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Abstract

In this paper, we investigate the hemodynamics of a left atrium (LA) by proposing a com-
putational model suitable to provide physically meaningful fluid dynamics indications and
detailed blood flow characterization. In particular, we consider the incompressible Navier-
Stokes equations in Arbitrary Lagrangian Eulerian (ALE) formulation to deal with the LA
domain under prescribed motion. A Variational Multiscale (VMS) model is adopted to ob-
tain a stable formulation of the Navier-Stokes equations discretized by means of the Finite
Element method and to account for turbulence modeling based on Large Eddy Simulation
(LES). The aim of this paper is twofold: on one hand to improve the general understanding
of blood flow in the human LA in normal conditions; on the other, to analyse the effects of
VMS-LES models on a situation of blood flow which is neither laminar, nor fully turbulent,
but rather transitional as in LA. Our conclusion is that the VMS-LES model is better suited
to capture transitional effects than the standard SUPG stabilization method.
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1. Introduction

In Western Countries, cardiovascular related diseases represent nowadays the first cause
of death in the adult population [1]. Non-invasive experimental techniques, such as phase-
contrast magnetic resonance imaging (PC-MRI) and computational tomography (CT) scans,
allow to inspect the blood fluid-dynamics and displacement of blood vessels. These methods
are widely used to better understand the complex physiology of the cardiovascular system
as well as to investigate pathological conditions [2, 3]. Cardiovascular diseases diagnosis can
also be assessed through 4D flow magnetic resonance imaging (4D flow MRI) [49], a tool
which provides 3D visualization of the blood flow along time. Differently from standard
experimental techniques [4, 5], 4D flow MRI allows to measure hemodynamics indicators as
the wall shear stress (WSS) [48]. However, such imaging based techniques - both standard
and more advanced - do not allow to recover the spatial and temporal fine scales of these
flows. Hence, they might not accurately catch typical flows features as small coherent struc-
tures, recirculation regions and possible regions of transition to turbulence, as pointed out
in [48]. For the aforementioned reasons, mathematical modeling and numerical simulations
are largely employed to complement the available imaging techniques in an effort to better
understand the physiology and pathology of the cardiovascular system [6, 7].

Literature is abundant concerning the fluid dynamics of the whole circulatory system, the
study of heart valves, specific arteries and biomedical devices [6, 7, 8, 9, 10, 11, 12, 45, 46, 47].
By far, the most studied part of the heart is the left ventricle (LV) that has been considered
from the electro-mechanical and fluid dynamical viewpoints, both for idealized and patient-
specific data [8, 13, 14, 44, 43]. The LA is far less investigated, at least in normal conditions
[15, 16, 29, 62]. Understanding the blood flow behavior in the LA can shed light on its
functioning in physiological conditions and can be also regarded as a valuable step towards
the study of the complete left heart.

Idealized geometries for the numerical simulation of blood flows offers the possibility of
building a parametrized model that allows to obtain medical indicators for several patients
without the need of performing expensive patient-specific simulations. To take into account
the large geometrical inter-patient variability, an accurate idealized computational model of
the LA can be parametrized based on patient-specific image acquisitions. Another motiva-
tion behind the use of an idealized geometry with a prescribed kinematics, which we deduce
from the Wiggers diagram [41, 42], lays in the fact that patient-specific data for the atria
in normal (physiological) conditions are scarce. Moreover, even if good quality kinematics
images of the LA may become available, these would be typically acquired in individuals
affected by pathological conditions, such as atrial fibrillation [29].

An open issue in the blood fluid dynamics is whether a transition to turbulence occurs
whenever the blood velocity increases and the interactions among vortices are strong. The
Navier-Stokes equations are in principle suitable to model both transitional and turbulent
flows. However, the spatial and temporal resolutions required to fully capture the details of
the flow features through a Direct Numerical Simulation (DNS) for the discretized Navier-
Stokes equations would require prohibitive computational resources [18]. For this reason,
usually a turbulence model is employed, like e.g. the Reynolds Averaged Navier-Stokes
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equations (RANS models) and the Large Eddy Simulation (LES models) [18, 19, 20].
From a theoretical point of view, in a fluid flow, it is possible to distinguish the eddies

on the basis of their kinetic energy [18, 21]. The distribution of the kinetic energy as a
function of the eddy length scale (or wave number k, when a Fourier transform is applied to
the energy spectrum) follows some well established findings in homogeneous and isotropic
turbulence, such as the k−5/3 rule for the energy spectrum in the inertial range [18, 21].
In RANS models one solves for an average flow field in which only the large scale eddies
containing the highest energy are considered, while the effect of the inertial range and of
the fine scales is accounted by an extra term, called Reynolds stress, to be added to the
momentum balance equation of the Navier-Stokes equations [18, 21]. When using isotropic
models, the overall effect of the Reynolds stress term is to increase the viscosity of the fluid
with a turbulent viscosity that is added to the physical one. RANS models may become
too dissipative and yielding to unrealistic flows when used in transitional or even laminar
conditions. On the other hand, LES models aim at solving the large eddies of the flow
in the whole inertial range, while modeling the effect of the fine scale dissipative eddies.
Stabilization methods of the Navier-Stokes equations to obtain a solution inf-sup stable and
free of numerical instabilities evolved towards the formulation of a Variational Multiscale
(VMS) framework, contextually yielding a LES model [22, 50, 51, 52, 53, 54].

In this work, we develop a computational model of the human LA based on the in-
compressible Navier-Stokes equations expressed in the ALE formulation; specifically, we
prescribe a law of contraction and relaxation of the LA coherent with the features of the
cardiac cycle. We purposely use the VMS-LES model developed in [22] and later extended
in [23] to stabilize the numerical solution of the Navier-Stokes equations in ALE formulation
and to simultaneously account for turbulence modeling, see e.g. [24]. In particular, the
formulation of [23] considers space discretization based on Finite Element Method (FEM)
[56, 55] and time discretization based on (Backward Differentiation Formula) BDF [57] and
quasi-static approximation of the fine scale solutions. We generate a reference solution on a
very fine grid and we compare these results with those obtained with the standard Stream-
line Upwind Petrov-Galerkin (SUPG) and with the VMS-LES stabilization method [23]. We
actually show that the two approaches exhibit similar results in terms of total kinetic energy
and enstrophy, and as the mesh becomes finer, the effects of the chosen LES model are less
evident, as expected. However, remarkable differences are observed on the fluctuating ki-
netic energy, especially for the coarsest mesh used, revealing that the VMS-LES formulation
is better suited at capturing the transitional blood flow features typically developing in the
LA. Our numerical study allows a full characterization of blood flow in the LA in normal
conditions. Several meaningful fluid dynamics indicators are also provided.

The outlook of the paper is as follows: in Section 2 we recall the mathematical model,
the numerical methods and the LA model that we propose based on physiological data. In
Section 3 we present the three mesh levels adopted, while in Section 4 we report and comment
the numerical results obtained from the simulation run on the fine mesh (reference solution)
in terms of phase-averaged flow properties. Moreover, we perform a mesh converge study
along with a comparison between SUPG and VMS-LES stabilization techniques. Finally,
conclusions are drawn in Section 5.
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2. Mathematical model and numerical methods

In this section we first review the Navier-Stokes equations in ALE framework, then
we introduce our numerical methods and the turbulence models. Finally, we discuss the
boundary conditions and the LA volume variation in time based on physiological data.

2.1. The Navier-Stokes equations in ALE formulation and its numerical approximation

In large vessels, as well as in the heart chambers, blood behaves as a Newtonian incom-
pressible fluid and the presence of small particles suspended and carried by the plasma can
be neglected. In moving domains the Navier-Stokes equations can be reformulated in an
Arbitrary Lagrangian Eulerian (ALE) framework with a mesh-moving technique [25, 26]. In
this work, we do not study the interactions between the fluid and the endocardium, but we
consider that the solid-fluid interface has a prescribed velocity, which is equal to the fluid
one with no-slip conditions on the wall. Moreover, we use a standard harmonic extension of
the displacement in the fluid domain in order to maintain a good mesh quality while moving
it without the need of remeshing [26].

2.1.1. The Navier-Stokes equations in ALE framework

Let Ωt ⊂ Rd be the fluid domain at a specific time instant t > 0, provided with a
sufficiently regular boundary Γt oriented by outward pointing normal unit vector n̂. We
denote as ΓD

t and ΓN
t the portions of the boundary where respectively Dirichlet and Neumann

type boundary conditions are prescribed, with Γt = ΓD
t ∪ ΓN

t and
◦

ΓD
t ∩

◦
ΓN
t = ∅. Let u be

the fluid velocity and p be the pressure field. The incompressible Navier-Stokes equations
in ALE framework read:

∇ · u = 0 in Ωt × (0, T ], (1)

ρ
∂̂u

∂t
+ ρ

((
u− uALE

)
· ∇
)
u−∇ · σ(u, p) = f in Ωt × (0, T ], (2)

u = g on ΓD
t × (0, T ], (3)

σ(u, p)n̂ = h on ΓN
t × (0, T ], (4)

u = u0 in Ω0 × {0}. (5)

In particular,
∂̂u

∂t
=
∂u

∂t
+(uALE ·∇)u is the ALE derivative, ρ the fluid density and σ(u, p)

the total stress tensor defined for Newtonian, incompressible and viscous fluids as

σ(u, p) = −pI + 2µε(u), (6)

being µ the dynamic viscosity and ε(u) the strain-rate tensor defined as

ε(u) =
1

2

(
∇u+ (∇u)T

)
. (7)
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The function f is the forcing term, g and h are Dirichlet and Neumann data, u0 the initial
condition. We prescribe a velocity gALE on the whole boundary Γt and we recover uALE in
the whole domain at each time through an harmonic extension:

−∇ ·
(
K∇uALE

)
=0 in Ωt × (0, T ],

uALE = gALE on Γt × (0, T ],
(8)

where K is a positive-definite tensor that can be properly set to better tune the harmonic
extension operator, for example depending on the local spatial scales as done in [26]. Finally,
the domain displacement d(x, t) is obtained integrating over time the ALE velocity:

d(x, t) =

∫ t

0

uALE(x, τ)dτ . (9)

We introduce the the infinite dimensional function spaces:

Vg := {v ∈ [H1(Ωt)]
d : v = g on ΓD

t }, (10)

Q :=L2(Ωt), (11)

to define the weak formulation of the Navier-Stokes equations in ALE framework, which
reads:

given u0, for any t ∈ (0, T ], find (u, p) ∈ Vg ×Q such that:
(
v, ρ

∂̂u

∂t

)
+
(
v, ρ(u− uALE) · ∇u

)
+ (∇v, µ∇u)− (∇ · v, p) + (q,∇ · u) =

(v,f) + (v,h)ΓN
t
, for all (v, q) ∈ V0 ×Q.

(12)

We have denoted with (·, ·) and (·, ·)ΓN
t

the L2 inner product with respect to Ωt and ΓN
t

respectively.

2.1.2. Numerical methods and turbulence modeling

For the space discretization of Eq. (12), we introduce a finite element (FE) discretization
with piecewise Lagrange polynomials of degree r ≥ 1. The function space of the FE is
Xh

r = {vh ∈ C0(Ωt) : vh|K ∈ Pr, ∀K ∈ Th}, being Th a triangulation of Ωt and h the
diameter of the grid element K ∈ Th.

In the variational multiscale method, a direct-sum decomposition of the spaces Vg, V0
and Q is assumed as [22, 23]

Vg = Vh
g ⊕ V ′g , V0 = Vh

0 ⊕ V ′0 , Q = Qh ⊕Q′. (13)

In particular, Vh
g , Vh

0 , Qh are finite dimensional spaces associated to the FE dicretization,
whereas V ′g, V ′0, Q′ infinite dimensional ones, with Vh

g = Vg ∩ [Xh
r ]d, Vh

0 = V0 ∩ [Xh
r ]d and

Qh = Q ∩ [Xh
r ]d. In this way, we introduce an a-priori splitting of the solution into coarse

and fine scales, thus every function can be written as:

u = uh + u′ , p = ph + p′ , v = vh + v′ , q = qh + q′ .
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By decomposing (12) into coarse and fine scale equations and integrating by parts the
fine scale terms into the coarse scale equations, we obtain the coarse equations [22, 23]. Since
the fine scales are still defined in an infinite dimensional space, we model them adopting a
quasi-static approach as [22, 23]:

u′ ' −τM(uh)rM(uh, ph) (14)

p′ ' −τC(uh)rC(uh), (15)

being rM(uh, ph) and rC(uh) the strong residuals of (2) and (1) defined respectively as:

rM(uh, ph) = ρ
∂̂uh

∂t
+ ρ

((
uh − uALE

)
· ∇
)
uh −∇ · σ(uh, ph)− f (16)

rC(uh) = ∇ · uh (17)

The stabilization parameters are chosen as in [22, 23]:

τM(uh) =

(
ρ2

∆t2
+ ρ2 (uh − uALE) · G̃(uh − uALE) + Crµ

2G̃ : G̃

)− 1
2

, (18)

τC(uh) =
(
τM(uh)g̃ · g̃

)−1
, (19)

being ∆t the time step that will be used for the time discretization and Cr = 15 · 2r is a
constant obtained by an inverse inequality depending on the polynomial degree r [22, 23].
Moreover, G̃ is the metric tensor and g̃ the metric vector:

G̃ij =
d∑

k=1

∂ξk
∂xi

∂ξk
∂xj

, g̃i =
d∑

j=1

∂ξj
∂xi

, (20)

whereas we denote with x = {xi}di=1 the coordinates of the mesh element K in the physical

space and with ξ = {ξi}di=1 the coordinates of element K̂ in the parametric space. Let

x = x(ξ) : K̂ → K be a continuous and differentiable mapping from the parametric to
the physical space, with a continuously differentiable inverse. ∂ξ

∂x
in Eq. (20) is the inverse

Jacobian of the mapping [22].
The semi-discrete variational multiscale formulation with LES modeling of the Navier-

Stokes equations in ALE framework reads:
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given u0, for any t ∈ (0, T ], find (uh, ph) ∈ Vh
g ×Qh such that:

(
vh, ρ

∂̂uh

∂t

)
+
(
vh, ρ

(
(uh − uALE) · ∇

)
uh
)

+
(
∇vh, µ∇uh

)
−
(
∇ · vh, ph

)
+
(
qh,∇ · uh

)

+
(
ρ(uh − uALE) · ∇vh +∇qh, τM(uh)rM(uh, ph)

)
+
(
∇ · vh, τC(uh)rC(uh)

)
︸ ︷︷ ︸

(I)

+
(
ρuh · (∇vh)T , τM(uh)rM(uh, ph)

)
︸ ︷︷ ︸

(II)

−
(
ρ∇vh, τM(uh)rM(uh, ph)⊗ τM(uh)rM(uh, ph)

)
︸ ︷︷ ︸

(III)

=

(
vh,f

)
+
(
vh,h

)
ΓN
t
, for all (vh, qh) ∈ Vh

0 ×Qh.

(21)
In Eq. (21), the first and last rows contain integrals of the standard Navier-Stokes

equations in ALE framework (see Eq. (12)), the term (I) accounts for SUPG stabilization
term, (II) is a stabilization term due to the VMS model, and (III) is the LES term, which
models the Reynolds stress term.

We use Backward Euler Method to discretize the problem in time and we extrapolate uh

in the non-linear terms by means of the Newton-Gregory backward polynomials of order one.
This yields a single linear problem at each time step. For more details on this implementation
and on its strengths and limitations, the interested reader can see [23].

We partition the time interval into Nt subintervals of equal size ∆t = T
Nt

, with tn = n∆t
and we denote with the subscript n quantities related to the time step n, with n = 0, . . . , Nt.
The fully discretized linearized semi-implicit VMS-LES formulation of the Navier-Stokes
equations in ALE framework with Backward Euler Method as time integration method
reads:

Given uh
n, for any n = 0, . . . , Nt − 1, find (uh

n+1, p
h
n+1) ∈ Vh

g ×Qh such that:

(
vh, ρ

uh
n+1

∆t

)

Ωn+1

+
(
vh, ρ(uh

n − uALE
n+1 ) · ∇uh

n+1

)
Ωn+1

+
(
∇vh, µ∇uh

n+1

)
Ωn+1

−
(
∇ · vh, phn+1

)
Ωn+1

+
(
qh,∇ · uh

n+1

)
Ωn+1

+
(
ρ(uh

n − uALE
n+1 ) · ∇vh +∇qh, τM(uh

n+1)rM(uh
n+1, p

h
n+1)

)
Ωn+1

+
(
∇ · vh, τC(uh

n+1)rC(uh
n+1)

)
Ωn+1

+
(
ρ(uh

n − uALE
n+1 ) · (∇vh)T , τM(uh

n+1)rM(uh
n+1, p

h
n+1)

)
Ωn+1

−
(
ρ∇vh, τM(uh

n+1)rM(uh
n, p

h
n)⊗ τM(uh

n+1)rM(uh
n+1, p

h
n+1)

)
Ωn+1

=
(
vh,fn+1

)
Ωn+1

+
(
vh,hn+1

)
ΓN
n+1

+

(
vh, ρ

uh
n

∆t

)

Ωn

for all (vh, qh) ∈ Vh
0 ×Qh.

(22)
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The strong residuals, after time discretization, read

rM(uh
∗ , p

h
∗) = ρ

uh
∗ − uh

n

∆t
+ ρ

(
uh

n − uALE
n+1

)
· ∇uh

∗ − µ∆uh
∗ +∇ph∗ − fn+1, (23)

rC(uh
n+1) =∇ · uh

n+1 . (24)

where the subscript ∗ denotes either the time step n or n+ 1, as the residuals appear in Eq.
(22).

2.2. Left atrium model

The LA is a chamber located in the left part of the heart anchored on the top of the LV,
connected to the pulmonary circulation system through the pulmonary veins (PVs) and to
the LV through the mitral valve (MV). The position, size and even the number of PVs is
specific to the individual, but there are usually four veins situated in the upper part of the
LA in a perpendicular direction with respect to the MV axis. The left atrial appendage (left
auricle) is a small secondary cavity located on one side of the LA and connected to the main
cavity through an orifice. In Figure 2 we report the geometry of the idealized LA that is used
for the numerical simulations, while in Figure 1 we highlight the position of the chamber
inside a human torso. The geometry is obtained by filling a LA surface originally built by
means of NURBS in [27] with the purpose of modeling the electric potential wawefront. The
LA boundary Γt is split into six portions: four PVs sections ΓPVi

, i = 1, . . . , 4, the MV
section ΓMV and the LA endocardium Γw. The PVs are considered equal sized and the left
atrial appendage is labelled as LAA. The section area of the MV is 6.74 cm2, while the area
of each PV is 0.78 cm2, if the former were to be considered circular, their diameters would
be 2.93 cm and 1 cm respectively.

In physiological conditions, during diastole, blood is ejected from the LA into the LV
through the open MV with a first strong ejection and a second weaker one, strengthened
by the LA contraction known also as atrial kick. This process is characterized by a volume
reduction of about 25% of the initial volume. The first blood ejection from the LA is called
Early wave (E-wave) while the atrial kick is also known as After wave (A-wave). During
systole the MV closes and the LA is filled with blood coming from the PVs, enlarging to
reach the original volume.

In literature, the MV flow has been studied and measured in both physiological and
pathological conditions [2, 5, 6, 31, 43, 15]. In Figure 3 (left) we report the inlet (PVs
section) and outlet (MV section) flow rates against time. The first peak during diastole is
the E-wave, while the second one is the A-wave. During systole the flow through the MV
is zero because the valve is closed. The heart cycle considered in this work corresponds
to a rest condition at 60 bpm, i.e. the period is equal to THB = 1 s. The diastole lasts
for Tdias = 0.68 s and the systole for the remaining Tsyst = 0.32 s; a whole heartbeat lasts
THB = Tdias + Tsyst. We simulate respectively diastole and systole, so that the initial time
corresponds to the end systolic phase. The volume variation of the LA is based on the
ejection phases, so the volume decrease is modeled in two phases corresponding to the E
and A-waves. The LA filling phase is shorter and is accomplished with a continuous rise of
the volume. The LA volume as a function of time V (t) is reported in Figure 3 (right) [16].
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Figure 1: Position of the LA inside the torso. The idealized LA geometry is in green and the remain-
ing heart’s chambers in red. The 3D torso model is taken for visualization purposes from the repository
CoMMLab [38, 39].

Figure 2: The idealized LA geometry from two different angles. The domain boundary is Γt = Γw ∪ΓMV ∪(⋃4
i=1 ΓPVi

)
.

As explained in Section 2.1.1, we prescribe a velocity gALE on the boundary Γt and we
extend it harmonically to the whole domain to get the ALE velocity uALE (see Eq. (8)).
In particular, we compute the ALE velocity on the LA boundary by assuming separation of
variables as:

gALE(x, t) = fALE(x) gALE(t) on Γt, (25)

where fALE(x) contains the directions of gALE and gALE(t) is a time-dependent function.
We design fALE to decrease the wall velocity near the PVs (gALE = 0 on ΓPVi

, i = 1, . . . , 4).
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Figure 3: Blood flow through the MV section (ΓMV) and in each PV (ΓPVi
, i = 1, . . . , 4) vs. time (left).

Idealized LA volume vs. time (right).

Let xG, yG, zG be the coordinates of the LA center of mass (units in cm), we define the
function fALE as:

fALE(x) = F (z)((x− xG)x̂+ (y − yG)ŷ + 0.6(z − zG)ẑ), (26)

with

F (z) =





0.5 if |z − zG| ∈ [0, 2.5] cm,

0.5

(
2.5− |z − zG|

0.72
+ 1

)
if |z − zG| ∈ [2.5, 3.22] cm,

0 if |z − zG| ∈ [3.22, 10] cm.

(27)

The function F is represented in Figure 4 (left). In order to get the time variation of
the prescribed ALE velocity gALE(t), we consider the volume variation and we exploit the
Reynolds transport theorem (RTT) and Eq. (25):

dV (t)

dt
=

d

dt

∫

Ωt

dΩ
RTT
=

∫

Γt

gALE · n̂dΓ
Eq. (25)

= gALE(t)

∫

Γt

fALE · n̂dΓ, (28)

which gives the following definition of gALE:

gALE(t) =
1∫

Γt
fALE · n̂dΓ

dV (t)

dt
. (29)

To better appreciate the LA deformation, in Figure 4 (right) we overlap the geometry
of the LA in its relaxed and contracted configurations, at the beginning and at the end of
diastole, where the maximum LA contraction is met, respectively.

In terms of boundary conditions, during diastole (MV is open), we set a homogeneous
Neumann boundary condition on the MV section and we prescribe Poiseuille profiles on the
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Figure 4: Function F (z) on the LA surface (left). LA geometry at its maximum contraction at end diastole
(right): the colors in the deformed geometry highlight the magnitude of the displacement vector.

PVs. We do this using, for each vein, a parabolic velocity profile and imposing the inlet
flow-rate QPVi

i = 1, . . . , 4 that fulfils the mass balance:

4∑

i=1

|QPVi
(t)| = |QMV(t)|+

∣∣∣∣
dV (t)

dt

∣∣∣∣ , (30)

whereas the fluxes are defined as:

QPVi
(t) =

∫

ΓPVi

(
u− uALE

)
· n̂dΓ, i = 1, . . . , 4, (31)

QMV(t) =

∫

ΓMV

(
u− uALE

)
· n̂dΓ. (32)

During systole, the MV is closed (QMV(t) = 0), so we switch the boundary condition on
ΓMV to a Dirichlet one to model the closed behaviour of the valve: u = gALE. The sudden
switch of boundary conditions from natural to essential and viceversa – aimed at replicating
the rapid closing and opening stages of the MV – may potentially introduce some artifacts
on the numerical solution, even if these are negligible in our experience. Furthermore, we
use a homogeneous Neumann boundary condition on one of the PVs (ΓPV4) while keeping
a Dirichlet boundary condition with assigned flux given by (30) on the other three. As
a matter of fact, numerical oscillations due to the enforcement of the incompressibility
constraint in the three remaining inlet sections and Dirichlet boundary conditions in the rest
of the boundaries (Γw ∪ΓMV) are strongly reduced with this boundary conditions choice. In
addition, we have found that during systole the velocity profile on ΓPV4 resembles a Poiseuille
profile. By setting the boundary conditions as explained, we obtain the fluxes through the
MV section and through each PV as reported in Figure 3.

Moreover, a backflow stabilization is introduced in all the homogeneous Neumann-type
boundary conditions in order to weakly penalize the reverse flow [36]:

σ(u, p)n̂ = ρ({
(
u− uALE

)
· n̂}−)

(
u− uALE

)
on ΓN

t , (33)
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being {
(
u− uALE

)
· n̂}− the negative part of

(
u− uALE

)
· n̂:

{
(
u− uALE

)
· n̂}− =

{(
u− uALE

)
· n̂ if

(
u− uALE

)
· n̂ < 0,

0 if
(
u− uALE

)
· n̂ ≥ 0.

(34)

Finally, we summarize in Eq. (35) the whole set of boundary and initial conditions for the
modelling of blood flow in the LA.

u = −|QPVi
(t)|

4|ΓPVi
|

(
1− r(x)2

R2
i

)
n̂i on ΓPVi

× (0, Tdias), i = 1 . . . , 4,

σ(u, p)n̂ = ρ({
(
u− uALE

)
· n̂}−)

(
u− uALE

)
on ΓMV × (0, Tdias],

u = gALE on Γw × (0, Tdias],

u = −|QPVi
(t)|

4|ΓPVi
|

(
1− r(x)2

R2
i

)
n̂i on ΓPVi

× (Tdias, THB], i = 1 . . . , 3,

σ(u, p)n̂ = ρ({
(
u− uALE

)
· n̂}−)

(
u− uALE

)
on ΓPV4 × (Tdias, THB],

u = gALE on Γw ∪ ΓMV × (Tdias, THB],

u = 0 in Ω0 × {0},
(35)

in the Dirichlet inflow boundary condition, r(x) = |x|, Ri is the radius of the i–th PV
section and n̂i its outward directed unit vector normal to.

3. Mesh generation

Mesh Th1 Th2 Th3

# elements 575’220 1’711’622 8’344’030
uh 291’561 830’517 4’030’227

# DOFs (P1− P1) ph 97’187 276’839 1’343’409
total 388’748 1’107’356 5’373’636

Inner elements
hmin [cm] 0.05 0.05 0.05
hmax [cm] 0.2 0.1 0.05
δBL [cm] 0.05 0.05 0.05

Boundary layer nlayers 3 4 5
χBL 0.8 0.8 0.8

Table 1: Details on the three meshes Thi
, i = 1, . . . , 3: number of elements; number of degrees of freedom

(DOFs) using Lagrangian linear elements (for velocity, pressure and total number); minimum and maximum
cell size for the inner elements of the mesh; boundary layer: boundary layer thickness δBL, number of layers
nlayers and ratio among successive layers’ thicknesses χBL.

.
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We generate three meshes, namely a coarse, medium and a fine one, denoted respectively
as Th1 , Th2 and Th3 . As shown in Figure 5 and reported in Table 1, for Th1 and Th2 , a non-
uniform distribution of mesh element size is considered in order to have a well resolved LAA.
In particular, we adopt for all mesh levels the same minimum cell-size hmin = 0.05 cm in
the lower corner of the LAA and we increase it linearly through an appropriate distance
function (for Th1 and Th2 only). Th3 instead keeps uniform grid cells sizes hmin = hmax = 0.05
cm. Furthermore, in order to accurately catch viscous effects near the wall, we introduce a
boundary layer made of nlayers layers with linearly variable element thicknesses. In particular,
we adopt for all the meshes the same boundary layer thickness δBL = 0.05 cm, while we
increase the number of layers - going from a mesh level to another - keeping the same
ratio among successive layers’ thicknesses χBL. Table 1 lists quantitative information about
the three meshes. Mesh generation is performed by exploiting the VMTK library [37, 60].
Meshes are uploaded to a GitLab repository and publicy accessible [63].

(a) mesh Th1
(b) mesh Th2

(c) mesh Th3

Figure 5: The three meshes Thi
, i = 1, . . . , 3 adopted for the CFD simulations of the idealized LA geometry

with a focus on a inlet section.
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4. Numerical results and discussion

We report the numerical results obtained perfoming numerical simuluations1 with the FE
library LifeV [28, 58] for the solution of the fluid dynamics in the idealized LA as modeled
in Sections 2 and 3.

Blood is set as Newtonian, incompressible and viscous fluid with density ρ = 1.06 g/cm3

and dynamic viscosity µ = 0.035 g/(cm s). For each Thi
, i = 1, . . . , 3 , we simulate six

heartbeats, starting from the initial condition u0 = 0. Due to the periodicity in time of
the boundary conditions of the problem, we analyse the output of the numerical simulations
with a phase-averaging filter in order to get average quantities on one representative cycle.
Furthermore, in order to remove the influence the unphysical initial condition u0 = 0,
we discard the first two heartbeats. Hence, referring to NHB = 4 heartbeats, with period
THB = 1 s, we introduce the phase-averaging filter for the velocity as:

〈u(x, t)〉 =
1

NHB

NHB∑

n=1

u(x, t+ (n− 1)THB). (36)

First, we present the results achieved with the mesh Th3 using the SUPG stabilization
method, which will represent our reference solution. Then, we perform a mesh convergence
study using both SUPG and VMS-LES models, comparing the results with the reference
solution. Finally, we compare the two methods in terms of fluid dynamics indicators.

4.1. The reference solution

We report the results obtained with the mesh Th3 by adopting a SUPG stabilization
method, with a time step ∆t = 6.25 · 10−5 s. The numerical solution correspondingly
obtained is denoted as our reference solution. We remark that the results that will present
are referred to the phase-averaged velocity 〈u〉 which is representative of a heartbeat defined
in the time domain [0, THB].

In Figure 6, we report the phase-averaged velocity magnitude of the blood on a slice
cutting two PVs at six time instants corresponding to the diastolic peak of the E-wave
(t = 0.20 s), the plateau between E and A-waves (t = 0.40 s), the A-wave (t = 0.60 s), the
beginning of systole (t = 0.68 s), the filling phase during systole (t = 0.80 s) and the end of
systole (t = 1.00 s). The peak velocity attained in our simulations is around 90 cm/s during
the E-wave. The jets coming from the PVs impact one on each other, as it can be seen at
time 0.20 s.

In Figure 7, we report volume rendering of the phase-averaged velocity magnitude at
different time instants. The flow shows quite complex features, in particular we observe that
the jets impact during the heartbeat in three peculiar instants: the E-wave (Figure 7a), the
A-wave (Figure 7b) and during the filling phase of systole (Figure 7e).

1Numerical simulations were run on the cluster iHEART (Lenovo SR950 8 x 24-Core Intel Xeon Platinum
8160, 2100 MHz and 1.7TB RAM) available at MOX, Dipartimento di Matematica, Politecnico di Milano.
Furthermore, simulations on the mesh Th3

were run on the cluster GALILEO supercomputer (IBM NeXtScale
cluster, 1022 nodes (Intel Broadwell), 2 x 18-Cores Intel Xeon E5-2697 v4 at 2.30 GHz, 36 cores/node, 26.572
cores in total with 128 GB/node) by CINECA.
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(a) t = 0.20 s (b) t = 0.40 s (c) t = 0.60 s

(d) t = 0.68 s (e) t = 0.80 s (f) t = 1.00 s

Figure 6: Reference solution: phase-averaged velocity magnitude |〈u〉| on a slice cutting two PVs (top-left)
at different time instants.

(a) t = 0.20 s (b) t = 0.40 s (c) t = 0.60 s

(d) t = 0.68 s (e) t = 0.80 s (f) t = 1.00 s

Figure 7: Reference solution: volume rendering of phase-averaged velocity magnitude |〈u〉| at different time
instants.
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(a) t = 0.20 s (b) t = 0.40 s (c) t = 0.60 s

(d) t = 0.68 s (e) t = 0.80 s (f) t = 1.00 s

Figure 8: Reference solution: isosurfaces of Q-criterion Q = 2000 Hz2 coloured by phase-averaged vorticity
magnitude |∇ × 〈u〉| at different time instants.

We split the velocity gradient∇〈u〉 into its symmetric ε(〈u〉) and skew-symmetric ω(〈u〉)
parts:

∇〈u〉 =
1

2

(
∇〈u〉+ (∇〈u〉)T

)
+

1

2

(
∇〈u〉 − (∇〈u〉)T

)
= ε(〈u〉) + ω(〈u〉), (37)

being respectively the strain-rate tensor and the rotation tensor. In order to identify coherent
vortex structures, we introduce the scalar function [59]:

Q(〈u〉) =
1

2

(
|ω(〈u〉)|2F − |ε(〈u〉)|2F

)
, (38)

where | · |F is the Frobenius norm of a tensor. If Q(〈u〉) > 0, the rotation of a fluid element
becomes dominant over its stretching: the Q-criterion consists in analysing the isosurfaces
of the positive part of Q(〈u〉) [59]. In Figure 8 we plot the isosurfaces corresponding to
Q = 2000 Hz2 coloured with the phase-averaged vorticity magnitude |∇ × 〈u〉|. The main
feature of this flow is the formation of vortex rings out of the PVs when the blood enters in
the LA. These rings mutually interact when the corresponding jets impact and then form
structures that become smaller and smaller until disappearing by dissipating their energy.
In Figure 8a, we highlight the impact among the strong jets during the E-wave. Then, at
time t = 0.40 s (Figure 8b), the structures become smaller and they have nearly disappeared
as new jet enters at time t = 0.60 s (Figure 8c) forming four well visible vortex rings around
the PVs sections (A-wave). In the refilling phase of systole (t = 0.80 s), the vortex rings are
again visible with some residual structures still present at the center of the chamber.

By focusing on the impact during the E-wave, in Figure 9, we show the projection of the
phase-averaged vorticity ∇ × 〈u〉 on the normal direction of a slice cutting two PVs. We
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(a) t = 0.16 s (b) t = 0.17 s (c) t = 0.18 s

(d) t = 0.20 s (e) t = 0.21 s (f) t = 0.22 s

Figure 9: Reference solution: projection of the phase-averaged vorticity on the normal direction of a slice
cutting two PVs (top-left) (∇× 〈u〉) · n̂. Results at different time instants in the proximity of the E-wave
(t = 0.20 s).

observe the formation of shear layers from the PVs (Figure 9a), a early-stage interaction
in Figure 9b along with some recirculation regions. Then, from t = 0.18 s, we observe
perturbed shear layers with a coalescence of vortices and a dispersion of the organized flow
pattern previously seen (Figures 9c, 9d). In particular, the vortices breakdown propagates
in the rest of the chamber, towards the MV section (Figures 9e, 9f).

The velocity profile at the MV is an interesting output of this computation since it can
be used as input for the simulation of the LV hemodynamics [30, 31]. In Figure 10, we
report glyphs of velocity vector at the MV section during diastole (i.e. when the MV is
open) on a slice coloured with 〈u〉 · n̂MV, i.e. the scalar product among the phase-averaged
velocity and the outward pointing unit vector normal to the MV section. We notice that the
velocity profile that we obtain is highly variable in time and, more importantly, the velocity
shows a flat profile only at some specific times, such as at t = 0.10 s (Figure 10a). Even
when the flow is intense, such as at t = 0.20 s or t = 0.60 s, the velocity profile is never flat
but, on the contrary, the presence of vortices located above the MV section produces low
velocity regions as shown in Figures 10b and 10f. During the time between the two waves,
the integrated outflow is positive, as can be seen in Figures 10c, 10d and 10e, but some
recirculating velocities are visible in some spots reaching negative values of 〈u〉 · n̂MV = −15
cm/s.
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(a) t = 0.10 s (b) t = 0.20 s (c) t = 0.30 s

(d) t = 0.40 s (e) t = 0.50 s (f) t = 0.60 s

Figure 10: Reference solution: glyphs of velocity vector at the MV section during diastole on a slice coloured
with 〈u〉 · n̂MV, i.e. the scalar product among the phase-averaged velocity and the outward pointing unit
vector normal to the MV section.

In view of calculating hemodynamic indicators, we define the viscous stress tensor related
to the phase-averaged velocity field as

τ (〈u〉) = 2µε(〈u〉). (39)

We compute the vector wall shear stress (WSS) on the boundary of the reference configu-
ration Ω0 (i.e. the LA at the beginning of diastole) as

WSS(〈u〉) = τ (〈u〉)n̂− (τ (〈u〉)n̂ · n̂) n̂ on ∂Ω0, (40)

and the scalar fields time averaged wall shear stress (TAWSS), oscillatory shear index (OSI)
and relative residence time (RRT) (see [16, 32, 33]). These indicators are meaningful since
endothelial cells and their long-term response affect both the magnitude in the WSS and by
its evolution in time. For this reason, they can be used to identify formation of new tissues,
plaques and the promoting of neointimal hyperplasia [32]. With the WSS, we compute the
TAWSS as the integral over the time period of the magnitude of the WSS,

TAWSS(〈u〉) =
1

THB

∫ THB

0

|WSS(〈u〉)|2dt on ∂Ω0, (41)
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(a) t = 0.20 s (b) t = 0.40 s (c) t = 0.60 s

(d) t = 0.68 s (e) t = 0.80 s (f) t = 1.00 s

Figure 11: Reference solution: wall shear stress (WSS) magnitude at different time instants.

where | · |2 denotes the Euclidean norm of a vector. The OSI is defined as [32]:

OSI(〈u〉) =
1

2


1−

∣∣∣
∫ THB

0
WSS(〈u〉)dt

∣∣∣
2∫ THB

0
|WSS(〈u〉)|2 dt


 on ∂Ω0, (42)

and it is higher in regions where the WSS changes much during a heart cycle. Finally, we
compute the RRT as in [33]

RRT(〈u〉) =

(
(1− 2 OSI(〈u〉)) 1

THB

∫ THB

0

|WSS(〈u〉)|2 dt
)−1

on ∂Ω0. (43)

The RRT is proportional to the residence time of blood particles in the proximity of the
wall, and it can be regarded as a convenient fluid dynamics indicator to identify regions
where WSS is both low and oscillatory [61].

In Figure 11, we report the WSS magnitude as computed on the surface of the LA at
different time instants by using the phase averaged velocity. The largest values are attained
during the E-wave in the middle of the surface of the LA, towards the MV.This region
corresponds to areas where vortices interact and are pushed towards the LA wall. During
the rest of the cycle, the WSS values remain quite small; large values are attained only in
the PVs and in the lower part of the LA.

Figure 12 shows the TAWSS on the reference configuration from two different perspec-
tives: low values of the TAWSS are achieved in the LAA, while some peaks can be appre-
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Figure 12: Reference solution: different views of time averaged wall shear stress (TAWSS).

ciated in the opposite side of the chamber, in accordance with the large values of |WSS|
previously observed due to the interaction among the vortices and the endocardium.

In Figure 13 we report the OSI computed in the same settings of Figure 12. The OSI is
large on the top of the LA where a large recirculation is present and on the bottom of the
LAA, revealing hence a significant variation of the wall shear stress.

As a qualitative indication of the time that a fluid particle spends in the vicinity of
the wall, we report in Figure 14 the RRT: as expected, the largest values are attained in
the bottom of the LAA. We suggest it could be related to the shape and position of the
LAA, where the blood reaches very low velocities and recirculation effects are observed.
Interestingly, analogous considerations in terms of all the analysed hemodynamic indicators
are found in healthy patient-specific studies as highlighted in [16], both in terms of magnitude
and their distribution on the LA surface.

Large values of RRT in the LAA suggest the stasis of blood particles, i.e. the coagulation
of blood in low velocity regions, which may result in the formation of blood clots [40, 62].
For this reason, we want to count the number of blood particles remaining in the LA at
the end of each heart-cycle. Thus, we inject in the chamber a number particles n(t) that is
proportional to the inlet flux Qin(t) =

∑4
i=1 QPVi

(t) as:

n(t) = Np
Qin(t)

max
t∈[0,THB]

Qin(t)
, (44)

being Np the maximum number particles injected at a specific time. In particular, we
populate the LA with n(t) particles only during the first heartbeat, and, at the end of
each heart-cycle, we count how many particles are left inside the LA. As shown in Figure
15a, particles injection in the PVs is achieved by considering four squares of edge 2R (inlet
sections diameter) discretized with a cartesian grid with element size δ(t). In a single PV,
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Figure 13: Reference solution: different views of oscillatory shear index (OSI)

Figure 14: Reference solution: different views of relative residence time (RRT).

at time t, the number of particles entering in the LA is n(t)
4

, which can be approximated as

n(t)

4
≈
(

2R

δ(t)
− 1

)2

. (45)

Using Eq. (44), the following expression of time-varying grid element size holds:

δ(t) = R



√√√√Np

Qin(t)

max
t∈[0,THB]

Qin(t)
+ 2




−1

, (46)

which suggests that high flow rates correspond to small grid elements and therefore more
particles are introduced. In Figure 15b, we report the behaviour of the grid element size in
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(a)
(b)

Figure 15: Details on the methodology adopted to estimate number of particles. Four grids built around
the PVs of the LA with a focus on the grid (in red the n(t)/4 particles entering in each vein) (left). The
behaviour of the grid element size δ(t) in time, with triangles, we denote the particles injection instants
(every 0.05 s) (right).

time. In particular, we inject particles in the four PVs every 0.05 s, obtaining, as expected,
a profile proportional to the inlet flux, as reported in Figure 17a. In Figure 16 we report
snapshots of the blood particles during six heartbeats, injecting in the first heart cycle only
and leaving particles in the chamber for the following five cycles. We studied the contribution
of particles coming from different veins representing with different colours particles from
different inlets. We can observe the formation of four vortex rings coming from the PVs, with
four jets impacting in the middle of the chamber and producing hence a mixing of particles.
Particles remain inside the LAA, as also confirmed by large values of RRT previously found.
In order to quantify wash-out effects, we stop particles introduction at t = 1.00 s, counting
the number of particles at the end of each cycle. This result is then visualized in Figure 17b
and quantified in Table 2. The overall number of particles introduced in the chamber during
the first heartbeat is 50’471 and, at the end of each cardiac cycle, we report the percentage
of particles still inside, showing that, after 5 cycles, in the LA there are the 0.08% of the
total injected particles.

time [s] t = 1.00 t = 2.00 t = 3.00 t = 4.00 t = 5.00 t = 6.00
particles 37’971 7’336 1’583 344 91 42

% on total injected 75.23 14.53 3.14 0.68 0.18 0.08

Table 2: Reference solution: particles remaining in the LA at the end of each cardiac cycle and percentage
of particles on total injected.
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(a) t = 0.05 s (b) t = 0.10 s (c) t = 0.15 s

(d) t = 0.20 s (e) t = 0.30 s (f) t = 0.40 s

(g) t = 0.50 s (h) t = 0.70 s (i) t = 0.80 s

(j) t = 1.00 s (k) t = 2.00 s (l) t = 3.00 s

(m) t = 4.00 s (n) t = 5.00 s (o) t = 6.00 s

Figure 16: Reference solution: blood particles in the LA during six heartbeats, injecting particles for the
first heartbeat only in a number proportional to the inlet flow rate. From (a) to (j) injection during the first
cycle, from (k) to (o) particles remained inside the chamber at the end of each heart-cycle.
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(a) (b)

Figure 17: Reference solution. Particles injected every 0.05 s (in red) are proportional to the inlet flow
rate (in blue) (left). Number of particles inside the LA during 6 cardiac cycles, introducing particles in the
first cycle only. With different colours: the number of particles in the chamber coming from different PVs
(right).

4.2. Mesh convergence and comparison of SUPG and VMS-LES methods

We present a comparison between VMS-LES and SUPG stabilization techniques using
the meshes Th1 and Th2 . The results are compared with the reference solution of Section
4.1, which we remark has being obtained performing numerical simulation on the mesh Th3

with SUPG stabilization technique. In Table 3, we summarize details of the five numerical
simulations performed. Further features on the meshes adopted are given in Table 1.

Simulation ID Mesh level ∆t [s] Stabilization method
Reference Th3 6.25 · 10−5 SUPG

(a) Th2 2.50 · 10−4 SUPG
(b) Th2 2.50 · 10−4 VMS-LES
(c) Th1 1.00 · 10−3 SUPG
(d) Th1 1.00 · 10−3 VMS-LES

Table 3: Details on the numerical simulations used to compare SUPG and VMS-LES stabilization techniques
in transitional regime. In all the simulations, we adopt P1−P1 FE spaces, Backward Euler Method as time
discretization scheme, and a semi-implicit treatment of the non linear terms.

We define some turbulent indicators obtained integrating suitable variables over the
whole domain that are then compared with reference data in order to validate the results of
the numerical simulations. Specifically, we compute the total kinetic energy of the flow, by
using the phase-averaged velocity (defined in Eq. (36)), as

Ek (〈u〉) =
1

2
ρ

∫

Ωt

|〈u〉|22dΩ. (47)
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Figure 18: Total kinetic energy Ek(〈u〉) using SUPG and VMS-LES models on meshes Th1
and Th2

compared
to the reference solution; zoom on the first peak.

Moreover, we define the enstrophy of the flow as [34, 35]

S (〈u〉) =
1

2
ρ

∫

Ωt

|∇ × 〈u〉|22dΩ. (48)

The latter is a fluid dynamics indicator that can be used to identify a transitional flow
[34, 35]. Finally, we define the total fluctuating kinetic energy of the flow as [5, 30]

Ekf (σu) =
1

2
ρ

∫

Ωt

|σu|22dΩ, (49)

being σu = (σu1 , σu2 , σu3)
T a vector containing the standard deviation (i.e. the fluctuations)

of each component k of the velocity field with respect to the phase-averaged velocity. Its
k–th component is defined as

σuk
(x, t) =

√
var(uk(x, t)) =

√
〈uk2(x, t)〉 − 〈uk(x, t)〉2, k = 1, 2, 3. (50)

The fluctuating kinetic energy is an important indicator of transition to turbulence but
also provides informations on cycle-to-cycle variations. It can be seen as one of the most
characteristic indicator of transitional flow for hemodynamic applications [5, 30].

In Figure 18, we report Ek computed on the reference solution and for the meshes Th1

and Th2 with SUPG and VMS-LES models. The total kinetic energy presents three peaks in
correspondence of E-wave, A-wave and systolic filling phase. Energy production is observed
when high-speed blood flows arrive from the PVs. As the jets impact in the middle of the
cardiac chamber, dissipation of the kinetic energy can be appreciated. All the models and
meshes share the same overall behaviour and coherent with the reference solution result.
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Figure 19: Enstrophy S(〈u〉) using SUPG and VMS-LES models on meshes Th1 and Th2 compared to the
reference solution.

For the mesh Th2 , the results are almost always comparable, whereas small differences can
be appreciated in correspondence of the first peak among VMS-LES and SUPG on the mesh
Th1 : with a coarse level, we see how the VMS-LES model seems to represent more accurately
our reference solution, whereas SUPG overestimates it.

In Figure 19, we show the enstrophy S computed on the reference solution and for the
meshes Th1 and Th2 with both SUPG and VMS-LES models. As for the total kinetic energy
Ek, we observe three main peaks during the hearbeat in correspondence of the production
and consequent dissipation of vorticity. The solution largely depends on the underlying
mesh and, as it is refined, the solution becomes more accurate and no remarkable differences
among the models can be appreciated.

Differently from the total kinetic energy and the enstrophy, we found more appreciable
differences in the fluctuating kinetic energy Ekf as can be seen in Figure 20. We observe
that the Ekf shows a peak with a large amplitude immediately after the E-wave. This result
suggests that velocity fluctuations σu are higher during the first peak mainly due to small
differences in the location of the shear layer and the vortical structures (where velocity
gradients are high), as observed also in [5]. Moreover, we highlight this by reporting in
Figure 21 the specific fluctuating kinetic energy (1

2
ρ|σu|2) on a slice passing through the

four PVs at time t = 0.25 s. It can be observed in fact that the largest values are obtained
in the area where jets and vortical structures impact. Comparing the behaviour of Ekf

adopting different mesh and models, we can observe that, on the one hand, the solutions
obtained with SUPG and VMS-LES models on the mesh Th2 are very similar and both
are close to the reference solution, except from the third peak (zoom B) where the VMS-
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Figure 20: Fluctuating kinetic energy Ekf (σu) using SUPG and VMS-LES models on meshes Th1
and Th2

compared to the reference solution; zooms on the second and third peak.

LES model better predicts the result obtained with the reference grid. On the other hand,
remarkable differences are observed for the coarse grid. As a matter of fact, the amplitude
of the first peak is highly dependent on the stabilization technique: they are both inaccurate
with respect to the reference solution, but the coarse VMS-LES solution produces a lower
relative error than the coarse SUPG (21.59% vs. 32.95%). Moreover, the VMS-LES solution
on Th1 is more accurate than the SUPG solution on the same mesh in the whole heartbeat
(as confirmed also by zoom A and zoom B). Thus, we can see that, in terms of Ekf : (1) as
expected, the effect of the turbulence model starts to vanish as the mesh becomes finer
(since comparable results with SUPG and VMS-LES adopting the mesh Th2 are achieved);
(2) with relatively coarse meshes, VMS-LES better captures the fluctuating kinetic energy,
being the latter an accurate indicator of transition to turbulence and of cycle-to-cycle flow
variations, two relevant properties of cardiovascular flows.

5. Conclusions

In this paper, we simulated the hemodynamics of an idealized human LA with the goal
of better characterizing and understanding the blood flow behavior in this little explored
chamber. We used the standard SUPG and the VMS-LES stabilization methods to yield
stable, discrete formulations of the Navier-Stokes equations approximated by means of the
Finite Element method and to take into account of turbulence modelling (in the case of VMS-
LES). The ALE formulation with prescribed deformation of the computational domain has
been considered in combination with the Navier-Stokes solver. We run simulations on a
fine mesh for six heartbeats discarding the first two in order to forget the influence of the
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(a) (b) Th1
SUPG (c) Th1

VMS-LES

(d) Th2
SUPG (e) Th2

VMS-LES (f) Reference solution

Figure 21: Specific fluctuating kinetic energy 1
2ρ|σu| on a slice passing through the four PVs (see (a)) at

time t = 0.25 s using different meshes and models. Large values of fluctuating velocities are observed in the
region of impact among jets.

initial conditions. The result obtained plays the role of our reference solution and it shows
some characteristic blood flow features in the LA. The formation of vortex rings from the
PVs is the main process occurring in this chamber. The impact of flow jets from the PVs
and vortices breakup induce blood mixing and large values of the WSS in the wall nearby
the impact regions. Large variability among the cardiac cycles is observed too. This, in
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combination with other fluid dynamics indicators, highlights that the blood flow in the LA
(in these idealized physiological conditions) is definitely neither laminar nor fully turbulent,
but rather transitional. Such transitional nature of the blood flow is also highlighted in the
LV cavity as shown e.g. in [5, 31]. A further indication that we deduce from our study is
that the blood velocity profile at the MV section considerably departs from that of a flat
or a Poiseuille profile, an assumption that is often, but incorrectly made when simulating
LV hemodynamics; this result is coherent with the findings of [30, 31]. As a matter of
fact, we found that the formation of vortices above the MV section produces low velocities
and recirculation regions. We computed hemodynamic indicators and we deduced that a
significant variation of WSS is observed in the bottom of the LAA and on the top of the
LA. In particular, in the LAA low velocities and recirculation effects are observed, with
consequent high values of RRT which suggests blood stasis. To quantify the latter, we
propose a method useful to compute the number of particles inside a chamber. Finally,
we present a mesh refinement study combined with an analysis on the numerical results
obtained by means of the SUPG and VMS-LES stabilization techniques. We compute total
kinetic energy and enstrophy based on the velocity field phase-averaged on four heartbeats,
and we compare these results with our reference solution. In terms of these turbulence
indicators, we found that, as the mesh is refined, the solution is more accurate using both
stabilization techniques. In particular, discrepancies among models become less evident as
the mesh become finer. Furthermore, we compared our results in terms of fluctuating kinetic
energy, based on the standard deviation of the velocity field. This is an important measure
in hemodynamic applications since it represents an indicator of cycle-to-cycle variations and
also of transitional flow regimes. We found that the position where jets and vortices impact
is highly variable from cycle-to-cycle, producing hence high values of fluctuating kinetic
energy. In particular, we found that VMS-LES is able to better capture such variations in
the flow, being always more accurate than the standard SUPG stabilization method. These
differences are more evident using a coarse mesh, proving that VMS-LES model for relatively
coarse meshes is more accurate to capture transitional effects in hemodynamics applications
than the standard SUPG model.
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