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Abstract

An extension of a three-dimensional (3D) finite element method is proposed for shallow-
water equations (SWE). The method is based on the Raviart-Thomas finite element
approximation. A numerical solution for shallow-water flows is developed based on the
unsteady Reynolds-averaged Navier-Stokes (RANS) equations. In this work the assump-
tion of hydrostatic pressure is applied. The SWE equations are solved in a given multi-
layered system (which consists of an a priori subdivision of the vertical direction of the
domain into layers of fixed thickness), with a semi-implicit time stepping method. The
eddy viscosity is calculated usind the standard k£ — ¢ turbulence model. The boundary
conditions at the bed are based on the equilibrium assumption of the production terms
with vertical diffusion terms using wall functions. To test the validity of the new algo-
rithm the model is applied to three-dimensional flows for which experimental data and
other numerical results are available for comparison.

1 Introduction

The simulation of free surface flows is applied for the description of awide variety of
geophysical phenomena like hydrodynamic currents in ocean and coastal engineering in
order to simulate tidal currents and transport of pollutants, in meteorology for weather
prediction, etc.

Modeling of the hydrodynamics of free surface flows involves the numerical solution
of basic conservation equations for mass, momentum and turbulent energy.



The shallow-water equations in depth-averaged form have been successfully applied
to many engineering problems and their use has become common practice in environ-
nemental impact studies in estuarial and coastal regions. However in many situations,
particulary those involving solute and sediment transport, the vertical variation of veloc-
ity is also important and three-dimensional computations, maintaining the hydrostatic
pressure assumption, have become a practical proposition over the last decade with in-
creasing computing power.

One of the most intricable problems in hydrodynamics modelling (oceanography,
limnography etc...) is an adequate parameterisation of vertical exchange processes. In
the present model the latter are represented through the eddy coefficient v, whose value
is provided by a turbulence model.

The choice of an appropriate turbulence model can affect the accuracy of the results.
A large variety of turbulence parameterisations with a substantial range of complexity
has been proposed in the literature. Various multiple-level models have been developed
in Cartesian space with specified friction at layer interfaces and simple formula for eddy
viscosity (see [1], [2]). A similar approach, only using a vertically coupled finite difference
scheme, has been studied by Casulli and Cheng using Lagragian advection [3]. Other
schemes have been formulated with equations in o-coordinate form in the vertical (fitted
to the bed and the water surface). The ADI scheme has been applied by Uittenbogaard et
al.[4] for 3D simulation, and the Casulli and Cheng scheme has been set-up in o-cordinate
by Stansby and Zhou [5], and by Luyten et al. [6].

The level of turbulence modelling required or desirable for a particular application is a
rather open question, depending on type of flows and the required features. For example
in other engineering areas, notably aeronautical, more advanced anisotropic turbulence
modelling has been employed: non-linear £ — ¢ modelling (see [7]), and full Reynolds
stress transport modelling , with a great computational expense. However it should be
pointed out that, these flows do not have the complication of a moving free surface with
wetting and drying of cells.

The selection of a suitable scheme is often a difficult task since it depends on the type
of physical processes specific for simulated area (e.g. tides, thermoclines, river fronts,...),
the vertical resolution of the model and the amount of CPU time. In geophysical flows
the turbulence manifests itself in various scales. Therefore its modelling is notoriously
difficult and even the most advanced second-order and third-order closures have also their
deficiencies (see [9], [8]) besides being expensive. Therefore most of the three-dimensional
models used in oceanography and physical limnology implement much simpler one- or
two-equation turbulence closures. In this work we will use the state-of-the-art k& — ¢
model in the framework of the Reynolds-averaged Navier-Stokes (RANS) equations. Some
geophysical applications of this model have been described by Rodi [11].

It should be pointed out that the turbulence equations are generally convection dom-
inated. Therefore the critical problem in the turbulence modelling is the preservation of
the positivity of the turbulent kinetic energy, k, and its rate of dissipation, e.

In the present paper, we propose to develop an integrated k — € two-equation tur-
bulence model around an existing hydrodynamic module based on a recent method for
solving quasi three-dimensional (3D) shallow-water equations (SWE) with free surface
([10]). The method uses a mass preserving, unstructured finite element approach in the



horizontal plane. In the vertical direction, the computational domain is divided into a
number of layers at predefined heights and the model uses a conventional conforming
finite element scheme.

The equations modelling free surface flows are derived from the three-dimensional
Navier-Stokes equations and the hydrostatic pressure is assumed with the implication
that horizontal pressure gradients are independent of depth, hence only long waves will
be taken into account. This means that the vertical accelerations are neglected since the
wavelength is much greater than the height of the wave itself.

The so-called Quasi-3D models are generated by integrating the continuity equation
along the vertical. The horizontal momentum and depth-integrated continuity equations
are solved directly, incorporating some form of turbulence model and the vertical velocity
is approximated from the (local) continuity equation.

For the turbulence part of the algorithm, the robust formulation of Mohammadi and
Pironneau [12] based on the fractional step method is proposed. Combining this method
with the characteristics Galerkin method can guarantee the positivity of the solutions
and the stability of the scheme.

In the present work, wall functions defined by the bed roughness function are used and
wind stress can be considered at the free-surface. The time marching scheme is achieved
through a Lagrangian-Galerkin approach (i.e. a characteristics Galerkin method) that
has two main features:

- it is an upwind scheme and is therefore well suited for convection-dominated problems;
- it is stable under a mild stability criterion, allowing therefore the use of a large time-step
when appropriate.

An outline of this paper is as follows. In section 2, we review the shallow-water
equations and the mathematical models for the two-equation k — € turbulence model,
the associated boundary conditions and we derive a weak formulation suitable for the
Quasi-3D model. In section 3, we introduce the discretization of the physical domain
and the finite element approximation. Section 4 treats the temporal discretization based
on the Lagragian-Galerkin approach. In section 5 we propose some numerical tests of
various complexity in order to verify that the scheme is stable and accurate.

2 Mathematical models for turbulent free surface
flows

A detailed description of the hydrodynamic model 3D-ML-SWE (Three Dimensional
Multi-Layers Shallow Water Equations) can be found in [10], [13], [14]. A brief description
of the hydrostatic version of the model is provided. In this model some modifications
have been implemented to account for turbulence effects, such as the introduction of eddy
coefficients and wall functions for the bottom boundary conditions.

Figure 1 represents a three-dimensional time varying domain 2. Let us denote by €2
the projection of {2 on tﬁe\xy horizontal plane. The z-axis points in the upward vertical

direction. The domain €2(¢) is bounded by the following surfaces:



e The free-surface I'; given by z = n(x,y,t) ,where n(z,y,t) represents the elevation
of the free-surface with respect to the horizontal reference plane zy.

e The bottom topography T', given by z = —h(z,y), where h(z,y) is the distance
between the bottom and the horizontal reference plane xy.

e The open-sea boundary denoted by I',.

In this configuration, the total water depth at the point P(z,y) at time ¢ is simply
given by

H(ac,y,t) :h(xay)+77($,y,t)

N
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Figure 1: vertical cross section of the domain

where (z,y, z) represents the Cartesian coordinates system.
The fluid motion is described by the Reynolds-averaged Navier-Stokes equations
(RANS) namely:

oV 1
E‘i‘(V'V)V:—;VP—FV'(I/UVV)-Ffzy (1)
V-V=0 (2)
In the previous relations V = (u,v,w)T is the 3D turbulent velocity vector, f;, =
(fv, —fu)T is the vector of body forces with f the Coriolis parameter, v, = (v, vy)

is the anisotropic eddy viscosity and (v, v,) are respectively the horizontal and vertical
eddy viscosities, see Rodi [18]), V- is the 3D divergence operator, p is the water density,
p is the pressure.



The RANS description of the turbulent motion relies on the Boussinesq approximation([15]).
For ¢t > 0 and (z,y, 2) € Q(t), and using the Boussinesq assumption for the hydrostatic
approximation we have that

10p

T = — _ 3
PrE g=p=po+pg(n—2) (3)

where pg is the atmospheric pressure. Hence the RANS equations can be written as

V-V=0 (4)

Dv 0 ov
Ft = ngyn + wa . (thwy'v) + & (va) + fwy (5)

where v = (u, U)T is the horizontal velocity vector, g is the gravitational acceleration.
Vgy is the 2D nabla operator, and D% = % + (V- V) is the total derivative.

The RANS set will be completed later by integrating the continuity equation over the
depth and applying the kinematic free surface condition and the Leibniz rule to give the
depth-integrated continuity equation.

In eq.(5), the vertical eddy viscosity is defined as

k2

6 (6)

Uy = ¢y

For the horizontal diffusion, uniform horizontal coefficient can be expressed using the
empirical relation.
-The first one fromElder [16]

vy = Chu, (7)

where ( it is a constant:e.g ( = 0.1 to 0.3
-The second one for rivers flows from Shirou Aya[l7]

3
Up, B\?

=20 —
hu, 0 ( h ) ®)

where B is a width of the channel and u, is a representative shear velocity.

The quantities £ and e are described by the following equations ([20], [19]).



Dk k? k?

i~ V. |:CH?Vk] = cu?G —€ (9)
De k? €

Ft —-V- [CC?VG] = Clk'G — ng (10)

The values of the turbulent constants are given: ¢, = 0.126, ¢, = 0.07, ¢, = 0.09,
ce = 1.92.
The squared shear frequency or production term G is (see [6]):

G =< (IvV+vVvT|)?* (11)

DO |

where ||.|| is the 2—norm of the matrix.

2.1 Boundary and initial conditions
2.1.1 Bottom boundary conditions

At the bottom boundaries the free-slip condition is applied together with a zero normal
velocity component to I'y. This second condition can be represented by :
oh oh
Wy = Up— + Vp—— =0, on I' 12
b b D b By b (12)
Standard wall functions are used as boundary conditions at the bed (see [20]). The
logarithmic law of the wall is used to relate the velocity just above the bed to the bed

friction velocity u, = \/70/p :

Om

Um

1 U
= —In (E5* ith 6 = —" 13
L (o) wih g =" (13
where 7y is the bed shear stress, u, = 1/(u? + v?) at distance §,, above the bed (i.e in

the rough turbulent boundary layer, d,, is the normal distance to the nearest wall). This
wall region is valid for 30 < §; < 100. In the spatial discretization the first vertical mesh
point should thus lie within this region. The shear stress within the wall region may be
assumed constant (for a given horizontal location) and for a given vertical position z; we
have

U= [T (555)] 14

The shear stress components in the horizontal directions 7y, and 7, are resolved as

([21])
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where u; and v; are the velocities at z; and
Um1
= 16
T G (B P o)

The wall roughness coefficient E is adjusted according to the standard roughness,k; ( Wu
et al. [22]) by the relation

E =exp [k (B— AB)] (17)

where B = 5.2 is an additive constant, AB is a roughness function related to ks, such as
(see Cebeci and Bradshaw [23]):

0 for k<225
[B — 8.5+ Link]] sin[0.4258 (Ink} — 0.811)] for 2.25 <k} <90
B—85+ tlnkf for kf>090

AB

(18)
where kf = “Tks is the roughness Reynolds number, x = 0.41 is von Karman’s constant .

Remark 1 It is worthwhile to notice that the coefficient E in the above relation accounts
for all flow regimes, either hydraulically smooth, rough, or transitional.

The production of the turbulent kinetic energy is merely due to the (turbulent) shear
stress.

At the bottom the equilibrium assumption is adopted (i.e local balance between pro-
duction of turbulent kinetic energy and the rate of dissipation [20],[15]).

b = (19)

(20)



2.1.2 Free surface boundary conditions

The wind stress on I'; is given by

1 2% = puCullW (21)
with C,, being a constant whose value depends on the wind speed and ||W|| denoting the
module of the wind velocity at 10[m] above the free-surface. The symbol p, is the air
density.

At the free-surface, I'y, the kinematic condition states that the fluid particles at the
free surface move with the free surface :

_On on on
Wy = 5t + us&r + ”Say on I, (22)

Then integrating the continuity equation in the z direction and using the kinematic
boundary condition we obtain the following equation describing the evolution of the

free-surface
b n(z,y)
S/ Vay - (/ Udz> =0 (23)
ot —h(z,)

The boundary conditions for turbulent quantities (see Stansby and Zhou [5]) are :

ok
5. =0 (24)
(kcu)lls
_ 9
= 0.07rh (25)

where ¢, = 0.09 is a model constant.

2.1.3 Open sea, river outlet and vertical wall boundary conditions

At the open sea or outlet boundary denoted by I',, the water depth is a known function
of time and Neumann natural boundary conditions are applied for the velocity (‘9—;’ =0),
and other variables (i.e. a zero normal gradient through these surfaces), where % is the
normal derivative to the surface. At the vertical wall, the slip boundary conditions are
used by setting all normal components to the vertical wall equal to zero (v, = 0), and

Neumann boundary conditions are applied for turbulent quantities:

ok Oe
_— — = 2
on 0 on 0 (26)



2.1.4 Inlet boundary (or upstream)

The given known functions describes the flow

V =f(Q, Hin) (28)
k = 0.03u? (29)

k1'5
€= %0.00n (30)

where () denotes a prescribed discharge, u is the x component of the velocity V, Hy,; is
the water depth at inlet.

2.1.5 Initial conditions
The initial conditions for velocities and free-surface can be written:
V=W ; n=mn (31)

The initial values of turbulent quantities : (see Versteeg and Malalasekera [24]):

k = 1.5(0.06U)" (32)
3/43/2
Cu
=B 33
“~ 7 0.09h (33)

where U is the known value of Uniform distribution velocity.



3 Space discretization

In the sequel the finite element method is used to discretize in space the advection-
diffusion equations of the turbulent quantities. Let us introduce some details for the
computational purpose. Figure 2 represents the physical domain. A three-dimensional
region is embedded in a parallelepiped composed of N layers. By Z; we identify the layer
k whose thickness dz; is fixed. A layer is said to be active if it is wet. The number of active
layers is not constant over the whole domain and can also change in time, accounting
for the variation of the free surface. In particular the thickness of the lower-most active
layer (denoted by the index kq) depends on the bottom shape, while the thickness of the
uppermost active layer (whose index is K) varies in space and time according to the free
surface location.

The horizontal projection of the domain €2 is discretised using an unstructured trian-
gular mesh 7;,. The same mesh is placed in the middle of each layer. The vertical distance
between the grids of the layers k and £ + 1 will be denoted by dzj11/2 = [62k + 02k41] /2.
In each layer, each triangular mesh element defines a three-dimensional prismatic ele-
ment. The horizontal components of the velocity vector are defined at the middle of
edges of the triangular mesh elements, while the vertical components are associated with
the lower horizontal face of the element in the case of hydrostatic pressure assumption.

Let us introduce some functional spaces that will be used in this work. Let  C R
then:

L?(Q) = {w : /szQdQ < oo} (34)

H' (Q)={yeL*(Q): 0,0 € L*(Q),i=1,...,d} (35)

The following space of vectors have been introduced to derive the weak form of the
quasi-3D hydrodynamic model:

H,. (div;Q) = {r: 7 € (L*())°,divT € L*(),7-n =0 on [} (36)

where I'. denote the vertical solid wall.
For every integer r > 0 we denote by P,.(7T') the space of polynomials of degree < r on

each triangle T € T}, (see figure 2) and consider the Raviart-Thomas vector finite element
space of lowest order (see [13], [25]):

10



RT(T) = (Po(T))* & xPo(T) = {’u = ( [é ) +a ( z ) , a,b,ce R} . (37)
Let us introduce the following finite element spaces :
Qp, = {q € Hy .(div; Q) : q|z € RTo(T), VT € Tp},

Up = {¢ € L*(Q) : ¢|r € Po(T)},
= {p € H'([=b,7]) : 9|z, € P1(Tk)}-
={x € L*() : x|, € Po(p), Vp}

We will approximate k£ and e by piecewise constant functions on each prism p, respectively.
Let us consider a generic characteristic function x for each prism such that x € X,. To
approximate the system of Egs. (4), (23, (5) and using the divergence formula and the
boundary conditions from eq.(13), (21) the problem statement is now:

Find v € Qp x Ws,, w € X,,n € X, k € X,, € € X, such that :

/ wn,ds = / v -ng,dS, Vp (38)

op op

on K

[ Gvat | (Vo [ wdz)pa0=0 wyev, (39)
Q b

1 1
// — - 1d2dQ) = // QOT]ny'TdZdQ-i-Vh/ / ©Vgyv - 7d2dS
a9
ov dy
— // v 8zd dQ+// oty - 7d2d)

(40)

[l WIW 70 s = Y- 7l a2

— g/ / onT - ndzd-y, V1T € Qp, Vo € Wy,
TonIy

where ng,,, n, are respectively the horizontal and vertical components of the normal vector
n.

Denoting by Ned and Nel the number of oriented edges e; and triangles T; in the mesh,
the approximate solution for the horizontal velocity is represented as follows:

v = Z (1)), 71 (%) o (2) (41)

11
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Figure 2: ph%r%ical domain



We approximate the elevation by piecewise constant functions on each triangle, so we
can write:

Nel

Mh (X) = Znﬂ/’j (x), (42)

where (J;), = fel vp-ndo,l = 1,... ,Ned , 7, € Q, and ¢, € W5, , x = (z,v9).
Mj = Mnlr;, 7 =1,.., Nel and ¢; € Up.
The approximate solutions for £ and € , are given by the relations :

kn (x,2) = Z kix; (x,2) (43)
en (x,2) = Z €iX; (X, 2) (44)

where Np is the total number of active prisms and x; denotes the characteristic function
of the j™* prism.

Integrating Eq.(9) and (10) over the prism and using Gauss theorem one can write:

Dky, k2 3 ki
|P| Dt + T [Cungh} ‘n = |p| (CugG —€n), Vp (45)
Dey, k2 _ e
|P| Tt — |T| [Ceaveh] n= |p| (Clth - CQk_h ) VP (46)

where |P| and |T'| denotes respectively the volume and the surface of the based triangle
of the prism p.

13



4 Temporal discretization

Let us introduce the fully discrete space-time approximations from the Eq.(38)-(40),
(45)-(46).

The overall time discretization method is based on the following assumptions:
- the vertical diffusive terms in the advection-diffusion equation are discretized implicitly;
- the source terms are discretised explicitly, while the sink terms are linearized.
- Lagrange-Galerkin (or characteristics Galerkin) approach is used (see [13], [12]) to dis-
cretize the material derivative in Egs.(40), (45) and (46) such that ¥ (X") = W (1, X (7;¢,x))
VT e [t .

Let us consider the total derivative:

Dk ok 0
E(t, x) = 5 +(V-V)k= Ek(’/‘, X(7;t,x)) (47)

where X (7;t,x) is the solution of the following problem:

{ dX (7;t,%) .

y =V (r,X(1;t,x)) for 7 € (0,1), }
- :
X (t;t,x) = x.

From a geometric point of view X (-) = X (-;¢,x) is the parametric representation of

the trajectories: X(7;¢,x) is the position at time 7 of a particle which has been driven
by the field V(u,v,w) and that occupied the position x at time ¢.
Problem (48) is a system of ordinary differential equations. For its discretization it is
possible to use a backward Euler scheme, or a more accurate fourth-order Runge-Kutta
scheme. Since (48) is non-linear, to compute X (t,;tn11,%) we will use the velocity at
time ,,.

The total derivative can be discretized as follows:

%(t X) ~ k(tn+laX) _k(tnaX(tn;tn+1,X))
Dt n+1 — At

. (49)

From the semi-discrete form of the above partial differential equations and using first-
order Euler implicit scheme we can write:

Find v € Qp x Ws,, w € X,,n € X, k € X, € € X, such that :

/ w”+1nzds:/ v"t! . n,dS, Vp (50)
dp d9p

n

n+l _ n K
/QndeQjL/Q (wa-/h 'un+1dz) YdQ =0 VY eU, (51)

14



n" n+l __ Xxn n"
/ / gav v (X) -1dzd) = g/ / oV 4y - Td2dQ
0 b Z&t QJ—p

nn
+ V}r;// OV " - 7d2dS
aq J—p

T Gumtl 9y m
- v —dzdQ2 £ - Q
vy /Q/b % B2 dzd +/Q/h of, - 7dzd

+ / [(PeCallWIIW - 70) [yr — w2 - 7]y] A0

nn
— g/ / on" ' -ndzdy, V1T € Q,, Vo€ Wy,
ToNT'y
(52)
For the boundary condition at the bottom the non-linear terms in in Eq.(52 has been

linearized considering the modulus of the velocity at time n.
The turbulent viscosity v, is computed according to the following expression

Entl 2

l/:]H—ldp = C”(€n7+1) (53)
The discrete form of Eq.(45) and (46) reads :
kptt — ky (X kp?
|P‘(h Ah( )) |T||:Cu ndn+1:|.n
: o (54)
|P| ( h Zhon 6h kn-}-l)
€h K

py L~ (X)) =|T|[ :

N ceéVeZ“] ‘n+|P| <clk”G” — ¢ kf’bl GZH) (55)

Due to the contribution of the production and diffusive terms that can give rise to
instability in the numerical scheme (see [12], [18], it become very difficult to obtain a
stable scheme for the set of convection-diffusion equations which preserves positivity of &
and e . Using the fractional step algorithm proposed by Mohammadi and Pironneau([12])
for the turbulence model and the method of characteristics for the convective terms allow

to ensure the positivity of k£ and e and the stability of the scheme.

15



5 A stable semi-implicit fractional-step scheme

The main idea of this algoritm is to split the system of equations into the convection
step and the diffusion step. We firstly solve the convective step by using the characterics
Galerkin for the convection terms then we solve the diffusion step using the 6 projection
method (e.g. Crank Nicolson). Therefore the maximum principle for partial differential
equations in the discrete case insures positive k, €.

Following this idea and using Gauss formula the £ and € equations reads:
Projection step

kT (X7 Y. kp?
\P\(h A;( ))+|T\( ) =P tien (56)
h

6n+%—6h (X™) ntl €
|P|<h i~ >+|T|( ) = 1Pl ke (57

Correction step

1P| <7’€>+\T|0[0N (k—h) VE 4+ (1-0) ¢, (’“—h)"w;;] =0  (58)

P| <;> Ay [ (g)”vegﬂ +(1-0)c (’“—)veh] —0  (59)

It is easy to find that the stiffness system matrices for the convective step of Eq.(56) and
Eq.(57) are diagonal matrices.

For the diffusion step (see Eq. (58) and (59)), we denote by M the stiffness matrices
of each linear system. For each basis triangle 7; (basis of a generic prism) with ¢ =
1, ..., Nelm on the vertical direction (Nelm denotes the number of basis triangle on the
vertical direction). Using the 6 projection method for time integration with 6 € [0, 1],
one obtains the following system :

Mk = M%" + E (60)

where MY is a counterpart of the left matrix MY of the system due to the projection
method. The matrix reads

[ A;c —+ ax — QK T 0 0
—ax—1  (Ak—1+oax+ox—1) —ox—1 - 0
M¢ =
0 T —Qko42 (Ak0+2 + Qot2 + ako-l-l) —Qko+1
| 0 . e “ e _ak0+1 Ak0+1+ak0+1 ]

16




k;yi [ Bk + GE
k;é: le<,>1
k"t = : . E=At :
1
kl?(;:-ll Gl/zo-f-lk
| k/?: | _ﬂkO-i_Gko_

where (B and (3, represents the boundary conditions respectively at the free surface and
the bottom, | V}, | is the volume of the prism p and the following auxiliary variables have
been introduced

ki | e |
A=k (X" b
kn?
o = (cuinézk_;> At. (61)

The respective stiffness matrices for £ and € are symmetric and positive definite.
Therefore one can efficiently use the preconditioned conjugate gradient solver.

Method of solution

e The horizontal velocity field is described using lowest order Raviart-Thomas finite
elements together with a special technique of numerical integration. This technique
guarantees a high degree of mass conservation. The time marching scheme for
the hydrodynamic part is achieved through a Lagrange-Galerkin approach. The
principal advantage of this method is that, owing to the Lagrangian (i.e., non-local)
nature of the advection step, the CFL restriction is eliminated.

e The use of the conservative scheme is particularly desirable for scalar transport.
Upwinding is implemented via the characteristic Galerkin method. This method is
suitable for the relatively large time step, allow the positivity of k£ — € and stability
of the algorithm.

e The solution procedure for a given time step is as follows:

1. set the initial values for all variables (u,v,w,n,k,e), or use the values from
previous time step.

2. compute v, from Eq.(53) and vy, from (7 or 8)

3. solve the free-surface to obtain 7, Eq.(51)

4. solve momentum Eq.(52) to obtain (u,v) and (50) to obtain w

17
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solve convective step for k, Eq.(56)
solve convective step for €, Eq.(57)
solve diffusion step to obtain k, Eq.(58)
solve diffusion step to obtain €, Eq.(59)

18



6 Numerical results

Detailed experimental data for testing the solver are limited. However in order to check
the validity of the model developed, the computation was carried out for simulating open
channel flows. Therefore two cases of steady and unsteady flow in open channels will be
used to test our numerical scheme. The test results will be compared to experimental
data for the steady open channel flow which is the ideal case ( see [26]), and for the
unsteady open channel flow (see [27]), for the water surface profile along the channel and
the vertical distributions of the velocity, eddy viscosity, and shear stress.

6.1 Steady flow

The channel layout and dimension is shown in Fig. 5. The discharge is set to ) =
0.25[m3/s], the bed slope Sy = 0.000624. The rough bed is characterized by an equivalent
roughness height, k; = 0.0042[m]. The flow depth at the outflow (donwstream end of
the flume) is 0.183[m]. The experimental data are available for the flow case (see Istiarto
[26]). The grid is composed of 5044 elements and 2733 nodes. The time step is set to
0.1s, and the computation is performed till a steady state is reached. The model produces
the logarithmic velocity distribution as expected for uniform flows. The computed eddy
viscosity profile compares favorably with the experimental one. The eddy viscosity goes
to zero near the free-surface, increases with the depth and presents a maximum around
the mid-depth, and then, decreases towards zero near the bed. The shear stress profile is
linearly distributed with the depth, from zero at free surface to maximum near the bed.

6.1.1 Uniform inlet velocity distribution

The following Fig. 6 shows the water surface. Figure (7a) shows the steady state dis-
tributions of the velocities at selected sections , and figure (7b) compares the computed
and measured distributions of the velocity, the eddy viscosity, and the shear stress at half
reach of the channel, z = 19.040[m] . The water surface shows a decreasing flow depth in
the first 8-meter reach. Further downstream the flow depth gradually increases towards
the specified depth of h = 0.183[m] at the outlet boundary. Within the downstream half
channel-reach, x > 20[m/, a nearly uniform flow-depth is observed, showing less than 1
[mm] difference between the two ends of this channel reach. As shown in figure (6), the
computed solutions agree quite well with the experimental data.

6.1.2 Logarithmic inlet velocity distribution

The logarithmic velocity distribution prevails consistenly along the computational do-
main. The results in figures (8)-(11) shows the applicability of the model to achieve a
near perfect agreement between computed and measured steady state free-surface profile
and velocity distributions.
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6.2 Unsteady open-channel flow

The channel layout and dimensions is shown in figure (12). The channel is 18[m] long,
the width is B = 0.60[m]. The discharge is given by the hydrograph shown in figure (13).

The rough bed has an equivalent roughness height, k; = 0.0058[m]. The flow depth
at the outflow (donwstream end of the flume) is 0.13[m]. The experimental data are
available for the flow case (see [27]). The grid is composed of 3216 elements and 1802
nodes and the time step is At = 0.1[s]. The following pictures in figure (14) shows at
two stations z = 10.78[m| and = = 14.08[m], the comparison between computed solution
and measured time variation of flow depths. The model produces the surface ondulation
as expected for the non-uniform flow.

Figure (15) shows the comparison between computed and measured distributions of
the velocity, the eddy viscosity, and the shear stress at two stations z = 10.78[m] and
x = 14.08|m| at time T=700[s]. The computed velocity distribution and eddy viscosity
profile compares favorably with the experimental one. The eddy viscosity goes to zero
near the free-surface, increases with the depth with a maximum around the mid-depth,
and decreases towards zero near the bed. The shear stress profile is linearly distributed
with the depth and from zero at the free surface goes to maximum near the bed. Figs.
(16) and (17) shows good agreement between computed and measured kinetic energy and
its rate of dissipation at the selected sections.

As shown in figures the computed solutions agree well with the experimental data.

7 Conclusion

In this work we proposed a semi-implicit 3D finite element scheme for £ — € turbulence
models. The k£ and e scalar fields are represented using a piecewise finite element based
on flux conservation in the prism. This choice, combined with the Raviart-Thomas
finite element for the velocity field, leads to a simple algebraic formulation. At each
time step it is only required to solve a set of symmetric and tridiagonal matrices for
the fluxes. Moreover the use of the upwind scheme (characteristics Galerkin method),the
conservative form of the scalar equations, and fractional step method allows us to preserve
the positivity of £, €, the mass balance and the stability of the algorithm. The full scheme
was used to test case approaching steady uniform flow measured by Istiarto [26] and the
unsteady non-uniform flow measured by Qu [27]. The tests were performed in order to
validate the model against well-known flow cases. A good agreement is found between
the computed and measured flow fields.
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figure 13 Triangular hydrograph

25



0.22

0.2

0.18

0.16

0.14

0.12

h(m]

0.1
0.08
0.06
0.04

0.02

0.22

0.2

0.18

0.16

0.14

0.12

h[m]

0.1

0.08

0.06

0.04

0.02

— — — — measured x=14.08[m]
computed x=14.08[m]

L
2500 5000 7500 10000

Number of time step

figure 14a.

— — — — measured x=10.78[m]
computed x=10.78[m]

L
2500 5000 7500 10000
Number of time step

figure 14b.

Comparison between numerical and experimental time variation of depth of water :

a) x=10.78 [m]
b) x=14.08 [ml

26



013 03F 03¢
ok b
s O measured hydro 0'12: measured o 0 measured
011F Computed I computed computed
b 011F 0l1f
01F [
009 0lf 01
008F ;
=) F = 009F = 009F
E ook E%F E
50.07:- N b N
006F 0,08 008
oeE w7 s
0.04F [
ok 006 006
002 005F 05|
001:\\\\|\\\\|\Q\\|\\\\| L | cv b b b1
0 025 05 0.75 1 0 , 0.0005 0 0.0001 0.090% 0.0003
g v [l TJplms]
figure 15a
013 013 043¢
0,12;
b (O measured hydro 012 computed o O measured
ol F Computed O measured computed
o1f e onf
00 0tf o
008F
= F =009 =009k
Eomrk B 0 E00
c o N N
006 0081 008F
0,05;
: 0oTE 0wrf
0.04F
0k 006 00F
002 o
F 1] sk
ool L 100 L1 L T | |
0 0.25 05 0.75 1 0 0.000225 0.0005 0 0'0002252 0.0005
i v, [mfs] T, /olms]
figure 15b.

Comparison of numerical (=) and experimental (0) results for velocity, eddy viscosity and shear stress:

a) x=10.78 [m]

b) x=14.08 Im1

27



013

011F

01

z [m]
o
o
o
T

O measured
computed

0.08f

0.07F
0.06 F
0.05F

0 0.005
k [m%/s?]

x=10.78[m]

figure 16 Computed and measured turburlent kinetic energy distributions at selected sections

o
[N
w

o
[N
N

o
[N
[

e
e

g
o
©

z [m]

O measured
computed

0.08

o
o
=

o
o
>

o
=)
5

IR | [T TR I |
0.0005 0.001 0.0015 0.002
£ [m%/S?)

(o LS LI (LIS L L L L o |

x=10.78[m]

F 0
- @)
[ O measured
:_ computed
b ! 1 ! 1
0 0.005 0.01
k [m?s?]
x=14.08[m]
H O measured
I computed
:\ [ERTERI RN RN [ RRAY N N NS R B
0 0.0005 0.001 0.0015 0.002
£ [m?/s’]
x=14.08[m]

figure 17 Computed and measured turburlent energy dissipation distributions at selected sections

28




References

[1] M. Kawahara, M. Kobayashi and K. Nakata (1983).Multiple level finite element
analysis and its implication to tidal current flow in Tokyo bay,Appl. Math. Model.,7,
197-211.

[2] D. R. Lynch and F. E. Werner(1991). Three-dimensional hydrodynamics on finite
elements. PART II: Nonlinear time-stepping, Int., J. Numer.Meth. Fluids,12,505-
533.

[3] V. casulli and R., T., Cheng (1992). Semi-implicit finite difference methods for three-
dimensional shallow-water flow, Int., J. Numer.Meth. Fluids, 15, 629-648.

[4] R. E. Uittenbogaard, J.A. Th. M. van Kester and G. S. Stelling. Implementation
of three turbulence models in 3D-TRIUSULA for rectangular grids,Rep. Z81/7162,
Delft Hydraulics,1992

[5] P.K. Stansby and J.G. Zhou (1998)Shallow-Water Flow Solver with Nom-hydrostatic
Pressure: 2D vertical plane Problems Int. J. Numer.Meth.Fluids 28: 541-563.

[6] Luyten P.J., Jones J.E., Proctor R., Tabor A.Tett P. and Wild-Allen
K.,(1999).COHERENS-A Coupled Hydrodynamical-Ecological Model for Regional
and Shelf Seas: User Documentation. MUMM report,Management Unit of the Math-
ematical Models of North Sea, 914pp.

[7] C. G. Speziale (1987). On non-linear k — | and k — € models of turbulence, J. Fluid
Mech., 178, 459-475.

[8] Sander, J. (1998). Dynamical equations and turbulent closures in geophysics. Con-
tinuum Mec. Thermodyn., 10:1-28.

[9] Canuto, V.M. (1994).Large Eddy Simulation of turbulence : A subgrid scale model
including shear, vorticity, rotation, and buoyancy. Astrophys. J., 428:729.

[10] E. Miglio (2000). Mathematical and Numerical Modelling for Environmental Appli-
cations . Ph.D thesis, Department of Mathematics, University of Milano.

[11] Rodi W. (1987).Examples of calculation methods for flow and mixing in stratified
fluids. J. Geophys. Res.,92, 5305-5328

[12] B. Mohammadi and O.Pironneau (1994) Analysis of k — epsilon Turbulence Model.
John Wiley & Sons, Chichester.

[13] E. Miglio , A. Quarteroni, and F. Saleri(1999) Finite element approximation
of Quasi-3D shallow water equations, Comput. Methods Appl. Mech. Engrg.,
174(34):355-369.

[14] Miglio,E. , A. Quarteroni, and F. Saleri(2003) On the coupling of free-surface and
groundwater flows, Comput. Fluids, 32: 73-83.

29



[15] Roland, S.(1993) Modélisation et simulation des Ecoulements turbulents., Hermes,
Paris.

[16] Elder,J.W.(1959).The dispersion of marked fluid in turbulent shear flow. J. Fluid
Mechanics, vol.5 ,544-560

[17] Shirou Aya(1991).Longitudinal and Transverse Mixing in Open-Channel Flows Re-
port.

[18] Rodi W. (1980) Turbulence models and their applications in hydraulics. IAHR, Delft.

[19] Rodi W. (1984).Turbulence models and their application in hydraulics. International
Association for Hydraulic Research , 2nd, edition , Delft, Netherlands.

[20] Launder, B.E., and Spalding, D.B.(1974).The numerical computation of turbulent
flows. Comput. Meth. Appl. Mech. Engr.,3:269-289

[21] Peter K. Stansby (1996).Semi-Implicit Finite Volume Shallow-water Flow and Solute
Transport Solver With k — e Turbulence. Int. J. Num. Meth. Fluids,25:285-313.

[22] Wu, W., Rodi,W., and Wenka, T. (2000).3D numerical modeling of flow and sedi-
ment transport in open channels.ASCE, J. Hydr. Engrg., 126(1), 4-15.

[23] Cebeci,T. and Bradshaw,P. (1977) Momentum Transfer in Boundary layers. Hemi-
sphere publi. Co., Washington, USA

[24] Versteeg, H.K. , and Malalasekera, W.(1995).An introduction to Computational
Fluid Dynamics: The Finite Volume Method., Longman Group, Essex, England

[25] P.A. Raviart and J.M. Thomas(1977) A mixed finite element method for 2nd order
elliptic problems:1. Galligani and E. Magenes eds., Mathematical Aspects of Finite
Element Methods, Lecture notes in Methematics(Springer-verlag), Berlin, 292-315.

[26] Istiarto, I. (2001). Flow around a cylinder on a mobile channel bed. PhD. thesis no.
2368, EPFL, Lausanne, Switzerland.

[27] Zhaosong Qu (2002). Unsteady open-channel flow over a mobile bed. PhD. thesis
no. 2688, EPFL, Lausanne, Switzerland.

30



