53]).
The resulting network of one dimensional hyperbolic models are very well suited
to describe the propagation of waves (the pulse), a phenomenon generated by
the interaction between blood flow and compliant vessel wall and intrinsically
related to the elastic properties of the arteries. In Fig. 13 we report some
snapshots of the numerical solution obtained by simulating with 1D models the
application of a prosthesis at the abdominal bifurcation to cure an aneurysm.
Figures on the top represents the case of an endo-prosthesis made with material
softer that the vascular tissue. On the bottom the case where the prosthesis
is stiffer. The presence of a strong back-reflection in the latter case is evident.
When the reflected wave reaches the heart it may induce a pressure overload.
These results may guide the design of better prostheses.

A more complete 1D network, like the one including the largest 55 arteries
shown in Fig. 14, left, may be adopted for a more sound numerical investigation
of the systemic dynamics. Peripheral circulation in smaller arteries and capil-
laries may be accounted as well by lumped parameter models.
Here, a further simplification in the mathematical description of the circulation
relies on the subdivision of the vascular system into compartments, according
to criteria suited for the problem at hand. The blood flow as well as the other
quantities of interest are described in each compartment by a set of parame-
ters, typically the average flux and pressure in the compartment, depending
only on time. The mathematical model is then made of a system of algebraic
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Figure 13: (from [36]). Snapshots of the simulation of a vascular bifurcation
with a prosthesis, carried out with a 1D model. The three pictures in the top
row illustrate the case of a prosthesis softer than the arterial wall. The most
relevant reflection is at the distal interface between the prosthesis and the vessels
(right). At he bottom row the results obtained using the same boundary data
but with a prosthesis stiffer than the vascular wall. The most relevant reflection
is at the proximal interface between the vessel and the prosthesis (left) and it
back propagates up to the heart.

and ordinary differential equations in time that govern the dynamics of each
compartment and their mutual coupling. Often, these models are called (with a
little abuse of notation) 0D models (“zero” because there is no space variability
any longer). In this way, large parts of the circulation system (if not all) can be
modeled. The level of detail can be varied according to the problem needs.
A useful way of representing lumped parameter models of the circulation is based
on the analogy with electric networks, where the flow rate is represented by the
electric current and pressure by the voltage. The equations coupling the differ-
ent compartments are given by the Kirchhoff balance laws, which derive from
the continuity of mass and pressure. The effects on blood dynamics due to the
vascular compliance is here represented by means of capacitances. Similarly,
inductances and resistances represent the inertial terms and the effect of blood
viscosity, respectively (see e.g. [37] and references therein). Fig. 15 illustrates
different electrical schemes that may be used to describe blood flow in a passive
compartment.
Exploiting the same analogy, it is also possible to devise a lumped parameter

representation of the heart. Since, as stated in [69], Ch.13, left ventricle and
arterial circulation represent two mechanical units that are joined together to
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Figure 14: Arterial tree composed of a set of 55 straight vessels, described by
1D models (see [100]). On the right a pathological case, in which some of the
vessels are supposed to be completely occluded.

form a coupled biological system, we need to couple the 1D model with a model
of the heart (or at least of the left ventricle), for instance a lumped parameter
model. The opening of the aortic valve is driven by the difference between the
ventricular and the aortic pressure, Pv and Pa, while the closing is governed by
the flux. The electric analog of each ventricle is given in Fig. 16 where the
presence of heart valves has been taken into account by diodes which allow the
current flow in one direction only. A simple ordinary differential equation that
accounts for this dynamics reads d

dt(C(t)Pv(t)) = −MQ(t), where Q represents
the incoming flow rate, and MQ is the action exerted by the contraction of the
cardiac muscle. Precisely, MQ = dV0

dt , V0 being the reference volume that changes
in time because of the variation of the length of the muscle fibers. The action
of the aortic valve is described by setting Q = 0 when Pa > Pv, Pa = Pv − RQ
if Q > 0. For more details about this model, see [37]. More sophisticated ODE
models are available, such as the visco-elasto-plastic model in [7].
From a mathematical standpoint, a general representation of lumped parameters
models is a Differential-Algebraic-Equations (DAE) system in the form

dy
dt = B(y, z, t) t ∈ (0, T ]

G(y, z) = 0
(15)

supplemented with the initial condition y|t=t0 = y0. Here, y is the vector of
state variables while z are the other variables of the network which do not appear
as time derivative, G is a set of algebraic equations that derive from Kirchhoff
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Figure 15: (From [36]). Four possible lumped parameters representation of
a compliant vessel in terms of electrical circuits. The four cases differ for the
state variables and the upstream/downstream data to be prescribed. The letters
R, L, C indicate resistances, inductances and capacitances, respectively, while Q
and p denote flow rate and pressure.

laws. If ∂G
∂z

is nonsingular, then by the implicit function theorem the DAE sys-
tem (15) can be formulated in terms of y solely. By coupling together schemes

Q

Q
Valve 2RValve 1

dC
  dt

C
M  (t)

Figure 16: (From [36]). Network for the lumped parameter model of a ventricle.

like those illustrated in Fig. 15 for the different compartments and schemes like
that in Fig. 16 (or more sophisticated ones) to model the blood supply from
heart it is possible to derive a lumped parameter model of the whole circulatory
system. An example is provided by the four-compartment model illustrated in
Fig. 17, which comprises a lumped description of heart, lungs, arterial and ve-
nous circulation.
Unfortunately, the parameters that govern the model, like resistances and com-

pliances, can hardly be obtained from measurements or other means. In fact the
circulatory system ensures a correct blood supply to organs and tissues in very
diverse situations, at rest as well as after a long run. This is possible thanks to
self regulating mechanisms. One of such mechanisms ensures that the arterial
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Figure 17: (From [36]). A four compartment description of the vascular system
with self-regulating controls.

pressure is maintained within a physiological range (about 90−100mmHg). In-
deed, if pressure falls below this range, the oxygenation of the peripheral tissues
would be seriously affected; on the other hand, a high arterial pressure would
induce vascular diseases and heart overload. This regulation mechanism is called
baroreflex effect and is described, for instance, in [49] and [52]. The elements of
the feedback baroreceptor loop are a set of baroreceptors located in the carotid
arteries and the aortic arch, which transmit impulses to the brain at a rate in-
creasing with the arterial pressure, the parasimpathetic nervous system, which is
excited by the activity of baroreceptors and can slow down the heart rate, and
the simpathetic nervous system, which is inhibited by the baroreceptors and can
increase the heart rate. It controls also the venous pressure and the systemic
resistance.
Another ingredient of the self-regulating capabilities of the arterial system is
the so called chemoreflex effect, a mechanism able to induce capillaries dilation
and opening when an increment of oxygen supply is required by the organs, for
instance during heavy exercise.
Chemoreflex and baroreflex effects can be included in the differential models pre-
sented so far through another coupled ODE system that models these feedback
mechanisms (see, e.g., [21], [20] and the references therein).

Being able to adopt equations in different geometrical dimensions (3D, 1D and
0D, as we have illustrated thus far) provides tremendous new opportunities for
modeling the circulatory system, but, at the same time, poses severe mathemat-
ical challenges. Multiscale geometrical systems can be set-up using 3D models of
the type (7)-(12) to provide a complete description of the flow-field and 3D vessel
deformation in specific districts (such as, e.g., the carotid bifurcation, the aortic
arch, a stenosed coronary artery) combined with a network of 1D models like
(14), one for every compliant vessel apt at providing average values of flow-rate
and pressure on each vessel axial section. The rest of the system – the heart, the
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venous system, the capillary bed, the small circulation – may be accounted for
by either prescribing appropriate “boundary” conditions at the terminal vessels
or, more realistically, by adopting 0D lumped parameter (ODE) models capa-
ble of describing the feedback effects due to peripheral circulation. With this
approach, difficulties arising from the treatment of boundary conditions for 3D
model (mentioned in Sect. 2) are naturally handled.
From a mathematical standpoint, the use of such a geometrical multiscale model
calls for the set up of matching conditions between the various submodels. These
conditions should ensure the conservation of mass and stresses at the interfaces
between heterogeneous submodels. This is not obvious to achieve, since the sub-
models live in spaces of different dimensions, are made of equations of different
type and number, and feature different kind of unknown variables. Furthermore,
the multiple geometrical models coupled with the continuity conditions at inter-
faces should hopefully define a globally well-posed mathematical problem.
The analysis of the complete system is very difficult, though. Partial results are
available on the coupling of 3D and 0D models, and of 1D and 0D, see [33, 32, 81].
An account is given in [37].

So far, we have described the heart ventricle functionality by a simple 0D model.
Clearly, this is an overly simplified approach. In fact, the development of a
mathematical model for describing the electrical, mechanical and biochemical
function of the heart and its coupling with the ventricular blood dynamics is
tremendously challenging.
The changes in the electrical potential across the muscle cell outer membrane
triggers the myocardium, whose contraction prompts ejection of blood from the
ventricles. Electric current flows into a cell, raises the potential and initiates the
wave propagation along the cells, which are connected by gap junction proteins.
The entire myocardium is activated within 50ms and the mechanical contraction
lasts for about 300ms.
From a numerical perspective, the difficulty is represented by the need of cou-
pling efficiently large deformation mechanics, electrical excitation and wave prop-
agation, turbulent flow fields, which feature different characteristic spatial and
temporal scales. Moreover, the electric activity of the heart influences the acti-
vation function of 1D network models like the one in Fig. 13 that could be used
for the systemic circulation. Reciprocally, the pressure pulse that is modeled by
1D network interacts with the cardiac electrodynamics.
Tremendous progress has been made though in the past two decades. The im-
mersed boundary method was introduced by Charles Peskin in his Ph.D thesis
in 1972 in order to study the fluid dynamics of heart valves, and it was then
extended to become a three-dimensional model of the whole heart (see [73] and
the references therein). According to Peskin, “the philosophy of the immersed
boundary method is to blur the distinction between fluid dynamics and elastic-
ity”. This is accomplished by inserting in the right hand side of the momentum
equation (5) a forcing term F (x, t) =

∫

Ω̂s f(x̂, t)δ(x − X(x̂, t))dx̂ representing

25



the forces acting on the blood flow because of the presence of a solid structure
(a valve, or the cardiac fibers). The vector f denotes the density distribution
of forces (whose expression depends on the mathematical model adopted to de-
scribe the structural deformation), δ is a Dyrac function, X describes the motion
of the solid structure (like Ls in Sect. 3), and is related to the fluid velocity u

by the Lagrangian relation ∂tX(x̂, t)) = u(X(x̂, t), t), x̂ ∈ Ω̂s, t > 0. Both the
Eulerian and the Lagrangian variables are employed.
The development of a global cardiac model using finite elements for finite defor-
mation mechanics equations is proposed in [87]. An anatomically based descrip-
tion using finite element shape functions is given, then governing equations are
proposed to relate material properties to tissue behavior.
Cardiac tissue is made of discrete cells but it can be modeled as a continuum. For
instance, the bidomain model (see, e.g., [17, 16]) consists of two interpenetrating
domains that represent cells (intracellular domain) and the space surrounding
the cells (extracellular domain). These two domains are assumed to co-exist at
all points in the computational domain. The tissue microstructure is accounted
for in the activation model through the extra-and-intra-cellular conductivity ten-
sors. From the mathematical viewpoint, this macroscopic representation of the
cardiac tissue by a reaction-diffusion system of partial differential equations can
be rigorously derived by a homogeneization procedure [2, 6].
The development of realistic models for heart functioning is however far from
being achieved, due to the tremendous complexity of this physical system and
the induced computational complexity of the associated numerical models.

5 Mathematical models for biochemical processes

Besides the biochemical and electrical processes described so far, mathemati-
cal models can be set up to describe the transport, diffusion and absorption of
biomedical components (such as oxygen, nutrients, drugs, low density lipopro-
teins (LDL), etc.) in the blood stream and through the different layers of the
arterial wall. Numerical simulation of biochemical processes can in fact explain
biochemical modifications produced by alterations in blood flow field like those
occurring at outer wall of bifurcations, inner wall of curved vessels, in anasto-
motic junctions (as in a coronary by-pass) and stenotic arteries.
The dynamics of solutes in arteries, like dissolved gases (such as O2) or macro-
molecules (such as albumin or LDL) is indeed strongly affected by the blood
flow dynamics. The local transfer of mass between blood and arterial walls is
functional to the transport of nutrients to cells and the removal of metabolic
wastes, yet it also affects the accumulation of potentially atherogenic molecules.
For instance the accumulation in the intima of LDL occurs at zones of low and
oscillating wall shear stress, which seem to be correlated with the tendency to
intima thickening.
The basic step for the modeling of mass transfer is the set up of a mathemati-
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cal model which describes the filtration of plasma and the transfer of chemicals
from the lumen to the arterial wall. The blood flow into the arterial lumen is
governed by the Navier-Stokes equations (2), (5), while the filtration across the
tissue layers constituting the wall can be described by a Darcy type model,

ū = −
KD

µ
∇P with div(ū) = 0, (16)

where ū is the volume-averaged velocity, P is the pressure, KD is the (Darcy)
wall permeability, µ is the dynamic viscosity. On the other side, the dynamics
of chemicals is generally governed by a system of advection-diffusion equations.
Precisely, applying the mass conservation principle on a generic control volume,
we obtain the following equation

∂tc̄ + div(−D∇c̄ + γūc̄/ǫ) = 0, (17)

where c̄ is the volume-averaged concentration, D is the diffusivity of the chemical
species at hand, 0 ≤ ǫ ≤ 1 is the porosity of the considered medium; the case
ǫ = 1 represents the pure fluid phase. Collisions of large molecules with the
structure of the porous tissue layer result in a reduced convective transport, a
phenomenon that is accounted for by using the hindrance coefficient 0 < γ ≤ 1.
In the simplest wall-free model, the fluid dynamics and the mass transport in
the arterial lumen are described by the Navier-Stokes equations (2), (5) and the
advection-diffusion equation (17). At the interface between the lumen and the
arterial wall (the endothelium) appropriate conditions for the volume flux (Jv)
and the mass flux (Js) are assumed:

ul · nl = Jv on Γ, (−Dl∇cl + ulcl) · nl = Js on Γ.

In this case the values of Jv and Js are provided by experimental data ([8], [99],
[95], [91]). More realistic models are the fluid-wall model and the multilayer
model, both requiring suitable matching conditions describing the flux of fluid
(Jv) and the flux of chemicals (Js) between two solutions (denoted by i=1,2)
separated by a semi-permeable membrane across which concentrations and fluid
pressure are different, see [51], [50]. In the case of just one solute, denoting
with δp = p1 − p2 and δc = c1 − c2 the driving forces across the membrane, the
interface equations originally proposed by Kedem-Katchalsky read as follows,

Jv(P1, P2, c1, c2) = LP (δP − δπ) with δπ = σRTδc, (18)

Js(c1, c2, P1, P2) = Πδc + sf(c1, c2)Jv, (19)

where T is the absolute temperature, while s (the sieving coefficient), LP (the
hydraulic conductivity) and Π (the permeability), R (the gas constant) are phe-
nomenological coefficients.
In their original theory Kedem and Katchalsky provide Jv and Js in the case
of two compartments filled with a free fluid. When taking into account two
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heterogeneous porous media (like two continuous wall layers) permeated by so-
lutions of different concentrations and pressures, the driving forces are still δP
and δc (where c in the case of porous media represents the concentration in
the fluid phase), however the phenomenological coefficients now depend on the
porosity of each medium and we will call them effective coefficients, denoted
with LP,eff (ǫ1, ǫ2), Πeff (ǫ1, ǫ2), seff (ǫ1, ǫ2) respectively. This theoretical charac-
terization is a very challenging task, see e.g. [18, 89, 90, 22]. An approach that
allows a direct estimation of the effective coefficients is proposed in [74].
To define the mathematical problems describing the mass transfer from the lu-
men to the arterial wall, we label with i = 1 the physical quantities associated
with the free fluid and with i = 2 the ones corresponding to the porous medium,
and denote by Γ the interface between these media. Then, the fluid dynamics is
governed by eqs. (2), (5) in Ω1, eq. (16) in Ω2, and the following conditions at
the interface:

u1 · n1 = ū2 · n1 and ū2 · n1 = Jv on Γ. (20)

Finally, we observe that in the free fluid (corresponding to a porosity ǫ1 = 1) the
velocity of the fluid phase is equivalent to the volume averaged one. Thanks to
this identification the volume averaged velocity can be referred to as ūi in both
domains. The concentration c̄i of a given chemical is governed by the following
problem,

∂tc̄i + div(−Di∇c̄i + γiūic̄i/ǫi) + ric̄i = 0, in Ωi, i = 1, 2,

(−D1∇c̄1 + γ1ū1c̄1/ǫ1) · n1 = Πeff (c̄1/ǫ1 − c̄2/ǫ2) + f(c̄1/ǫ1, c̄2/ǫ2)Jv on Γ,

(−D2∇c̄2 + γ2u2c̄2/ǫ2) · n2 = −[Πeff (c̄1/ǫ1 − c̄2/ǫ2) + f(c̄1/ǫ1, c̄2/ǫ2)Jv] on Γ,
(21)

where the Kedem-Katchalsky equation (19) has been rewritten in terms of the
volume averaged concentration. Finally, we observe that the multilayer model is
described by a set of equations similar to (20) and (21). Precisely, its fluid dy-
namics part is obtained by adding to problem (20) a further domain, describing
the intima, that will be coupled to the lumen and the media prescribing that
the normal velocity across the interface between these domains is continuous
and equal to the flux Jv, defined in (18). Analogously, the extension of equation
(21) to the multilayer case features a third advection-diffusion equation defined
in the intima and coupled to the rest of the system by imposing that the total
flux of chemical (namely (−D∇c̄+γūc̄/ǫ) ·n) is continuous across the interfaces
and equal to Js, defined in (19).
Besides their interest for bio-medical applications, (20) and (21) represent a dif-
ficult system of nonlinear partial differential equations whose analysis has been
specifically addressed in [105, 79, 80]. Irregularities in the flow field across the
arterial wall influence the concentration distribution within the wall. Fig. 18
displays the concentration contours in the wall of the two different wall models
at selected locations in the expanding region of the stenosis. We observe that
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the perturbations in the velocity field in the intima and the media affect the
concentrations as well. For example in the media, the concentration in the re-
gion of high filtration velocities is slightly higher than the average value, while
it is lower than the average in correspondence of low filtration velocities. More
analysis and numerical simulations can be found in [105, 74].
Systems like those introduced in this section can also be applied to the model-
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Figure 18: (From [74]). Concentration contours provided by the fluid-wall model
(left) and the multilayer model (right). In the latter case, the presence of the
intima is put into evidence.

ing of biochemical processes arising from the control of peritoneal dialysis [107],
drug eluting materials [106], and artificial blood oxygenators [58].
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ily of anisotropic functionals with lack of coercivity, Interface and Free
Boundary, 2 (2000), 213–266.

[3] Aris, R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics.
Prentice Hall, 1992.

[4] Arada, N., Sequeira, A., Strong steady solutions for a generalized Oldroyd-
B model with shear-dependent viscosity in a bounded domain, Math. Mod.
Meth. Appl. Sciences, 13(9) (2003), 1303–1323.

[5] Beirão da Veiga, H., On the existence of strong solutions to a coupled fluid-
structure evolution problem, J.Math.Fluid Mechanics, 6 (2004), 21–52.

29



[6] Bellettini, G., Colli Franzone, P., Paolini, M., Convergence of front prop-
agation for anisotropic bistable reaction-diffusion equations, Asymp.Anal.,
15 (1997), 325–358.

[7] Bestel, J., Clément, F., Sorine, M., A Biomechanical Model of Muscle Con-
traction. MICCAI, (2001), 1159–1161.

[8] Bratzler, R. L., Chisolm, G. M., Colton, C. K., Smith, K. A., Lees, R.
S., The distribution of labeled low-density lipoproteins across the rabbit
thoracic aorta in vivo, Atherosclerosis, 28 (1977), 289-307.

[9] Campeau, L., Enjalbert, M., Lesperance, J., Vaislic, C., Grondin, C. M.,
Bourassa, M. G., Atheroslerosis an dlate closure of aortocpronary saphenous
vein grafts; sequential angiographic studies at 2 weeks, 1 year, 5-7 year and
10-12 years after surgery. Circulation, 68 (1983), 1–7.

[10] Canic, S., Kim, E. H., Mathematical analysis of the quasilinear effects in
a hyperbolic model of blood flow through compliant axi-symmetric vessels,
Mathematical Methods in Applied Sciences, (2002).

[11] Caro, C. G., Fitz-Gerald, J. M., Schroter, R. C., Atheroma and arterial wall
shear stress. Observations, correlation and proposal of a shear dependent
mass transfer mechanism for atherogenesis. Proc. Roy. Soc. B, 177 (1971),
109–159.

[12] Caro, C. G., Pedley, T. J., Schroter, R. C., Seed, W. A., The Mechanics of
Circulation, Oxford University Press, 1978.

[13] Causin, P., Gerbeau, J.-F., Nobile, F., Added-mass effect in the design of
partitioned algorithms for fluid-structure problems, Comput. Methods Appl.
Mech. Engrg., to appear (2005).

[14] Cervera, M., Codina, R., Galindo, M., On the computational efficiency and
implementation of block-iterative algorithms for nonlinear coupled prob-
lems, Engrg. Comput., 13 (6) (1996), 4-30.

[15] Ciarlet, P.G., Introduction to Linear Shell Theory, Gauthiers-Villars, 1998.

[16] Colli Franzone, P., Pavarino, L., A parallel solver for reaction diffusion sys-
tems in computational electro-cardiology, M3AS, 14(6) (2004), 883–912.

[17] Colli Franzone, P., Pavarino, L., Taccardi, B., Simulating patterns of exci-
tation, repolarization and action potential duration with cardiac Bidomain
and Monodomain models, Math.Biosci, 197 (2005).

[18] Curry, F. R. E., Mechanics and thermodynamics of transcapillary exchange,
in Handbook of Physiology, E.M. Renkin ed., American Physiological Soci-
ety, 1984.

30
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