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Summary

We introduce a differential system based on the coupling of (Navier) Stokes
equations and Darcy equation for the modelling of the interaction between sur-
face and subsurface flows. We formulate the problem as an interface problem
and analyze the associated Steklov—Poincaré operator. We then propose a way
to solve the coupled problem iteratively, based on a suitable splitting of the
interface conditions, allowing at each step the solution of two subproblems.
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1 Introduction and Problem Setting

We consider a bounded domain Q of R¢ (d = 2,3) composed of two subdomains
Qy and Q, such that Q@ = Q; UQ,, Q;NQ, = 0 and QN Q, = I. The
hypersurface I (a line if d = 2, a surface if d = 3) is the interface separating the
domain ¢, filled by a fluid, from the domain 2, formed by a porous medium.
Unless otherwise specified, we understand that the fluid has a prescribed upper
surface, to make a distinction with the more general case of a free surface fluid
that was addressed in [1]. Let us denote by ny the unit outward normal direction
on 0Qy, and by n, the normal direction on 0f},, oriented outward. Then ny =
—n,, on the interface I'.



In the domain (2, we describe the motion of the fluid through the porous
medium using Darcy’s equation, according to which the velocity field is propor-
tional to the gradient of a potential ¢ called piezometric head. In particular,
the piezometric head for an incompressible fluid is defined as:

pi=z+ Py ,
0r9
where z is the elevation from a reference level, representing the potential energy
per unit weight of fluid, p, is the pressure of the fluid, gy its density and g is

the gravity acceleration. Darcy’s law states precisely:
nup, =q=—-KVp,

where V is the gradient operator (0/0z1,...,0/ de)T with respect to the space
coordinate x = (z1,...,%4), up is the fluid velocity vector in Q,, q the specific
discharge vector, n the volumetric porosity and K the hydraulic conductivity
tensor of the porous medium. In the following K will be assumed diagonal:
K =diag(Ki,...,Kg), with K; > 0 and K; € L*(Q,),i=1,...,d.

The motion of the fluid in (2, is therefore described by the following system
of equations (see [2], [3]), Vt > 0:

SO(Z—f +divq =0 Vx €Q,

q=—-KVp Vx €, ,

1)

where Sy is the specific mass storativity coefficient.

Let us now consider the domain Q. We suppose the fluid to be homogeneous
and incompressible, thus the Navier—Stokes equations apply, V¢ > 0:

Ou .
S~ divT(us,py) + (up - Viuy =f  Vxefy 2)
divuy =0 Vx € Qy,

where T(us,ps) = v(Vuys + VTuy) — psI is the stress tensor; v > 0 is the
kinematic viscosity coeflicient, f represents external forces, while uy and py
denote the fluid velocity and pressure.

In Sect. 2 we will consider several kind of boundary conditions on 9Q \ T’
(for the Navier-Stokes equations) and on 08, \ ' (for the Darcy equation).
Then we discuss the matching conditions to be satisfied by uy, py and ¢ at the
interface T'.

From Sect. 3 on, we will concentrate on the linear steady problem that is
obtained by dropping time derivatives as well as the nonlinear convective term
in (1) and (2). We formulate the global problem in a weak form and prove that
there exists a unique solution. Then, in Sect. 4 we reformulate our problem as
an interface problem S\ = x, whose unknown solution is the common value of
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Figure 1: Schematic representation of a 2D vertical section of the computational
domain

uy -ny and KVy -ny of ', x is a suitable term depending on boundary data
and forcing terms, while S is the so-called Steklov—Poincaré operator. We prove
that this interface problem has a unique solution, and that S can be split in
two suboperators Sy and S,, relative to Q; and Q,, respectively, where Sy is
spectrally equivalent to S. This crucial property suggests the way to introduce
suitable iterative methods whose preconditioner is Sy, see Sect. 5.

This is a preliminary, necessary step to devise, in the finite dimensional case
after space discretization by finite elements, a domain decomposition substruc-
turing method whose convergence rate is independent of the grid size. This
method is briefly introduced in Sect. 6, its analysis however, together with
a thorough investigation of the algorithmic aspects, will be carried out in a
forthcoming paper.

2 Boundary and Interface Conditions

Let us split the boundaries 9 and 9%, of 2y and Q, as 9Q; = TUT;UT3UT}
and 0Q, =T UT, U ]."g, as shown in Fig. 1.

For the Darcy equation we assign the piezometric head ¢ = ¢, on T'p;
moreover, we require that the normal component of the velocity vanishes on the
bottom surface, that is u, -1, = 0 on I'}.

For the Navier—Stokes problem several combinations of boundary conditions
could be considered, representing different kind of flow problems; let us indicate
some of them.

A first possibility is to assign the velocity vector uy = 0 on T'} UT% and a
natural boundary condition T(uy,pys) -ny = g on I‘fl (a fictitious boundary),
being g a given vector function, representing the flux across ch of the fluid
column standing above.

Alternatively, we can prescribe a non-null inflow uy = u;, on the left-hand



boundary '}, a slip condition us-ny = 0 and (T(uy,ps) -ny)-7; =0on T} (14,
i=1,...,d—1, are linear independent unit tangential vectors to the boundary)
and an outflow T(uy,pys) - ny = 0 on the right-hand boundary I‘:}.

A third possibility consists of assigning again a non-null inflow uy = u;, on
the left-hand boundary F} and a no-slip condition uy = 0 on the remaining
boundary F? U I‘?f’.

Our analysis shall consider the last choice we have indicated, but it can be
modified to accommodate the other boundary conditions as well. From now on,
we shall indicate I'; as T’/ (standing for I‘}"f fow) and the remaining boundary
1"; U F?]’c simply by I'y.

We propose the following set of interface conditions on I':

up-nfzuf-nf,

—[(T(us,ps)) -mg]-7i = %(uf —wp) T, i=1l,..,d—1, (3)

K2

—[(T(us,ps)) -ngl-ny = gp,

where k; = 1;-K-74, and «; is a positive dimensionless parameter which depends
on the properties of the porous medium.

The above conditions impose the continuity of the normal velocity on I'; as
well as that of the normal component of the normal stress. The interface con-
ditions (3) generalize those proposed by Payne and Straughan in [4], where the
simplified case of a flat interface is accounted for. We notice that, in agreement
with what advocated by Jiger and Mikeli¢ (see [5, 6]), the pressure is allowed
to be discontinuous across the interface.

Finally, since a; can be taken very small, we will assume it to be null from
now on. In that case, note that the second condition in (3) does no longer
couple uy with u,, and will be recovered as “natural” boundary condition for
the problem in Q (see next Section).

3 Weak Formulation and Analysis

In our analysis we shall consider a linear coupled problem Stokes/Darcy, which
corresponds to replacing the Navier—-Stokes equations with the linear Stokes
equations in ;. This replacement is justified when the fluid velocity is small.
Moreover, we will consider only the stationary case. Let us recall that a station-
ary Stokes problem can also be generated by a semi—-implicit time advancement
of the Navier—Stokes equations where all terms but the nonlinear convective one
have dealt with implicitely. The differential formulation of the problem we are
considering reads therefore as follows:



—divT(us,ps) =f in Qy

divuy =0 in Qf

—div(KVyp) =0 in Q,

uy = w;, on I‘Z}" (4)
u;=0 on Ty

—KVy-n, =0 on Fz

= p only,

and it must be completed with the interface conditions (3) on I' (with aq = 0).
We will assume that u;, is null in a neighborhood of the intersection I’ N f}n.
Let us introduce the following functional spaces:

pr = {’UEHI(QfN’U:OODFf}, (5)
Hrfurif" = {v € Hr;[v=0o0n F?n} , Hp:= (Hrfur}")d ) (6)
H}:={veH;v-n;=00onT}, Q:=L*Qy), )

Hy:={p € H(Q)|Y=00nT,}, HY:={p€Hylp=00onT}. (8)

The space W := H; x Hp, is a Hilbert space with norm

1/2
lellw = (IWliZr oy + 1013, ) Y = (w,9) € W,

Finally, we consider on I' the trace space A := Hé({ 2(I‘) and denote its norm by

[l 1la (see [7]).
We introduce a continuous extension operator

Ep: (HY(Ty)" = (Hr,)" . 9)

Then Vug, € (HY2(T'"))? we can construct a vector function Efu;, € (Hy,)*
such that Efum‘ =, and div(Efu;,) = 0in Qy (see e.g. [8], pp. 158-159).
rin
7
Moreover we define u$ := uy — Epui, € Hy.

We define the following bilinear forms: for all v,w € (H(2;))¢,

az(v,w) ::/Q g (Vv +VTv) - (Vw + VTw) ; (10)

Alww) i=nastv,w)+ [ g0 KV
% (11)
+/an¢(w-nf)—/rng¢(‘f'nf)

for all v = (v,¢) and w = (w, ) € W;

B(w,q) = —/Q n qdivw Yw = (w,¥) e W, qe€Q. (12)
f



Let us introduce a continuous extension operator
Ey: Hl/z(rp) - H'(), (13)

then we define the function ¢y € H, as ¢g := ¢ — E,¢p, upon assuming that
¢p belongs to H'/2(T,).
Finally, we can define the following linear functional for all w = (w,4) € W:

< F,w >:= / nf -w — nag(Epu;y,, w)
Qg

+A#NWKW&%%%ﬁﬂ%%Wﬂv (14)

P

+/an (Epugy, -ny)y .

Using the above definitions, problem (4) can be written in the following weak
form: find u = (u$, o) € W, p € Q:

(15)

We remark that the interface conditions (3) have been incorporated in the
above weak model: in fact, integrating by parts both Stokes and Darcy’s equa-
tions, it can be seen that they are all natural conditions on T'.

In order to prove existence and uniqueness for the solution of the coupled
Stokes/Darcy problem, we introduce some preliminary results on the properties
of the bilinear forms A and B and of the functional F.

Lemma 3.1 The following results hold:

1. A(.,.) is continuous and coercive on W and, in particular, is coercive on

the space
Z2°:={veW|B(v,q)=0 YgeQ};

2. B(.,.) is continuous on W x @ and satisfies the following Brezzi-Babuska
condition: there erists a positive constant 8 > 0 such that Vq € @ Jw €
W

B(w,q) > Bllwllwlallze,) - (16)

3. F is a continuous linear functional on W.
Proof. 1. The following trace inequalities hold (see [7]):
ACr >0 : ||v|r||A§Cf||v||H1(Qf) Vv € Hy ; (17)

3G >0 2 [Ypella < Coll¥llane,) VY €Hy. (18)



Thanks to the Cauchy—Schwarz inequality and the above trace inequalities the
continuity of A(.,.) follows:

Aw,w) <Allllwllwlw ,  Yo,weWw,
with the following constant
v := 2max{2nv, gMg, C;Cpng} (19)

and Mg = max;—i,...,d ||Kz'||Loc(Qp).
The coercivity is a consequence of the Korn inequality (see e.g. [8], p. 149):
Vv = (vi,...,vq) € Hy

4/ o, oy 2
>0 [ (Gheg) 2nlvee,, )
ji=1
and the Poincaré inequality (see [7] and [9], p. 11):
3Ca, >0: [Wlaa,) < Co,IV¥lln,) WeH, (1)
In fact we have:
Alw,v) > allvllfy, Vo= (v,p) €W,

where

1 1
= imin {TLI/K:f,ng min (1, C—Qp> } ) (22)

my = min | inf (), (mgc > 0). (2

2. For the continuity, thanks to the Cauchy—Schwarz inequality, we have
IB(w, q)| < llgllz2@pllwllw,  forall weW,qe@.

Now it can be shown that the following compatibility condition holds (see e.g.
[8], Proposition 5.3.2, or [10]): there exists a constant % > 0, such that Vq €
Q IwWeH; w#0:

_ / gdivw > 8wl e lallz2a,) - (24)

Q5
Then, considering w = (w,0) € Hy x H), the thesis follows with 8 = nf°.
3. Thanks to the Cauchy—Schwarz inequality and the trace inequality (17), we
have:
| < F,w> | < V2CF|wllw

where
C]—‘ = max{(n||f||L2(Qf) + 2n1/||Efum||H1(Qf)

(25)
+ nngRIJHSOIJ“Hl/?(I‘p)): gMK""Jp”SOIJ”Hl/?(Fp)} >

being k, the continuity coefficient of the continuous extension operator E,. O

We can now prove the main result of this Section:



Proposition 3.1 The Stokes/Darcy coupled problem (15) admits a unique so-
lution (uy,p,po) € Hy x Q x H,, satisfying the following a-priori estimates:

V2Cr

<
g, po)llw < =22,

V2CF Y

Pl < ¥57 (14 7)

where B, v, @ and Cx are the constants defined in (16), (19), (22) and (25),
respectively.

Proof. It’s a straightforward consequence of the existence and uniqueness theo-
rem by Brezzi (see [11]), whose hypotheses are satisfied thanks to Lemma 3.1.
O

Remark 3.1 From Proposition 3.1 it follows in particular that —KVp - ny €
A, since uy ‘ng € A. Then, on T, ¢ has a higher reqularity than one might
have expected.

4 Steklov—Poincaré Operators Associated
to the Coupled Problem

In this Section we will apply a Domain Decomposition technique (at the dif-
ferential level) to study the Stokes/Darcy coupled problem. In particular, we
shall introduce and analyze the Steklov—Poincaré interface equation associated
to our problem, in order to reformulate it in terms of interface unknowns solely.
This re-interpretation is crucial to allow the set up on an iterative procedure
between the subdomains Q0 and Q.

First of all let us state the following result, whose proof is omitted since it
is similiar to that of Lemma 5.3.5 of [§].

Proposition 4.1 Problem (15) can be reformulated in an equivalent way as
follows: find u(} € Hf, pe Q, po € Hp such that

af(u(} + Efun, W) —/ pdivw = f-w Yw € Hg ,
Qy Qy

/ qdivu(} =0 VgeQ,
Qyf 1
/(U(} +Bfttin) -npp =~ /F[KV(% + Eppp) nglp VREA,

VY -KV(po + Bppp) =0 Vo€ Hy,
QP

(26)

/9(900 + Eppp)in =/ f-(Rip)
- af(u(} + Efu;n, Rip) +/ pdiv(Rip) VYu €A,
Qg



where Ry is any possible extension operator from A to Hy, i.e. a continuous
operator from A to Hy such that (Rip) -ng =p on T, for all p € A.

Now, let us choose as governing variable on the interface I the normal com-
ponent of the velocity field:

1
A= uf-nf:—EKVgo-nf. (27)

Should we know a priori the value of A on I', from (27) we would obtain a
Dirichlet boundary condition for the Stokes system in Q¢ (uyny = AonT’) and a
Neumann boundary condition for the Darcy equation in 2, (—(KVg-ng)/n = A
on I).

Joint with (3)2 (with ay = 0), these conditions allow us to recover (inde-
pendently) the solutions (u(}, p) of the Stokes problem and ¢o of the Darcy
problem.

We introduce two auxiliary problems whose solutions (which depend on the
problem data) are related to that of the global problem (26), as we will see later

on:

find w§ € H?,7* € L2(Yy) s.t. Vv € HY, Vg € L2(y)

af(wg + Epugy,, v) —/ 7* divv =/ f-v
2 Q

(28)
/ gdivwg =0;
Q5
find 5 € Hp s.t. VY € H,
| VKV = = [ Vi KV(E). (29)
Now we define the following extension operators:
Ry: Mo — Hy x L§(Qy), n— Rygn:= (Rjn, R}n)
such that (R}n) -ny; =7 on T and
af(R}cn,v) - / (R?cn)divv =0 VWve H]Q
Qf (30)
[ adiv(®pm =o Ya € @)
Q;
where
AO::{MEA/MZO}; (31)
r

R,:A—>H,, n—Rp



such that

/Q Vi - KV(Rpn) = /anp Vo € Hy . (32)
Let us define the Steklov—Poincaré operator S as follows:
<Snp> = ag(Rpn, Rip) — / (R%n) div(R: p)
Qs
+ [ Vo€ no, e, (33)
r

which can be split as the sum of two suboperators S = Sy + Sp:

< Spn, p >i= ap(Rpn, Rup) — /Q (R%n) div(Ryp) (34)
f
<Spu>= [ o @ (35)

for all n € Ag and p € A, and the functional x : Ag = R,
<X p > = /Q f-(Rip) —ap(wy + Eptyn, Rip)
f
+ [ waiv(R = [ 00+ Byop + R, (36)
f
for all 4 € A. We have set A\;, := Eruyp “ng Thus

A=Xo+ Ain s (37)

where Ao = u} ‘ny

Theorem 4.1 The solution to (26) can be characterized as follows:
u} =wi+ Rido, p=7"+RiNo+Ds wo=95+Rp(Xo+Ain), (38)

where py = (meas(Qy)) ™t fop , and \o € Ao is the solution of the following
Steklov—Poincaré problem:

< SAo, po >=< X, po > Yo € Ag - (39)

Moreover, ps can be obtained from Ay by solving the algebraic equation

_ 1
~ meas(T)

Dy < SX—x,€>, (40)

where € € A is a fized function such that

1
meas(T) /Fs =1. (41)

10



Proof. By direct inspection, the functions defined in (38) satisfy (26)1, (26)3
and (26)4. Moreover (26), is satisfied too. Indeed, Vg € @

/ gdiv(wy + B} o) = / (¢ - Q)div(ws + Rido) + / gdiv(wj + R o),
Qf Qf Q.f

g being the constant g := (meas(Qy)) ! fo g- Thanks to (28)2, (30); and
applying the divergence theorem to the last term on the right-hand side, we
obtain (26),.

Let us now consider (26)s5. We substitute (38) in it and we obtain, Yu € A,

[ a0+ ar(@ro Rug) — [ (R 30) div(Rug)
T

Qs
Z/Q f-(Rip) — /FQ(WS +EP()0P+RIJA’£W,)/I‘
f

—ay(wh + Eftyy, Rip) + / 7 div(Rip) + Py div(Rip) ,
Q5 Q5

that is

< SAo, pp >=< X, 0 > + Py div(Ryp) YueA. (42)
Qy

In particular, we can invoke the divergence theorem and conclude that \g is the
solution to the Steklov—Poincaré equation (39).

Now any p € A can be decomposed as p = pio+pre, with pp := (meas(T')) ™ [ u,
so that py € Ag.
From (42) we obtain

< SAo, po > + < SAg, ure >=< X, g > + < X, Ur€ > +ﬁf/ru YueA.
Therefore, thanks to (39), we have
,up<S)\0—x,6>:ﬁf/Fu Yu e A .
Since [ 4 = prmeas(T) , we conclude that (40) holds.O

In next Section we will prove that (39) has a unique solution.

4.1 Analysis of the Steklov—Poincaré Operators

We shall now prove some properties of the Steklov—Poincaré operators Sy, Sp
and S.

Lemma 4.1 The Steklov—Poincaré operators enjoy the following properties:

1. Sy and S, are linear continuous operators on Ao (i.e., Syn € Ay, Spn €
67 V77 € AO )7'

11



2. Sy is symmetric and coercive;

3. Sp is symmetric and positive.

Proof. 1. Sy and S, are obviously linear. Then, we notice that for every p € Ag
we can make the special choice Rip = R} u. Consequently, from (34) and (30)
it follows that Sy can be characterized as:

< S, p >= af(R}n,R}u) Vn, € Ag . (43)

To prove its continuity, we introduce the vector operator H: Ag — Hy , p —
Huy , s.t.
V(Hu)-Vv=0 Vv € [HE(Q4)]¢

Qy
(Hp) -mp=p onT (44)
(Hp) -T7;=0 onT, i=1,...,d—1

Hp=0 ondQp\T,

where Hj () = {v € H' (Qf)|v=0 on 88y}.
By comparison with the operator R} introduced in (30), we see that for all
i € Ag, the vector function

2(p) := Rypp— Hp (45)

satisfies z(u) -ny = 0 on I', therefore z(p) € H}’ . By taking v = z(u) in (30)4,
in view of the definition (45) we have:

lag(Rbp,a(u))| = ‘— | @ aiviouz)

IA

IR ullc2 o I Hpll o,y - (46)

Let us consider now the function Rfcu. Since it belongs to LZ(Qy), there exists
w € (H} ()4, w # 0, such that

BN Rl 2 2 Wl s ) < /Q (R2) divw |
f

where f9 > 0 is the inf-sup constant (independent of p) (see e.g. [10]). Since
w € (Hg(Qy))? C H?, we can use (30); and obtain:

BIR} ull 21wl @) < lag(Rip, w)| < 20(I VR pll 20, IW ey -

The last inequality follows from the Cauchy—Schwarz inequality. Therefore

2v
IR} ull2 (o) < @HR}MHHI(Qf) ; YpeAo. (47)

12



Now, using the Korn inequality (20) and relations (45), (46), (47), we obtain:

|Rjulln,) < Cas(Rju, Rip)
C g (Rl 2) + a5 (R}, H]

C [IIRFull2@eplHullar @,y + 2R ull g @) 1Rl 210

1
e (1 n @) IRl o [l oy

IN

IN

for all u € Ag, where C := 2/(nvky). Therefore

1
i
2va*C (1 + %) [l A - (48)

IRl g,y < 2VC(1+ )||HN||H1(Qf)

IA

The last inequality follows from the observation that Hpu is a harmonic extension
of u, then there exists a positive constant a* > 0 (independent of u) such that

IHpll o,y < @ [[Hplla = olplla

(see e.g. [8]).
Thanks to (48) we can now prove the continuity of Sy; in fact, for all u,n € Ao,

we have:
| < Spp,m > | = lag(Ryp, Rim)| < Brllpllallnlla

where 3y is the positive continuity constant

" 2
By = i—’; [:—f (1 + %)] . (49)

Let us now consider the issue of continuity of S,. Let mg be the positive
constant introduced in (23). Thanks to the Poincaré inequality (21) and (32)
we have:

IRptllFr,y < 1+ Ca)IVRyullZaq,)
1+ Cq,
< | V(o) - KV (Rop)
mg Qp
1+ Cq
= L R .
g L

Finally, the Cauchy—Schwarz inequality and the trace inequality (18) allow us
to deduce

C
IRppllmr(e,) < —E(1+Ca,)llulla, V€A
Mk

Then, Vu,n € Ag ,

A

| < Spr,n>1 < gllRppy M2y lInllczr

IA

902(1 + Cq,)
250 )i

9O || Rppil| 1 (02, [Iml]a <

13



Thus S, is continuous, with continuity constant 8, := [gC%(1 + Cq,)lmg" .

2. Sy is symmetric thanks to (43). Using again the Korn inequality (20) and
the trace inequality (17), for all 4 € Ag it holds:

nvky

2
nvkKy 1 9 9
> MR RL,. -
> et NBmel =gl

< Spp,p>

\Y%

IR} 1l o,

thus Sy is coercive, with a coercivity constant given by

_ nUkj

Oéf = 20f . (50)

3. Sp is symmetric by definition. Moreover, thanks to (32), Vi € Ao,
1
< S >= [ g Epuin =1 [ 9V KIFpi).
P

On the other hand, 3Cy > 0 :
< KV(Rpp) - np,n >

pllar - =
! neno [ Hpnlla@y)
fQ V(Hpn) - KV(Rpp)
sup P <c R'ul .
neho  [Hpnllia,) ollppllz o,)

We have denoted by A’ the dual space of Ag, and by < -,- > the duality pairing
between A’ and Ag . Moreover , we have denoted by #,7 the harmonic extension
of n to H'(f,), i.e. the (weak) solution of the problem:

div(KVH,n) =0 in Q,
KV(Hpn) -np=p  onT,
Hpn =0 onT?.

We conclude that < Spu, > > [|u||3, , for a suitable constant C > 0. O
The following result is a straightforward consequence of Lemma 4.1.

Corollary 4.1 The global Steklov—Poincaré operator S is symmetric, continu-
ous and coercive. Moreover S and Sy are spectrally equivalent; i.e. there exist

two positive constants k1 and ko such that

ki <S> < <8Sn,n>< ky < Spnyn > Vn € A.

5 Subdomain Iterative Method for the Coupled
Problem Stokes/Darcy

Our aim is to solve the Stokes/Darcy problem by an appropriate numerical
scheme based on domain decomposition methods and, in particular, inspired by

14



the Dirichlet—-Neumann method in heterogeneous domain decomposition theory
(see [8]).

The method we advocate, and that we will illustrate more precisely in next
Section, computes the solution of the coupled problem through the indepen-
dent solution of Darcy’s equation in €2, and of the Stokes problem in Qf, and
comprises three steps:

1. solve Darcy’s equation in €, using (3); as Neumann boundary condition
on the interface T’;

2. solve the Stokes problem in ; using (3)3, and recovering (3)s (with oy =
0) as natural boundary condition on T ;

3. use a suitable relaxation depending on a positive parameter 6 to enforce
the continuity of the normal velocity u, - ny = uy - ny on the interface I’
at the following iterative step.

This procedure will be iterated till the fulfillment of a suitable convergence test.

The iterative method we propose can be improved by a suitable re-inter-
pretation. In fact, one step of the iterative procedure can be regarded as a
preconditioned Richardson iteration for the Steklov—Poincaré problem (39) on
the interface I', the preconditioner being S¢. Precisely,

Ao € A() (51)
AL = Xk 10571 (x — SAF), k>0,

Ao being an initial guess in Ag and the equality (51) being valid in A,.

The sequence {((u})*, p*, of)}r>0, generated by the iterative method, con-
verges, for kK — oo, to the solution of the Stokes/Darcy coupled problem for
values of the relaxation parameter 6 in a bounded interval (0,8,,q.,), where
Omaz < 1 depends on the coecivity and continuity constants of the Steklov—
Poincaré operators Sy and S,. This result can be obtained by applying an
abstract convergence theorem (see [8], Theorem 4.2.2).

Obviously, more effective iterative solvers (e.g. the Conjugate Gradient) with
the same preconditioner can be used, which yield a convergence rate indepen-
dent of the grid-size of the numerical approximation and select the acceleration
parameter dynamically.

6 Finite Element Approximation
of the Stokes/Darcy Problem

We consider a regular triangulation 75 of the domain Qf U (2, depending on a
positive parameter h > 0, made up of triangles if d = 2, or tetrahedra in the
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3-dimensional case, such that the triangulations 7}, and T, induced on the
subdomains Qy and €, are compatible on I', and the triangulation M}, induced
on I' is quasi-uniform (see e.g. [9]).

Several choices of finite element spaces can be made in order to approximate
the functional spaces Hy, Q and H,,, however the spaces Hyp, and @y, that ap-
proximate Hy and @, respectively, have to satisfy the discrete inf-sup condition:
38* > 0, independent of h, such that Vg, € Qg

vy, € Hyp, vi #0: / gn divvy dQy > ,3*||Vh||H1(Qf)||Qh||L2(Qf) . (52)
Qs

One possible choice is

X3, = {vn € C°(Q¢)|vn =00nT; UTY, vp g € Po(K), VK € Trn}; (53)

Qn :={aqn € C°(Qy)| qn i € P1(K), VK € Tpn}; (54)
Hpn == {n € C°(Qp)|hn =0on T, ¢n i € P1(K), VK € Tpn} ; (55)
Hpp = (X3,)%, d=2,3, Wi, := Hyp x Hpp, - (56)

Finally we consider the space Ap, := {vn|.|vn € X},} to approximate the trace
space A on T.

The Galerkin approximation of (15) reads: find u, = (uspn,on) € W3 and
Ph € Qn:

A(Hh;yh) +B(yhaph) =< f*ayh > vyh € Wh

57
B(uy,qn) =0 Yan € Qn , (57)

where F* is a linear functional accounting for a suitable discrete extension of
an approximation of the boundary data u;, and ¢, assigned on 1"}" and T'p,
respectively. In the following we shall indicate these discrete extensions by
Ejpuinp and Eppoph -

Remark 6.1 In the discrete case the coupling condition (3)s has to be intended
in the sense of the L*(T')—projection on the finite element space Hpp, on T. In
fact in the weak form (57) we are imposing

1
/ (EV‘Ph ‘N —Ugp ‘nf) Yo, =0 Vo € Hpp ,
N

that is (uyp - ny) = (1/n)Vey - ny , where I is the projection operator on
Hpp . with respect to the scalar product of L*(T) .

We remark that the existence, uniqueness and stability of the discrete solu-
tion of problem (57) can be proved following the same approach of the continuous
case, using the theory developed by Brezzi (see [11]).
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6.1 Iterative Method for the Numerical Solution of the
Coupled Problem

The iterative method we propose to compute the solution of the Stokes/Darcy
problem reads as follows:
let AY be an initial guess; solve for k > 0:

find ot € Hyp :

/ Vb, - KV — / nyp Af = — / Viph - KV (Eph@ph) (58)
Qp r Qp

Vip € Hpp, ;

find () € Hyn, pi* € Qn

ag((ufy)*, wh) — / ppt divwy, + / 9oy wn -y
59

= f-wy —af(thumh,wh) Vwy, € Hfh ( )
Qf
gndiv(u},)** =0 Vg € Qp,

Qf
with ap'ﬁ“ = apg,‘fl + Eppoph ;
AR = 0, ()P + Eppugy) - npfr] + (1= 0)A) (60)

being 6} a positive relaxation parameter.

The above iterative scheme can be reinterpreted using Galerkin approxima-
tion of the Steklov-Poincaré operators introduced in Sect. 4. This interpretation
is useful to carry out the convergence analysis of the scheme.

Due to space constraints we don’t develop here a complete convergence anal-
ysis; together with all the details concerning the finite element approximation of
the Stokes/Darcy problem, this will make the subject of a future paper, where

we also present numerical results on several test problems.
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