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ABSTRACT 

 
For licensing purposes, safety cases of Nuclear Power Plants (NPPs) must 

be presented at the Regulatory Authority with the necessary confidence on 

the models used to describe the plant safety behavior. In principle, this 

requires the repetition of a large number of model runs to account for the 

uncertainties inherent in the model description of the true plant behavior. 

The present paper propounds the use of bootstrapped Artificial Neural 

Networks (ANNs) for performing the numerous model output calculations 

needed for estimating safety margins with appropriate confidence 

intervals. Account is given both to the uncertainties inherent in the plant 

model and to those introduced by the ANN regression models used for 

performing the repeated safety parameter evaluations. The proposed 

framework of analysis is first illustrated with reference to a simple 

analytical model and then to the estimation of the safety margin on the 

maximum fuel cladding temperature reached during a complete group 
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distribution header blockage scenario in a RBMK-1500 nuclear reactor. 

The results are compared with those obtained by a traditional parametric 

approach. 
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NOTATION AND ACRONYMS 
 

NPP Nuclear Power Plant 
ANN Artificial Neural Network 
RBMK Reaktor Bolshoi Moshchnosty Kanalny 
BE Best-Estimate 
OS Order Statistics 
GDH Group Distribution Header 
FC Fuel Channel 
MCC Main Circulation Circuit 
MCP Main Circulation Pump 
DS Drum Separator 
D  Finite set of input/output data examples for training the ANN 

*D  Finite set of input/output data examples for testing the ANN 
x  Input vector 
X  Input domain 
B  Number of bootstrapped networks 

( )y xμ  Unknown nonlinear deterministic function 

( )xε  Gaussian white noise 

( )*f x ;w  Regression function 
*w  Set of synaptic weights 

ix  ith input vector 
*
iŷ  ith network output corresponding to ix  

pn  Number of data examples (patterns) for training the ANN 

tn  Number of data examples (patterns) for testing the ANN 

( )f xσ  Standard deviation of the distribution of the regression function ( )*f x ;w  

bD  bth bootstrapped data sample 

( )*
bŷ x  bth bootstrapped regression function 

i ,ANNy  ith bootstrapped neural network estimate (average of the B regression functions) 

i ,BEy  ith BE code output 
*
i ,bootσ  Regression error of i ,ANNŷ  

( )ANNŷ x  bootstrapped neural network estimate augmented with *
bootσ  

( )Err x  Prediction error of the regression function 

( )*
boot xσ  Estimate of the standard deviation of the distribution of the regression function 

biasε  Estimate of the standard bias error of the regression function 

0
x  Input parameters nominal values vector 

E x⎡ ⎤⎣ ⎦  Input parameters expected values 

0
y  Output parameters nominal values vector 

( )f ⋅  Model function implemented in the BE code 

[ ]j jL ,U  Predefined safety interval for the jth output safety parameter yj 

Ψ  Safety envelope 
kx  kth independent input vector 

ky  kth independent output vector 
γ  Coverage value for the safety parameter distribution 
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β  Confidence value 
α  Confidence level of confidence intervals 
m  Number of output values from the N runs that lie beyond the extent γ 
r  rth element of ordered statistics 
G  Number of simulation batches 
N  Number of estimates 
g  Index of the gth sample batch 

( )g
n ,ANNŷ  nth ANN estimate of the gth sample batch 

( )gŷγ  gth estimate of the γ-percentile of the safety parameter distribution 
( )* g

bootσ  Regression error of ( )gŷγ  

Ŷ  Sample of G γ-percentile estimates 
yγ δ  Unknown true δ-percentile of the γ-percentile safety parameter distribution 

ŷγ δ  Estimated δ-percentile of the γ-percentile safety parameter distribution 
rŷγ

⎡ ⎤⎣ ⎦  rth element of the sample Ŷ  
sŷγ

⎡ ⎤⎣ ⎦  sth element of the sample Ŷ  

( )I c, j ,k  Regularized Incomplete Beta Function for non-singular cases 

M  Safety Margin 
ŷ  General temperature estimate 

refy  Reference pellet cladding temperature 
( )g
i ,ANNŷ  ith ANN estimate for the gth sample batch 

0 95. ŷδ  Etimated δth percentile of the distribution of the 95th percentile of the safety parameter 
( )

0 95
g

. ŷ  gth element of the sample of the 95th percentile estimates Ŷ  
75

0 95. ŷ⎡ ⎤⎣ ⎦  75th element of the ordered sample of the 95th percentile estimates Ŷ  
4

0 95. ŷ⎡ ⎤⎣ ⎦  4th element of the ordered sample of the 95th percentile estimates Ŷ  
147

0 95. ŷ⎡ ⎤⎣ ⎦  147th element of the ordered sample of the 95th percentile estimates Ŷ  
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1 INTRODUCTION 

 
Conservative calculations have been traditionally performed for the verification of the 

safety of a Nuclear Power Plant (NPP), in terms of the values reached by selected safety 

parameters in comparison to predefined thresholds. The differences between the 

conservatively computed safety parameter values and the predefined safety thresholds 

give the so called safety margins. 

Calculations are made with detailed, mechanistic codes that are run under conservative 

(i.e., pessimistic) hypotheses. Conservatism introduced in the calculations is aimed at 

overcoming  uncertainties in the model representation of the actual plant behavior. 

Lately, this traditional approach has been challenged by a more realistic, Best-Estimate 

(BE) analysis which sets forth the calculations of the safety margins under realistic 

assumptions. Results of such calculations are closer to the real behavior of the plant 

under investigation than those obtained from the conservative calculations. 

On the other hand, the removal of conservatism leaves the results “unprotected” from 

uncertainties in the model representation of the plant real behavior. Hence, the feasibility 

of a more realistic approach to safety analysis depends on the possibility of properly 

quantifying and controlling the uncertainty associated to the estimated safety margins. 

This calls for repeated model runs within a probabilistic modeling of safety margins 

[Gavrilas et al., 2004; Martorell, 2007]. 

In general, uncertainty can be considered of two types: that due to inherent variability in 

the system behavior and that due to lack of knowledge and information on the system. 

The former type of uncertainty is often referred to as objective, aleatory, stochastic 
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whereas the latter is called subjective, epistemic, state-of-knowledge [Apostolakis, 1990; 

Helton, 2004]. 

The distinction between aleatory and epistemic uncertainty plays a particularly important 

role in the risk assessment framework applied to complex engineered systems. In the 

context of risk analysis, the aleatory uncertainty is related to the occurrence of the events 

which define the various possible accident scenarios whereas epistemic uncertainty arises 

from a lack of knowledge of fixed but poorly known parameter values entering the 

evaluation of the probabilities and consequences of the accident scenarios. 

The present work addresses the epistemic uncertainty affecting the evaluation of the 

safety margins. Under the probabilistic viewpoint here undertaken to represent 

uncertainties, the BE code for safety margin evaluation needs to be repeatedly run with 

different values of the thermal-hydraulic parameters, sampled from predefined 

probability distributions; the outcomes of these runs are then statistically analyzed to 

estimate with a specified confidence a given percentile of the distribution of the safety 

parameter used to calculate the safety margin [Guba et al., 2003; Nutt et al., 2004]. 

Because of the large computing time required to run the BE code, the procedure can be 

computationally quite expensive. 

To cope with the computational problem, in this work a single set of code input files and 

corresponding output data (i.e., maximum fuel cladding temperature) are used as input 

and output patterns for training and testing a multi-layered feedforward Artificial Neural 

Network [Mitchell et al., 1997, Zio 2006]. Once the network is trained, it can be used for 

estimating, in a negligible computation time, the safety parameters values needed for 

safety margin evaluation. 
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However, the use of ANN-based modeling (or any other empirical not physics-based 

modeling, for that matter) in safety critical applications for nuclear power plants raises 

concerns with regards to the model accuracy which must be not only verified but also 

quantified; in this paper, we resort to the bootstrap method for quantifying the uncertainty 

associated to the output of a multilayered feedforward neural network trained by the 

error-back propagation algorithm [Zio, 2006]. This allows the safety parameters to be 

estimated together with their estimation errors (see Appendix A). 

The statistical analyses of the ANN evaluations for obtaining confidence intervals for 

safety parameters estimates relies on the use of  Order Statistics (OS), along a non-

parametric approach initially explored by [Wilks, 1941; Wilks, 1942]; this brings the 

advantage that the number of code calculations needed for safety margins evaluation is 

independent of the number of uncertain input parameters. Figure 1 shows a schematic 

sketch of the non-parametric procedure adopted; for ease of illustration, a single safety 

parameter y is considered. 

By this procedure for safety margin calculation, the analyst can produce results with the 

level of confidence against uncertainty required for presenting a robust safety case to the 

Regulatory Authority. 
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2 ,ANNŷ  , …, ( )1
N ,ANNŷ  
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Figure 1 Flowchart of the non-parametric procedure for percentile and confidence interval 
estimation 
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Step 1: Code calculations 

Step 4: ANN batch-calculations 
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and uncertainty calculation 

Step 5: OS batch-percentile  
 estimation 

Step 6: OS percentile estimation 

Step 7: Confidence interval calculation 

Set of training patterns ( )i i ,BEx , y  

Bootstrapped ANN 

Set of overestimated evaluations ( )*
i ,ANN i ,ANN i ,bootŷ y σ= +  

Bias error evaluation on test patterns 
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Input parameters 

Step 3: ANN output over-estimation 
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The paper organization is as follows. In Section 2, the non parametric approach to the 

estimation of percentiles is briefly recalled. Section 3 is devoted to the presentation of the 

analytical case study used to illustrate the proposed approach: the specific artificial neural 

network used and the results of the application of the proposed approach to estimation of 

the uncertainty of its output are illustrated. Section 4 is devoted to the presentation of the 

realistic application: the main characteristics of the RBMK-1500 reactor are sketched, the 

GDH complete blockage accident scenario is described and the RELAP5/MOD3.2 

simulations performed to analyze the system response to the accident scenario are 

presented; the specific neural model for the calculation of this accident scenario is 

introduced, the results of the application of the proposed approach to the estimation of the 

safety margin of the maximum fuel cladding temperature reached during the accident are 

provided and the results obtained by a parametric approach are reported for comparison. 

Conclusions are drawn in Section 5. Finally, in Appendix A, the basic principles 

underpinning the artificial neural network modeling paradigm are presented for 

completeness. 

 
 

2 PROBABILISTIC APPROACH TO UNCERTAINTY QUANTIFICATION 
 

The input vector x  of a BE code for NPP safety analysis is uncertain; the appropriate 

incorporation of this uncertainty onto the results and the presentation of its implication on 

their interpretation are fundamental components of the analysis. 

Let the vector 
0

x  define the vector of the nominal values of the input parameters of the 

BE code, typically assumed as the expected values [ ]E x  of their distributions. 
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Corresponding to the nominal input values, the BE code output vector ( )0 0
y f x=  is the 

output of the model function ( )f ⋅  implemented by the BE code and is expected to 

represent a largely safe state, well within the safety margins. In formal terms, this means 

that each one of the l output variables { }0 0 01 2 ly , y ,..., y , i.e. the components of 0y ,  fall 

within a predefined safety threshold interval, viz.: 

 
0

1 2[ ]j j jy L ,U , j , ,...,l∈ = . (1) 

In presence of uncertainty in the input values x , the plant is absolutely safe if its 

response y  falls in the safety envelope { }1 2j jL ,U , j , ,...,l⎡ ⎤Ψ = =⎣ ⎦  for every x X∈ , the 

set of all possible input vectors x  [Guba et al., 2003]. 

Given the impossibility of verifying the above safety conditions for all x X∈ , one is 

forced to address the problem probabilistically by generating a representative sample of 

independent input vectors kx X∈ , k=1,2,…, N and then running the code for each of the 

input vectors to generate the corresponding output ky , k=1,2,…,N: the sample of N 

independent output vectors realizations { }1 2 Ny , y ,..., y  carries information on the 

probability distribution of the safety output response y ; from this information, one wants 

to draw conclusions on the safety conditions of the plant, with the required confidence. 

 

2.1 One-sided Order Statistics for percentile point estimates 

 

For ease of notation but without loss of generality, from now on we will discuss the case 

of a one-dimensional output y. The sample size N needed for obtaining the desired 
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confidence 0 1[ ],β ∈  when estimating the γ-percentile of the distribution of y is defined 

on the basis of the OS method, in its nonparametric formulation which applies 

independently from the type of probability distribution generating the data (in this case 

unknown) [Wilks, 1941; Wilks, 1942]. Denoting by yγ  and ŷγ  the unknown true γ-

percentile of the output distribution and its estimator, respectively, the probabilities γ and 

β are defined as { }P y yγγ = <  and { }ˆP y yγ γβ = < . 

Once γ and β are fixed, the OS method for calculating the ( )β γ -percentile estimate 

follows the lines of  [Guba et al., 2003; Nutt et al., 2004] and amounts to: 

i) Determining the sample size N by fixing a positive integer m. The probability 

that at least m observations within a random sample of size N are greater than 

the γ-percentile of the distribution generating the sample is  

0
(1 )

N m
k N k

k

N
p

k
γ γ

−
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  

By Setting p=β, one can and compute the sample size N by solving the 

previous equation with respect to N. 

ii) Sorting the observations in the sample by increasing values, the element in 

the rth position being the statistic of order r. 

iii) Estimating the γ-percentile by setting ŷγ  equal to the statistic of order N-

m+1, i.e. the mth largest observation in the sample; then { }ˆP y yγ γβ = < . 

Note that higher values of m in step (i) imply higher values of the sample size N but 

generate less conservative estimates of the γ-percentile; in any case, the sample size N, 
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i.e. the number of BE code runs, can be kept low because only intervals related to the γth 

percentile are estimated and not the full probability distribution generating the data. 

 

2.2 Artificial Neural Networks for empirical regression modeling 

 

The uncertainty relative to the estimator ŷγ  would be captured by its distribution, if it 

were known; indeed this distribution would be estimated with arbitrary precision if one 

could draw a large (infinite) sample from it, i.e. if one could replicate the estimation 

procedure described in the previous Section for a large number of independent samples of 

size N drawn from the distribution of the output parameter y. However, in spite of the 

reduction in the number of runs allowed by the use of the OS method, the computational 

problem still remains because the complex models of plant dynamics used for NPP safety 

analysis are computationally very expensive and the collection of samples of  size N may 

be extremely burdensome. One way to overcome this hurdle is to replace the slow-

running BE code by a fast-running, empirical regression model. The response surface of 

the regression model is calibrated on the basis of a limited-size sample of input values 

drawn from the relative probability distribution and the corresponding outputs computed 

by the BE code. 

In the present work, ANNs are proposed as regression models for their capability of 

modeling nonlinear input/output relationships. However, the ANNs empirical 

approximation of the system response introduces an additional source of uncertainty, 

which needs to be evaluated and represented in the safety margin estimation. This can be 

done by resorting to an ensemble of ANNs, each one trained on a different data set 
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bootstrapped from the original one [Zio, 2006]. Appendix A at the end of the paper 

contains some details on the bootstrapped ANN modeling technique. 

 

2.3 The proposed approach for percentile point and confidence interval estimation 

 

The proposed approach, sketched in Figure 1, addresses the problem of the evaluation of 

a point estimate of the γ-percentile and of a confidence interval associated to it, to be used 

for the safety margin evaluation. In what follows, the steps of the procedure are reported 

in detail (reference distributions and notations are shown in Figure 2): 

- Step 1: Code calculations. Given a set of np independent input parameters values 

ix , i=1,2,…,np sampled from the relative probability distribution, a set of np 

output values yi,BE, i=1,2,…,np are evaluated by the BE simulation code. 

- Step 2: ANN training and uncertainty calculation. A bootstrapped ANN model, 

with bootstrap sample size B (see Appendix A.2), is trained to give the np patterns 

of estimates ( )*
i ,ANN i ,booty ,σ , i=1,2,…,np where i ,ANNy  is the neural fitted value 

corresponding to yi,BE and *
i ,bootσ  its regression error. The bias term of the neural 

network error is estimated by means of Eq. (8), Appendix A, on a data set D* used 

for testing the ANN. 

- Step 3: ANN output over-estimation. Conservatively, the regression error (e.g. 

one standard deviation) is added to each output of the ANN to give a conservative 

estimate *
i ,ANN i ,ANN i ,bootŷ y σ= + . In Section 3.1, a motivation for this choice is 

provided. 
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- Step 4: ANN batch-calculations. G replicates of the trained bootstrapped ANN 

are independently fed each with a sample of N new input patterns. Thus, each of 

the G ANN generates a sample of size N of over-estimated output values: ( )g
n,ANNŷ , 

n=1,2,…, N, g=1,2,…,G. 

- Step 5: OS batch-percentile estimation. For g=1,2,…,G, the output sample of 

size N of the gth batch is used to compute the ( )β γ -percentile estimate ( )gŷγ  by 

means of the OS method. 

- Step 6: OS percentile estimation. The median of the distribution of ŷγ  is used as 

point estimator of the γ-percentile of the output distribution for safety margin 

evaluations (the median is a robust estimator for distribution-free statistics); the 

statistical median 0.5ŷγ  of the sample of the G ( )β γ -percentile estimates 

( ) ( ) ( ){ }1 2 Gˆ ˆ ˆ ˆY y , y ,..., yγ γ γ=  is used as estimate. 

- Step 7: Confidence interval calculation. In alternative to the point estimate of 

Step 6, we generate a confidence interval estimate of the median of the 

distribution of the estimator ŷγ . Sort ( ) ( ) ( ){ }1 2 Gˆ ˆ ˆ ˆY y , y ,..., yγ γ γ=  by increasing 

values and let [ ] [ ] [ ]1 2ˆ ˆ ˆ, ,..., Gy y yγ γ γ  be the values of the order statistics. Set r and s 

to be positive integers satisfying the inequality 0 < r < (N+1)/2 < s ≤ N. Then the 

random interval [ ] [ ]ˆ ˆ,r sy yγ γ
⎡ ⎤
⎣ ⎦  covers the median of the distribution of the 

estimator ŷγ  with probability 

 ( ) ( )1/ 2, 1, 1/ 2, 1,I N s s I N r rα = − + − − +  (2) 
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where ( )I c, j,k  is the Regularized Incomplete Beta Function for non-singular 

cases [Kendall et al., 1979; Pál et al., 2002]. Hence, by fixing α we may find 

suitable r and s, for instance in a symmetric position with respect to (N+1)/2, such 

that [ ] [ ]ˆ ˆ,r sy yγ γ
⎡ ⎤
⎣ ⎦  is a level α confidence interval of the median of the distribution 

of ŷγ . 

Note that, given the conservative over-estimates computed in Step 3 and the fact that 

ŷγ is the (β|γ)- estimator of the γ-percentile of the output distribution, we expect both the 

point estimate of Step 6 and the interval estimate of Step 7 to cover values larger than the 

true value of yγ ; see Figure 2 for an illustration of the analysis setting. The method is 

efficient if these estimates will not be too conservative while guaranteeing the required 

level of confidence. 

 

 

 
Figure 2 Sketch of the coverage value γ, the confidence β and the confidence interval level α; 

representation of the (unknown) safety parameter probability distribution ( )f y  and its γth percentile 

probability distribution ( )ˆγf y  
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3 THE ANALYTICAL CASE STUDY 
 
The approach for model output uncertainty quantification explained in Section 2.3 has 

been applied to a nonlinear two-dimensional analytical case study. The safety parameter y 

is deterministically defined as: 

 ( ) ( )( )1 210y cos x sin x= ⋅ +  (3) 

where the input parameters x1 and x2 are uniformly and independently distributed in 

[ ]0 360, ° . The function (3) and the probability density function of y are shown in Figures 

3 and 4, respectively. 

 

0
100

200
300

400

0
100

200

300
400
-20

-10

0

10

20

x1
x2

y

-20 -15 -10 -5 0 5 10 15 20
0.005

0.01

0.015

0.02

0.025

0.03

y

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

95th percentile95th percentile
 

 
pdf

95th percentile

Figure 3 Surface of the analytical case study.  Figure 4 Probability density function 
constructed with 500,000 model output 
evaluations and its true 95th percentile. 

 
As shown in Figure 4, the model output is strongly not normally distributed and its (true) 

95th percentile is equal to 16.95. 

 

3.1 The application of the non-parametric OS approach to percentile estimation 
 

The results of the non-parametric procedure for percentile estimation are hereafter 

illustrated with reference to the procedural steps detailed in Section 2.3: 
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Step 1: Code calculations 

np=150 patterns ( ){ }1 2 150i i ,BEx , y ,i , ,...,=  have been generated for training the ANNs 

and nt=50 for testing the trained ANNs. 

Step 2: ANN training and uncertainty calculation. 

The bootstraped ANN regression model illustrated in Appendix A has been applied for 

predicting the output variable of Eq. (3). The number B of bootstrapped networks has 

been taken equal to 15. 

All neural calculations have been performed with the software package NEural 

Simulation Tool (NEST) developed by the Laboratorio di Analisi di Segnale e di Analisi 

di Rischio (LASAR, Laboratory of Analysis of Signals and of Analysis of Risk, 

http://lasar.cesnef.polimi.it) of the Department of Energy of the Polytechnic of Milan, 

Italy. 

In Figures 5 and 6 the bootstrapped neural network estimates i ,ANNy  (crosses) are plotted 

against the true values of the output variable i ,BEy  (circles). The bootstrapped ANN is 

very accurate. 
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Figure 5 Bootstrapped ANN estimations for 
the 150 training patterns. 

 

Figure 6 Bootstrapped ANN estimations for 
the 50 test patterns. 
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y = 1*x + 0.078

Neural estimate vs Truth

   linear fitting (R2=0.997)
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y = 0.99*x - 0.079

Neural estimate vs Truth

   linear fitting (R2=0.996)

 
 

Figure 7 Linear fitting for 150 training 
Bootstrapped ANN estimations vs Truth. 
 

Figure 8 Linear fitting for 50 testing 
Bootstrapped ANN estimations vs Truth. 

The values of the Pearson’s coefficient R2 reported in Figures 7 and 8 and the estimate of 

the absolute value of the bias equal to 0.66, evaluated resorting to Eq. (8), confirm the 

good accuracy of the trained neural network model. 

Step 3: ANN output over-estimation. 

The ANN output values i ,ANNy  are augmented as *
i ,ANN i ,ANN i ,bootŷ y σ= + . 

Step 4: ANN batch-calculations. 

We take, m=100 and β=γ=0.95; this leads to a sample size N=2,326 for the OS ( )β γ -

percentile estimates. A number of G=150 batches of N=2,326 output values have been 

computed. 

Step 5: OS batch-percentile estimation. 

For each of the G=150 batches, the ( )β γ -percentile estimate has been computed. The 

150 independent estimates are collected in the sample ( ) ( ) ( ){ }1 2 150
0 95 0 95 0 95. . .

ˆ ˆ ˆ ˆY y , y ,..., y= . 

Step 6: OS percentile estimation. 

The median 0.5ŷγ  of the sample Ŷ  turns out to be equal to 18.59. 

Step 7: Confidence interval calculation. 
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The confidence interval of level α=0.95 for the median of the estimator ŷγ  turns out to 

be equal to [17.81, 19.56]. 

 

To evaluate the robustness of the proposed procedure, which combines ANN modeling 

and Order Statistics to estimate the 95th percentile of the safety parameter distribution, the 

evaluation procedure consisting of the previous Steps 1-7 has been repeated k=50 times: 

results are plotted in Figure 9, where the values of the point estimates obtained at Step 6 

are represented by a square while the confidence intervals computed at Step 7 appear as 

vertical segments. It turns out that with frequency 0.98 the true value (16.95) for the 95th 

percentile of the distribution of y is smaller than the lowest extreme of the confidence 

interval for the median of the estimator ŷγ . Hence with confidence greater than the level 

0.95 required by regulation for the safety margin quantification [Wallis, 2006] we are 

overestimating the true value of the 95th percentile of the distribution of y and yet these 

estimates are small enough to be used for safety margin evaluations. 

To justify the over-estimation in Step 3 of the procedure illustrated in Section 2.3, the 

results obtained without ANN output over-estimation are shown in Figure 10: the 

confidence on the estimates in this case falls down to 0.68, which is not acceptable for 

safety margin quantification. 
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Figure 9 Representation of k=50 estimates of the 95th percentile of the safety parameter and 

corresponding confidence intervals 
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Figure 10 Representation of k=50 estimates of the 95th percentile of the safety parameter and 

corresponding confidence intervals without the ANN output over-estimation described in Step 3 of 
the procedure 
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4 THE GDH COMPLETE BLOCKAGE ACCIDENT SCENARIO IN THE 

RBMK-1500 

 

The non-parametric procedure for percentile estimation introduced in Section 2.3 has 

been applied to the quantification of the safety margin relative to the maximum fuel 

cladding temperature reached during the accident scenario of complete blockage of a 

Group Distribution Header (GDH) of the RBMK-1500 nuclear reactor. 

 

4.1 The RBMK-1500 

 

The description of the RBMK-1500 refers to the Ignalina Nuclear Power Plant (NPP) in 

Lithuania [Ušpuras et al., 2006]. The RBMK-1500 is a graphite-moderated, boiling 

water, multi-channel reactor. The two units at Ignalina are designed to provide a saturated 

steam at 7.0 MPa. The maximum reactor rating is 4800 MWth. Several design features of 

the RBMK-1500 are rather unique with respect to reactors of western design. The main 

distinguishing characteristic of the RBMK-type reactor is that each core fuel assembly is 

housed in an individual pressure tube. 
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Figure 11 Ignalina NPP model nodalization scheme [Ušpuras et al., 2006] 

The RBMK-1500 core contains 1661 pressurized fuel channels (FCs), inserted in a 

graphite block lattice. The Main Circulation Circuit (MCC) is divided into two loops. 

Figure 11 presents one such loop. The loop has two drum separators (1), which separate 

steam from the steam-water mixture coming from the core. Eight Main Circulation 

Pumps (MCPs) are used for the circulation of the cooling water. The MCPs (4), joined in 

groups of four pumps on each loop (three for normal operation and one in standby), feed 

the pressure headers (5) on each side of the reactor. Each pressure header provides 

coolant upwards through the reactor core block to 20 Group Distribution Headers 

(GDHs) (9). Each of them in turn feeds from 38 to 43 pressurized fuel channels (14). The 

flow in the channel is measured by a ball flow meter (12) and regulated by means of 

isolation and control valves. By flowing through the core, the coolant absorbs about 95% 

of the total energy released by the fuel elements. The steam-water mixture generated in 

the FCs flows through the steam-water pipes (15) to the Drum Separators (DSs) [Kaliatka 

et al., 2005]. 
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4.2 The GDH complete blockage scenario 

 

The accident scenario considered in the present study consists of a complete blockage of 

a GDH. This leads to a temporary decrease in the coolant flow rate in the FCs and to a 

corresponding increase in the cladding temperature which may reach values close to the 

maximum allowable limit of 700.00° C [Kopustinskas et al., 2005]. For this reason, this 

scenario is considered safety relevant and a careful analysis of it must be performed 

[Urbonas et al., 2003a]. 

 

4.3 RELAP5/MOD3.2 simulations of the accident scenario 

 

Given the above mentioned safety concerns related to the GDH blockage scenario, a 

RELAP5/MOD3.2 model of the RBMK-1500 reactor has been implemented and used to 

simulate 480 accidental complete blockage transients, generated by sampling the 

involved input parameters from proper probability distributions suggested from previous 

experience and/or skilled operators [Kopustinskas, 2005]. As it will be explained in the 

next Section, these transients constitute the data base samples to be used for training the 

bootstrapped ANN embedded in the procedure for estimating a given percentile of the 

probability distribution of the maximum fuel cladding temperature reached during the 

accident and its safety margin. The interested reader may refer to the original works for 

further details on the RELAP5/MOD3.2 model implementation [Urbonas et al., 2003b]. 

 



 24

In the accident transient simulations, it is assumed that the reactor operates at the 

stationary power of 2900 MWth. The coolant is supplied through the core by two MCPs 

in each MCC loop, up to the beginning of the accident (i.e. before the GDH blockage). 

This reactor state is chosen because in such conditions the reactor cooling of the core is 

the most complicated. Note that 2900 MWth is the maximum allowable power level 

when four MCPs are in operation, i.e. the worst power and coolant flow rate ratio is 

conservatively considered in the analysis. The calculations performed for such type of 

accident show a decrease in the coolant flow rate. Thus, the fuel cladding and pressure 

tube wall temperatures sharply increase and then start to decrease after reactor shutdown, 

which is initiated for protection against the decrease in coolant flow rate through the 

GDH. 

Since the peak of the fuel cladding temperature in the maximum power channel may 

reach values close to the acceptance criteria temperature (700.00° C for fuel cladding), 

this is the chosen safety variable of interest y, and its safety margin must be estimated. 

 

The relevant input parameters x  which may influence the fuel cladding temperature 

behavior may be divided in [Kopustinskas, 2005]: 

 

• Initial conditions (coolant pressure, temperature and flow rate or power) 

• RELAP5/MOD3.2 code model parameters, assumptions and correlations (e.g. 

different correlations for the calculation of friction loss and heat transfer). 
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A first preliminary investigation based on engineering judgment led to the identification 

of the following initial conditions as most important for the postulated accident analysis 

[Urbonas et al., 2003b; Ušpuras et al., 2006]: 

 

• Pressure in the drum separator (x1) 

• Coolant flow rate through the MCPs (x2) 

• Feed water temperature (x3) 

• Amount of steam for in-house needs (x4) 

• Reactor thermal power (x5) 

 

As for the RELAP5/MOD3.2 code modeling parameters, the following are regarded 

relevant for the accidental transient: 

 

• Water packing: it specifies whether the scheme of volume filling with water is to be 

used (x6) 

• Vertical stratification: it specifies whether the model of two-phase media vertical 

stratification is enabled or disabled (x7) 

• Modified PV term in the equations: it specifies whether the modified potential 

pressure energy model is applied or not (x8) 

• CCFL (counter current flow limit): on/off (x9) 

• Thermal front tracking: on/off (x10) 

• Mixture level tracking: on/off (x11) 
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A last parameter considered to have an impact on the temperatures of the fuel cladding 

and fuel channel wall is the signal to start the reactor protection against the accident 

initiation, which determines the time when the reactor is shutdown in the fast mode (x12). 

It is assumed that insertion of CPS rods is delayed by 1 second, with respect to such 

signal. 

 

In conclusion, a total of twelve parameters are considered relevant. Of these, six are 

continuous (x1-x5 and x12) and six are binary (x6-x11). The continuous parameter 

distributions have been obtained from error specifications in measure devices and from 

skilled-operator expertise, whereas the Boolean parameters are set as RELAP5/MOD3.2 

inputs, with an arbitrary probability of 0.5 (Table 1). 

Range of parameter 
distribution 

Parameter 

Min Max 

Mean Standard 
deviations 

Probability 
distribution 

Initial conditions 
x1 (Pressure in DS) [Pa] 6.79E+06 6.93E+06 6.86E+06 3.43E+04 Normal 

x2 (Coolant flow rate) [m3/h] 6860 7140 7000 70 Normal 
x3 (Feedwater temperature) [K] 458.52 467.78 463.15 2.32 Normal 

x4 (Steam for in-house needs) [m3/h] 227.7 232.3 230 1.15 Normal 
x5 (Reactor thermal power) [W] 2.81E+09 2.99E+09 2.90E+09 4.5E+07 Normal 

Modelling parameters 
x6 (Water packing) 0 (on) 1 (off) 1 (off) - Discrete 
x7 (Stratification) 0 (on) 1 (off) 0 (on) - Discrete 

x8 (PV term) 0 (on) 1 (off) 0 (off) - Discrete 
x9 (CCFL) 0 (on) 1 (off) 0 (off) - Discrete 

x10 (Thermal front tracking) 0 (on) 1 (off) 0 (off) - Discrete 
x11 (Mixture level tracking) 0 (on) 1 (off) 1 (on) - Discrete 
x12 (Scram initiation time) 5.3 6.3 6.0 0.25 Normal 

 

Table 1 Parameters which are regarded relevant with respect to the behaviour of the fuel cladding 
temperature [Ušpuras et al., 2006] 

 
4.4 The application of the non-parametric OS approach to safety margin estimation 
 

The application of the non-parametric procedure for percentile estimation introduced in 

Section 2.3 is hereafter illustrated with reference to the case study introduced in the 

previous paragraphs. Procedural steps are: 
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Step 1: BE code calculations 

The np=440 patterns ( ){ }1 2 440i i ,BEx , y ,i , ,...,=  have been generated from the 

RELAP5/MOD3.2 simulations of the accidental scenario considered for training the 

ANNs and nt=40 for testing the trained ANNs. 

Step 2: ANN training and uncertainty calculation 

The bootstraped ANN regression model illustrated in Appendix A has been applied for 

prediction of the maximum fuel cladding temperature reached during the accidental 

scenario. The number B of bootstrapped networks has been taken equal to 15. In [Cadini 

et al., 2007], the improved accuracy of the bootstrapped neural network estimates with 

respect to those of the single best-trained ANN has been demonstrated for the study under 

analysis. 

The distributions of the RELAP5/MOD3.2 simulations { }1 2 480i ,BEy ,i , ,....,=  obtained in 

step 1 (Figures 12 and 13, solid line) is taken as reference for the comparison with the 

results obtained by the ANN estimations in the present step 2. In particular, its 95th 

percentile, which turns out to be 684.85° C, is taken as the (unknown) real 95th percentile 

0 95. y  of the maximum fuel cladding temperature distribution in the comparisons which 

follow. 

Figures 12 and 13 show also the empirical cumulative distribution functions (cdfs) and 

the probability density functions (pdfs) constructed from 10,000 random bootstrapped-

ANN estimations { }1 2 10000i ,ANNŷ ,i , ,....,=  (dashed-dotted lines). In Figure 13, the 

estimated regression error *
i ,bootσ  associated to each ANN estimation i ,ANNŷ  is also 

reported (dashed line). The good match of the two pdfs in Figure 13 leads us to assert that 
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the accuracy in the estimates can be considered satisfactory for the needs of the safety 

margins estimation procedure, so that the bootstrapped ANN can be used as fast-running 

regression model in substitution of the complex slow-running RELAP5/MOD3.2 code. 
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Figure 12 Maximum temperature empirical 
cdfs ± 1 *

bootσ , constructed with 10,000 
bootstrapped ANN simulations and with 480 
RELAP5/MOD3.2 simulations 

Figure 13 Maximum temperature empirical 
pdfs constructed with 10,000 Bootstrapped 
ANN simulations and with 480 
RELAP5/MOD3.2 simulations 

 
Moreover, by resorting to Eq. (8) of Appendix A one can compute the average of the 

absolute bias term in the bootstrapped ANN prediction error; this turns out to be equal to 

8.22°C. 

The safety margin is then computed as 

 
ref

ˆU yM
ŷ y

−
=

−
 (4) 

where ŷ  is the temperature estimate considered (e.g., in the successive step 5 ŷ  is equal 

to 0 5.ŷγ , whereas in step 6 it is equal to ( )
0 5

r
.ŷγ  or to ( )

0 5
s
.ŷγ ) and yref  = 297.00° C is the 

reference pellet cladding temperature, taken equal to the sample mean of the 480 

RELAP5/MOD3.2 values at the initial time of the accidental transients; the pellet 

cladding safety threshold limit U is set equal to 700.00° C by regulation [Urbonas et al., 

2003a]. 
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Step 3: ANN output over-estimation. 

The ANN output values i ,ANNy  are augmented as *
i ,ANN i ,ANN i ,bootŷ y σ= + . 

Step 4: ANN batch-calculations. 

We take, m=100 and β=γ=0.95; this leads to a sample size N=2,326 for the OS ( )β γ -

percentile estimates. A number of G=150 batches of N=2,326 output values have been 

computed. Running the RELAP5/MOD3.2 code these many times for different values of 

sampled inputs is impractical. On the contrary, G=150 batches of N=2,326 output values 

have been computed by exploiting the capability of the trained ANNs to compute in a 

short time a very large number of output estimates (in this case, the maximum fuel 

cladding temperature reached during the considered accidental scenario), in 

correspondence of different input parameter vectors sampled from the relative probability 

distributions. 

Step 5: OS batch-percentile estimation. 

For each of the G=150 batches, the ( )β γ -percentile estimates have been computed and 

collected in the sample ( ) ( ) ( ){ }1 2 150
0 95 0 95 0 95. . .

ˆ ˆ ˆ ˆY y , y ,..., y= . 

Step 6: OS percentile estimation and uncertainty calculation. 

The median of the sample 
^
Y  and its safety margin turn out to be equal to 688.37°C and 

3.00E-02, respectively. 

Step 7: Confidence interval calculation with associated uncertainty. 

The confidence interval of level α=0.95 for the median of the estimator ŷγ  and for the 

safety margin turn out to be equal to [685.56°C, 691.35°C] and [2.19E-02, 3.72E-02], 

respectively (Figures 14 and 15). 
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Figure 14 Sketch of the results provided with the non-parametric approach 

 

 
Figure 15 Representation of the γth percentile estimate and its confidence interval obtained with the 

non-parametric approach 

 

As a final remark, the possibility of using a high value of G, thanks to the feasibility of 

numerous repeated output calculations by the bootstrapped ANN, allows increasing the 

reliability on the estimated confidence interval [Zio et al., 2008]. Thus, the analyst can 

feel reassured that the estimates obtained have a low probability of differing significantly 

from the true values and that the estimated fuel cladding temperature value satisfies the 

safety threshold limit U. In the case study considered, because the estimate 

[ ]75
0 95. ŷ =688.37°C, given with a confidence at least equal to 0.95 (as supported by the 
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analytical case study in Section 3), and the α=0.95 confidence interval 

[ ] [ ]4 147
0 95 0 95. .ˆ ˆy , y⎡ ⎤ =⎣ ⎦  [ ]685 56 691 35. , .  meet the safety criterion of being less than 

U=700.00° C, it can be concluded that the scenario is protected by a positive safety 

margin and can thus be considered safe. 

 

4.5 Comparison with a parametric approach 
 

For comparison, a statistical analysis relying on a parametric approach has been applied 

to ( ) ( ) ( ){ }1 2 150
0 95 0 95 0 95. . .

ˆ ˆ ˆ ˆY y , y ,..., y= , the sample of G=150 ANN-based estimations of the 

95th percentiles of the maximum fuel cladding temperature reached during the accident 

scenario of complete blockage of a Group Distribution Header (GDH) of the RBMK-

1500 nuclear reactor. 

The sample Ŷ  has been first tested for Normality by means of the Lilliefors Test when 

mean and variance are unknown [Lilliefors, 1967]. The p-value = 0.094 supports the 

assumption of Normality for the distribution generating the data; hence the center of the 

distribution is taken to be its mean and is estimated with the mean of the sample Ŷ , 

which turns out to be 688.89°C. The safety margin is 2.83E-02. 

 
Moreover, the standard symmetric 95% confidence interval for the mean of the Normal 

distribution when the variance is unknown, based on the t-distribution with 149 degrees 

of freedom, turns out to be [685.60°C, 691.33°C] while the corresponding interval for the 

safety margin is [2.19E-02, 3.70E-02]. (Figures 16 and 17). 
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Figure 16 Sketch of the results provided with the parametric approach 

 

 
Figure 17 Representation of the γth percentile estimate and its confidence interval obtained with the 

approach-distribution with 149 degrees of freedom. 

 

Notice the good agreement of the results obtained with the non-parametric and parametric 

approaches, Sections 4.4 and 4.5, respectively. However, it is to be noted that the 

hypothesis of Normality of the distribution underlying the data is not general and the 

parametric approach is thus not applicable to all cases; on the contrary, the non-

parametric approach here proposed for safety margin quantification is general and 

independent of the distribution. 
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5 CONCLUSIONS 

 
A framework for estimating safety margins has been proposed within a probabilistic 

approach for accounting the uncertainties associated to the relevant parameters of a safety 

analysis of a nuclear power plant. The procedure has been verified on an analytical case 

study and applied to the maximum fuel cladding temperature reached during a complete 

group distribution blockage scenario in a RBMK-1500 nuclear reactor. 

Simulated accident transients have been used for training and testing a bootstrapped ANN 

model for predicting the maximum fuel cladding temperature for different sets of values 

of 12 input and model parameters relevant for the simulation. 

Non-parametric Order Statistics has been exploited to support a limited number of 

calculations and utilized to provide confidence intervals on the percentiles. The trained 

ANNs have been exploited to provide in a fast and accurate way, in comparison to 

computationally burdensome BE code estimations, the needed number of calculations. 

For comparison, confidence intervals and percentile estimates have been computed also 

resorting to a parametric approach. 

The procedure gives a reliable (the estimate is very near to the true 95th percentile), 

robust (confidence intervals are very narrow) and conservative (high probability that the 

lower bound of the confidence interval lies above the true 95th percentile) estimate of the 

95th percentile of the safety parameter distribution. 

The possibility of running a high number of simulations by the bootstrapped ANN model 

is fundamental for building the required confidence in the safety of the system to make a 

robust case to the Regulatory Authority, while properly accounting for the uncertainties 

in the input and model parameters and in the estimates themselves. 
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The procedure may be recommended to add robustness and reliability to the conclusions 

drawn from safety analyses of nuclear power plants. 
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APPENDIX A “BOOTSTRAPPED” NEURAL NETWORKS 

 

Artificial neural networks are information processing systems composed of simple 

processing elements (nodes) linked by weighted synaptic connections [Rumelhart et al., 

1986; Muller et al., 1991; Mitchell 1997]. The resulting empirical models are capable of 

reconstructing the complex nonlinear input/output relations underpinning real systems 

and processes by combining multiple simple functions. 

 

A.1 Regression by neural networks 

 

In all generality, let us consider an ANN for performing a task of nonlinear regression, 

i.e. estimating the underlying nonlinear relationship existing between a vector of input 

variables x  and an output target y, assumed one-dimensional for simplicity of 

illustration. The ANN is trained with a finite set of pn  input/output data examples 

(patterns): 

( ){ }1 2i i pD x , y ,i , ,...,n≡ = . 

A similar finite set of tn  input/output data examples (patterns) is used for testing the 
ANN: 

( ){ }1 2*
i i tD x , y ,i , ,...,n≡ =  

It can be assumed that the target y is related to the input vector x  by an unknown 

nonlinear deterministic function ( )y xμ  corrupted by a noise ( )xε , viz. 

 ( ) ( ) ( ) ( ) ( )( )20yy x x x x N , xεμ ε ε σ= + :  (5) 
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The objective of the regression task is to estimate ( )y xμ  by means of a regression 

function ( )*f x;w  dependent on the set of synaptic weights *w  to be properly 

determined on the basis of the available set D. The ANN parameters *w  are usually 

obtained by a training procedure which aims at minimizing the quadratic error function: 

 * 2

1

1 ˆ( )
2

pn

i i
ip

E y y
n =

= −∑  (6) 

where ( )* *
i iŷ f x ;w=  is the network output corresponding to input ix . If the network 

architecture and training parameters are suitably chosen and the minimization done to 

determine the weights values is successful, the obtained function ( )*f x;w  gives a good 

estimate of the unknown, true function ( )y xμ . Indeed, it is possible to show that in the 

ideal case of an infinite training data set and perfect minimization algorithm, a neural 

network trained to minimize the error function in (6) provides a function ( )f ⋅  which 

performs a mapping from the input x  into the expected value of the target y, i.e. the true 

deterministic function ( )yE y x xμ⎡ ⎤ =⎣ ⎦  [Bishop, 1995]. In other words, the network 

averages over the noise on the data and discovers the underlying deterministic generator. 

Unfortunately, in practice, any training set is finite and there is no guarantee that the 

selected minimization algorithm achieves the global minimum in finite computation time. 

 
A.2  Bootstrapped neural networks for increasing and quantifying accuracy 
 
In practical regression problems and in the case of ANN estimation, it is crucial to 

properly account for the various sources of uncertainty affecting the determination of the 

weights *w  [Tibshirani, 1996; Twomey et al., 1998; Dybowski et al., 2000]. 
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If we assume (5), we can derive an expression for the expected prediction error of a 

regression fit ( )*f x ,w  at an input vector x : 

 
( ) ( ) ( ){ } ( ) ( )

( )( ) ( )( )

22
2

2 2

* * *
y

* *

Err x f x;w x E f x;w E f x;w

Bias f x;w Var f x;w

ε

ε

σ μ

σ

⎧ ⎫⎪ ⎪⎡ ⎤⎡ ⎤⎨ ⎬⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭
= + − + − =

= + +

 (7) 

The first term is the variance of the target around its true mean ( )y xμ  and cannot be 

avoided no matter how well we estimate ( )y xμ , unless 2 0εσ =  (which happens to be the 

model assumption in our case studies). The second term is the squared bias, the amount 

by which the average of our estimate differs from the true mean; the last term is the 

variance, i.e the expected squared deviation of ( )*f x ,w  around its mean. Typically the 

more complex we make the model, the lower the (squared) bias but the higher the 

variance [Hastie et al., 2001]. However, in many applications the variance term indeed 

dominates the bias term [Stuart, 1992] and, furthermore, if it were possible to compute 

the bias component its value should be used as an index of the accuracy of the regression 

function ( )*f x;w . 

 

For the estimation of the average of the absolute bias term one can compute: 

 ( ) ( )
1

1 tn
*

bias i y i
it

f x ;w x
n

ε μ
=

= −∑  (8) 

where tn  is the number of input patterns in the set D* used for testing the bootstrapped 

neural network capabilities. 
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For the estimation of ( )( )*Var f x;w , the expected squared deviation of the neural 

networks outputs around its mean, the bootstrap method can be used. This entails that a 

number B of bootstrap samples be drawn at random with replacement from the original 

training set of np input/output patterns ( ){ }D x , y≡ . The generic bth sample Db is 

constituted by the same number np of input/output patterns, drawn among those in D, 

although, due to sampling with replacement, some of the patterns in D will appear more 

than once in Db whereas some will not appear at all [Efron, 1979; Efron et al., 1993]. 

Each bootstrap set Db is then used as data set for training a different neural network to 

give a regression function ( ) ( )* *
b bŷ x f x ;w= , where *

bw  is the thereby obtained vector of 

network weight values (Figure 18). Then, in correspondence of a new input x , the 

bootstrapped neural network estimate ( )ANNy x  is given by the average of the B 

regression functions ( ) ( )* *
b bŷ x f x;w= , i.e.: 

 ( ) { }( )
( ) ( )

( )1 11 2

B B
* *
b b

* *b b
ANN b

ˆf x ;w y x
y x f x; w ,b , ,...,B f x ,w

B B
= == = = = =

∑ ∑
 (9) 

and the estimate of the standard deviation of ( )ANNy x  is given by: 

 ( )
( ) ( )

2

1

1
1

B
*
b ANN

* b
boot

ŷ x y x
Bx

B
σ =

⎡ ⎤−⎣ ⎦−=
∑

 (10) 

From the theory and practice of ensemble empirical models, it can be shown that the 

estimate ( )ANNy x  in (9) is in general more accurate than the estimate of the best-trained 

network in the bootstrap ensemble of B neural networks trained for the estimation task 
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[Krogh et al., 1995; Franke and Neumann, 2000; Cadini et al., 2007]. Further details on 

the method and an application in the nuclear field may be found in [Zio, 2006]. 

 
 

 
 
 

 
 

Figure 18 Scheme of bootstrapped ANN estimations 
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