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Abstract

We propose and analyze a seamless extended Discontinuous Galer-
kin (DG) discretization of hyperbolic-parabolic equations on semi-
infinite domains. The semi-infinite half line is split into a finite
subdomain where the model uses a standard polynomial basis, and
a semi-unbounded subdomain where scaled Laguerre functions are
employed as basis and test functions. Numerical fluxes enable the
coupling at the interface between the two subdomains in the same
way as standard single domain DG interelement fluxes. A novel lin-
ear analysis on the extended DG model yields stability constraints
on the finite subdomain grid size that get tighter for increasing val-
ues of the Péclet number. Errors due to the use of different sets of
basis functions on different portions of the domain are negligible,
as highlighted in numerical experiments with the linear advection-
diffusion and viscous Burgers’ equations. With an added damping
term on the semi-infinite subdomain, the extended framework is able
to efficiently simulate absorbing boundary conditions without addi-
tional conditions at the interface. A few modes in the semi-infinite
subdomain are found to suffice to deal with outgoing single wave
and wave train signals, thus providing an appealing model for fluid
flow simulations in unbounded regions.
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1 Introduction

The correct modelling of evolution problems over arbitrarily large
regions has a wide range of applications in computational physics
and poses several still unsolved challenges. An especially relevant
application area is atmospheric modelling, where the region of inter-
est to forecasts - typically, the troposphere and lower stratosphere
- should not feature spurious reflections of upwardly propagating
waves generated by the computational model lid, see, e.g., [9,17,18].
At the same time, as computational resources enable raising the
lid, an accurate description of upper atmosphere phenomena is of
paramount practical interest and the goal of fully integrated space
weather models is increasingly being discussed, see, e.g., [1, 16].

Approximations over arbitrarily large regions usually rely on the
creation of an artificial boundary separating the region of interest
from an external region. Analytical approaches, e.g., [11, 12, 15],
attempt to impose conditions at the artificial boundary in order to
let outgoing perturbations propagate without spurious reflections.
However, these conditions can be difficult to determine and com-
putationally expensive, and may require ad hoc information on the
outgoing signal.

An alternative approach is provided by numerical techniques
based on absorbing (or sponge) layers. These are buffer regions
placed next to the artificial boundary where perturbations leaving
the computational domain are damped to a prescribed external so-
lution by an artificial dissipation term. The choice of the parame-
ters to be employed in these regions, however, is non-trivial and the
corresponding buffers may be quite large and entail substantial com-
putational costs. A complete review of the proposed approaches for
open boundary conditions is beyond the scope of this paper. Com-
prehensive reviews can be found, for example, in [2, 5, 6, 8, 13,19].

In [6,7], a numerical approach to open boundary conditions was
proposed, based on the use of scaled Laguerre functions [21–23, 25,
27] for spectral approximations on the semi-infinite line, coupled
to finite volume or finite element discretizations on a finite domain.
Different approaches were used on either side of the artificial bound-
ary, and only the hyperbolic case was considered. In addition, the
stability analysis in [7] only concerned the discretization on the semi-
infinite subdomain.

This paper expands and completes the previously proposed ap-
proach by presenting two major improvements. First, the method
is extended to hyperbolic-parabolic conservation laws, thus showing
that all relevant terms of standard computational fluid dynamics
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models are amenable to a discretization based on scaled Laguerre
functions. Second, the hyperbolic-parabolic model equations are
discretized in a completely seamless way, using a discontinuous Ga-
lerkin (DG) finite element formulation that relies on scaled Laguerre
functions as both basis and test functions on the semi-infinite por-
tion, along with Gauss-Laguerre-Radau quadrature rules for numer-
ical integration.

The resulting extended DG approach and its numerical stability
on the entire half line are analyzed in the case of a linear advection-
diffusion equation, by considering several options for the polynomial
basis and quadrature rules. Scaled Laguerre functions and Gauss-
Laguerre-Radau quadrature formulae prove to be the most stable in
all hydrodynamic regimes.

Numerical validations of the proposed method are carried out
for the linear advection-diffusion and the viscous Burgers’ equation.
First, a relatively large number of basis functions are in the semi-
infinite portion of the domain, in order to evaluate the errors intro-
duced by considering different bases on either side of the finite/semi-
infinite interface. By taking as reference a standard single-domain
DG discretization, spurious reflections are found to be of negligible
entity. A reaction damping term is then introduced in the semi-
infinite layer, in order to simulate the propagation of an isolated
Gaussian initial datum and boundary generated wave train from
the finite subdomain into the semi-infinite subdomain, where they
are erased using a decreasing number of Laguerre basis functions.
Few basis functions suffice to absorb outgoing signals with mini-
mal reflections and low computational cost, thereby providing an
efficient implementation of an absorbing layer.

The outline of the paper is as follows. Section 2 contains the
model equation and outlines the numerical discretization. Stability
properties of the proposed method are analyzed in detail in Section
3, and Section 4 contains the results of the numerical experiments.
The final Section 5 draws conclusions, discussing possible exten-
sions and future work. The Appendix A summarizes the analysis of
different possible discretizations on the semi-infinite domain, based
on either scaled Laguerre functions or polynomials or on different
choices for the numerical quadrature rules. As already shown in [7],
some of these alternatives are shown to be more problematic in the
advection-dominated case.
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2 The extended DG discretization ap-

proach

We consider as a model problem the one-dimensional nonlinear
hyperbolic-parabolic conservation law for the unknown c

∂c

∂t
+
∂f(c)

∂z
=

∂

∂z

(
µ(z, t)

∂c

∂z

)
+ s(c, z, t) (1)

for z ∈ [0,+∞) and t ∈ [0, T ]. We assume that the diffusion coeffi-
cient µ is a smooth function of its variables and that there are two
positive constants µ0 and µ1 such that

0 < µ0 ≤ µ(z, t) ≤ µ1 ∀z ∈ [0,+∞), ∀t > 0. (2)

For simplicity, we only consider here Dirichlet boundary conditions

c(0, t) = g0(t) lim
z→+∞

c(z, t) = 0. (3)

We refer to [24] for a comprehensive analysis of other boundary
conditions in the linear advection-diffusion case.

Next, drawing on the approach of [6, 7] we split the domain as
R+ = [0, L]∪ [L,+∞) and introduce an extended DG finite element
discretization on R+ using a standard polynomial basis on [0, L]
and the scaled Laguerre functions as both basis and test functions
on [L,+∞). More specifically, on the [0, L] interval a mesh of N
non-overlapping elements Km of size ∆zm ≤ h is considered, such
that [0, L] =

⋃N
m=1Km. The center of the generic element Km is

denoted by zm, while zm±1/2 denote its boundary points. The affine
local maps z = Zm(ξ) = ξ∆zm/2 + zm map the master element
K̂ = [−1, 1] onto each Km. For each non-negative integer p, we then
denote by Pp the set of all polynomials of degree less or equal to p
on K̂. We also define Pp(Km) =

{
w : w = v ◦ Z−1m , v ∈ Pp

}
. For

each polynomial degree p, the discontinuous finite element spaces
are defined as:

V p
h =

{
v ∈ L2([0, L]) : v|Km ∈ Pp(Km) m = 1, . . . , N

}
. (4)

The bases of Pp(Km) are obtained from Legendre polynomials as
follows. First, for ξ ∈ K̂, Legendre polynomials are defined by the
recurrence relation:

Lk+1 =
2k + 1

k + 1
ξLk(ξ)−

k

k + 1
Lk−1(ξ), k = 1, 2, . . . (5)

L0(ξ) = 1, L1(ξ) = ξ. (6)
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Legendre polynomials form an orthogonal basis for polynomials on
K̂ since ∫ 1

−1
Lk(ξ)Ll(ξ)dξ =

2

2k + 1
δkl. (7)

For each element Km, m = 1, . . . , N we then denote by φmj (z), j =
0, . . . , p the basis and test functions given by

φml (z) =
√

2l + 1Ll

(
2
z − zm
∆zm

)
. (8)

Notice that the normalization is chosen so that∫ z
m+1

2

z
m− 1

2

φmk (z)φml (z) dz = ∆zmδkl. (9)

Therefore, the solution of (1) will be represented on each subinterval
Km as

c(z, t) ≈
p∑
j=0

c(j)m (t)φmj (z), z ∈ Km (10)

and standard Gauss-Legendre formulae will be used to discretize the
resulting integrals. For the semi-infinite interval K∞ = [L,+∞), we
consider the scaled Laguerre functions as modal basis. The pos-
sible alternatives are discussed and analyzed in [7] for the purely
hyperbolic case and in Appendix A of this paper for the hyperbolic-
parabolic case. More specifically, defining scaled Laguerre polyno-
mials on [0,+∞) by

(k + 1)L β
k+1(x) = (2k + 1− βx)L β

k (x)− kL β
k−1(x), (11)

L β
0 (x) = 1, L β

1 (x) = 1− βx, (12)

scaled Laguerre functions are defined by

L̂ β
k (x) = e−βx/2L β

k (x). (13)

for the scaling factor β > 0, and are a complete orthogonal system
in L2(R+), such that∫ +∞

0
L̂ β
k (x)L̂ β

l (x)dx =
1

β
δkl. (14)

We then define

φ∞j (z) = L̂ β
j (z − L), j = 0, . . . , q (15)

for which the analog of (9) holds∫ +∞

L
φ∞k (z)φ∞l (z) dz =

1

β
δkl. (16)
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and we assume that

c(z, t) ≈
q∑
j=0

c(j)∞ (t)φ∞j (z) z ∈ K∞. (17)

For the resulting integrals, Gauss-Laguerre-Radau quadrature will
be employed, see [6] for the definition. Approximation (17) amounts
to say that the restriction of the numerical approximation of c to
K∞ will be sought in the linear space V q

∞ spanned by the functions
defined in (15).

Therefore, the global finite element space employed in the pro-
posed extended DG discretization can be identified with V p,q

h =
V p
h ⊕V

q
∞. For v ∈ V p,q

h we can then introduce the jump and average
operators as (see, e.g., [4])

Jv(z)K = v(z−)− v(z+), {v(z)} =
1

2
(v(z−) + v(z+)) (18)

and we remark that for u, v ∈ V p,q
h one has

JuvK = {u} JvK + {v} JuK. (19)

The extended DG discretization then involves integration of equa-
tion (1) against a test function v ∈ V p,q

h , integrating by parts and
imposing for m = 1, . . . , N the appropriate continuity constraints
at the interelement boundaries. Setting

N∞ = {1, 2, . . . , N,∞}, (20)

denoting by σ > 0 the stabilization parameter for the DG approxi-
mation of the parabolic terms, and redefining the jump and average
operators at z = 0 so as to account for the boundary conditions, we
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obtain the following weak extended DG formulation of the problem:

∑
m∈N∞

∫
Km

∂c

∂t
vdz = −

N∑
m=1

f̂m+1/2

q
v
(
zm+1/2

)y
+
∑

m∈N∞

∫
Km

f(c)v′dz −
∑

m∈N∞

∫
Km

µ
∂c

∂z
v′dz

+
N∑
m=0

{
µ
(
zm+1/2

) ∂c
∂z

(
zm+1/2

)} q
v
(
zm+1/2

)y
+

N∑
m=0

{
µ
(
(zm+1/2

)
v′
(
zm+1/2

)} q
c
(
zm+1/2

)y
−

N∑
m=0

σ

∆zm

q
c
(
zm+1/2

)y q
v
(
zm+1/2

)y
+
∑

m∈N∞

∫
Km

svdz

+ µ(0, t)v′(0)g0(t) + f(g0(t))v(0). (21)

At z = L, the limit from the left of the approximate solution is

computed as
∑p

j=0 c
(j)
N (t)φNj (L), while the limit from the right is

computed as
∑q

j=0 c
(j)
∞ (t), according to the approximations (10),

(17), respectively. Among the many possible formulations for the
parabolic terms, for definiteness we choose that corresponding to
the Symmetric Interior Penalty Galerkin method (SIPG), see, e.g.,
[3, 26] and the review in [20]. Furthermore, the Rusanov numerical
flux is employed for the hyperbolic terms, so that

f̂m+1/2 =
1

2

[
f
(
c+h,m+1/2

)
+ f

(
c−h,m+1/2

)]
−

Λm+1/2

2

(
c+h,m+1/2 − c

−
h,m+1/2

)
,

(22)

where the time dependency is omitted for simplicity,

Λm+1/2 = max

(∣∣∣∣dfdc (c+h,m+1/2

)∣∣∣∣ , ∣∣∣∣dfdc (c−h,m+1/2

)∣∣∣∣) , (23)

and c+h,m+1/2 = ch

(
z+m+1/2

)
, c−h,m+1/2 = ch

(
z−m+1/2

)
.

We can now define the bilinear form

a : V p,q
h × V p,q

h × [0,+∞)→ R as (24)
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a(w, v, t) =
∑

m∈N∞

∫
Km

µ
∂w

∂z
v′dz

−
N∑
m=0

{
µ
(
zm+1/2, t

) ∂w
∂z

(
zm+1/2

)} q
v
(
zm+1/2

)y
−

N∑
m=0

{
µ
(
zm+1/2, t

)
v′
(
zm+1/2

)} q
w
(
zm+1/2

)y
+

N∑
m=0

σ

∆zm

q
w
(
zm+1/2

)y q
v
(
zm+1/2

)y
,

(25)

and the nonlinear function b : V p,q
h × V p,q

h → R as

b(w, v) =
N∑
m=1

f
(
w
(
zm+1/2

)) q
v
(
zm+1/2

)y
−
∑

m∈N∞

∫
Km

f(w)v′dz −
∑

m∈N∞

∫
Km

s(w)vdz.

(26)

We also introduce g : V p,q
h × V p,q

h → R, h : V p,q
h × V p,q

h → R as

g(w, v, t) = −µ(L, t)v′(L)w(L) +
σ

∆zN
v(L)w(L) (27)

h(w, v) = −f(w(L))v(L) (28)

and the linear operator L : V p,q
h × [0,+∞)→ R

L(v, t) = µ(0, t)v′(0)g0(t) +
σ

∆z1
v(0)g0(t) + f(g0(t))v(0), (29)

which is related to the Dirichlet condition at the left endpoint z = 0.
The extended DG weak formulation can then be written more com-
pactly as follows:

For all t > 0, find ch(t) ∈ V p,q
h such that, ∀v ∈ V p,q

h ,∫ +∞

0

∂ch
∂t

vdz =− a(ch, v, t)− b(ch, v)

+ L(v, t) + g(ch, v, t) + h(ch, v).

(30)

Approximating ch using (10) and (17), and taking v = φmj and
v = φ∞k , one obtains a set of equations for the discrete degrees of

freedom c
(j)
m j = 0, . . . , p,m = 1, . . . , N c

(k)
∞ k = 0, . . . , q. Collecting

these in two time-dependent vectors cDg ∈ RN(p+1) and cLg ∈ Rq+1,
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one obtains the systems

dcDg
dt

= ADgcDg + ADg,LgcLg

+ bDg(cDg) + hDg(cDg, cLg) + g0(t)
(31)

dcLg
dt

= ALgcLg + ALg,DgcDg

+ bLg(cLg) + hLg(cDg, cLg).
(32)

The time-dependent matrices ADg and ALg result from the discre-
tization of the diffusion operator in the interior of the [0, L] and
[L,+∞) subdomains, respectively. The coupling matrices ADg,Lg

and ALg,Dg result from the discretization of the diffusion opera-
tor involving discrete degrees of freedom of both subdomains. The
nonlinear functions bDg and bLg result from the discretization of
the hyperbolic part and source terms in the interior of the [0, L]
and [L,+∞) subdomains, respectively. The term g0(t) is associated
with boundary conditions at z = 0, while the coupling nonlinear
functions hDg(cDg, cLg) and hLg(cDg, cLg) result from the discreti-
zation of the hyperbolic part involving discrete degrees of freedom
of both subdomains.
Next, we define the global unknown vector as

c(t) = (cDg(t), cLg(t))
T ∈ RN(p+1)+q+1, (33)

and the global vectors

b (c(t)) = (bDg (cDg(t)) ,bLg (cLg(t)))
T ∈ RN(p+1)+q+1 (34)

h(c) = (hDg (cDg, cLg) ,hLg (cDg, cLg))
T ∈ RN(p+1)+q+1 (35)

g(t) = (gDg(t), 0, . . . , 0)T ∈ RN(p+1)+q+1. (36)

Defining the global extended DG matrix

A(t) =

(
ADg(t) ADg,Lg(t)

ALg,Dg(t) ALg(t)

)
∈ R(N(p+1)+q+1)×(N(p+1)+q+1),

(37)
the extended DG semi-discrete formulation reads

dc(t)

dt
= A(t)c(t) + b(c(t)) + h(c(t)) + g(t). (38)

The matrix A is the discretization of the diffusion term, the vector b
is the discretization of the non-linear advective part and the optional
source-reaction term, the vector h contains the flux exchange at
the interface z = L by means of the application of the Rusanov

10



flux to the flux function f , and the vector g encodes the Dirichlet
condition at the left endpoint c(0) = a(t). We remark that, because
of the vectors b and h, problem (38) is non-linear. However, if the
functions f and s in (1) are linear, then b(c(t)) and h(c(t)) can be
written as the product between a matrix and the unknown vector
c(t). In this case, (38) is a linear system of equations.
The semi-discrete extended DG formulation (38) can then be dis-
cretized in time by any standard method for the numerical solution
of ODE systems. In this paper, we use the Crank-Nicolson method
for the linear test problems considered in Section 4. For the non-
linear problems, a second order implicit-explicit (IMEX) method is
used, that is described, e.g., in [10, 14]. The terms associated with
the diffusion process are treated implicitly, as they can entail oth-
erwise rather restrictive stability constraint on the time step size,
while the terms associated with the hyperbolic conservation law are
treated explicitly.

3 Stability analysis

In order to study the numerical stability of the global semi-discrete
extended DG formulation (38), we consider the special case of the
linear, constant coefficient, advection-diffusion equation:

∂c

∂t
+ u

∂c

∂z
= µ

∂2c

∂z2
+ s(c, z, t) (39)

i.e. equation (1) with f(c) = uc, µ(z, t) ≡ µ, µ, u ∈ R+, and in the
homogeneous case the source term s ≡ 0.

We study the spectrum of the extended DG matrix A (37) for
the discretization (38) of (39) as a function of the Péclet number
Pe = uL/µ, where L is a reference length scale. More specifically,
we fix L = 1, β = 1 for the scaling Laguerre parameter, µ = 1, u =
Peµ. We consider a uniform mesh on the finite subdomain and
empirically study under which conditions on the element size ∆z
the discretization is stable, in the sense that max (<[λ(A)]) ≤ 0.
This study is carried out for a range of values of the maximum DG
polynomial degree p, number of Laguerre basis functions q, and the
values σ = 20 and σ = 200 of the penalization parameter.

Results of the analysis are reported in Table 1. It can be observed
that larger values of σ allow for larger sub-intervals without losing
stability. In addition, critical values of the spacing ∆z are found to
be independent of the number q of basis functions in the semi-infinite
subdomain at fixed polynomial degree p in the finite subdomain. If
the Péclet number is small enough – approximately less than 100 –
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the spectrum of A has negative real part regardless of the spacing
∆z, and a few sub-intervals in the finite subdomain [0, L] are enough
to make the scheme stable. By contrast, large values of Pe require a
fine grid in [0, L] to prevent spurious growth caused by eigenvalues
with positive real part. As a consequence, sufficiently large values
of N will be considered in the following numerical validations.

Table 1: Critical values ∆zcr of the finite subdomain grid spacing ∆z for
the stability of A in the extended DG scheme, µ = 1, u = Peµ, σ = 200
(left), σ = 20 (right).

q p
Pe

100 500 1000

180
3 1/2 1/4 1/9
2 1/2 1/8 1/20
1 1/2 1/9 1/20

90
3 1/2 1/5 1/13
2 1/2 1/9 1/21
1 1/2 1/10 1/21

50
3 1/2 1/6 1/10
2 1/2 1/10 1/22
1 1/2 1/10 1/21

20
3 1/2 1/5 1/8
2 1/2 1/10 1/22
1 1/2 1/10 1/21

q p
Pe

100 500 1000

180
3 1/6 1/21 1/40
2 1/7 1/35 1/73
1 1/6 1/30 1/61

90
3 1/5 1/20 1/34
2 1/7 1/37 1/75
1 1/5 1/30 1/61

50
3 1/4 1/18 1/30
2 1/7 1/37 1/75
1 1/5 1/30 1/61

20
3 1/5 1/15 1/27
2 1/8 1/38 1/76
1 1/7 1/30 1/61

4 Numerical experiments

We present here the results of several numerical tests with the ex-
tended DG approach described in the previous sections.

First, a number of validation tests are carried out, considering
both linear and non-linear model problems. The tests assess the
accuracy of the extended DG scheme by comparing it with a stand-
alone, single-domain reference DG discretization on a wider domain.
Errors are computed using a relatively large number of modes in the
semi-infinite subdomain of the extended DG scheme, and the wider
domain for the stand-alone reference run also covers part of the
semi-infinite subdomain.

Next, we add a damping reaction term in the semi-infinite sub-
domain to simulate an absorbing layer. We show that the extended
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DG scheme efficiently damps signals leaving the finite subdomain
with negligible reflections into the finite region.

The experiments consider the linear advection-diffusion equation
with constant coefficients (39), both in the non-homogeneous case
(s 6= 0) and the homogeneous case (s = 0), and the nonlinear,
homogeneous viscous Burgers’ equation with constant viscosity, i.e.,
equation (1) with f(c) = c2/2, µ(z, t) ≡ µ ∈ R+, and s = 0.

Errors are computed on the finite region [0, L] using a suitable
Gaussian quadrature rule on the sub-intervals Km, whose width is
∆z = L/N for all m = 1, . . . ,M . In particular, we introduce the
discrete norms

‖ch‖L2 =

√√√√ N∑
m=1

∆z

2

ng∑
k=1

[
ch

(
∆z

2
xk + zm

)]2
wk (40)

‖ch‖L1 =
N∑
m=1

∆z

2

ng∑
k=1

∣∣∣∣ch(∆z

2
xk + zm

)∣∣∣∣wk (41)

‖ch‖L∞ = max
m=1,...,N

max
k=1,...,ng

∣∣∣∣ch(∆z

2
xk + zm

)∣∣∣∣ , (42)

where {xk}ngk=1 and {wk}ngk=1 are the Gaussian nodes and weights
on the reference interval [−1, 1], with ng the number of quadrature
points. Absolute errors with respect to a reference solution are
defined as

ELr = ‖ch − cref‖Lr , r ∈ 1, 2,∞ (43)

where ch and cref are the numerical and the reference solution, re-
spectively; the latter may be either the exact solution or a single-
domain DG discretization. In some tests we will be also interested
in relative errors with respect to the reference solution cref defined
as

ErelLr =
‖ch − cref‖Lr

‖cref‖Lr
, r ∈ 1, 2,∞. (44)

4.1 Validation of the extended DG scheme
coupling strategy

We start by testing the proposed method for the linear advection-
diffusion equation with constant coefficients (39). We first consider
the non-homogeneous case by setting s 6= 0, assuming an exact
solution c(z, t) = ze−zsin2(z−t), and computing the right-hand side
analytically. We run the scheme for a variable number of modes q in
the semi-infinite subdomain, also setting N = 100, L = 2 m, p = 2,
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µ = 1 m2/s, u = 2Peµ, and a final time T = 10 s with n = 200 time
steps. In order to minimize errors at the interface, the value of β
is chosen in such a way that the distance between the first and the
second node in the semi-infinite subdomain matches the grid spacing
∆z in the finite subdomain. Relative errors L1, L2 and L∞ errors at
time T with respect to the exact solution due to the use of different
sets of basis functions in the finite and semi-infinite subdomains are
below 5 ∗ 10−6 using at least 20 modes, below 3 ∗ 10−3 using 10
modes, and a few percent using 5 modes, thus displaying spectral
convergence in space (Table 2).

Table 2: Relative L1, L2 and L∞ errors as functions of the number of
modes q of the extended DG scheme with respect to the exact solution,
linear non-homogeneous advection-diffusion equation. ∆t = 0.005 s,
∆z = 0.02 m, C = 0.25.

q β Erel2 Erel1 Erel∞
5 30 5.40E-02 5.43E-02 7.93E-02
10 16 2.39E-03 2.46E-03 3.23E-03
20 8 3.30E-06 4.14E-06 2.86E-06
40 4 3.28E-06 4.12E-06 2.85E-06
80 2 3.28E-06 4.12E-06 2.85E-06

In a second test, we examine the accuracy of the extended DG
scheme as a function of the Péclet number, Pe. We choose N =
100, β = 1, q = 180 that match the grid spacing across the inter-
face between the two subdomains and maximize accuracy in the
semi-infinite subdomain. Relative errors with respect to the exact
solution are below 4 ∗ 10−4 both in the advection-dominated and in
the diffusion-dominated regimes (Table 3). The accuracy appears
to decrease slightly for large values of Pe. We assume this to be
related to the stability issues of the modal Laguerre discretization
with Neumann boundary conditions discussed in the Appendix A.
Next, we validate the extended DG approach in the homogeneous
case. We consider a Gaussian initial datum:

c0(z) = exp

[
−
(
z − zc
σc

)2
]
. (45)

The interface is located at L = 10 m and the initial hump is placed
inside the bounded interval [0, L] by choosing zc = 8 m. The ve-
locity is u = 1 m/s and the final time is T = 4 s, so that the peak
of the Gaussian crosses the interface, and the other parameters are
∆t = 0.02 s, q = 40 modes in the semi-infinite region, N = 500 sub-
intervals for the DG scheme, so that ∆z = 0.02 m. As the model
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Table 3: Relative L1, L2 and L∞ errors as functions of Pe of the
extended DG scheme with respect to the exact solution, linear non-
homogeneous advection-diffusion equation. ∆z = 0.01 m, q = 180,
∆t = 0.05 s.

Pe Erel2 Erel1 Erel∞
0.001 2.65E-04 3.16E-04 2.23E-04

10 4.69E-05 4.63E-05 5.15E-05
100 4.13E-06 4.54E-06 4.94E-06
500 8.28E-06 1.01E-05 9.20E-06
1000 3.81E-05 4.50E-05 3.83E-05
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1

Initial datum

Solution at T=4s

Figure 1: Numerical solution of the linear homogeneous advection-
diffusion equation. Dashed line: initial datum. Solid line: numerical
solution with the extended DG scheme at T = 4 s. zc = 8 m, σc = 1 m,
q = 40, β = 4, ∆z = 0.02 m, ∆t = 0.02 s, µ = 1 m2/s, u = 1 m/s.

evolves, the initial hump expands and its amplitude decreases be-
cause of diffusion (Figure 1). Relative errors in the finite subdomain
[0, 10 m] are computed for the extended DG scheme with respect to
a single-domain DG solution run on [0, 50 m]. For q = 10 modes in
the semi-infinite subdomain, relative errors are below a few percent,
while for q = 40 they lower to around 10−10 (Table 4).

In a final validation test, we consider the case of the viscous
Burgers’ equation. The initial datum is the Gaussian profile c0(z) =
exp

(
−(z − 3)2

)
, with the interface placed at z = 3 m. As time t

evolves, the profile moves rightwards increasing its steepness – using
the viscosity value µ = 0.05 m2/s no oscillations are observed until
the final time T = 1 s. The extended DG scheme compares well with
a reference solution computed by a single-domain DG discretization
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Table 4: Relative L1, L2 and L∞ errors in [0, 10 m] of the extended DG
discretization with respect to a single-domain DG discretization, linear
homogeneous advection-diffusion equation. zc = 8 m, ∆z = 0.02 m,
∆t = 0.02 s, C = 1.

q β σc Erel2 Erel1 Erel∞

10 16
1 1.90E-02 1.11E-02 3.79E-02
2 1.97E-02 1.13E-02 4.10E-02

0.5 1.87E-02 1.11E-02 3.70E-02

40 4
1 4.63E-09 2.31E-09 5.76E-08
2 3.70E-09 2.83E-09 5.63E-09

0.5 2.47E-09 1.94E-09 2.88E-09

on [0, 10 m] (Figure 2).
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Figure 2: Numerical solution at T = 1 s of the viscous Burgers’ equation
with Gaussian initial datum q0(z) = exp

(
−(z − 3)2

)
, N = 30, q = 60,

∆t = 10−6 s. Black line: extended DG scheme. Red circles: Single-
domain DG discretization.

SSince the closed form of the solution is not available, we com-
pute the errors with respect to a stand-alone DG discretization on
a larger domain with the same spacing ∆z. The finite/semi-infinite
interface in the extended DG scheme is placed at L = 3 m and the
model is run until T = 10 s, with ∆t = 10−2 s. The cases of N = 15
and N = 30 subintervals in the finite subdomain are considered,
varying the number of modes in the semi-infinite subdomain, and,
accordingly, the scaling parameter β so that the distance between
the first two nodes matches the grid spacing in [0, L]. The stand-
alone single-domain DG reference solution for error computation is
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obtained on the interval [0, 10m]. A small number of Laguerre modes
are found to suffice to keep the coupling errors in the bounded sub-
domain [0, L] below a few percent (Table 5).

Table 5: Relative L1, L2 and L∞ errors in [0, 3 m] of the extended DG
discretization with respect to a single-domain DG discretization, viscous
Burgers’ equation. T = 10 s, ∆t = 10−2 s, N = 15.

N q β Erel2 Erel1 Erel∞

15

10 1.6 1.98E-02 7.80E-03 4.07E-02
20 0.85 2.51E-02 1.04E-02 5.03E-02
40 0.45 2.65E-02 1.17E-02 5.17E-02
80 0.23 2.62E-02 1.18E-02 5.07E-02

30

10 3.6 6.81E-04 4.60E-04 9.18E-04
30 1.2 5.62E-04 3.82E-04 7.59E-04
60 0.6 6.36E-04 4.31E-04 7.96E-04
100 0.36 6.76E-04 4.61E-04 8.77E-05

4.2 Efficiency of the extended DG scheme in
absorbing layer tests

The second set of tests assesses the performance of the extended DG
scheme in the absorption of perturbations leaving the finite subdo-
main when an artificial damping term −γc, with γ ≥ 0, is added to
the model equations’ right-hand side on the the semi-infinite sub-
domain [L,+∞). As in [6, 7] we choose a sigmoid of the form

γ(z) =
∆γ

1 + exp

(
αL0 − z + L

σD

) , (46)

where ∆γ is the sigmoid amplitude, α ∈ [0, 1] the position of the
sigmoid inside the absorbing layer, L0 the spatial extension of the
semi-infinite region, i.e. the distance between the first and the last
Gauss-Laguerre-Radau nodes, and σD the sigmoid steepness. As in
[6, 7] we set α = 0.3 m−1 and σD = L0/18.

In a first experiment, we consider the linear advection-diffusion
equation (39) and analyze the damping of a Gaussian profile defined
by (45) and initially placed inside the finite region [0, L]. To this end,
we place the interface at L = 1000 m, set the initial data parameters
zc = 750 m, σc = 50 m, and µ = 1 m2/s and u = 1 m/s. The crest
moves across the finite region, crosses the interface and is damped in
the semi-infinite region. Spurious reflections into the finite region,
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measured as absolute errors of the computed solution in the finite
region taking the absence of perturbation as reference, are below
10−3 for a range of values for the semi-infinite Laguerre modes q,
finite subdomain subintervals N , and number of time steps n – and
below 10−5 for the smallest q = 5 (Table 6).

Table 6: Absolute L2, L1 and L∞ residual errors in the finite region for
the damping of a Gaussian perturbation with the extended DG scheme,
linear advection-diffusion equation. C = 0.33, p = 2, T = 500 s.

q N n β E2 E1 E∞
40

400 600

1/28 9.51E-05 1.34E-04 1.03E-04
30 1/21 5.98E-06 1.18E-05 6.73E-06
20 2/29 2.58E-05 4.25E-05 2.70E-05
10 2/15 1.85E-06 6.84E-06 1.28E-06
5 1/4 1.52E-06 6.19E-06 8.15E-07

30

300 450

1/28 3.55E-04 4.99E-04 3.53E-04
20 1/19 2.59E-04 3.63E-04 2.59E-04
10 1/10 5.00E-06 1.18E-05 4.59E-06
5 11/60 1.67E-06 6.57E-06 1.03E-06

20
250 375

1/23 2.59E-04 3.63E-04 2.59E-04
10 1/12 5.00E-06 1.18E-05 4.59E-06
5 1/6 1.67E-06 6.57E-06 1.03E-06

10
200 300

1/15 4.56E-05 6.83E-05 3.84E-05
5 1/7 1.95E-06 7.48E-06 1.31E-06

Next, we consider a wave train case, obtained by imposing a Dirich-
let boundary condition c(0, t) = Asin(2πk/T t) at the left endpoint
z = 0. The initial condition is c0 = 0. The wave train is generated
at z = 0, crosses the finite region [0, L] and is damped by the ab-
sorbing layer, where we set ∆γ = 2A. Numerical parameters are set
as L = 500 m, µ = 1 m2/s, u = 1 m/s, T = 5000 s, and n = 16000
time steps. On a range of choices for the wave number, amplitude,
and Laguerre modes q, the extended DG scheme absorbs outgoing
perturbations with relative errors computed in [0, L] of less than
10−4 for q = 15, and at most 1.3 ∗ 10−3 for q = 5, with respect to
a reference single-domain DG solution on [0, 2L] (Figure 3, Tables
7 and 8). Results are comparable with those obtained in [7] for the
inviscid shallow water system with a different coupling approach.
The efficiency of the tool is competitive – for q = 5, less than a hun-
dredth for N = 600, and less than five thousandths for N = 1200,
of the computational cost is due to the absorbing layer.

Finally, we consider the Burgers’ equation. We place the in-
terface at L = 30 m, and center an initial Gaussian profile inside
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Figure 3: Damping of a wave train with wavenumber k = 30 (left),
k = 60 (right), linear advection-diffusion equation. Solid line: extended
DG scheme. Red circles: single-domain DG scheme. A = 0.1 m, q = 30,
N = 600, β = 0.143, T = 5000 s, n = 16000.

Table 7: Damping of a wave train, linear advection-diffusion equation.
Relative L2, L1 and L∞ errors in [0, L] of the extended DG solution with
respect to a single-domain DG solution, q = 15 modes in the semi-infinite
subdomain. L = 500 m, p = 1, µ = 1 m2/s, u = 1 m/s, T = 5000 s,
n = 16000.

A k N β Erel2 Erel1 Erel∞

0.025
30 600 0.286 1.67E-06 2.25E-05 1.30E-07
60 1200 0.571 1.10E-07 1.18E-08 1.31E-06

0.05
30 600 0.286 2.25E-06 1.78E-07 2.98E-05
60 1200 0.571 2.55E-07 2.11E-08 3.23E-06

0.1
30 600 0.286 2.15E-06 1.85E-07 2.62E-05
60 1200 0.571 4.74E-07 3.92E-08 5.99E-06

Table 8: Damping of a wave train, linear advection-diffusion equation.
Relative L2, L1 and L∞ errors in [0, L] of the extended DG solution with
respect to a single-domain DG solution, q = 5 modes in the semi-infinite
subdomain. L = 500 m, p = 1, µ = 1 m2/s, u = 1 m/s, T = 5000 s,
n = 16000.

A k N β Erel2 Erel1 Erel∞

0.025
30 600 0.74 9.23E-05 6.74E-06 1.30E-03
60 1200 1.48 7.57E-06 7.57E-07 5.74E-05

0.05
30 600 0.74 4.23E-05 3.11E-06 5.91E-04
60 1200 1.48 1.01E-05 1.03E-06 7.73E-05

0.01
30 600 0.74 3.15E-05 2.35E-06 4.41E-04
60 1200 1.48 1.36E-05 1.44E-06 9.93E-05
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the bounded region (zc = 25 m, σc = 1 m). We run the extended
DG scheme until T = 3600 s, when most of the initial perturba-
tion has left the bounded region. Residual errors in the finite re-
gion [0, L] with the extended DG scheme with respect to a single-
domain DG solution on [0, 10L/3] are below one percent for as few
as q = 5 modes in the semi-infinite subdomain (Table 9). Qualita-
tively equivalent results are obtained when placing the initial data
at the interface, zc = 30 m (not shown).

Table 9: Damping of a Gaussian profile initially centred at zc = 25 m,
viscous Burgers’ equation. Relative L2, L1 and L∞ errors in [0, L] of
the extended DG scheme compared with a single-domain DG solution.
T = 3600 s, ∆t = 0.1 s, ∆γ = 2, σc = 1 m.

q β Erel2 Erel1 Erel∞
60 0.06 2.25E-03 1.15E-02 5.54E-04
40 0.09 2.24E-03 1.14E-02 5.50E-04
20 0.175 2.17E-03 1.10E-02 5.34E-04
10 0.34 1.96E-03 9.95E-03 4.83E-04
5 0.68 1.54E-03 7.76E-03 3.84E-04

5 Conclusions and perspectives

This paper proposed an extended DG approach for the numer-
ical simulation of nonlinear hyperbolic-parabolic problems on un-
bounded domains. Built on earlier developments of coupled DG-
Laguerre discretizations for purely hyperbolic systems, the scheme
models a finite portion of the semi-infinite half-line using standard
Legendre basis functions and the adjacent unbounded portion using
scaled Laguerre basis functions.

Compared to a standard DG discretization, the extended DG
scheme only differs for the presence of two off-diagonal terms in the
system matrix, representing the numerical fluxes at the finite/semi-
infinite interface. The new framework improves on previous endeav-
ours that used bespoke coupling strategies, and provides a com-
pletely seamless coupling approach.

A linear analysis of the extended DG scheme in terms of the
Péclet number identified stability thresholds on the grid spacing
in the finite subdomain. The constraints become more stringent
for increasingly advection-dominated flows and smaller values of
the penalization parameter of the DG discretization in the finite
subdomain. The analysis and numerical experiments used scaled
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Laguerre basis functions, Gauss-Laguerre-Radau quadrature in the
unbounded subdomain, and Dirichlet boundary conditions. Results
covering other possible options are reported in [24] and are summa-
rized in the Appendix, corroborating the findings for the standalone
Laguerre scheme in a purely hyperbolic framework [7]. To the best
of the authors’ knowledge, a stability analysis on numerical schemes
using different sets of basis functions as the one presented in this
work is not currently available in the literature.

The correctness of the extended DG scheme, particularly regard-
ing the finite/semi-infinite interface fluxes, was validated in a series
of numerical experiments with the linear homogeneous and non-
homogeneous advection-diffusion equation and the nonlinear viscous
Burgers’ equation. By comparison with a standard single domain
implementation, spurious signals due to the presence of different
basis functions are of negligible entity on a range of spatial reso-
lutions, thereby complementing and strengthening results obtained
with hyperbolic systems in [6, 7].

In tests where the semi-infinite subdomain featured a reactive
damping term, the extended DG scheme displayed compelling per-
formance in efficiently absorbing outgoing waves in linear and non-
linear models. A very small number of Laguerre modes, both in
absolute terms and as a proportion of the total computational load,
was sufficient to damp single Gaussian signals and wave trains with-
out spurious phenomena spoiling the simulation in the finite subdo-
main. Relative errors with respect to a single-domain DG scheme
are small enough to make the extended DG scheme an interesting
technique for the discretization of fluid dynamics problems on un-
bounded domains.

The results achieved in this work offer a number of perspectives
for future investigation. First, a similar extended DG approach can
be developed coupling a strong form, nodal DG discretization on
the finite domain to the strong form, nodal approach with scaled
Laguerre functions for the semi-infinite domain, a choice that dis-
played stability advantages in the large Péclet number case. The
scheme can then be implemented in multiple dimensions, using ten-
sor product-based discretization approaches on semi-infinite strips
or circular domains, where the problem is discretized using the ex-
tended DG scheme in the vertical or radial direction and a discon-
tinuous Galerkin approach in the horizontal or azimuthal direction.
Such a model may find applications, for example, in the modelling
of the solar corona. The extension to systems of parabolic equations
or to non-linear diffusion may be considered, such as are found in
turbulence modelling. From a more theoretical perspective, the pos-

21



sibility to prove inf-sup conditions for the extended DG approach
could also be investigated.
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A Alternative discretizations on the

semi-infinite subdomain

We summarize here the results presented in [24] on the analysis
of various Laguerre-based discretizations of the advection-diffusion
equation with constant coefficients on R+ = [0,+∞). For the pur-
pose of deriving some discretizations, it can be helpful to reformulate
equation (39), which we report here for convenience,

∂c

∂t
+ u

∂c

∂z
= µ

∂2c

∂z2
(47)

as a system of first order equations

∂c

∂t
− µ∂v

∂z
+ uv = 0

∂c

∂z
− v = 0.

(48)
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We assume that solutions vanish at infinity

lim
z→+∞

c(z, t) = 0 (49)

and that either Dirichlet boundary conditions

c(0, t) = cL (50)

or Neumann boundary conditions

∂c

∂z
(0, t) = DcL (51)

are applied at z = 0. We require that µ > 0 (ellipticity condition)
and u > 0. In this case, the Dirichlet datum at z = 0 corresponds to
an inflow boundary condition, which guarantees well-posedness for
the hyperbolic part. We analyze several possible space discretiza-
tions, in order to determine which one shows the best stability prop-
erties and can therefore be chosen for the extended DG scheme in
conjunction with the Legendre basis in the finite sub-domain. As
done in [7] for the pure advection problem, we discretize the PDE
system (48) in space, obtaining, after substitution of the discretiza-
tion of the second equation in (48) into the first, a system of ordinary
differential equations of the form

dc

dt
= Ac + g, (52)

where c is the unknown vector of the expansion of the solution and
g contains the contribution of boundary conditions at z = 0, and we
study the eigenvalue structure of the matrix A. The corresponding
discretization scheme is stable if all the eigenvalues have non-positive
real part.
We analyse the following discretizations:

� Weak form. We multiply (48) by a test function, integrate by
parts and use either Gauss-Laguerre-Radau (GLR) or Gauss-
Laguerre (GL) quadrature rules. Two different approaches are
possible. In a modal approach, entries of the unknown vector
c are the coefficients of the expansion of the solution in the or-
thogonal basis of Laguerre functions or Laguerre polynomials.
In a nodal approach, the basis functions are the Lagrange ba-
sis functions associated with the integration nodes, so that the
unknown vector contains the nodal values of the approximate
solution.

Furthermore, the numerical solution can be expanded in a ba-
sis of either scaled Laguerre functions or scaled Laguerre poly-
nomials.
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� Strong form. In this case we directly discretize the strong for-
mulation (48) using a collocation approach and GLR quadra-
ture rules. This is the only practical choice if Dirichlet bound-
ary conditions have to be imposed, because the GLR nodes
include the left endpoint of the semi-infinite subdomain, un-
like the GL nodes.

We now summarize some definitions we need to introduce the
different variants of the matrix A and vector g.

For discretizations based on Laguerre functions, we define the
matrix L̂ = {l̂ij} with entries such that

l̂ij =


1/2 i = j

1 j < i

0 j > i.

(53)

If discretizations based on Laguerre polynomials are considered in-
stead, we use the matrix L = {lij} defined as

lij =


0 i = j

1 j < i

0 j > i

(54)

For nodal discretizations based on the weak form and on scaled La-
guerre functions, we then denote by zβj the j-th GLR or GL quadra-

ture node, by hβj (z) the associated Lagrangian polynomial, by ωi

the i-th quadrature weight, and by d̂βij the entries of the GLR or GL

differentiation matrix D̂β associated with scaled Laguerre functions,
defined as follows:

� GL nodes

d̂βij =



L̂ β
M (zβi )

(zβi − z
β
j )L̂ β

M (zβj )
i 6= j

−M + 2

2zβi
i = j

(55)

� GLR nodes

d̂βij =



L̂ β
M+1(z

β
i )

(zβi − z
β
j )L̂ β

M+1(z
β
j )

i 6= j

0 i = j 6= 0

−βM + 1

2
i = j = 0.

(56)
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We also define as Ω̂β the diagonal matrix with the quadrature

weights ω̂βi on the diagonal. For a nodal discretization based on
Laguerre polynomials, instead, the differentiation matrix Dβ has

entries dβij defined as:

� GL nodes

dβij =



L β
M (zβi )

(zβi − z
β
j )L β

M (zβj )
i 6= j

βzβi −M − 2

2zβi
i = j

(57)

� GLR nodes

dβij =



L β
M+1(z

β
i )

(zβi − z
β
j )L β

M+1(z
β
j )

i 6= j

β

2
i = j 6= 0

−βM
2

i = j = 0

(58)

We also set

ĝ1 = [(ĥβ0 )′′(z1), . . . , (ĥ
β
0 )′′(zM )], ĝ2 = [(ĥβ0 )′(z1), . . . , (ĥ

β
0 )′(zM )],

g1 = [(hβ0 )′′(z1), . . . , (h
β
0 )′′(zM )], g2 = [(hβ0 )′(z1), . . . , (h

β
0 )′(zM )],

ĥ = [ĥβ0 (0), . . . , ĥβM (0)], h = [hβ0 (0), . . . , hβM (0)],

Ŵ = Ω̂−1β D̂T
β Ω̂β, W = Ω−1β DT

βΩβ,

r̂ = Ω̂−1β ĥ, r = Ω−1β h,

e = [1, . . . , 1]T ∈ RM+1.

We also denote by (D̂β)M for scaled Laguerre functions, and by
(Dβ)M for scaled Laguerre polynomials, the matrices obtained from
the differentiation matrices D̂β and Dβ by removing the first row
and the first column. Finally we denote by (D̂β)0 for scaled Laguerre
functions, and (Dβ)0 for scaled Laguerre polynomials, the matrices
obtained from D̂β and Dβ by replacing the first row with zeros.

The expressions of matrix A and right-hand side g for the de-
rived discretizations are summarized in Table 10 – note the two use
of the matrix L̂ (53) for scaled Laguerre functions and L (54) for
scaled Laguerre polynomials.
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Table 10: Definition of matrix A and vector g in the Laguerre discre-
tization of (39) or (48) for several formulations ‘Form’, basis functions
‘BF’ and boundary conditions ‘BC’. ‘Coll’: collocation, ‘Nod’: nodal,
‘Mod’: modal, ‘Dir’: Dirichlet, ‘Neu’: Neumann, ‘LF’: Scaled Laguerre
Functions, ‘LP’: Scaled Laguerre Polynomials. See text for symbol defi-
nitions.

Form BF BC A g

Coll LF Dir µ(D̂2
β)M − u(D̂β)M µcLĝ1 − ucLĝ2

Coll LF Neu µD̂β(D̂β)0 − u(D̂β)0 µDcLĝ2 − uDcLe1

Coll LP Dir µ(D2
β)M − u(Dβ)M µcLg1 − ucLg2

Coll LP Neu µDβ(Dβ)0 − u(Dβ)0 µDcLg2 − uDcLe1

Nod LF Dir −µD̂βŴ + uŴ −µcLD̂β r̂ + ucLr̂

Nod LF Neu −µΩ̂−1β D̂T
β Ω̂βD̂β − uD̂β −µDcLr̂

Nod LP Dir −µDβW + µβDβ + uW − uβI −µcLDβr + ucLr
Nod LP Neu −µWDβ + µβDβ − uDβ −µDcLr

Mod LF Dir −µβ2L̂T L̂− uβL̂ µβ2cLL̂Te + uβcLe

Mod LF Neu −µβ2L̂L̂T + uβL̂T −µβDcLe
Mod LP Dir −µβ2LT (L + I)− uβ(L + I) uβcLe
Mod LP Neu −µβ2(L + I)LT + uβLT −µβDcLe

As customary for the advection-diffusion problem, the stability
property can be a function of the Péclet number, which is usually
defined as Pe = uL/µ, where L is a reference length scale. For
simplicity we choose the length scale L = 1, set µ = 1 and analyze
the stability of A for a fixed value of Pe; the corresponding ranges
for β are shown in Table 11 for both scaled Laguerre functions and
polynomials.

Table 11: Stability of A as a function of β: condition under which the
largest real part of the eigenvalues is non-positive. q = 50, µ = 1. ‘Neu’:
Neumann b.c., ‘Dir’: Dirichlet b.c., ‘LF’: Scaled Laguerre Functions,
‘LP’: Scaled Laguerre Polynomials.

LF LP

Neu Dir Neu Dir

Strong ∀β ∀β β ≤ 2.6Pe β ≤ 3Pe

Weak
Nodal

GLR β ≥ 0.58Pe ∀β 0.017Pe ≤ β ≤ 2.83Pe β ≤ 3Pe
GL β ≥ 2Pe ∀β 0.25Pe ≤ β ≤ 2Pe β ≤ 8.5Pe

Modal β ≥ 0.58Pe ∀β 0.017Pe ≤ β ≤ 2.83Pe β ≤ 3Pe

It can be observed that only the strong form discretizations based
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on Laguerre functions are stable for all boundary conditions and in-
dependently of the value of the Péclet number. Other discretizations
based on Laguerre functions are instead stable under mild conditions
on the value of β as a function of the Péclet number. These con-
ditions become problematic only in the very large Péclet number
limit.

In this paper, only the weak form modal discretization based on
Laguerre functions was considered for the extended DG scheme, due
to its hierarchical nature, that allows in principle for an easy (and if
necessary, dynamic) adjustment of the number of basis functions to
perform p−adaptation. The strong form nodal discretization based
on Laguerre functions seems otherwise the most robust option and
will be further studied as a basis for extended DG approaches in
future work. Discretizations based on Laguerre polynomials are in-
stead only stable under more restrictive conditions, which also affect
the choice of β in the small Péclet number case. These conclusions
complement the results in [7], where the pure advection problem
was discussed. Such an analysis does not seem to have been carried
out in the literature, to the best of the authors’ knowledge.
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