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Abstract

Various types of oil traps have been found to be associated with salt domes in sub-
surface geology. In this paper the diapiric rise of light salt layers through a denser
overburden — the surrounding rocks- is modeled assuming that, in a geological time
scale, salt and rocks layers behave like Newtonian fluids. A Lagrangian approach
is adopted to track the interface between layers, within the framework of a finite
element space discretization. An accurate description of large deformations due to
salt movement is achieved using a grid adaptation technique based on geometrical
refinement. Different geological cases have been simulated in order to describe the
behaviour of rocks and estimate the effect on diapiric growth of buoyancy force,
differential loading, gravitational gliding and thin—skinned regional extension. Our
computational model accounts also for sedimentation and compaction of the over-
burden.

Key words: Subsurface geology; tectonics; salt diapirism; finite element methods;
interface tracking

1 Introduction

Salt (and ductile shale) movement is an important component of sediment de-
formation in many settings. The dynamical study of salt tectonics has received
increasing attention in the past few years. This has been stimulated by the
research in the frame of radioactive waste disposal in salt formation [1], and
by an increasing interest in modeling the role of halokinesis in controlling the
migration and the trapping of hydrocarbons in rapidly subsiding basins [2].
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Salt tectonics has become increasingly important in petroleum exploration be-
cause various types of traps have been found to be associated with salt domes.
This can be explained in view of the very low permeability of the salt with
respect to sedimentary rocks and to its viscous rheological behaviour. Indeed,
the anomalous behaviour of salt with respect to the visco—elasto—plastic rheol-
ogy of the surrounding rocks yields large deformations in sedimentary basins.
Moreover, the seismic properties of salt cannot be investigated in the frame-
work of seismic exploration since, due to the high velocity of the seismic waves
in salt, most of the seismic energy is reflected off the top of salt structures. In
addition, the high acoustic impedance between sediment and salt often gen-
erates many multiples and the flanks of diapirs are generally too steep to be
accommodated by the assumption adopted in classical seismic processing.

A better clarification of the mechanisms involved in the geological deforma-
tion of salt structures in the basins can provide the geophysicists with a tool
for a correct interpretation of seismic data. More precisely, geological mod-
els derived from interpreted seismic data could be tested by physical models
[3] or numerical modeling. Seismic profiles and drilling demonstrate that salt
diapirs feature a broad variety of shapes, that reflect the variety of modes
in which salt diapirs interact with their overburden as they grow. Salt diapirs
can actively pierce overburden deposited before they start to build up, or they
can passively pierce the overburden built down around them. Figure 1 reports
images of a diapir obtained by a seismic profile.

A numerical model is a useful tool in order to understand the interaction of
the diapirs with the overburden. Salt structures appear to be rising diapirs of
light rocks in a denser overburden. The rise of diapirs is caused by a balance
between buoyancy and viscous forces.

Thanks to this assumption the diapiric growth can be modeled using the
Rayleigh-Taylor theory, describing the gravitational instability of a layered
fluid. In this model the basic physical phenomenon of diapirs is explained by
the gravitational instability of a lighter salt underlying a denser overburden
[4,5,6,7,8]. If the interface between the two layers is perturbed, the underly-
ing low density rock (salt) will move upward due to density inversion. The
growth rate of this structures depends on the density and viscosity contrasts
as well as on the thickness of the two media. Many numerical simulations
have been performed by using high density viscous fluid with Newtonian rhe-
ology. However, in order to give a precise description of the causes of salt
movement other phenomena different from the buoyancy force such as, grav-
itational gliding or differential load are taken into account. The originality
of this work is mainly based on techniques proposed to describe the diapirs
growth, with the introduction of many different boundary conditions and the
Lagrangian tracking of the interfaces coupled with a remeshing algorithm.
Thanks to different boundary conditions many realistic geological settings can
be simulated (thin—skinned regional extension, sedimentation, erosion). The
Lagrangian treatment of the interface allows a good geometrical accuracy in
the description of the interfaces, while the remeshing mantains a good mesh



quality.
The outline of this work is as follows. In section 2, we derive a mathemati-
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Figure 1. Seismic profile (a) and geological interpretation (b) of a sedimentary basin
with a diapir (the red layer).

cal model for the description of diapir evolution based on a Newtonian fluid
flow model. A thorough physical explanation is provided, and a dimensional
analysis is carried out. In section 3 we describe the numerical method used
to simulate the diapirs evolution, the technique used for the mesh genera-
tion and the algorithm for tacking the interfaces. In section 4 we report some
numerical results on test cases to analyze the diapir behaviour in different
situations. Also two realistic simulations of a laboratory experiment and of a
geological reconstruction are presented to show the good agreement with ex-
perimental data. Finally, in section 5 we consider the coupling of compaction
of the overburden with salt evolution.

2 Physical model

In the description of the evolution of sedimentary basins and of the diapiric
growth the typical time scales are of the order of millions of years. On this time
scale the sedimentary rocks and the halite can be modeled as Newtonian fluids
characterized by high viscosity. Thanks to this assumption the description of
the diapiric growth can be cast into the framework of the Rayleigh—Taylor
theory describing the evolution of gravitational instability between two (or
several) fluid layers. Further analysis will be performed in the two—dimensional
case. In the sequel, we consider sedimentary rocks and halite as incompressible
Newtonian fluids having variable density and viscosity, possibly discontinuous.



In this case the Navier—Stokes equations reads:

0
divu = 0,

in 2x[0,7T), where Q is a open set of R, T' > 0; p is the density, u the viscosity,
u the velocity field, p the pressure and g = (0, —g)? the gravity acceleration.
Suitable initial and boundary conditions will be discussed in detail in the
following.

2.1 Physical scaling

Let us perform a dimensional analysis on (1) by accounting for typical val-
ues of the dynamic parameters involved in the diapiric growth (see table 1).
It looks reasonable to choose the following reference values for density and
viscosity

K

i=10"Pa-s,  p=10°—1.

m
Since the time scale is of order of 1 million of years, while the characteristic
length of the sedimentary basin is about 1 km, we introduce the following
scaling factors for the space and time:

T =1Ma ~ 3.15-10%s, L =1000m,
while the pressure will be scaled by
P = pgL = 9.81 - 10°Pa.

Therefore, we consider the following non-dimensional quantities:

t=

and u=

t . T
T = =u—.
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Table 1

Geological reference values

Typical values for geological parameters

p (density) p (viscosity)

salt 2150 — 2300 kg/m3 10'"Pa - s

overburden | 2000 — 2600 kg/m?® | 10" —10'°Pa - s

basement 2300 — 2600 kg/m> | 101 — 10*2Pa - s




Consequently, time and space derivatives will be rescaled as follows:
a(-)  10() 1= ) 1 —
it WA WA V()= —_V( div (-) = = div (+),
at Tat: () L ()5 IV() L lV()
where V and div are the gradient and divergence operators with respect to
the set of non-dimensional variables. Rewriting (1) in terms of the above
non-dimensional quantities we obtain

(p%) % + (p%> (G- V)u - (%) div [(Va + V)] + (pg) VP = pe,
1 —

Zleﬁ = 0,

or, equivalently,

o o= 1o o 1o 11
5 +@-V)u- ﬁdlv a(Va+vua')) + ﬁVp = ﬁ;g’ .
diva = 0.

The Reynolds and Froude non—dimensional numbers

pL? L
= — r

R S
= AT TZ4

represent, respectively, the ratio between the inertial and viscous forces, and
the ratio between buoyancy and inertial forces. Since in our case

Re ~ 3.174 - 1072, Fr ~ 1.027-107%

the inertial terms can be dropped from the momentum equation of the Navier—
Stokes system (3). The evolution of a sedimentary basin can therefore be
described by the Stokes system

—div [5(Vii + V") + VD = Fag,
(4)

diva = 0,
where
Re 1Re
F, = — ~30.481 Fy, = —— ~ 3.101.
TR ’ T R
In the sequel the ~ superscripts will be omitted, u, p, ... will denote the non-

dimensional quantities and we will indicate by p the value pF; and by g the
value gFs.



Assuming constant rheological properties within each layer we can reduce the
time—dependence of the evolution exclusively to the dynamics of the inter-
faces between layers. In the following analysis only the case with two layers
is considered, but it can be easily extended to multi-layered domain. We will
suppose the continuity of the velocity field and of the normal part of the stress
tensor on the interface I';, separating salt and overburden. An initial configu-
ration I'g is given for the interface. The evolution of each point belonging to
the interface is defined as the solution of the kinematic equation

dg Y
a_ (5)? 6 € 11t (5)
5(0) =&

The physical description of the instability of stratified nonhomogeneous fluids
(Rayleigh-Taylor instability) can be found in [9]. As a particular case we
analyze the evolution of immiscible fluids with different rheological property
(density, viscosity).

2.2  Mathematical formulation

According to the analysis of section 2.1 we describe the salt deformation using
a Stokes system in () C R? (d = 2, 3) with moving interface T';. In the sequel
the time dependence of the domain and of its boundary is understood. Equa-
tions (4) and (5) can be cast in the more general frame of a fluid with variable,
possibly discontinuous, density and viscosity. In this context the interface I';
(see fig. 2), separating Q1 and Q~ is characterized as the loci of discontinuity
of the density p. So our model for diapiric growth can be formulated as follows
in €2, for any ¢ > 0:

([ _div T(u,u) + Vp = pg in Q,
diva=0 in €2,
dp

E—i—qu:O, inQ,

fu=0 on I'y, (6)
U.'IIQZO, (T—pI)IIQtQ:O ODPQ,

(T — pI)ng = —peng on I3,

L Pli=0 = po in (o,

where 2 =QF U Q_, o) = ul,yu F3, QO = Q(O), T(/,L, 1.1) = ,LL(VU + VuT)
is the viscous stress tensor, I is the identity tensor, p. :  — R (external
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Figure 2. Computational domain

pressure) is a given function, n; and t; are respectively the unit outward
normal and tangent to [';. Free surface boundary condition is assigned on I's.

2.2.1 A Priori estimates

The theory of characteristics applied to the mass conservation equations under
the incompressibility assumption implies that, if p,(x) is such that 0 < o <
Po(x) < B, Vx € Qg, then it holds that 0 < a < p(x,t) < 8 for any t > 0,x €
Q.

Multiplying the mass transport equation (6)3 by p and integrating over {2 we
obtain

/8p 40 + = /u-vp%mzo,
2 Ja

which, integrating by parts, becomes:

dp?

1 2
- [ 22 - ‘ndy=0 7
3 Jo o 90+ 5 f, Puemdr =0, o

where the flow incompressibility and the boundary conditions (6)45 on I'; and
I'y have been used.

We recall that the Reynolds’ Transport Theorem, states:

dp°
=2 /ZdQ—/ 2w -nd 8
/ g N P W ondy, (8)

where w is the velocity of the moving boundary 0f2.

Using this theorem, (7) becomes:

dt/p dQ—i—/ )-ndy =0,

Thanks to the Lagrangian tracking we have the kinematic condition w-n = u'n



on 0f2, thus

d 2

— d2=0

dt /gp ’
that is

(s )20y = llpoll2(0g), VE > 0. 9)

On the other hand, multiplying the momentum equation (6); by u € Hol,rDa
where I'p is the portion of 92 on which Dirichlet boundary conditions are
prescribed, and integrating over {2 we obtain

/Vu Td) = / (pg dQ+/ Pen - udy

where the incompressibility and the boundary conditions of problem (6) have
been used. Using the Schwarz inequality we obtain

1Vl [y < ~ [HgHLOO @ 11012y 0]z ey + 11Pel L2y 1l 2y
Thanks to the trace theorem (see [10]) and to (9) we have

2 N
1Vl 320y < - [lgllzeoy 190]| 2oy + € 1pellgaqey] Il

7;I'—‘

Then ||ul| e < C[|Vul|}2(q) due to Poincaré’s inequality, and therefore we

deduce

1Vl 20y < = I8l poogey 190l 20y + C l1Pell2rs)

¢
1
>

for a suitable constant C' > 0.

2.2.2 Numerical scheme

As already noted, to model the diapirs growth, we are interested in the par-
ticular case in which the initial function py(x) is positive and discontinuous.
Considering the fluid immiscible, the problem of advection of density and vis-
cosity is equivalent to finding the evolution of the moving boundary I';. At the
initial time £ = 0, the density is piecewise constant and assumes two positive
values characterizing the distinct phases of the flow,

p(x,0) = po(x) = ) , p+ > p- >0 (10)



In this case, the condition for density is equivalent to specifying the interface
['; that separates the two subdomains Q% (0) and Q7(0) initially occupied
by the different fluids. We assume that the viscosity can be determined as a
function of the density, u = u(p) (see [11]). In particular, since each material
particle has an associated viscosity, u should satisfy the convection equation
e +u-Vyu=0.If u = u(p) this equation is satisfied when p; + div(pu) = 0
and the fluid is incompressible. The well-posedness of this problem has been
studied by Antontsev [12].

We propose a split algorithm for the solution of problem (6): at every time—
step t", first we compute the velocity field solving the Stokes problem, then
we track the interface I'; to update its position:

IF — (94, 9" — gL, . — T = [ O[T U Ty
— {Stokes (") — u"} — {Tracking Ty, u™) — F?H}

where by Stokes (") we mean the global weak solution on the whole domain
described in the next section and by Tracking (I'f, u") we mean the solution
of problem (5).

2.3 Weak formulation of the global Stokes problem

We assume that g € (L?(Q))?, u € L?(Q) , p € L?(Q), p. € L*({'3) be some
given functions. In order to derive the weak form of (6); we choose the test
function space

V= {v e H(QP:vpr, =0, v-npr, = 0},
so, the weak form of (6); is:

Vu+ Vu’ ,
/Q f.Vde—/delvde—/ng-de-i-/aQ(T—pI)n-vd%

(11)
Since v-n = 0 on I'y UT',, the boundaries term reduces to an interface on I's,
thus, owing the boundary conditions therein we have [, (T —pI)n - vdy =

Jry Pem - vdy. In a similar way, choosing a test function ¢ € Q = L?(2), the
weak form of (6)2 becomes:

/quivudQ = 0. (12)

VveV



We can rewrite problem (6);_o in the following form:

find ueV, pe@:
CL(ll, V) + b(V,p) = (pg7v)L2(Q) - (pena V)LZ(Fg) Vv € Va (13)
b(u,q) =0 Vg € Q,

where (-, +)2(q) denotes the scalar product in L*(€2), (-, ) 2(ry) that on L*(I's),
while the bilinear forms a : V x V — R and b: V x Q — R are defined by:

T
a(u,v) = /Q,uw :VvdQ, b(u,q) = —/quivudQ. (14)

Existence and uniqueness of the solution of (13) holds if the continuous bilinear
form a(-,-) is coercive on VO = {v € V : b(v,q) = 0,Vq € Q}, if b(-,")
is a continuous bilinear form, and if a positive constant 3 exists such that
Vg€ @,3veV:b(v,q) 2 BIVIimqp el q (see [13] or [10]).

2.3.1 Numerical approximation of the Stokes equations

We introduce two families of finite dimensional subspace V;, C V and Q) C @
depending on h (where A is the grid parameter). Then, we approximate (13)
with the discrete problem

find up, € Vi, , pr € @y :

a(up, Vi) + 0(Vi,pn) = (08, Vi) r2(0) — (Pl Vi) r2(rs) Vi € Vi (15)

b(up, qn) =0 Van € Q.

We denote by N and K} the dimension of V}, and @, respectively, and by
{¢;:7=1,...Np} and {¢y; : [ = 1,... K},} the basis functions. If we set:

Ny Ky
u,(7) = Zujd)j(x): pr(z) = Zpﬂ/fl(x) (16)
j=1 I=1
the linear system associated to (15) the following block form:
AU+ BTP=F
(17)
BU =0

where

Ay = a(()bi? ¢j)7 By = b(¢i;¢’l)a Fi = (g, ¢z’)L2(Q) — (pen, ¢i)L2(I‘3)' (18)

10



Ais an N, X Nj symmetric and positive definite matrix, while B is a rectan-
gular Kj x Nj matrix.

We recall that to ensure the existence and the uniqueness for the numerical
approximation (13) the following inf-sup condition has to be satisfied (see [13]
or [10]):

) b(Vh, qn)
inf sup
an€QRAF0 v, eVy, vy, £0 HVhH[Hl(Q)]2 ||Qh‘|L2(Q)

> j (19)

where (3 is a positive constant. Using an algebraic argument it can be easily
shown that the above condition holds if, and only if, ker(BT) = 0.

In the simulations presented in the next sections we will adopt P; finite el-
ements for the pressure and Py finite elements for each component of the
velocity field.

3 Numerical approximation of the interfaces

Numerical simulations have been performed in a more general context, tak-
ing into account n layers and possibly variable rheological properties in each
layer. Experimental data and numerical simulations show that very large de-
formations occur in the salt and in the overburden during the diapiric rise.
An accurate approximation of the interface is therefore crucial in order to
faithfully describe very distorted shapes and to follow the geometry evolution.
The closed curves (e.g. the curve C in Figure 3) describe internal subdomains,
while the open curves describe subdomains that touch the boundaries (like
curves A and B in Figure 3(a)). All interfaces are described by piecewise lin-

X 1000 m
X 1000 m

Figure 3. Piecewise linear interface curves (a) and non—uniform spaced nodes(b).

ear approximation and the number of nodes can be locally increased in order
to enhance resolution in the description of complex shapes. On the other hand
the computational cost can be lowered by using fewer points where the inter-
face features a small curvature (e.g. Figure 3(b)).
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Figure 4. An example of the computed velocity field
3.1 Interface tracking

To update the geometry, a Lagrangian transport of the interface is performed
at each time step. The motion of the interface is governed by system (5)
where & is the position of a generic interface point and u is the velocity field
computed solving problem (15). Figure 4 shows an example of the computed
velocity field. To solve the differential equation (5) we use an explicit Euler
scheme. A refinement/derefinement criterion is then applied to the tracked
interface. Let A; and B; be two adjacent points of the interface at the time ¢
and I; be the length of the segment A;B;. (See figure 5). When these points are
moved respectively to A a; and Byia¢ according to the velocity field, their
distance is l;1 a¢, and we can define, for each segment, the following ratio:

Ly nt
I,

If r > 1 the length of the segment is increasing and this is a potential source of
inaccuracy in the description of the interface. A simple remedy to avoid exces-
sive elongation of the segment consists in choosing a proper reference length
I, for refinement and adding a point C, between A, and By if I, o¢ > [,. With
this aim, we consider the middle point C; of the segment and track its posi-
tion using the current velocity field. Then the segment Ay a; By a; is replaced
by the two segments A;1 A¢Ciinr and Cyya¢Biiag- This procedure is not very
expensive and far more accurate than splitting A;y ;B ay into Ay aeM and
M By, p¢, where M is the middle point of A a¢Biiag-

If r < 1 the length of the segment is decreasing and this could lead to computa-
tional inefficiency where too many points close up. As done for the refinement,
we can choose a reference length I; for the de refinement. If I, A, < Iy the
point By s collapses to Ay a¢, S0 that segment Ay ¢ Byt a¢ is removed. These
refinement /derefinement procedures provide better results by using variable
reference lengths [, and I;. In the code used for the numerical validation, we
scale the reference lengths by a non-dimensional factor A taking into account
the local curvature of the interface. In Figures 7 and 8 examples of the effects
of the refinement on the interfaces evolution are illustrated.
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Figure 5. Interface refinement

1=0.10000 Ma - Mesh of 607 elements
T T T T

Nodi della curva di interfaccia (1=0.10000 Ma) — Rosso = Nodi aggiunti ; Blu = nodi esistenti ; Verde = nodi rimossi 2f
2L

NSO
AVAVAVAVAVAY;
AVAYATAVAAYA u

X 1000 m
X 1000 m
!

NI,

(a) initial curve (b) initial mesh

Figure 6. Initial discretization of the interface and of the computational domain

3.2  Mesh generation and motion

In our simulations we have used an unstructured triangular mesh suitable
for complex geometries. A great flexibility in reproducing the motion of the
interface is thus obtained. The flowchart of the algorithm is shown in Figure 9.
At the first time step an initial mesh is generated by a constrained Delaunay
algorithm, taking into account the boundaries of the domain and the interfaces
among the different layers. This procedures generates mesh element of “ high
quality”. The following quantity

4V3|T|

q =
R T s

, ¢=ming,,

where |T'| is the area while hy 7,hy7,hsr the side lengths, is an assessment
of the quality of a triangle. Indeed g, varies between 0 and 1 and ¢, = 1 if

13



X 1000 m
X 1000 m

[ [
x1000 m x1000 m

(a) curve after one time step (b) curve after one time step with
refinement

X 1000 m
X 1000 m

0 0
x1000 m x1000 m

(c) curve after two time steps (d) curve after two time steps
with refinement

Figure 7. Interface evolution without refinement ((a) and (c)) and with refinement
((b) and (d))

hi,r = ho = h3 1 while g,, approaches 0 when the triangle is distorted so that
its vertices are aligned (up to machine precision). The Stokes solver is thus run
on this initial mesh to produce the velocity field used to move the mesh in a
Lagrangian way. The Lagrangian tracking is performed using the same Euler
scheme already used for tracking the interfaces. Thus we obtain a tracked
mesh, whose elements usually have a lower quality than the initial ones. A
minimum quality threshold g is chosen (for example g ~ 0.5) to decide whether
the mesh has an acceptable quality or not. If ¢ > ¢ the mesh is accepted and
we compute a new velocity field, otherwise a quality recover is attempted
by moving the nodes that don’t belong to the interfaces or to the boundary
toward the center of mass of the corresponding patch [14] (see Figure 10).
If the obtained mesh fulfills the quality requirements, then it is used for the
next cycle, otherwise a new grid is generated by the constrained Delaunay
algorithm. Notice that in two space dimensions the remeshing technique is
not very expensive, so this scheme is very efficient.

14



1=0.20000 Ma — Mesh of 503 elements 1=0.20000 Ma — Mesh of 770 elements
T T T T T T T T T T T T

X 1000 m
X 1000 m

N/
SANAA

L L L L L L L
2 3 4 5 -5 -4 -3 -2 -1 0
X 1000 m

(a) mesh after one time step (b) mesh after one time step with
refinement

1=0.30000 Ma - Mesh of 553 elements 1=0.30000 Ma - Mesh of 929 elements
T T T T T T T T T

X 1000 m
!
X 1000 m

L L L L L L L
2 3 4 5 -5 -4 -3 -2 -1 0
x1000 m

(c) mesh after two time steps (d) mesh after two time steps
with refinement

Figure 8. Mesh evolution without refinement ((a) and (c)) and with refinement ((b)
and (d))

4 Results of numerical simulation of diapir growth

A density—depth relation and a viscosity—depth relation can be assigned to
each layer in order to simulate compaction effects of the overburden. The in-
fluence of temperature, lithostatic pressure and composition of sedimentary
rocks on their equivalent viscosity components may be taken into account as
well.

We consider now some models representing standard geological configurations.
The simulations can be done by considering a multilayer computational do-
main. However, in order to highlight the most relevant physical effects in the
considered test cases we have adopted only a three layered domain, in which
the first layer represents the basement, the second one the salt and the third

15
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Figure 9. Flowchart for mesh generation, solver and mesh adaption

one the overburden.

In Model A (Figure 11) numerical simulation with constant rheological param-
eters has been performed using p, = 2200kg/m? and u, = 1-102°Pa-s) for the
basement, p, = 2200kg/m3, and u, = 1-10'7 Pa-s for the salt, p, = 2600kg/m?
and p, = 4-10'°Pa - s for the overburden.

The initial disturbance is achieved by a distortion of the layer interface. In
the first stage of the evolution the amplitude of the layer interface grows ex-
ponentially according to linear Rayleigh—Taylor theory.

When the diapir swells to form a bulb, the ascent velocity remains constant as
expected from Stokes flow. However the fact that most of natural salt diapirs
deviate from spherical shapes indicates that the resistance of the overburden
and the buoyancy driving force rarely balance. This balance can be upset in
two ways. If the overburden viscosity increases with depth (model B), a diapir

16



Figure 10. Regularization on a patch of triangles

experiences lower resistance the higher it rises. This leads to accelerated rise
and results in elongated shape (Figure 12). So we deduce that the change of
the overburden viscosity with depth controls the ratio between the horizon-
tal and the vertical component of the structural development. Alternatively,
an increase in overburden density with depth (model C) delays salt ascent
because of the density contrast between diapir and overburden, and thus the
buoyancy force decrease as the salt ascends (Figure 13). Moreover, if the salt
diapir reaches a level with equivalent density, it intrudes horizontally into the
overburden and stops its vertical motion.

Model D is an example of the initiation of salt movement by a differential
loading by its overburden. It demonstrates the importance of lateral pressure
gradient in driving salt flow. In this model the salt top is initially flat (Fig-
ure 14). If there is no perturbation the salt layer can subside to huge depth
without any movement despite the inverse density stratification. However a
lateral variation in loading upsets this unstable equilibrium. Also a small dif-
ferential loading can be the cause of the development of the instability. The
asymmetry results partly from the differential loading, but mainly from asym-
metric flow of salt to the base of diapir. This phenomenon is equivalent to a
tilted salt layer beneath a homogeneous overburden.

In model E a salt layer embedded in a sedimentary basin environment is shown.
Salt flow is completely driven by a lithostatic pressure field. A horizontal
pressure gradient activates the instability. The model simulations (figure 15)
demonstrate the interaction of salt layer thickness and the layer curvature
with the formation and position of salt concentration by flow.

In Model F we have tested the numerical code within realistic situations. It
reproduces an analogic experiment (Ge et al.,(1997)]), meant to demostrate
how basement steps and prograding sediments control diapir location

17



(a) t=1.4 Ma (b) t=2.8 Ma (c) t=3.4 Ma

Figure 11. Model A: the following values are referred to the basement, the salt
and the overburden p, = 2200kg/m3.uy = 1-10%°Pa - s, p; = 2200kg/m?3,
ps =110 Pa - s, p, = 2600kg/m?3, po = 4 - 10 Pa - s.

(a) t=3.2 Ma (b) t=8.4 Ma (c) t=12.2 Ma
Figure 12. Model B: the reference value are the same adopted in the previous simu-

lation, the overburden viscosity varies linearly with depth from 107 Pa - s (top) to
10 Pa - s (bottom)

030000 (S 2 as000 b2

L
A

ssssssssssssssssssssssssssssssss

(a) t=0.3 Ma (b) t=1.55 Ma (c) t=2.45 Ma

Figure 13. Model C: the reference value are the same adopted in the previous simu-
lation, the overburden density varies linearly with depth from 2000K g/m? (top) to
2600K g/m? (bottom) The salt top does not rise above its level of neutral buoyancy.

5 Compaction

The overburden is a saturated porous media, so its effective density p, can be
represented as:

Po = (1 —n)py + npw (20)
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(a) t=12.5 Ma (b) t=22 Ma (c) t=26.5 Ma

Figure 14. Model D: multilayered overburden with lateral variation. The effect of
differential loading activates the diapirism.

w2z t- 600000k

(a) t=2.8 Ma (b) t=6 Ma (c) t=10.4 Ma

Figure 15. Model E: the effect of lithostatic pressure in a sedimentary basins acti-
vates the diapirism
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Figure 16. Model F: sedimentary basin with basament steps and progradation
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where n is the porosity, p, is the grain density, and p,, is the density of water.
We recall the Athy’s law [15] for porous media:

n(z) = ngel=*? (21)

where ng is the surface porosity at sea level and z is the sea level depth and
c is a dimensional constant [16]. We estimate the effects of compaction due
to the gravity force on diapirs evolution. We assume that p, is constant and
we neglect the effect of poroelasticity during compaction. Let us start with
the mass conservation equations for both the fluid and solid phase in the
overburden:

a(pwn)
ot

+div (pynvy) =0, (22)

0lpy(1 — )]

T +div (pg(1 — n)vy) =0, (23)

where v,, and v, are respectively the velocity of the water and of the grain.
Supposing that the grain density remains constant along streamlines, equation
(23) becomes:

. 1 Dn
div v, = T Dt (24)
We suppose that n = n(z) is a given function, so the porosity of each point
changes due to the deposition of an additional layer. For further details see
[17] and [18].

Formally integrating (24) and assuming only vertical compaction we obtain
the following problem:

ﬁz on in O C R?
dz 1—n (25)
S=0 on I’y

where S is the vertical displacement and dn is the porosity variation of each
layer, 'y is the bottom line of the computational domain 2.
We solve problem (25) with a stabilized finite element scheme. In particular we

approximate S with piecewise linear polynomials and we use SUPG method
(see [10]).

In Figure 17 some numerical results of diapiric growth in a sedimentary basin
with sedimentation and compaction are shown. We assume constant density of
the grains p, = 2700kg/m?, a given law for porosity (see [19]) and a constant
sedimentation rate of 300m /M a. The height of sedimentary basin varies during
the evolution and a deformation above the diapir due to compaction occurs.
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(a) t=0.5 Ma (b) t=1.5 Ma (c) t=2.15 Ma

Figure 17. Evolution of a diapir in a sedimentary basin with constant sedimentation
rate and compaction.

6 Conclusions

We developed a two-dimensional Finite-Element code for the simulation of
diapirs intrusion into an arbitrary layered overburden with time and depth-
dependent properties and time—-dependent thickness. We use a split algorithm
in which we first solve a Stokes problem by FEM at each time—step and then
we carry out the interface tracking with an adaptive grid technique. This pro-
gram can analyze the influence on salt flow of different conditions such as
differential loading due to inhomogeneities in the overburden, the shape of
the salt base, subsidence of uplift of the salt base during evolution of sedi-
mentary basin, and increase in density and viscosity due to sedimentation and
compaction.
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Appendix
Rayleigh—Taylor instability theory

In this appendix a simplified version of the Rayleigh-Taylor instability model
is analyzed. We consider a classic linear instability problem of two semi-infinite
inviscid fluids of densities p; (in the region z < 0) and py < p; (in the region
z > 0), separated by a horizontal boundary at z = 0. We may consider an
interfacial surface tension 7'. The disturbed flow of the two fluids is assumed
to be irrotational so that the velocity potential of the lower fluid is ¢; and
that of the upper fluid is ¢,.

With the interfacial surface elevation n = n(z,y,t), the perturbed quantities
satisfy the following boundary and interfacial conditions:

8@1 8902
< 5, 82) — (0,0) forz — Foo (.1)

Op1 _ On O¢x _ On

0z ot 0z ot atz=0 (2)

dp1 _ D2 _
o (W“m) = py (W—an) +TAn at z=0 (.3)

where A is the two-dimensional Laplace operator. We analyze the instability
problem using the standard normal mode analysis. A typical Fourier compo-
nent of the interfacial elevation has the form

&= n(x7y7t) = Aexp [Z(K’X_wt)L (4)
where A is an arbitrary constant, x = (z,y)”, k = (k,I)7 is the horizontal
wavenumber vector and w(k, ) is a (possibly complex) frequency. The associ-

ated velocity potentials satisfying the boundary conditions (.1) are:

o1 = Arexp [i(k - x — wt) + k2], (.5)

g = Asexp [i(k - x — wt) — k2], (.6)

where k = (k? 4+ 12)}/2 and the constants 4; e Ay can be easily determined,
otherwise, conditions (.2) yield:

kA = KAy = —lwA. (.7)
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From the dynamic boundary condition (.3) we get:

— T2
w? = gk P1— P2 i K . (.8)
pr+p2 glpr+ p2)

This quadratic equation for w has either real or complex roots. For real roots,
there are two waves that propagating with constant amplitude. For complex-
conjugate roots the wave mode decays and grows exponentially according to
the sign of the imaginary part, positive and negative, respectively. If there
exists an exponentially growing mode for some wavenumber (k,[), then the
primary flow in unstable. One the other hand, the flow is regarded as stable.
We point out that stability, in this sense, does not mean the decay of all the
disturbances as t — 0o, but simply the absence of the growing mode.

We define the horizontal coordinate Z = (1/k)(k - x) in the direction of the
wavenumber vector k. Clearly, waves propagate in the direction of increasing
with phase velocity Re(w)/k. Moreover, the quantity of w/x depends on k£ and
[, and hence the waves are dispersive. Relation (.8) is the so—called complex
dispersion relation for interfacial waves and gives:

1/2

pL=p Tk?
pr+p2 gL+ p2)

wzi(ww (:9)

These roots are real provided that g(p; — p2) + T'x?* is positive (when py < p1,
the associated modes describe interfacial capillary—gravity waves). When the
lighter fluid is beneath the heavier one, the system is unstable for all wave-
numbers with

2 Y (p —
K <T(p2 101)

This means that sufficiently long waves are unstable in the range 0 < kK < K,
where

:|1/2

ke = | %02 = 1) (.10)

On the contrary, the system is stable for any disturbance if £ > k.. Thus, the
effect of the surface tension is to stabilize a potentially unstable system for all
sufficiently large wave-numbers.

In the description of the evolution of salt diapirs we neglect the surface tension
(i.e. T =0). In such a case the dispersion relation reduces to

W = gk <M> . (.11)

p2 + p1
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If p1 < py the value of w is purely imaginary and the system is unstable for
any frequency. The phase and group velocities of the waves are given by

w g (p—p\]?
C:_::l:_ , C:vn 12
P [K<p2+p1>] 9 w (-12)

x

respectively, where V,w = Vw - k represents the derivative of w along the
direction k.
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