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Abstract

We discuss in this paper the numerical approximation of fluid-structure
interaction (FSI) problems dealing with strong added-mass effect. We pro-
pose new semi-implicit algorithms based on inexact block-LU factorization
of the linear system obtained after the space-time discretization and lin-
earization of the FSI problem. As a result, at each iteration the fluid ve-
locity is computed separately from the coupled pressure-structure velocity
system, reducing the computational cost. We investigate explicit-implicit
decomposition through algebraic splitting techniques originally designed
for the FSI problem. This approach leads to two different families of meth-
ods which extend to FSI the algebraic pressure correction method and the
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Yosida method, two schemes that were previously adopted for pure fluid
problems. Furthermore, we have considered the inexact factorization of
the fluid-structure system as a preconditioner. The numerical properties of
these methods have been tested on a model problem representing a blood-
vessel system.

1 Introduction

We are interested in the numerical approximation of the heterogeneous mechan-
ical system which couples the equations governing a fluid flow and the deforma-
tion of a structure; this situation arises in many engineering problems.

A great variety of strategies have been proposed to solve fluid-structure in-
teraction (FSI) problems. A first issue is how to deal with the non-linearity
of the problem. In fact, not only the fluid (and in some cases the structure)
equations are non-linear, but also the structure displacement modifies the fluid
domain generating geometrical non-linearities. The fixed point technique (e.g.
[3]) is the simplest to linearize the FSI problem, however Newton (e.g. [9]) and
quasi-Newton (e.g. [11]) methods have also been considered.

A classical restriction for fluid-structure algorithms is modularity. Most of
the times the codes for the pure fluid problem and for the pure structure problem
already exist and they are optimized for the specific mathematical features of the
two different problems. Then the best way to solve the FSI problem would be to
design algorithms involving only communication between the codes. Substruc-
turing techniques stemming from a domain decomposition viewpoint [7] well
serve this purpose. Among these procedures, the classical Dirichlet-Neumann
technique is one of the most widely used. Usually iterations are carried out
using Richardson or conjugate gradient methods for the interface equation.

The load exerted by the fluid on the structure can be interpreted as an
added-mass [2]. When the structure density is much bigger than the fluid den-
sity, as it happens in aeroelasticity, the added-mass effect is negligible and the
numerical approximation of the FSI problem through iterative procedures is
less challenging. However, when the two densities are of the same order of
magnitude, as in hemodynamics, the added mass effect becomes important and
iterative procedures fail or are too slow. When the added-mass effect is critical,
the enhancement due to the use of Newton methods with respect to fixed point
algorithms is small and more effective procedures, like GMRES or BiCG tech-
niques, are required. These iterative procedures are minimization techniques
that always converge but their convergence rate will depend on the relevance of
the added-mass effect.

Another option would be to solve the monolithic fluid-structure system (after
linearization and discretization): since no coupling iterations are performed, the
added-mass effect would not play any role. Furthermore, we need to develop a
global FSI solver, which is not modular, and the computational cost for solving
the monolithic system may become prohibitive for real applications.
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An alternative to substructuring techniques and monolithic methods is given
by semi-implicit schemes, introduced in [8]. The idea is to decouple the fluid
velocity computation from the strongly coupled fluid-structure system, which
only involves pressure and structure unknowns, with the double advantage of
reducing computational costs and ensuring stability. In fact, since the pressure
is still coupled to the structure, the stability of the schemes is independent of the
added-mass effect. In [8] the FSI system is solved through the Chorin-Temam
projection scheme [4, 19].

In this paper we apply the same kind of explicit-implicit splitting but we
derive it from algebraic splitting methods rather than from differential ones.
Algebraic splitting methods are based on the inexact factorization of the ma-
trix arising from the full discretization (both in time and space) of the given
initial-boundary value problem. In this way, the boundary conditions are al-
ready incorporated in the discretized operator and no further boundary condi-
tions have to be selected. Our aim is to take advantage of the good accuracy
properties shown by many of these techniques (which do not have a differential
counterpart [15, 16]) when solving the incompressible Navier-Stokes equations.
In this respect, this work develops and generalizes the approach proposed in
[13]. In particular, we present the incremental version of the Yosida method
for FSI problems, whose non-incremental version was introduced in [13], and we
adapt the algebraic pressure-correction methods to the coupled fluid-structure
problem.

Finally, we propose to use the inexact factorization of the FSI system matrix
as a preconditioner, leading to predictor-corrector methods that converge to the
solution of the monolithic FSI system.

The outline of the paper is the following. In Section 2 we state the FSI
problem in its strong and weak form and tackle its space-time discretization and
linearization. Section 3 (the core of the article) is devoted to inexact factoriza-
tion techniques for the FSI system, which lead to two families of semi-implicit
methods. Then we consider the inexact factorization of the fluid-structure sys-
tem as a preconditioner. In Section 4 we compare the new methods with the
semi-implicit coupling scheme proposed in [8]. Section 5 contains the analysis of
the perturbation error due to the inexact factorization. In Section 6 we suggest
some methodologies for the solution of the pressure-structure problem. We ana-
lyze the numerical properties of the new algorithms for a test case that consists
of a bi-dimensional blood-vessel system in Section 7. Finally, some conclusions
are drawn in Section 8.

2 Problem setting

Consider an heterogeneous mechanical system which covers a bounded, polyhe-
dral and moving domain Ωt ⊂ R

d (d=2, 3, being the space dimension), where
time t belongs to the interval of analysis [0, T ]. This domain is divided into a
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domain Ωs
t occupied by a solid structure and its complement Ωf

t occupied by the

fluid. The fluid-structure interface Σt is the common boundary between Ωf
t and

Ωs
t , i.e. Σt = ∂Ωf

t ∩ ∂Ωs
t . Furthermore, nf is the outward normal of Ωf

t on Σt

and ns is its counterpart for the structure domain. The initial configuration Ω0

at t = 0 is considered as the reference one.
In order to describe the evolution of the whole domain Ωt we define two

families of mappings:

L : Ωs
0 × [0, T ] −→ Ωs

t , (x0, t) −→ x = L(x0, t) (1)

and
A : Ωf

0 × [0, T ] −→ Ωf
t , (x0, t) −→ x = A(x0, t). (2)

The map Lt = L(·, t) tracks the solid domain in time, At = A(·, t) the fluid
domain and they must agree on Σt:

Lt = At on Σt, (3)

in order to define an homeomorphism over Ωt.
We adopt a purely Lagrangian approach for the structure. Thus if η denotes

the displacement of the solid medium evaluated at the reference configuration,
then:

Lt(x0) = x0 + η(x0, t).

Apart from (3), the fluid domain mapping At is arbitrary. This mapping can be
defined as an appropriate extension operator of its value on the interface:

At(x0) = x0 + Ext(η(x0, t)|Σ0
). (4)

A classical choice is to consider an harmonic extension in the reference domain.
At is called the Arbitrary Lagrangian-Eulerian (ALE) mapping, since in general
it does not track the fluid particles (in that case the formulation would be purely
Lagrangian).

For any function f : Ωt × [0, T ] −→ R, we indicate with f̂ = f ◦ At the
corresponding function in the ALE frame:

f̂ : Ω0 × [0, T ] −→ R, f̂(x0, t) = f(At(x0), t).

The time derivatives in the ALE frame are defined as follows:

∂tf |x0
: Ωt × [0, T ] −→ R, ∂tf |x0

(x, t) = ∂tf̂ ◦ A−1
t (x).

The domain velocity w is calculated using the following expression:

w(x, t) = ∂tx|x0
= ∂tAt ◦ A

−1
t (x).

Then, owing to (4):

ŵ(x0, t) = Ext(∂tη(x0, t)|Σ0
). (5)
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The solid is assumed to be a hyper-elastic material, characterized by a con-
stitutive law relating the stress tensor σs to η. We assume the fluid to be
homogeneous, Newtonian and incompressible. We indicate with σf its Cauchy
stress tensor:

σf (u, p) = −pI + 2µǫ(u),

where p is the pressure and

ǫ(u) =
1

2
(∇u+ (∇u)T )

is the strain rate tensor, with ∇ denoting the spatial gradient operator.
In order to write the fluid problem in its ALE form, let us apply the chain

rule to the velocity time derivative:

∂tu|x0
= ∂tu+w · ∇u, (6)

where ∂tu is the partial time derivative in the spatial frame (Eulerian derivative).
The fluid-structure problem we will consider couples the incompressible Navier-

Stokes equations in its ALE form to the elastodynamics equation for a hyper-
elastic solid. We state this coupled problem only considering the boundary con-
ditions on Σt (those on the physical boundary are understood). Furthermore,
we omit the superscript ·̂ when by the context it is clear that the function is
defined on the reference configuration. Thus, the fluid-structure problem in its
strong form reads as follows:

1. Geometry problem: Find the fluid domain displacement:

At(x0) = x0 + Ext(η|Σ0
), w = ∂tAt ◦ A

−1
t , Ωf

t = At(Ω
f
0 ). (7)

2. Fluid-structure problem: Find velocity u, pressure p and displacement η
such that

∂tu|x0
+ (u−w) · ∇u−

1

ρf

∇ · σf = f f in Ωf
t × (0, T ), (8a)

∇ · u = 0 in Ωf
t × (0, T ), (8b)

∂2
t η −

1

ρs
∇ · σs = f s in Ωs

0 × (0, T ), (8c)

u = ∂tη in Σt × (0, T ), (8d)

σs · ns + σf · nf = 0 in Σt × (0, T ). (8e)

Two transmission conditions are enforced at the interface: the continuity of fluid
and structure velocities (8d), due to the adherence condition, and the continuity
of stresses (8e), expressing the action-reaction principle. These two problems
are also coupled by the geometrical condition (3).
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2.1 Weak formulation

For the variational formulation of the fluid-structure problem (7)-(8), we indicate
with L2(Ω) the space of square integrable functions in a spatial domain Ω, with
H1(Ω) the space of functions in L2(Ω) with first derivatives in L2(Ω) and with
H1(div;Ω) the space of functions whose divergence belongs to L2(Ω). We use
(·, ·)Ω and 〈·, ·〉Ω to denote respectively the L2 product and a duality pair in Ω.

From now on we will consider a (d− 1)-dimensional structure, thus Ωs
t = Σt.

All the results we will find in what follows can however be generalized, with
minor adaptations, to the case of d-dimensional structures. Let us define the
following spaces, for any given t ∈ [0, T ):

V f (t) :=
{
v : Ωf

t → R
d, v = v̂ ◦ (At)

−1, v̂ ∈ (H1(Ωf
0))d

}
,

V f
0 (t) :=

{
v ∈ V f (t), v|Σt = 0

}
,

Q(t) :=
{
q : Ωf

t → R, q = q̂ ◦ (At)
−1, q̂ ∈ L2(Ωf

0)
}

,

V̂ s :=
{
v̂ : Ωs

0 → R
d−1, v̂ ∈ (H1(Ωs

0))
d−1
}

(9)

We write the convective term using the following notation:

c (u,v,w)
Ωf

t
:=

∫

Ωf
t

(u · ∇v) ·w dΩ. (10)

The variational formulation of the fluid-structure problem is: given t ∈ (0, T ),
find (u, p,η) ∈ V f (t) × Q(t) × V̂ s such that

ρf

(
∂tu|x0

,vf
)

Ωf
t

+ 2µ
(
ǫ (u) , ǫ

(
vf
))

Ωf
t

+ c
(
u−w,u,vf

)
Ωf

t

−
(
p,∇ · vf

)
Ωf

t

+ (∇ · u, q)
Ωf

t
=
〈
ff ,vf

〉
Ωf

t

,

ρs (∂ttη,vs)Ωs
0
+ 〈σs,∇vs〉Ωs

0
= 〈fs,v

s〉Ωs
0
− 〈σs · ns,v

s〉Σt ,

u = ∂tη on Σt, (11)

for all (vf , q,vs) ∈ V f
0 (t) × Q(t) × V̂ s. The continuity of velocities has been

enforced in a strong way by (11). On the contrary, the continuity of stresses on
the interface is satisfied in a weak way by choosing test functions vf ∈ V f (t)
for the momentum conservation equation of the fluid problem. In fact, the fluid
interface load can be seen as the variational residual of the weak form of the
momentum conservation equation for test functions that do not vanish on Σt:

〈σf · nf ,vf 〉Σt =ρf

(
∂tu|x0

,vf
)

Ωf
t

+ 2µ
(
ǫ (u) , ǫ

(
vf
))

Ωf
t

+ c
(
u−w,u,vf

)
Ωf

t

−
(
p,∇ · vf

)

Ωf
t

−
〈
f f ,vf

〉

Ωf
t

= : −
〈
R (u, p) ,vf

〉
Ωf

t

. (12)
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Therefore, (8e) and (12) lead the following equality:

〈σf · nf ,vs〉Σt = −〈R (u, p) , Et(v
s)〉

Ωf
t

(13)

for all vs ∈ V s, Et being an arbitrary extension operator Et : V̂ s −→ V f (t).
The weak transmission of the fluid loads at the interface is crucial when

carrying out stability and convergence analysis.

2.2 The fully discrete problem: space and time discretization

Let us consider a family of quasi-uniform finite element partitions Th(t) (see e.g.
[17]) defined, for every t > 0, by the partition at the reference fluid configuration
T̂h and the discrete ALE mapping At, i.e., abusing of notation, Th(t) = At(T̂h).
As usual, h represents the maximum size of the elements of Th. Th induces a
partition Ih of Σt. Let IH be an independent partition of Σt for the structure
problem whose diameter is H. Thus, h and H refer to the level of refinement of
the two partitions. For the sake of clarity, from now on we consider the case of
matching grids on Σt, that is IH ≡ Ih.

Let V̂ f
h ⊂ [H1(Ωf

0)]d, V̂ f
0,h ⊂ [H1

0 (Ωf
0)]d, Q̂f

h ⊂ L2(Ωf
0) and V̂ s

h ⊂ [H1(Ωs
0)]

d−1

be the finite element spaces approximating V f , V f
0 , Q and V̂ s at the reference

configuration, respectively. Again abusing of notation, we can define the finite
element spaces for a given time step tn using the domain maps (1)-(2), e.g.

V f
h (tn) = Atn(V̂ f

h ). From now on we omit the time label tn from the finite
element spaces names. We introduce the Lagrange basis {φi}Nf

⊕ {φσ
j }Nσ ,

{πi}Np and {ψi}Ns associated respectively to V f
h , Qf

h and V̂ s
h . Nσ denotes the

set of velocity nodes on Σ and Nf the rest of velocity nodes. The sets of pressure
and structure nodes are denoted by Np and Ns, respectively.

The fluid sub-problem requires that the pair (Qf
h, V f

h ) satisfy the inf-sup
condition:

inf
qh∈Q

f
h

sup
v

f
h
∈V

f
h

∫
Ωf

0

qh∇ · vf
h dΩ

||vf
h||H1(Ωf

0
)
||qh||L2(Ωf

0
)

≥ β, (14)

where the constant β > 0 is uniform with respect to h. We remind that this
property is necessary for the well posedness of the discrete problem. An alter-
native to using inf-sup stable pairs is to resort to stabilization techniques: they
modify the discrete problem so that it is stable for equal order velocity-pressure
interpolations. In this work we consider inf-sup stable elements even though all
the schemes suggested can be easily extended to the case of pressure stabilized
problems.

With regard to time discretization, among many possible combinations, we
choose the backward Euler scheme for the fluid equations and the mid-point
rule for the structure [18]. By defining the backward Euler operator δt as
δtf

n+1 = (fn+1 − fn)/δt and denoting by Exth(·) a discretized version of the
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extension operator Ext(·), at each time level tn+1 the fully discretized fluid-
structure problem reads:

1. Geometry problem: Find the fluid domain displacement

Atn+1(x0) = x0 + Exth(ηn+1
h |Σ0

),

wn+1
h = δtAtn+1 ◦ A−1

tn+1, Ωf

tn+1 = Atn+1(Ωf
0). (15)

2. Fluid-structure problem: Find (un+1
h , pn+1

h ,ηn+1
h ) ∈ V f

h × Qh × V̂ s
h such

that

ρf

(
∂tu

n+1
h

∣∣
x0

,vf
h

)
Ωf

tn+1

+ 2µ
(
ǫ
(
un+1

h

)
, ǫ
(
v

f
h

))
Ωf

tn+1

+ c
(
un+1

h −wn+1
h ,un+1

h ,vf
h

)
Ωf

tn+1

−
(
pn+1

h ,∇ · vf
h

)
Ωf

tn+1

+
(
∇ · un+1

h , qh

)
Ωf

tn+1

=
〈
fn+1,vf

h

〉
Ωf

tn+1

(16a)

ρs

(
η̇n+1

h − η̇n
h

δt
,vs

h

)

Ωs
0

+

〈
σs

(
ηn+1

h + ηn
h

2

)
,∇ · vs

h

〉

Ωs
0

=
〈
fn+1

s ,vs
h

〉
Ωs

0

+
〈
R
(
un+1

h , pn+1
h

)
, Eh(vs

h)
〉
Ωf

tn+1

(16b)
(
η̇n+1

h + η̇n
h

2
,vs

h

)

Ωs
0

=

(
ηn+1

h − ηn
h

δt
,vs

h

)

Ωs
0

(16c)

uh = δtη
n+1
h on Σt (16d)

for all (vf
h, qh,vs

h) ∈ V f
0,h × Qh × V̂ s

h .

The fluid domain Ωf

tn+1 defined by Atn+1 does depend on ηn+1
h and the fluid prob-

lem depends on Ωf

tn+1 in a non-linear way. We consider a fixed point algorithm
to linearize the shape non-linearities and the convective term in (16a). The lin-
earization of the fluid-structure problem (15)-(16) by the fixed point algorithm
consists of: given the predictions η̃n+1

h and ũn+1
h

• Step 1: Calculate the fluid domain displacement as in (15) but replacing
the first equation with

Atn+1(x0) = x0 + Exth(η̃n+1
h |Σ0

). (17)

• Step 2: Solve the fluid-structure problem as in (16) replacing the momen-
tum equation (16a) by the linearized version:

ρf

(
∂tu

n+1
h

∣∣
x0

,vf
h

)

Ωf

tn+1

+ 2µ
(
ǫ
(
un+1

h

)
, ǫ
(
v

f
h

))

Ωf

tn+1

+ c
(
ũn+1

h −wn+1
h ,un+1

h ,vf
h

)
Ωf

tn+1

−
(
pn+1

h ,∇ · vf
h

)
Ωf

tn+1

+
(
∇ · un+1

h , qh

)
Ωf

tn+1

=
〈
fn+1,vf

h

〉

Ωf

tn+1

(18)
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• Step 3: Check the stopping criterium. If it is not satisfied, update η̃n+1
h =

ηn+1
h , ũn+1

h = un+1
h and go to Step 1.

We have ended up with a fully discretized and linearized fluid-structure problem
that can be solved by a linear solver. Notice that the fluid and structure problems
are strongly coupled: the fluid solution depends on ηn+1

h through (16d), whereas
to solve the structure problem in (16b) un+1

h and pn+1
h are needed. Because of this

implicit treatment of the coupling, the convergence of the fixed-point algorithm
described above is independent of the added-mass effect and therefore suitable
for hemodynamics applications (see [2]).

2.3 The linear fluid-structure system

We aim at writing the fluid-structure system yielded by the linearized and fully
discretized FSI problem. We start by writing the finite element approximation
of the fluid unknowns:

un+1
h (x, tn+1) =

∑

i∈Nv

φi(x, tn+1)(Un+1
f (tn+1))i +

∑

j∈Nσ

φσ
j (x, tn+1)(Un+1

σ (tn+1))j ,

(19)

pn+1
h (x) =

∑

k∈Np

πk(x, tn+1)(Pn+1(tn+1))k, (20)

where Un+1
f , Un+1

σ and Pn+1 are the arrays of nodal values for the velocity of the
inner nodes, the velocity of the interface nodes and the pressure. Obviously, the
finite element shape functions vary (in time) in the following way: φi(x, tn) =
Atn(φ̂i(x0)), where φ̂i(x0) are the Laplacian shape finite element functions on
the reference grid T̂h(t).

We also set:

ηn+1
h (x0) =

∑

i∈Ns

ψi(x0)(D
n+1
σ (tn+1))i, η̇

n+1
h (x0) =

∑

j∈Ns

ψj(x0)(Ḋ
n+1
σ (tn+1))j

(21)

where Dn+1
σ and Ḋn+1

σ are the arrays of nodal values for ηn+1
h and η̇n+1

h .For
geometrical conforming meshes Etψi = φσ

i , for i ∈ Ns with Ns ≡ Nσ.
From (16d) we know that:

Un+1
σ = δtD

n+1
σ . (22)

In order to write the fully discretized coupled problem for a given time value
tn+1, we need to define a set of matrices. Let us introduce the subindexes α and
β associated to the position of fluid nodes: the “value” σ is used for nodes on
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Σ, f otherwise. Superindexes a and b will denote nodes. Then:

Kab
αβ := ν (∇φa,∇φb)Ωf

tn+1

+ c
(
ũn+1

h −wn+1
h ,φa,φb

)
Ωf

tn+1

, a ∈ Nα, b ∈ Nβ,

Mab
αβ := (φa,φb)Ωf

tn+1

, Cαβ :=
1

δt
Mαβ + Kαβ , a ∈ Nα, b ∈ Nβ,

Gab
α := − (∇ · φa,πb)Ωf

tn+1

, Dα := GT
α , a ∈ Nα, b ∈ Np.

Let us denote with N the matrix associated to the structure written in terms of
Un+1

σ by virtue of (22). Note that the fluid matrices are calculated over Ωf

tn+1,

which depends on the unknown ηn+1
h .

At a given time value tn+1, equations (18)-(16b)-(16c)-(16d) can be written
in matrix form as:

AXn+1 = bn+1, (23)

where

A =




Cff Gf Cfσ

Df 0 Dσ

Cσf Gσ Cσσ + N


 ,Xn+1 =




Un+1
f

Pn+1

Un+1
σ


 ,bn+1 =




bn+1
f

0

bn+1
σ


 . (24)

The force term bn+1
f accounts for body forces and time integration terms related

to the fluid. The term bn+1
σ accounts for the interface force due to the fluid,

the structure terms related to body force, time integration and the fact that the
structure equation is stated in terms of Un+1

σ .

2.4 Block-LU factorization of the coupled system

The solution of the fluid-structure system (23) by a monolithic method, like a
preconditioned Krylov method, can be very expensive. The associated matrix A
is indefinite and for real applications its size is prohibitive. Therefore, we need
to employ more efficient methods.

System (23) can be solved using an exact block-LU factorization of the fluid-
structure system matrix A, for a suitable choice of the blocks to be decoupled.
If the first block is that related to Un+1

f and the second one is associated to

the fluid pressure and structure velocity variables
[
Pn+1,Un+1

σ

]
, the L and U

factors read:

A =




Cff 0 0
Df Spp Spσ

Cσf Sσp Sσσ






I C−1
ff Gf C−1

ff Cfσ

0 I 0
0 0 I


 =: LU. (25)

The S-matrices are Schur complements. Their formal definition is:

Spp := −DfC−1
ff Gf , Spσ := Dσ − DfC−1

ff Cfσ,

Sσp := Gσ − Cσf C−1
ff Gf , Sσσ := Cσσ + N − CσfC−1

ff Cfσ. (26)
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These definitions involve the inverse fluid matrix C−1
ff (a dense matrix). The

computational complexity of the exact LU factorization can be reduced provided
C−1

ff is approximated by a matrix cheaper to compute. This yields inexact
factorizations which are still based on variable splitting but are much more
computationally convenient than the exact splitting.

In the next sections we consider different approximations of (25). They
involve a perturbation error that can be reduced if the inexact factorization is
carried out over the incremental system (instead of the non-incremental (23)):

A
(
Xn+1 − X∗

)
= bn+1 − AX∗, (27)

where X∗ is the vector made of U∗
f , P∗ and U∗

σ which are predictions of Un+1
f ,

Pn+1 and Un+1
σ . For instance, a first order prediction would be X∗ = Xn.

3 Semi-implicit procedures for the FSI problem based

on inexact factorization methods

A scheme for FSI problems is said to be explicit if the fluid (or the structure)
problem is solved with an explicit treatment of the coupling boundary condi-
tions. Otherwise it is said implicit. Recently, semi-implicit procedures have
been proposed in [8]: they allow computational cost reduction in comparison to
implicit methods, without affecting too much stability as explicit algorithms do
in presence of a strong added-mass effect.

The basic idea of a semi-implicit approach is to consider the non-linearity
of the fluid-structure problem in an explicit way, i.e. only one iteration of the
fixed point algorithm (17)-(18)-(16b)-(16d) is carried out. Thus matrix A in
(23) is assembled and solved once per time step. Fortunately, the treatment
of the shape derivative in an explicit way does not affect seriously the stability
of the coupled problem, even when the added-mass effect is critical and fully
explicit procedures are known to be unstable. In particular, if the FSI problem
is discretized with a first order method (in time) and the condition:

ũn+1
h = wn+1, on Σt,

is satisfied (e.g. by taking ũn+1
h = un

h and η̃n+1
h = ηn

h), the semi-implicit method
keeps the stability properties of the implicit procedure (see [12]). In this case we
can avoid to sub-iterate over the domain shape and the convective term without
compromising stability.

Our goal is to derive semi-implicit algorithms from splitting techniques orig-
inally designed for the FSI problem at the fully discrete level, instead of the
differential one designed in [8]. The extension of algebraic splitting procedures
to fluid-structure problems is not straightforward, especially when the added-
mass effect is critical. We propose to adapt two methods to the coupled fluid-
structure problem (23): the algebraic version of the Chorin-Temam method and
the Yosida scheme. This will lead to two families of methods:

11



• pressure-interface correction (PIC) methods;

• fluid-structure Yosida (FSY) methods.

PIC methods are presented for the first time while FSY methods, already intro-
duced in [13], are proposed in their incremental version. Differences and analo-
gies between these procedures and the projection scheme in [8] will be analyzed
in Section 4.

The third family of algorithms introduced in this section exploits the inexact
factors of the PIC and FSY schemes as preconditioners, leading to predictor-
corrector methods.

3.1 Pressure-interface correction (PIC) methods

In this section we consider an inexact factorization which is the FSI counterpart
of the popular pressure-correction methods for pure fluid problems. We will
call these methods pressure-interface correction (PIC) schemes (named after
pressure-correction methods originally proposed by Chorin and Temam), since
both the pressure and the interface velocity are treated explicitly (or ignored)
in the first step and corrected in the second one.

The exact L and U factors in (25) are replaced by inexact ones in which C−1
ff

is substituted by with the zero-th order term of its Neumann expansion:

C−1
ff =

(
1

δt
Mff + Kff

)−1

= δtM−1
ff + O(δt2) ≃ δtM−1

ff . (28)

Here Kff is the stiffness fluid matrix associated with the viscous term and the
convective term. After approximating C−1

ff by δtM−1
ff , the Schur complements

matrices (26) become:

Spp ≃ Tpp := −δtDfM−1
ff Gf , Spσ ≃ Tpσ := Dσ − δtDfM−1

ff Cfσ,

Sσp ≃ Tσp := Gσ − δtCσf M−1
ff Gf , Sσσ ≃ Tσσ := Cσσ + N − δtCσf M−1

ff Cfσ.

(29)

Consequently, the upper block-triangular matrix L is approximated by:

LPIC :=




Cff 0 0
Df Tpp Tpσ

Cσf Tσp Tσσ


 .

Using the same approximation (28) for the upper block-triangular matrix U (25),
the following inexact U factor is obtained:

UPIC :=




I δtM−1
ff Gf δtM−1

ff Cfσ

0 I 0
0 0 I


 .
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The system matrix for the PIC scheme is obtained by replacing matrices L and
U with LPIC and UPIC :

APIC = LPICUPIC =




Cff δtCffM−1
ff Gf δtCffM−1

ff Cfσ

Df 0 Dσ

Cσf Gσ Cσσ + N


 . (30)

Let us apply this inexact factorization to the incremental version of the FSI
system (27) (the non-incremental version is nothing but a special case corre-
sponding to the trivial choice X∗ = 0). We rearrange the resulting system into
three uncoupled steps:

1. Computation of the intermediate velocity:

Cff Ũ
n+1
f = bn+1

f − GfP
∗ − CfσU

∗
σ; (31a)

2. Solution of the coupled pressure-interface system:

[
Tpp Tpσ

Tσp Tσσ

] [
Pn+1 −P∗

Un+1
σ − U∗

σ

]
=

[
−DfŨ

n+1
f

bn+1
σ − Cσf Ũ

n+1
f

]
−

[
0 Dσ

Gσ Cσσ + N

] [
P∗

U∗
σ

]
; (31b)

3. Computation of the end-of-step velocity:

1

δt
MffU

n+1
f =

1

δt
Mff Ũ

n+1
f − Gf (Pn+1 − P∗) − Cfσ(Un+1

σ − U∗
σ).

(31c)

Note that the prediction of the fluid velocity U∗
f does not enter in the PIC scheme

(31), therefore it cannot affect the order of accuracy in time of the method. The
perturbation terms due to the inexact factors LPIC and UPIC (see Section 5)
depend only on P∗ and U∗

σ. Different approximations for P∗ and U∗
σ can be

considered:

P∗ = 0, U∗
σ = 0, 0-th order approximation

P∗ = Pn, U∗
σ = Un

σ, 1st order approximation

P∗ = 2Pn − Pn−1, U∗
σ = 2Un

σ − Un−1
σ 2nd order approximation.

With PIC schemes, we pass from an indefinite system coupling velocity com-
ponents, pressure and structure unknowns, to a set of smaller systems. For
instance, neglecting convective terms, the PIC schemes involve the solution of:

1. A definite system (31a) for the fluid velocity. In case we use the Laplace
form of the viscous term, every velocity component is decoupled from one
another.
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2. A definite system (31b) coupling the fluid and the structure through the
coupling of pressure and interface velocity. Therefore, with PIC schemes,
the dimension of the fluid-structure system affected by the added-mass
effect has been clearly reduced. In the following we denote by T the system
matrix of the pressure-interface problem. Further comments on how to
solve system (31b) are made in Section 6.

3. A cheap system (31c) with a diagonal system matrix.

In conclusion, this method not only reduces the dimension of the fluid-
structure system but changes its nature too, becoming much more convenient
from a computational point of view.

Remark 3.1 It is known that pressure-correction methods for the fluid problem
introduce an artificial boundary condition over the pressure on Dirichlet (veloc-
ity) boundaries. At the discrete level ∂p/∂n = 0 is imposed in a weak form on
these boundaries. With the PIC scheme, a more consistent boundary condition
is imposed over the interface, due to the presence of the interface velocity terms
(see Section 4).

Remark 3.2 The computational effectiveness of the approximation (28) is ev-
ident if we replace the original mass matrix with a suitable diagonal matrix ob-
tained by quadrature formulas for the space integrals (the so-called mass lumping,
see [17]). In any case, we understand that M−1

ff is “easy” to compute.

3.2 Fluid-structure Yosida (FSY) methods

The Yosida method for fluid problems was introduced in [20, 16] as an inexact
factorization of the system matrix arising from the numerical approximation of
the Navier-Stokes equations for incompressible flows. Here we extend it to the
FSI problem (23).

The inexact factorization of matrix A (24) is again based on the approxi-
mation (28) but it is only used on the lower block-triangular matrix, i.e. for
the evaluation of the Schur complements. In the U factor matrix C−1

ff is not
approximated. Thus, the inexact factorization we use in this case is simply:

AFSY = LPICU. (32)

The incremental version of the FSY scheme can be accomplished in three steps:
the first two steps coincide with (31a) and (31b), whereas the third one becomes

• computation of the end-of-step velocity:

CffU
n+1
f = CffŨ

n+1
f − Gf

(
Pn+1 − P∗

)
− Cfσ

(
Un+1

σ − U∗
σ

)
. (33)

The latter step differs from (31c) and is actually more expensive due to the
presence of the stiffness matrix Cff .
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3.3 Predictor-corrector methods

The non-incremental version of pressure-correction methods has led to new it-
erative algorithms for the solution of the monolithic fluid system (see [6]). In
this section we suggest to use APIC and AFSY as preconditioners, together with
Richardson iterations, however more effective iterative procedures, like GMRES,
could be considered. Using, e.g., APIC as preconditioner, we have to solve: given
Xn+1,k, find Xn+1,k+1 such that

APICδXn+1,k+1 = bn+1 − AXn+1,k, k ≥ 0,

until convergence. The operator δxn+1,k+1 = xn+1,k+1 − xn+1,k denotes the
backward increment of iteration k + 1. We can also write this scheme in the
fashion of (31). In this case, iteration k + 1 of the predictor-corrector scheme
consists of solving three different steps:

1. Computation of the intermediate velocity:

Cff Ũ
n+1,k+1
f = bn+1

f − GfP
n+1,k − CfσU

n+1,k
σ ; (34a)

2. Solution of the pressure-interface system:

[
Tpp Tpσ

Tσp Tσσ

] [
δPn+1,k+1

δUn+1,k+1
σ

]
=

[
−DfŨ

n+1,k+1
f

bn+1
σ − Cσf Ũ

n+1,k+1
f

]
−

[
0 Dσ

Gσ Cσσ + N

] [
Pn+1,k

U
n+1,k
σ

]
; (34b)

3. Computation of the end-of-step velocity:

1

δt
MffU

n+1,k+1
f =

1

δt
Mff Ũ

n+1,k+1
f − Gf δPn+1,k+1 − CfσδUn+1,k+1

σ .

(34c)

Similarly, taking as preconditioner AFSY we get a different version of the predictor-
corrector method, which shares step 1 and 2 with (34) but replaces (34c) with:

CffU
n+1,k+1
f = Cff Ũ

n+1,k+1
f − Gf δPn+1,k − CfσδUn+1,k

σ . (35)

In a compact form, the predictor-corrector method based on the FSY algorithm
reads: given Xn+1,k, solve:

AFSY δXn+1,k+1 = bn+1 − AXn+1,k (36)

until convergence. At convergence, we do not need to distinguish between inter-
mediate and end-of-step velocity. Therefore the last step could be disregarded
and there would be no difference in adopting APIC or AFSY as preconditioner.
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The resulting predictor-corrector method reduces to (34a) and (34b) upon re-

placing Ũ
n+1,k+1
f with U

n+1,k+1
f . This is a preconditioned Richardson iteration

with preconditioner LPIC , that is:

LPICδXn+1,k+1 = bn+1 − AXn+1,k. (37)

We remind that LPIC = LFSY . Obviously, this approximation could spoil the
convergence rate of the iterative procedure.

The convergence of the predictor-corrector method is added-mass indepen-
dent. Fluid and structure are not fully decoupled and we treat the added-mass
effect implicitly. This is essential for the good convergence properties of the
predictor-corrector iterative procedure when dealing with hemodynamics prob-
lems (see Section 7).

Predictor-corrector methods are particularly well suited when considering
domain and/or convective terms in an implicit way. In this case, the FSI sys-
tem has to be evaluated as many times as implicit iterations. Therefore, we
can consider one-loop algorithms, i. e. dealing with implicit treatment and
predictor-corrector iterations with only one external loop. One-loop algorithms
were designed in [1] for aeroelastic applications. Therein, the predictor-corrector
method dealt with the added-mass effect, because fluid and structure problems
were fully decoupled (main difference with respect to the one suggested in this
work).

4 Comparison between inexact factorization-based meth-

ods and the projection scheme

In this section we compare the projection-based coupling scheme in [8] with the
semi-implicit procedures introduced in this paper (Section 3).

In [8] the Chorin-Temam method applied to the fluid problem leads to an
algorithm that obtains the intermediate velocity using a prediction of the struc-
ture displacement, then, at a second step, it solves the end-of-step velocity and
pressure coupled to the structure model. Furthermore, the load exerted by the
fluid on the structure is computed in a peculiar residual way: the diffusive and
convective terms of this fluid residual are evaluated using the intermediate ve-
locity, whereas the time derivative using the end-of-step velocity. Since the fluid
problem has been split at the continuous level (in space), only the normal com-
ponent of the velocity can be imposed.

This approach could also be considered at the fully discrete level using a
pressure correction method for the fluid problem obtained as an inexact factor-
ization of the fluid matrix (see [14]). The main advantage of this approach is
the fact that boundary conditions are accounted for intrinsically, allowing e.g.
to hold the continuity of velocities over the boundary. The discrete counterpart
of the method suggested in [8] reads as:
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• Step 1: intermediate velocity:

CffŨ
n+1
f = bn+1

f − CfσŨ
n+1
σ . (38a)

• Step 2: end-of-step velocity & pressure-interface:




1
δt

Mff Gf
1
δt

Mfσ

Df 0 Dσ
1
δt

Mσf Gσ
1
δt

Mσσ + N






Un+1
f

Pn+1

Un+1
σ


 =




1
δt

Mff Ũ
n+1
f + 1

δt
MfσŨ

n+1
σ

0

bn+1
σ − Kσf Ũ

n+1
f − KσσŨ

n+1
σ


 , (38b)

where Ũn+1
σ is computed by means of a second order extrapolation for the inter-

face displacement, calculated at a step 0. In the second step, the diffusive and
convective terms are treated explicitly, even for the interface velocity, and fluid
velocity, pressure and structure unknowns are coupled.

The scheme (38) cannot be derived from an inexact factorization of the FSI
system matrix in (23). In order to compare the discrete counterpart fo the
projection method in [8] with PIC and FSY schemes we need to reformulate
the second step and rearrange (38) in a three step scheme. Through the Schur
complements of the system matrix in (38b) it is now possible to decouple the
computation of Un+1

f from step 2. Then after the first step (38a), step 2 of the
algorithm becomes:

• Step 2: solution of the coupled pressure-interface system:

[
Tpp T̂pσ

T̂σp T̂σσ

] [
Pn+1

Un+1
σ

]
=

[
−Df Ũ

n+1
f − DfM−1

ff MfσŨ
n+1
σ

bn+1
σ − Kσf Ũ

n+1
f − KσσŨ

n+1
σ

]
; (39a)

• Step 3: computation of the end-of-step velocity:

1

δt
MffU

n+1
f =

1

δt
Mff Ũ

n+1
f − GfP

n+1 −
1

δt
Mfσ(Un+1

σ − Ũn+1
σ ). (39b)

Matrices T̂pσ, T̂σp and T̂σσ are further approximations of the approximated Schur
complements (29), obtained by replacing Cαβ with 1

δt
Mαβ (see Section 2.3):

T̂pσ := Dσ − DfM−1
ff Mfσ , T̂σp := Gσ − MσfM−1

ff Gf ,

T̂σσ :=
1

δt
Mσσ + N −

1

δt
Mσf M−1

ff Mfσ.

The algebraic counterpart of the semi-implicit projection algorithm in [8] shares
step 1 with the other two methods (with zero-th order approximation for the
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pressure and a different first order approximation for the interface velocity) and
like them at the second step it couples only the pressure term to the structure.
Nonetheless, Pn+1 and Un+1

σ are computed through a different, simplified, sys-
tem. Also step 3 is simplified with respect to (31c): matrix Cfσ is replaced by
1
δt

Mfσ.
In particular we remark the differences between the PIC method and algo-

rithm (38a)-(39a)-(39b). The PIC scheme extends the inexact factorization of
the algebraic Chorin-Temam method to the FSI system, while algorithm (38a)-
(39a)-(39b) derives from the discretization of the differential Chorin-Temam
method applied to the fluid only. For the latter the coupling with the structure
is given by the boundary condition at the second step of the Chorin-Temam
scheme; whose differential form is:

1

δt

(
un+1 − ũn+1

)
+ ∇pn+1 = 0, in Ωf

tn+1 , (40a)

∇ · un+1 = 0, in Ωf

tn+1 . (40b)

where these velocities over the interface hold:

ũn+1 = ũn+1
σ , (41a)

un+1 · nf = un+1
σ · nf . (41b)

We indicate with un+1
σ and ũn+1

σ the interface velocity and its prediction calcu-
lated at a step 0 of the scheme, respectively. By multiplying (40a) evaluated on
Σtn+1 by nf , we obtain the boundary condition imposed over the pressure on
the Dirichlet boundaries:

∂pn+1

∂nf

= −
1

δt

(
un+1

σ − ũn+1
σ

)
· nf . (42)

The same boundary condition is imposed in a weak form by the PIC scheme.
The matrix DfM−1

ff Gf = − 1
δt

Tpp is sometimes referred to as discrete Lapla-
cian, because of the analogies with the discretization of the Laplace operator
−△ = −∇ · (∇). Another way to discretize the scheme proposed in [8] would
be to replace DfM−1

ff Gf at step 2 (39a) with the classical discretization of the
Laplace operator.

4.1 Variations on the semi-implicit projection scheme

Let us consider some slight modifications of algorithm (38). First of all we can
handle the pressure term using the incremental version of the Chorin-Temam
method for the fluid problem (first order approximation), in order to make the
scheme less dissipative and improve the accuracy. Then, we can manipulate
(38b) in order to decouple the computation of the end-of-step velocity from the
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pressure and structure unknowns. After rewriting it as:

−δtDfM−1
ff Gf (Pn+1 − Pn) +

(
Dσ − DfM−1

ff Mfσ

)
Un+1

σ =

−DfŨ
n+1
f − DfM−1

ff MfσŨ
n+1
σ ,

1
δt

MσfU
n+1
f + GσP

n+1 +
(

1
δt

Mσσ + N
)
Un+1

σ = bn+1
σ − Kσf Ũ

n+1
f − KσσŨ

n+1
σ ,

we suggest to evaluate the stress of the fluid on the structure with the interme-
diate velocity. The resulting algorithm reads as follows:

1. Intermediate velocity:

Cff Ũ
n+1
f = bn+1

f − GfP
n − CfσŨ

n+1
σ ; (43a)

2. Pressure-interface problem:

−δtDfM−1
ff Gf (Pn+1 − Pn) +

(
Dσ − DfM−1

ff Mfσ

)
Un+1

σ =

−DfŨ
n+1
f − DfM−1

ff MfσŨ
n+1
σ ,

GσP
n+1 + NUn+1

σ = bn+1
σ − Cσf Ũ

n+1
f − CσσŨ

n+1
σ ;

(43b)

3. End-of-step velocity:

1

δt
MffU

n+1
f =

1

δt
Mff Ũ

n+1
f − Gf

(
Pn+1 − Pn

)
−

1

δt
Mfσ(Un+1

σ − Ũn+1
σ ).

(43c)

The advantage of this new scheme with respect to (38a)-(39a)-(39b) is that the
second equation of step 2 involves no Schur complement and is therefore easier
(and cheaper) to solve. Again, matrix DfM−1

ff Gf in the first equation of (43b)
might be replaced by the classical discretization of the Laplace operator, further
simplifying step 2.

Method (43) couples implicitly only the pressure term, while the rest of the
fluid load is treated explicitly. Then it is expected to be well suited for problems
where the effect of the diffusive stress exerted by the fluid on the structure is
less important than the one of the pressure.

These modifications could also be considered at the continuous level. Instead
of (43b), we would get the pressure from the classical pressure Poisson equation
with boundary condition (42).

These variations on the semi-implicit scheme in [8] are proposed because of
their simplicity and good properties but no numerical results on them are shown
in this work.
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5 Analysis of the perturbation error

At every time-step the inexact factorization of the system matrix A by either
PIC or FSY schemes perturbs the FSI system. The solution of a semi-implicit
monolithic algorithm, which solves system (27) by, e.g., a global preconditioned
GMRES, differs from the solutions of the PIC and FSY methods. This section
is devoted to the identification of the perturbation terms introduced by the two
schemes, in order to infer the (formal) order of accuracy of the method in time.
The results are confirmed by the numerical experiments in Section 7.2.

5.1 Perturbation terms for PIC schemes

Setting:

APIC = A + EPIC

and subtracting A from APIC (30), we can calculate the perturbation matrix
EPIC :

EPIC = δt




0 KffM−1
ff Gf KffM−1

ff Cfσ

0 0 0
0 0 0


 .

The PIC scheme perturbs only the momentum conservation equation for the
fluid, but not the mass conservation equation neither the structure equation.
Mass conservation is an excellent feature when considering problems with free
surfaces or structures over fluid boundaries.

The incremental PIC scheme can be written as a monolithic system with a
perturbed momentum equation:

Cff Ũ
n+1
f + GfP

∗ + CfσU
∗
σ = bn+1

f + ePIC

with

ePIC = −δtKffM−1
ff Gf

(
Pn+1 − P∗

)
− δtKffM−1

ff Cfσ

(
Un+1

σ − U∗
σ

)

= −δtKffM−1
ff Gf

(
Pn+1 − P∗

)
− KffM−1

ff Mfσ

(
Un+1

σ − U∗
σ

)

+δtKffM−1
ff Kfσ

(
Un+1

σ − U∗
σ

)
.

We have identified three different perturbation terms, one related to the pressure
and two related to the interface velocity. Should P∗ be a qp-th order approxima-
tion of Pn+1, the pressure term is of order O(δtqp+1). With regard to interface
velocity terms, the one related to Kfσ is of order O(δtqσ+1), being qσ the order
of approximation of U∗

σ. However, we loose one order of accuracy in the term
related to Mfσ. Therefore, in order to get a first order PIC scheme, it is enough
to take P∗ = 0 and U∗

σ = Un
σ . Anyway, it is advised to use a first order pressure
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approximation P∗ = Pn for reducing drastically the numerical dissipation with-
out increasing CPU cost. In this case the splitting error related to the pressure
is second order in time.

Also for the fluid problem a zero-th order pressure approximation is enough
for obtaining a first order pressure-correction scheme. The pioneer Chorin-
Temam scheme does use a zero-th order pressure approximation. However,
numerical experiments show that this leads to splitting procedures that, even
though first order in time, are plagued by severe numerical dissipation (see [5]).
On the other hand, zero-th order pressure approximations have become very
popular because of a strong inherent pressure stability that allows to use equal
order velocity-pressure interpolation, whereas the inherent pressure stability is
drastically reduced using first order approximations. First order pressure ap-
proximations together with stabilization techniques are far better accurate than
zero-th order pressure approximations.

We choose therefore U∗
σ = Un

σ in (31) in order to get the desired accuracy
and P∗ = Pn in order to reduce the numerical dissipation.

The numerical results that are shown in Section 7 are obtained with this
incremental PIC scheme.

5.2 Perturbation terms for FSY schemes

A theoretical analysis of Yosida schemes for the numerical approximation of the
Navier-Stokes equations has been carried out in [15]. Therein, strong stability
results and optimal error estimates are proved. The matrix:

Y = δt−1C−1
ff − M−1

ff = O(δt),

discussed in [15], plays an important role in the analysis of FSY methods. Set-
ting:

AFSY = A + EFSY ,

performing the matrix-product in (32) and subtracting A from it, we obtain the
following expression for the perturbation matrix:

EFSY = δt




0 0 0
0 DfY Gf DfY Cfσ

0 CσfY Gσ Cσf Y Cfσ


 .

Note that this time the perturbation affects both the mass conservation and
structure equations, while PIC schemes only perturb the momentum conserva-
tion equation for the fluid. To identify the order of the perturbation errors we
can write the FSY problem as a perturbed monolithic system. The perturbed
mass conservation equation is:

DfU
n+1
f + DσU

n+1
σ = e1

FSY
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with

e1
FSY = −δtDfY Gf

(
Pn+1 − P∗

)
− δtDfY Cfσ

(
Un+1

σ − U∗
σ

)

= −δtDfY Gf

(
Pn+1 − P∗

)
− DfY Mfσ

(
Un+1

σ − U∗
σ

)

−δtDfY Kfσ

(
Un+1

σ − U∗
σ

)
.

Whereas the pressure term is of order O(δtqp+2), the interface term related to
Mfσ is O(δtqσ+1). Proceeding similarly for the structure equation, we get:

CσfU
n+1
f + GσP

n+1 + (Cσσ + N)Un+1
σ = e2

FSY

with

e2
FSY = −δtCσf Y Gσ

(
Pn+1 − P∗

)
− δtCσf Y Cfσ

(
Un+1

σ − U∗
σ

)
.

Expanding Cσf and Cfσ we can see that the order of accuracy of the pressure
terms are O(δtqp+1) and for the interface terms O(δtqσ).

According to the previous considerations, a first order FSY scheme should
involve a zero-th order pressure approximation and a first order interface velocity
approximation. In our numerical experiments for the first order FSY scheme we
use P∗ = Pn and U∗

σ = Un
σ, as for the first order PIC scheme. Again, the error

related to the pressure in this case is second order in time but the one of the
interface velocity is only first order.

6 The pressure-interface system

At every time-step (or predictor-corrector iteration) all the methods presented in
§3 evaluate the velocity field (inner nodes) decoupled from the coupled structure
and pressure fields, both for intermediate and end-of-step velocity.

Let us make some comments about how to solve the pressure-interface ve-
locity problem, which has the form:

(
Tpp Tpσ

Tσp Tσσ

)(
Pn+1

Un+1
σ

)
=

(
gp

gσ

)
(44)

where the force term depends on the method adopted and involves the inter-
mediate velocity Ũn+1

f .The added-mass effect can only appear in (44), which is
much smaller than the original FSI system. The coupling problem involves the
solution of T . For a sufficient condition on the non-singularity of matrix T see
[13]. Matrix T is ill-conditioned, with condition number κ(T ) = CT h−2. An it-
erative solver, e.g. GMRES or BiCG, applied to the non-preconditioned system
(44) will exhibit slow convergence. Then, a good preconditioner is mandatory.
In what follows we consider two different approaches.
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6.1 Loosing modularity

Modularity is the property of a solver to consist of separated modules and it
is typical of the so-called partitioned procedures, which solve the fluid and the
structure with two different codes.

A first and natural approach to solve system (44) would consist of building
the system matrix T and solving it by a preconditioned Krylov method. This
approach, which involves the loss of modularity, is only feasible when the mass
matrix is diagonal. In case of using non-matching grids and a L2-projection, the
inverse mass matrix that will appear should be diagonal too. Once matrix T is
assembled, we are able to use a classical preconditioner (like ILU(q)) together
with an iterative solver. When the mass matrix is not diagonal, the assembling
of the Schur complements is not affordable.

6.2 Keeping modularity

When solving system (44) the key point is how to choose a good preconditioner
in order to keep modularity for a Krylov iterative solver, like GMRES. This
question is not new in FSI and is the seed of the added-mass effect. In [9] a
preconditioned GMRES is used for solving every tangent system of the Newton
method.

First of all, let us write the FSI problem (44) as an interface equation. This
can be done by means of the Schur complement (the discrete version of the
Steklov-Poincaré operator):

(
Tσσ − TσpT

−1
pp Tpσ

)
Un+1

σ = gσ − TσpT
−1
pp gp. (45)

Also in this case the system matrix is ill-conditioned, with a condition number
of order h−1. Thus, an optimal preconditioner must be used in (45). In order to
keep modularity, this preconditioner can only involve structure (or fluid) terms.
A classical choice is to take N as preconditioner of

(
Tσσ − TσpT

−1
pp Tpσ

)
. This is

the so-called Dirichlet-Neumann method. It can be proved that this method is
optimal with respect to h (see [17]). The preconditioned system is:
(
I + N−1Cσσ − δtN−1CσfM−1

ff Cfσ − N−1TσpT
−1
pp Tpσ

)
Un+1

σ =

N−1gσ − N−1TσpT
−1
pp gp.

Even though the spectral properties of matrix N−1TσpT
−1
pp Tpσ are mesh size

independent, the spectral radius depends on a relationship between structure
and fluid physical parameters, becoming ill-conditioned when the added-mass
effect is critical.

The convergence properties of Richardson or GMRES procedures do depend
on the spectral properties of N−1TσpT

−1
pp Tpσ. When the weight of this matrix

is small, the convergence properties of iterative procedures are good, while the
convergence is slow or (for Richardson iterations) impossible in presence of a
strong added-mass effect.
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Using a matrix-free iterative solver, at every iteration we must evaluate a
matrix-vector product. Given a test vector Z, we have to compute:

N−1
(
Tσσ − TσpT

−1
pp Tpσ

)
Z,

that is the solution W of

NW =
(
Tσσ − TσpT

−1
pp Tpσ

)
Z. (46)

We can rewrite this system as:

TppR = TpσZ, (47a)

NW = NZ + (Cσσ − δtCσf M−1
ff Cfσ)Z − TσpR. (47b)

From (47) it is easily grasped why this preconditioner has been called Dirichlet-
Neumann. At the first step, where we evaluate the auxiliary array R (with the
dimension of the pressure array), we are solving the pressure Schur complement
associated to a Dirichlet fluid problem. The second step consists of a Neumann
structure problem with the updated value of the pressure. Then, we are keeping
modularity, and appropriate solvers can be used separately for the solution of
every field (pressure and structure). Let us make a further comment about how
to solve the fluid problem

TppR = −δtDfM−1
ff GfR = TpσZ. (48)

Again, we can use a matrix-free iterative solver and avoid the assembling of the
matrices involving the inverse mass matrix. Anyway, it is much more appealing
in terms of CPU cost to build Tpp with a non-diagonal matrix and solve (48)
using an appropriate solver.

7 Numerical Experiments

The test problem we have considered is the 2d benchmark proposed in [10]. It
is a simplified blood flow problem which couples the 2d incompressible Navier-
Stokes equations for the fluid with the generalized string model (1d) with absorb-
ing boundary conditions to describe the motion of the artery wall. The initial
domain, obtained by intersecting a portion of blood flow vessel with a plane, is a
rectangle of height H = 1 cm and length L = 6 cm, whose upper and lower edges
are deformable in the vertical direction. The goal is to simulate the deformation
of the boundaries as the pressure pulse coming from the heart propagates in the
artery.

The fluid and structure physical parameters used in the simulation have
been listed in Table 1. These parameters have been chosen in the physiological
range for a human body. Note that the values of ρs and ρf are very close. As
a consequence the added-mass effect is important. On the inflow section we
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Fluid density: ρf = 1.0 gr/cm3 Fluid viscosity: µ = 0.035 poise

Structure density: ρs = 1.1 gr/cm3 Wall thickness: h = 0.1 cm

Young modulus: E = 7.5 · 105 dynes/cm2 Viscoelastic parameter: γ = 10−1 dyne · s

Shear modulus: G = 2.5 · 105 dynes/cm2 Poisson coefficient: ν = 0.5

Table 1: Fluid and structure physical properties for the numerical test

impose the following Neumann boundary condition:

σ
f
in = −

Pin

2

[
1 − cos

( πt

2.5 · 10−3

)]
n,

while on the outflow section an homogeneous Neumann condition has been
imposed. The amplitude Pin of the pressure pulse has been taken equal to
2 · 104 dynes/cm2 and the time duration of the pulse is 5 ms. We solve the
problem over the time interval [0, 0.012] s.

We choose a conforming space discretization between fluid and structure:
(P1isoP2) - P1 finite elements for the fluid and P1 finite elements for the structure.
We have solved the problem with the algorithms described in Section 4 on the
elliptic mesh of 31 × 21 P1 fluid nodes (2501 P1isoP2 nodes) shown in Figure 1.

0 1 2 3 4 5 6
0

1

Figure 1: Elliptic mesh used for the simulations.

7.1 Semi-Implicit procedures

In Figure 2 we check the good behavior of a first order semi-implicit algorithm,
by evaluating its order of convergence in time. In order to do that, we solve the
monolithic implicit scheme for δt = 10−6. The corresponding solution will be
considered as exact.

We compare the solution of the first order semi-implicit monolithic method,
computed on the mesh of Figure 1 for a sequence of decreasing time steps (δt =
4 · 10−4, 2 · 10−4, 10−4, 5 · 10−5, 4 · 10−5) , with the exact solution. In Figure 2
we report the L2-error on the fluid velocity, pressure and structure displacement
at time t = 10 ms. In all cases the method exhibits a first order of accuracy in
time. Besides that, the semi-implicit method has remained stable.

7.2 PIC and FSY accuracy

The next step is to evaluate the convergence of the inexact factorization tech-
niques designed in this article.
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Figure 2: Convergence of the semi-implicit monolithic method to the implicit
monolithic one.

We solve the test problem with the first order FSY and PIC schemes (with
first order predictions for pressure and interface velocity in the incremental FSI
system) for the same sequence of time steps, always on the mesh of Figure 1.
The FSI non-linearity is treated in an explicit way using semi-implicit schemes.

We compute the solution of the semi-implicit monolithic algorithm on the
same mesh but with time step δt = 10−6: we will address to this solution as
the exact solution. We compare the solutions computed by the FSY and PIC
methods at the different time steps with this exact solution. Figure 3 shows
the error on the fluid velocity, pressure and the structure displacement at time
t = 10 ms, both evaluated in the L2-norm. As it was expected, we recover a
linear convergence for both methods.

7.3 Convergence of Predictor-Corrector methods

The target is to analyze the convergence properties of predictor-corrector itera-
tions with respect to the added-mass effect.

As commented in Section 3.3, since the pressure and structure problems
remain coupled after the inexact factorization, the convergence of this method
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Figure 3: Convergence of the first order FSY and PIC schemes to the monolithic
semi-implicit method.

towards the monolithic solution must be added-mass effect independent.
We have plot the average number of predictor-corrector iterations (in time)

for different values of the structure density: ρs = 500, 100, 50, 10, 5, 1 g/cm3.
This example has been proposed in [12] to evaluate the critical relaxation pa-
rameter to get convergence when using a Richardson iterative procedure. We
have performed this test for two different time step values. Figure 4 shows that
the average number of predictor-corrector sub-iterations keeps almost constant
for all the values of ρs in both cases.

7.4 The added-mass effect and the pressure-interface system

The pressure-interface velocity system couples fluid and structure problems. In
Section 6 we have discussed some possible alternatives for the solution of this
linear system, depending on modularity.

We want to evaluate how complicated it is to solve this system with respect
to the added-mass effect. Again, we have solved the FSI test problem using
different values of the structure density (ρs = 500, 100, 50, 10, 5, 1 g/cm3)
and different time-steps (δt = 5 · 10−4, 10−4, 5 · 10−5). We have evaluated the
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Figure 4: Average sub-iterations of the predictor corrector method as the struc-
ture density varies, for different time-steps.

condition number of the system matrix T , which involves the loss of modularity.
In Figure 5 we observe that the condition number of T decreases with respect
to the added-mass effect. Therefore, the solution of the fluid-structure system
(44) is easier when the added-mass effect is more important.

On the other hand, we have evaluated the interface system matrix. As ex-
pected, due to the fact that this matrix is related to the interface problem, its
condition number is much smaller. Moreover, the behavior with respect to the
added-mass effect is opposite to the one for T : the condition number of this
interface matrix increases when ρs approaches ρf .

As a conclusion, to loose modularity can be appealing when solving problems
where the added-mass effect is critical. We also notice that, keeping ρs fixed, in
both cases the average condition number increases as the time-step decreases.
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Figure 5: Average conditioning number for the inexact Schur complement ma-
trices and its Schur complement for different structure densities and time steps.
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7.5 Qualitative results

In this section we show average quantities computed on some section of the
artery corresponding to the position zi = i · h, with i = 0, ..., 30 and h = 0.2 cm
[12]. We calculated the diameter of the artery, the average pressure and the flux
at each time step using different strategies and numerical parameters.

In Figure 6 we report the comparison between the average pressure profiles
computed every 2 milliseconds with the first order FSY scheme on the mesh
of Figure 1 but with two different time steps (δt = 10−4 and δt = 10−6). As
expected, for larger time step values the solution is slightly more dissipative.

In order to evaluate the influence of the spatial discretization on the numeri-
cal solution, we compare in Figure 7 the diameter of the artery section calculated
with the first order PIC scheme on two different meshes: a coarse one (31 × 21
P1 fluid nodes) and a fine one (61 × 26 P1 fluid nodes). In both cases the time
step is δt = 10−4.

Finally, we compare, in a qualitative way, the flow rate of the monolithic
scheme against those of PIC, FSY and predictor-corrector methods for δt =
5 · 10−5. In all cases we consider semi-implicit procedures. We notice from
Figure 8 that the difference between the flow rate profiles associated to all these
solutions is very slight. Figure 9 shows a zoom of the flow rate profiles at
t = 12 ms.
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Figure 6: Average pressure profiles computed with the first order FSY method
for δt = 10−4 (dashed line) and for δt = 10−6 (solid line). Comparison at
different time levels.
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Figure 7: Diameter of the artery section along its axis computed with the first
order PIC method on the coarse mesh (dashed line) and on the fine mesh (solid
line). Comparison at different time levels.
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Figure 8: Flow rate profiles at different time levels: comparison between the
solution of first order FSY (dashed line), first order PIC (solid line), predictor-
corrector (dash-dot line) methods, all for δt = 5 · 10−5, and the “exact” solution
(dotted line).

8 Conclusions

In this work we have focused on the numerical simulation of the FSI problems
characterized by a strong added-mass effect. In such situations good stability
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profiles for t = 12 ms. On the right there is the zoom.

properties and low computational costs are shown by a semi-implicit coupling
method introduced in [8]. The basic idea behind it is to couple implicitly the
pressure stress to the structure, while convection and geometrical non-linearities
are treated explicitly. In [8] the implicit-explicit splitting is performed through
a Chorin-Temam scheme for the fluid.

In this paper we have proposed new schemes based on the inexact factor-
ization of the linearized fluid-structure system, i.e. the procedure is split into
explicit and implicit steps at the algebraic level. Two different methods have
been designed: pressure-interface correction (PIC) and fluid-structure Yosida
(FSY). In both cases the perturbation error has been analyzed and the conver-
gence properties of the methods have been checked through numerical experi-
mentation. In the simulation of a pressure pulse propagation in a blood flow
vessel, the methods remained stable for a wide range of discretization and phys-
ical parameters. Qualitative results have turned to be very similar to those of
the monolithic system.

We have also proposed predictor-corrector methods that use inexact factors as
preconditioners. The best feature of these procedures is that predictor-corrector
iterations are independent of the added mass effect. The solution of these meth-
ods converges to the one of the monolithic system, without introducing any
perturbation. Therefore these schemes are very well suited when there is an
interest on implicit fluid-structure solutions. In this case, we can also consider
one-loop algorithms, where non-linearity and predictor-correction iterations are
performed with only one loop.

The next step will concern the implementation of second order (in time)
PIC and FSY methods and the application of the algorithms here presented to
three-dimensional problems. These more realistic cases would also enable us to
evaluate the computational costs reduction allowed by the methods that we have
introduced in this paper.
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