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Abstract 
In many applications the accurate representation of the computational domain is a key factor to obtain 

reliable and effective numerical solutions. Curved interfaces, which might be internal, related to physical 

data, or portions of the physical boundary, are often met in real applications. However, they are often 

approximated leading to a geometrical error that might become dominant and deteriorate the quality of 

the results. Underground problems often involve the motion of fluids where the fundamental governing 

equation is the Darcy law. High quality velocity fields are of paramount importance for the successful 

subsequent coupling with other physical phenomena such as transport. The virtual element method, as 

solution scheme, is known to be applicable in problems whose discretizations requires cells of general 

shape, and the mixed formulation is here preferred to obtain accurate velocity fields. To overcome the 

issues associated to the complex geometries and, at the same time, retaining the quality of the solutions, 

we present here the virtual element method to solve the Darcy problem, in mixed form, in presence of 

curved interfaces in two and three dimensions. The numerical scheme is presented in detail explaining the 

discrete setting with a focus on the treatment of curved interfaces. Examples, inspired from industrial 

applications, are presented showing the validity of the proposed approach. 

 

Introduction 
The simulation of underground flows is a very active research field, mainly driven by the demand from 

the industry of increasingly robust and accurate simulation tools. The subsoil is, indeed, a porous medium 

characterized by complex geometries, strong heterogeneities of the properties and with an intrinsic multi-

scale nature, for the presence of geometrical features and interfaces with high aspect ratios (such as 

fractures or channels) and forming intersections spanning several orders of magnitude. This makes 

underground flow simulations extremely challenging. In addition to this, simulation data are usually only 

available as probability distribution functions, such that many simulations are typically required to derive 

statistics on the desired quantities of interest. Uncertainty quantification strategies [ (Lu 2016), (Pieraccini 

2020)] can be adopted to reduce the number of simulations, but the success of such tools depends, in turn, 

on the efficiency, robustness, reliability and accuracy of the underlying simulation method. Indeed, 

simulation settings derived from a realization of a random set of parameters can display complex 

geometries or sharp variations of parameters and the numerical tool is expected to provide an accurate 

result at a reasonable computational cost without requiring ad-hoc adjustments of the input data, which 

would alter the probability distribution of the inputs.  

Discretization schemes based on the use of polygonal/polyhedral meshes are gaining an increasing 

popularity for underground flow simulations, especially for the possibility of an easy meshing of complex 

geometrical features, such as interfaces, inclusions, domain boundaries. Next to the most well-established 

schemes, as multi-point flux approximation [ (Sandve 2012), (Faille 2016)], new methods have been 

recently applied to simulations in porous media. The Virtual Element Method (VEM) [ (L. Beirao da 

Veiga, F. Brezzi, et al. 2015)], taking inspiration from the Mimetic Finite Differences approach [ 
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(Lipnikov 2014), (O. S. Al-Hinai 2015), (O. W. Al-Hinai 2017), (Antonietti, et al. 2016)], allows the use 

of meshes of almost arbitrarily shaped elements in a finite element-like setting. The scheme is based on 

the definition of a discrete approximation space of virtual functions, that are never explicitly computed; 

suitable projectors, from the space of virtual functions to the space of polynomials, are then built, allowing 

to compute the discrete solution. The computability of the projectors and of the resulting discrete operators 

by means of the chosen set of degrees of freedom is one of the key aspects of the method. The usability 

of the method in the context of the simulation of underground phenomena appeared evident since its 

earliest appearance, for the description of the flow in poro-fractured domains [ (Benedetto, et al. 2014), 

(Andersen, Nilsen and Raynaud 2017), (Fumagalli and Keilegavlen 2019) (A. Fumagalli 2018), (Coulet, 

et al. 2020), (Mazzia, et al. 2020), (Borio, Fumagalli and Scialò 2020)]. The robustness of the VEM to 

highly distorted and elongated elements [ (Mascotto 2018), (Berrone and and Borio 2017)] allows for an 

easy meshing process also in presence of multiple intersecting interfaces, without requiring modifications 

of the geometry of the domain. Next to VEM and MFD, other polygonal/polyhedral methods vave been 

proposed, such as gradient schemes [Brenner2016], Discontinuous Galerkin approaches [ (Antonietti, et 

al. 2019)] and hybrid high order (HHO) methods [ (Chave, Di Pietro and and Formaggia 2018)]. 

The present work deals with the accurate description of single-phase flow problems in mixed form in 

underground reservoirs via the virtual element method in mixed formulation (MVEM) [ (L. Beirao da 

Veiga, et al. 2016), (Benedetto, Borio and Scialò 2017), (Dassi and Vacca 2020), (Dassi and Scacchi 

2020)]. The focus is on high order approximation of complex geometries in two and three dimensions. To 

this aim, an extension of the MVEM to include the handling of polygonal/polyhedral elements with 

curvilinear boundaries [ (Beirao da Veiga, Russo and Vacca 2019), (Bertoluzza, Pennacchio and Prada 

2019), (Dassi, Fumagalli, et al. 2020)] is proposed and analysed. The approach yields a discretization 

scheme capable of high accuracy also in presence of curvilinear features in the simulation domain. Indeed, 

a curved geometry can be exactly reproduced by the method, thus providing optimal error convergence 

trends also for high polynomial accuracy levels, since the error is not bounded by the description of the 

geometry, unlike classical approximation schemes where the curvilinear features of the domains are 

approximated by rectilinear/planar objects. Further, the use of a mixed formulation, where both pressures 

and fluxes are directly computed, gives local mass conservation properties to the method. The availability 

of a high order approximation scheme can help in the accurate description of the solution in near-well 

regions of the domain, or for simulations with curvilinear interfaces or domain boundaries, or for corner-

point grids. Here the extension of the MVEM for curvilinear edge elements in three dimensional problems 

is described, and 2D/3D applications of the method to test cases of practical interest are proposed and 

discussed to show the applicability of this approach to underground flow simulations.   

The manuscript is organized as follows: the mathematical model is briefly discussed in the first section, 

followed by the presentation of the discrete problem. Numerical results are shown in a third section and 

finally some conclusions are proposed.  

Mathematical model 
In order to present the model at the basis of the proposed approach, let us consider a porous medium filled 

with a single incompressible fluid phase, occupying a possibly curved domain Ω ⊂ ℝ𝑛, for 𝑛 = 2 or 3, 

with Lipschitz continuous boundary and external unit normal 𝒏. The boundary of Ω, denoted as 𝜕 Ω, is 

divided into a portion 𝜕𝑛Ω, where natural (pressure) boundary conditions are enforced, and a part 𝜕𝑒Ω 

with essential (flux) boundary conditions. We have the decomposition 𝜕 Ω  =  𝜕𝑒  Ω ∪  𝜕𝑛 Ω and 𝜕°𝑒Ω ∩
𝜕°𝑛Ω = ∅, being 𝜕°𝑛Ω ≠ ∅ for solvability purposes. We further assume that 𝜕𝑒Ω and 𝜕𝑛Ω can be each 

divided into a finite number of regular curves: 

𝜕𝑛Ω =∪𝑖=1,…,𝑁𝑛
Γ𝑖, 𝜕𝑒Ω =∪𝑖=𝑁𝑛+1,…,𝑁 Γ𝑖 

with Γ𝑖 of class 𝐶𝑚+1, 𝑚 ≥ 0, such that, for each 𝑖 = 1, … , 𝑁 it exists an invertible 𝐶𝑚+1 parametrization 

γ𝑖: 𝐼𝑖 → Γ𝑖, being 𝐼𝑖 ⊂ ℝ a closed interval. We will detail in the sequel the assumption on γ𝑖. This 

assumption is required for the treatment of the curvilinear boundary, following the approach proposed by 
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(Beirao da Veiga, Russo and Vacca 2019). The same assumption also applies to curvilinear internal 

interfaces, which are treated in the same manner.  

The porous medium is composed by heterogeneous rocks or sedimentary materials whose permeability 

tensor is indicated by 𝑲. We assume that 𝑲 is symmetric and positive definite but may change abruptly 

by several order of magnitudes from region to region. The fluid phase is characterized by a dynamic 

viscosity 𝜇, which can be considered for our purpose as a positive real number. A scalar source or sink 

term 𝑓 is considered to model fluid injection/production, e.g. through a well. 

Boundary conditions are assigned on 𝜕 Ω, prescribing the natural boundary condition 𝑝 and the 

essential boundary condition 𝑞, both as given data, and thus the equations describing the Darcy velocity 

𝑞 and fluid pressure 𝑝 are: Find (𝒒, 𝑝) such that 

{
𝜇𝒒 + 𝑲∇𝑝 = 𝟎
∇ ⋅ 𝒒 + 𝑓 = 0

 𝑖𝑛 Ω, 

with boundary conditions 

{
𝑝 = 𝑝,           on 𝜕𝑛Ω,

𝒒 ⋅ 𝒏 = 𝑞,     on 𝜕𝑒Ω.
 

In these equations, symbols “∇” and “∇ ⋅” denote the gradient and the divergence operator, respectively.  

By introducing appropriate functional spaces, the previous problem can be re-written in weak 

formulation, suitable for its numerical resolution with the MVEM approach. In what follows we assume, 

for simplicity, that 𝑞 = 0 otherwise a lifting technique should be adopted. The first bilinear form 

associated to the problem is the following: 

a(⋅,⋅):  𝑽(Ω) × 𝑽(Ω) → ℝ,  a(𝒖, 𝒗) ≔ (𝜇𝑲−𝟏𝒖, 𝒗)Ω,  ∀(𝒖, 𝒗) ∈ 𝑽(Ω) × 𝑽(Ω), 
being 𝑽(Ω) the space of vector functions defined as 

𝑽(Ω) ≔ {𝒗 ∈ [L2(Ω)]𝑛: ∇ ⋅ 𝒗 ∈ L2(Ω), 𝒗 ⋅ 𝒏 = 0 on 𝜕𝑒Ω}, 

and (⋅,⋅)ω the standard L2(ω)-inner product. The second bilinear form is the following: 

𝑏(⋅,⋅):  𝑽(Ω) × Q(Ω) → ℝ,  𝑏(𝒖, 𝑣) ≔ −(∇ ⋅ 𝒖, 𝑣)Ω,  ∀(𝒖, 𝑣) ∈ 𝑽(Ω) × 𝑄(Ω), 

with 𝑄(Ω) ≔ L2(Ω). The weak formulation of the Darcy problem then reads: Find (𝒒, 𝑝) ∈ 𝑽(Ω) × 𝑄(Ω) 

such that 

{
𝑎(𝒒, 𝒗) + 𝑏(𝒗, 𝑝) = −(𝑝, 𝒗 ⋅ 𝒏)𝜕𝑛Ω, ∀𝒗 ∈ 𝑽(Ω)

𝑏(𝒒, 𝑣) = (𝑓, 𝑣)Ω,                                  ∀𝑣 ∈ 𝑄(Ω)
(1) 

Following (D. Boffi 2013) (Raviart and Thomas 1977) it is possible to show that problem (1) admits a 

unique solution which continuously depends from the given data. Formulation (1) of the Darcy problem 

is valid for all the dimensions 𝑛 of the ambient space ℝ𝑛. 

Discretization 
In this section we introduce the numerical approximation of  model (1). Computability is a key concept in 

the VEM technology: contrary to the classical finite element method, we do not prescribe a-priori the 

shape of the basis function for each element. This flexibility comes with a cost, which makes some of the 

local discretization matrices not directly computable. We need to introduce additional tools, in this case a 

suitable projection operator, to perform such computations. 

As mentioned before, the boundary of Ω might be curved or, due to the problem data, internal (curved) 

interfaces might be present also inside the domain. We define Ωℎ to be the computational grid made of 

𝑁𝐸 mutually disjoint elements 𝐸 such that ⋃ 𝐸𝑖𝑖=1,…,𝑁𝐸
= Ωℎ and we require that the boundary of Ω is 

perfectly represented as well as possible internal interfaces. We thus have a collection of elements that 

might have one or more curved edges (in 2d) or faces (in 3d), with the requirement  that they can be, at 

most, a union of a finite number of star-shaped sub-elements (L. Beirao da Veiga, et al. 2016). Grids 

normally used in the industry, like corner-point grids, fulfill this requirement. We name 𝑒 a generic edge 

(in 2d) or face (in 3d) and the collection of all of them as ℰℎ. For a single grid element 𝐸 its edges or faces 

are named ℰℎ(𝐸). 
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To discretize problem (1), we follow this step by step approach: (i) in Subsection “Discrete spaces”, 

we construct the finite dimensional spaces 𝑽𝑘(Ωℎ) and 𝑄𝑘(Ωℎ), approximations of 𝑽(Ω) and 𝑄(Ω), 

respectively, both of accuracy degree 𝑘 ≥ 0. (ii) In Subsection “Degrees of freedom”, we introduce the 

set of degrees of freedom to make the objects involved computable, and (iii) in Subsection “Projection 

operators and approximation”, we introduce the projection operator and discuss the local approximations. 

In the discussion, we accurately present how to handle curved edges or faces for the grid elements.  

As common for VEM, we concentrate this discussion on a single element 𝐸 ∈ Ωℎ. The global 

approximation spaces are also introduced as “a collection” of the local ones. The latter concept will be 

explained in the sequel. For an element 𝐸, we name the local spaces as 𝑽𝑘(𝐸) and 𝑄𝑘(𝐸). For any curved 

edge or face 𝑒 of 𝐸, we assume that we know the exact parametrization of it, so that we can introduce the 

map 𝛾𝑒: 𝔢 → 𝑒, with 𝔢 being a straight reference interval defined on the abscissa if the ambient space is 

𝑛 = 2 or a reference planar polygon in the 𝑢𝑣 plane if 𝑛 = 3. Furthermore, we also assume that it exists 

the inverse map 𝛾𝑒
−1: 𝑒 → 𝔢, deemed to be regular enough. See Figure 1 for a graphical representation. 

 

Discrete spaces 
We first introduce some general spaces which will be used in the actual definition of 𝑽𝑘(𝐸) and 𝑄𝑘(𝐸). 

We indicate with ℙ𝑑(𝐴) the set of polynomial on the set 𝐴 ⊂ ℝ𝑛 of degree ≤ 𝑑, and with [ℙ𝑑(𝐴)]𝑛 the 

set of vector valued polynomials where each component has degree ≤ 𝑑. We indicate with 𝜋𝑑
𝑛 the  

dimension of ℙ𝑑(𝐴), which expresses the number of degrees of freedom needed to fully define a 

polynomial. In general we have: 

𝜋𝑑
𝑛 ≔ dim ℙ𝑑(𝐴) =

1

𝑛!
∏ (𝑑 + 𝑖)

𝑛

𝑖=1
. 

Since a grid element may be of arbitrary shape, we cannot use a Lagrangian construction to build the 

polynomials. For this reason, we make use of the following scaled monomial spaces: given a straight 

segment or planar polygon 𝔢 such that 𝛾𝑒: 𝔢 → 𝑒, like in Figure 1, we define 

ℳ𝑑(𝔢) ≔ {(
𝑥𝑖 − 𝑥𝑖(𝔢)

ℎ(𝔢)
)

𝑗

 for 𝑖 ≤ 𝑛 and 𝑗 ≤ 𝑑}     and   ℳ�̃�(𝑒) ≔ {�̃� = 𝑚 ∘ 𝛾𝑒
−1: 𝑚 ∈ ℳ𝑑(𝔢)}, 

where 𝑥𝑖(𝔢) and ℎ(𝔢) are the 𝑖-th coordinate of the centre and size of 𝔢, respectively. The space ℳ𝑑(𝔢) 

forms a base for ℙ𝑑(𝔢), thus all the elements of the latter can be expressed as linear combination of 

elements in the former. Because of this, we write that ℙ𝑑(𝔢) = 𝑠𝑝𝑎𝑛(ℳ𝑑(𝔢)). Let us note that the 

space ℳ�̃� is not in general a polynomial space, but it will be used in the construction of the discrete 

problem, in particular for curved edges or faces. In the space  ℳ�̃�, the monomials of ℳ𝑑(𝔢) are mapped 

to the actual (physical) edge or face 𝑒 via the map 𝛾𝑒
−1. In the same way, we set the mapped polynomial 

space as 

 ℙ̃𝑑(𝑒) ≔ {𝑝 = 𝑝 ∘ 𝛾𝑒
−1: 𝑝 ∈ ℙ𝑑(𝔢)} = 𝑠𝑝𝑎𝑛 ( ℳ�̃�(𝑒)). 

Similarly, we introduce for each element the scaled scalar and vector monomial spaces, respectively, as  

ℳ𝑑(𝐸) ≔ {(
𝑥𝑖 − 𝑥𝑖(𝐸)

ℎ(𝐸)
)

𝒋

 for 𝑖 ≤ 𝑛 and  |𝒋| ≤ 𝑑} , 

[ℳ𝑑(𝐸)]𝑛 ≔ {𝑚𝒆𝑖  for 𝑖 ≤ 𝑛 and 𝑚 ∈ ℳ𝑑(𝐸)}, 

Figure 1: Graphical example of mapping between the reference straight 𝖊 and the mapped curved 𝒆 element. 
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with 𝑥𝑖(𝐸) and ℎ(𝐸) are the 𝑖-th coordinate of the centre and size of 𝐸, respectively, 𝒋 is a multi-index, 

and 𝒆𝑖 is the canonical basis of ℝ𝑛. In the case the centre or the size of 𝐸 are not well defined or complex 

to compute, at discrete level it is possible to consider a “representative” centre and size that make these 

monomials scale in the correct way. Also in this case, the space ℳ𝑑(𝐸) is a basis for ℙ𝑑(𝐸), meaning that 

ℙ𝑑(𝐸) = 𝑠𝑝𝑎𝑛(ℳ𝑑(𝐸)), and similarly  for [ℙ𝑑(𝐸)]𝑛 = 𝑠𝑝𝑎𝑛([ℳ𝑑(𝐸)]𝑛). In the sequel, for the 

numerical approximation, we will consider the monomials since they can be defined regardless of the 

actual shape of the element 𝐸 or edge/face 𝑒. It is possible, both for 𝑛 = 2 or 3, to divide the space 
[ℙ𝑑(𝐸)]𝑛 as a sum of the gradient of a polynomial in ℙ𝑑+1(𝐸) and a “remaining part”. This remark will 

be useful in the definition of the degrees of freedom for the local space 𝑽𝑘(𝐸). For 𝑛 = 2 it is easy to 

define the aforementioned “remaining part”, which is a vector valued polynomial indicated as 𝒎𝑑
⊕(𝐸) 

and given by the “rotated” linear scaled vector monomial 𝒎1
⊥(𝐸) multiplied by a monomial of degree 𝑑 −

1. It is given by  

𝒎𝑑
⊕(𝐸) = 𝒎1

⊥𝑚𝑑−1  with  𝒎1
⊥(𝑥, 𝑦) ≔ (

𝑦 − 𝑦(𝐸)

ℎ(𝐸)
, −

𝑥 − 𝑥(𝐸)

ℎ(𝐸)
), 

In the case of 𝑛 = 3, it is possible to explicitly write it, but it will become trickier and it is out of the 

scope of the present work. For this, we refer to the article (Dassi and Scacchi 2020). We indicate the space 

of all 𝒎𝑑
⊕(𝐸) as 𝒢𝑑

⊕(𝐸) so that the following relation can be written: 

[ℙ𝑑(𝐸)]𝑛 = {∇𝑝: 𝑝 ∈ ℙ𝑑+1(𝐸)} ∪ 𝑠𝑝𝑎𝑛 (𝒢𝑑
⊕(𝐸)). 

We introduce the local discrete space for the vector trial 𝒒 and test 𝒗 fields of problem (1). We have 

the following approximation space 

𝑽𝑘(𝐸) ≔ {𝒗 ∈ 𝑽(𝐸): 𝒗 ⋅ 𝒏 ∈ ℙ̃𝑘(𝑒) ∀𝑒 ∈ ℰℎ(𝐸) and ∇ ⋅ 𝒗 ∈ ℙ𝑘(𝐸)}. 

The space is only implicitly defined and the actual shape of a 𝒗 ∈ 𝑽𝑘(𝐸) in the interior of the element 

𝐸  is not known a-priori. We can note that, in the case of a simplicial element 𝐸 with straight edges or 

faces, the space 𝑽𝑘(𝐸) coincides with the classical Raviart-Thomas space ℝ𝕋𝑘(𝐸) of order 𝑘 used in the 

mixed finite element method (Raviart and Thomas 1977). Furthermore, the local discrete space for the 

scalar trial 𝑝 and test 𝑣 fields of problem (1) is given by the classical approximation polynomial space 

𝑄𝑘(𝐸) ≔ {𝑣 ∈ 𝑄(𝐸): 𝑣 ∈ ℙ𝑘(𝐸)}. 
The global spaces 𝑽𝑘(Ωℎ) and 𝑄𝑘(Ωℎ) are thus constructed by exploiting the continuity of the normal 

fluxes across each edge or face between two neighboring elements, i.e. 𝒗 ⋅ 𝒏 is single valued, and by the 

union of the local spaces, respectively. The space 𝑄𝑘(Ωℎ) is thus made of piecewise polynomials. 

 

Degrees of freedom 
To make the objects defined on the spaces 𝑽𝑘(𝐸) and 𝑄𝑘(𝐸) computable, we need to introduce suitable 

degrees of freedom. These will be also useful in the actual computation of the bilinear forms in (1). For 

the space 𝑽𝑘(𝐸), given an element 𝒗 we introduce: (i) for each 𝑒 ∈ ℰℎ(𝐸) the boundary moments as 

1

|ℎ𝑒|
∫ 𝒗 ⋅ 𝒏 �̃�𝑑𝑑𝑒

𝑒

    ∀�̃�𝑑 ∈ ℳ�̃�(𝑒), 𝑑 = 1, … , 𝜋𝑘
𝑛−1, 

and also (ii) the element moments of the divergence 

ℎ(𝐸)

|𝐸|
∫ ∇ ⋅ 𝒗 𝑚𝑑𝑑𝐸

𝐸

    ∀𝑚𝑑 ∈ ℳ𝑘(𝐸) ∖ ℳ0(𝐸), 𝑑 = 2, … , 𝜋𝑘
𝑛. 

The space ℳ0(𝐸) is clearly removed from the definition since gives null divergence, and it becomes 

useless in the definition of these degrees of freedom. Finally, we introduce the third set of degrees of 

freedom for 𝑽𝑘(𝐸), namely (iii) the element moments 

1

|𝐸|
∫ 𝒗 ⋅ 𝒎𝑑

⊕ 𝑑𝐸
𝐸

    ∀𝒎𝑑
⊕ ∈ 𝒢𝑑

⊕(𝐸), 𝑑 = 1, … , 𝜋𝑘−1
𝑛 . 
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We note that, for application purposes, the (i) set of degrees of freedom for the velocity can be immediately 

used, without any post-processing, as an edge or face flux in the coupling with a transport or multi-phase 

flow problem. 

Finally, the degrees of freedom for the space 𝑄𝑘(𝐸) are just (i) the element moments 

1

|𝐸|
∫ 𝑣 𝑚𝑑𝑑𝐸

𝐸

    ∀𝑚𝑑 ∈ ℳ𝑘(𝐸), 𝑑 = 1, … , 𝜋𝑘 . 

A graphical representation of these degrees of freedom is given in Figure 2 for the special case of corner 

point cells. 

 

Projection operators and approximation 
As mentioned before, the actual shape of the basis functions for 𝑽𝑘(𝐸) is not explicitly defined. However, 

the computation of the bilinear form 𝑎 requires their knowledge inside 𝐸. To overcome this issue, we 

introduce the projection operators Π0
𝑑 that maps 𝑽𝑘(𝐸) to [ℙ𝑑(𝐸)]𝑛  

∫ (Π0
𝑑𝒗 − 𝒗) ⋅ 𝒎𝑑𝐸

𝐸

= 0    ∀𝒎 ∈ [ℳ𝑑(𝐸)]𝑛, 

and 𝑇0
𝑑 ≔ 𝐼 − Π0

𝑑 as the orthogonal projection operator. It is possible to show that with the considered 

degrees of freedom of 𝑽𝑘(𝐸) it is possible to compute the projection Π0
𝑑, for more details see (Dassi and 

Scacchi 2020). 

Since the space ℙ̃𝑘(𝑒) might not include polynomials up to order 𝑘 for 𝑒 ∈ ℰℎ(𝐸), then also 𝑽𝑘(𝐸) 

might not include polynomials up to order 𝑘 in 𝐸. It is possible to show that the constant polynomials are 

included in  ℙ̃𝑘(𝑒) and in 𝑽𝑘(𝐸), too. However, to obtain optimal rate of convergence for the considered 

method we introduce the following extended space: 

𝑾𝑘(𝐸) ≔ 𝑽𝑘(𝐸) + [ℙ𝑘(𝐴)]𝑛. 
The local approximation of order 𝑘 of the bilinear form 𝑎, defined as 𝑎𝑘: 𝑾𝑘(𝐸) × 𝑾𝑘(𝐸) → ℝ, is 

thus given by 

𝑎(𝒖, 𝒗) ≈ 𝑎𝑘(𝒖, 𝒗) ≔ 𝑎(Π0
𝑘𝒖, Π0

𝑘𝒗) + 𝑠(𝑇0
𝑘𝒖, 𝑇0

𝑘𝒗). 

The first part of 𝑎𝑘 is the consistency term, while the bilinear form 𝑠 is usually called stabilization. The 

former is computable in 𝑽𝑘(𝐸) with the considered degrees of freedom. The latter is defined as the form 

𝑠: 𝑾𝑘(𝐸) × 𝑾𝑘(𝐸) → ℝ given by 

𝑠(𝒖, 𝒗) ≔ 𝜍(𝐸) ∑ 𝑑𝑜𝑓𝑖(𝒖) 𝑑𝑜𝑓𝑗(𝒗)
𝑁𝑑𝑜𝑓(𝐸)

𝑖,𝑗=0
, 

Figure 2: On the top we indicate the dofs for the velocity and in the bottom for the pressure. The two cells on the left for 𝒌 = 𝟎 and the 

two on the right for 𝒌 = 𝟏. A red dot represents a (i) dof for 𝑽𝒌(𝑬), a green star a (iii) dof for 𝑽𝒌(𝑬), and a blue triangle a dof for 𝑸𝒌(𝑬). 
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where 𝜍 is a parameter depending on the physical parameters 𝜇𝑲−1, on the element size and on the 

geometrical dimension 𝑛. Again, the bilinear form 𝑠 is computable in 𝑽𝑘(𝐸) with the introduced degrees 

of freedom. The other bilinear form 𝑏 involves only the divergence of the trial 𝒖. Thus, by considering 

the (ii) set of degrees of freedom of 𝑽𝑘(𝐸) we can immediately approximate it. The same applies for the 

boundary and source terms. The discrete problem we are solving is the following: Find (𝒒, 𝒑) ∈
𝑽𝑘(Ωℎ) × 𝑄𝑘(Ωℎ) such that 

{
𝑎𝑘(𝒒, 𝒗) + 𝑏(𝒗, 𝑝) = −(𝑝, 𝒗 ⋅ 𝒏)𝜕𝑛Ωℎ

 ∀𝒗 ∈ 𝑽𝑘(Ωℎ)

𝑏(𝒒, 𝑣) = (𝑓, 𝑣)Ωℎ
                                    ∀𝑣 ∈ 𝑄𝑘(Ωℎ)

. 

All the bilinear forms and functionals involve the computation of integrals, which are be done by suitable 

quadrature rules. We consider the quadrature rule introduced in \cite{}, that was already extended for the 

two-dimensional curved case (Beirao da Veiga, Russo and Vacca 2019) in two dimensions. Details on the 

application to the three-dimensional case will be shown in a forthcoming paper. 

Numerical Results 
The present section is devoted to the discussion of some numerical tests, proposed to show and discuss 

the advantages and the applicability of the proposed technique. Two examples with a known analytical 

solution are included to validate the method and compare its performances with respect to standard 

approximation strategies, as well as two more applicative tests on more complex configurations, namely 

a domain cut by a listric fault and a corner point grid. 

 

Internal interface 2D 
The first proposed example considers the two-dimensional square domain Ω = (0, 1)2 shown in Figure 3 

(left), where an inclusion Ω2 of radius 𝑅 = 0.45 is present. The permeability of region Ω1 is 𝑲1 = 𝑰, 

whereas the permeability in Ω2 is 𝑲2 = 0.01𝑰. Viscosity is 𝜇 = 1  in the whole domain. Continuity of the 

solution and flux balance are prescribed at the internal interface ∂Ω2, whereas boundary conditions on 

∂Ω1 and forcing terms in Ω are set such that the exact pressure solution of equation (1) in Ω is 𝑝1(𝑥, 𝑦) =
𝑲2(𝑥2 + 𝑦2) + 𝑅2(𝑰 − 𝑲2) in Ω1 and 𝑝2(𝑥, 𝑦) = (𝑥2 + 𝑦2) in Ω2, while 𝜇𝒒𝑖 = −𝑲𝑖∇𝑝𝑖, for 𝑖 = 1, 2.  

The problem is solved with both the here described method for curvilinear edges and with the standard 

MVEM. 

The computational mesh, shown in Figure 3 (right), is generated with the following procedure: a 

quadrilateral mesh is built in Ω independently of the interface, which is subsequently superimposed, and 

the elements intersected by ∂Ω2 are cut into sub-elements of arbitrary shape not crossing it.  This process 

is likely to generate badly shaped and elongated elements, as the ones in the region circled in the picture, 

which however can be easily handled by virtual-element based approaches [ (Berrone e and Borio 2017), 

(Mascotto 2018)], thus making the generation of the computational mesh an extremely simple task also 

for complex geometries with multiple intersecting interfaces.  

For the MVEM for curvilinear edge elements, the geometry of the interface ∂Ω2 is kept unchanged, 

thus generating sub-elements with curvilinear edges, as can be seen in Figure 4 (right), whereas the 

interface is approximated by a linear interpolant connecting the intersection points between ∂Ω2 and mesh 

elements for the resolution with standard MVEM.  

Let us introduce the following error indicators: 

𝑒𝒒 = √∑ |𝒒 − Π0
k𝒒ℎ|

E

2
𝐸∈Ωℎ

,   𝑒𝑝 = √∑ |𝑝 − 𝑝ℎ|E
2

𝐸∈Ωℎ
, 

where in the computation of 𝑒𝒒 we make use of the projected solution Π0
k𝒒ℎ as proxy of the virtual solution 

𝒒ℎ. We also denote the mesh-size parameter ℎ, defined as ℎ =
1

𝑁𝐸
∑ ℎ(𝐸)𝐸∈Ωℎ

.  The convergence curves 

of the proposed error indicators with respect to the mesh-size parameter are reported in Figure 4, on the 

left for 𝑒𝑝 and on the right for 𝑒𝒒. In the picture, the curvilinear edge element MVEM is termed, for brevity, 
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as Curved and the standard MVEM as Straight. Polynomial degrees ranging between 1 and 3 are 

considered and denoted as deg k in the figure legend. We can see that, as expected, only the Curved 

approach provides the optimal theoretical convergence trends for all the considered polynomial accuracy 

levels, whereas the Straight curves have maximum slope equal to two, independently of the polynomial 

degree, as the geometrical representation error of the curvilinear interface, proportional to ℎ2, dominates 

on the approximation error. This example also highlights the robustness of MVEM to badly shaped 

elements, curved elements and neighbouring cells with high aspect ratio. 

 

Curvilinear boundary 3D 
The second example takes into account a 3D problem set on the domain represented in Figure 5: five 

of the six faces of the domain are planar and coincident with those of a unitary edge cube, whereas the top 

face Γ is curvilinear and defined by 

Γ(𝑥, 𝑦) = −
1

10
𝑠𝑖𝑛(π𝑥) + 1. 

Boundary conditions and forcing terms are prescribed such that the solution of problem (1) is given by 

𝑝(𝑥, 𝑦, 𝑥) = (𝑧 +
1

10
𝑠𝑖𝑛(π𝑥) − 1)

2

, 

with 𝑲 = 𝑰 and 𝜇 = 1. Null flux is imposed on the boundary and to recover the uniqueness of the solution 

we impose the exact pressure average. The geometry of the boundary Γ is exactly reproduced by the 

discrete mesh for the MVEM for curvilinear borders, whereas it is approximated by planar faces for 

standard MVEM. Convergence curves for the previous error indicators are shown, for this example, in 

Figure 6, where polynomial accuracy values ranging between 1 and 3 are considered and the Curved and 

Straight cases are compared. It can be seen that also for this example optimal convergence trends are 

Figure 4 Internal interface 2D. Convergence curves for pressure (left) and Darcy velocity (right). Method for curvilinear edges 

(Curved) compared to standard (Straight) approximation. 

Figure 3 Internal interface 2D. Domain description (left) and example computational mesh (right). 
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achieved only by the curvilinear MVEM, being the error dominated by geometrical approximation in 

standard MVEM, thus bounding error decay to 𝑂(ℎ2).  
 

 

Listric fault 
The last example takes into account a 2D rectangular domain Ω = [−1,  1] × [−0.5,  0.5] with five 

interfaces Γ𝑖,  𝑖 = 1, … ,5 that subdivide the domain into six subregions Ω𝑖 ,  𝑖 = 1, … ,6, as shown in Figure 

7. The interfaces can be interpreted as a listric fault (Γ1) and the broken horizons between sedimentary 

layers. The interfaces are defined as follows:  

Γ1 = {(𝑥, 𝑦): 𝑦 = −1.25√(𝑥 + 1.1) + 1.01}, 

 Γ2 = {(𝑥, 𝑦): 𝑦 = 0.25(𝑥 + 1.1)2 + 0.01}, 

 Γ3 = {(𝑥, 𝑦): 𝑦 = 0.25(𝑥 + 1.1)2 − 0.21}, 

 Γ4 = {(𝑥, 𝑦): 𝑦 = 0.5√(𝑥 + 1.1) − 0.41}, 

 Γ5 = {(𝑥, 𝑦): 𝑦 = 0.75√(𝑥 + 1.1) − 0.01}.  

Problem (1) is solved in Ω with the following parameters: 𝜇 = 1, 𝑲𝑖 = 𝜉𝑖𝑰, with 𝜉 =
(1,0.01,1,1,0.01,1), and null forcing term. A null pressure is set on the top edge of the domain, a unitary 

Figure 5 Curvilinear boundary 3D. Domain and example of computational mesh. 

Figure 6 Curvilinear boundary 3D. Convergence curves for pressure (left) and Darcy velocity (right). Method for curvilinear edges 

(Curved) compared to standard (Straight) approximation. 
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pressure on the bottom edge, all other edges are instead insulated. An approximation order 𝑘 = 2 is used. 

The obtained pressure distribution in Ω is presented in Figure 8, on a coarse mesh (left), as the one reported 

in Figure 7, and on a refined mesh (right): the behavior of the solution on the two meshes is in good 

agreement, and is also in agreement with the expected one. The steep change in pressure across the 

interfaces is clearly visible. We remark that, only for representation purposes, in Figure 8 interfaces are 

shown as piecewise linear and the solution is piecewise constant on mesh cells; the exact geometry of the 

interfaces and second order approximation for the solution are instead used in the computations. 

 

 
Figure 7: Listric fault. Domain description 

 

 
Figure 8: Listric fault. Solution on coarse (left) and fine (right) meshes 

 

Corner point mesh 
The third proposed example takes into account a unit edge cube, composed of three layers of materials 

with different values of permeability. With reference to Figure 9, the lowest layer, coloured in blue, has 

permeability 𝑲1 = 𝑰, the middle layer, in gray, 𝑲2 = 0.01𝑰, and the top layer, in red 𝑲3 = 𝑰. The two 

interfaces between the materials with different permeability, Γ1 and Γ2 are not planar, but bilinear, and the 

mesh is conforming to such interfaces. The mesh, indeed, is composed of cells with planar vertical faces 

and bi-linear top and bottom faces, with the exception of cell-faces lying on the external boundary of the 

domain. The equation of each bilinear surface, for 𝑘 = 1, … ,9 is defined by: 

σk(𝑢, 𝑣) = 𝒙𝐴(1 − 𝑢)(1 − 𝑣) + 𝒙𝐵𝑢(1 − 𝑣) + 𝒙𝐶𝑢𝑣 + 𝒙𝐷(1 − 𝑣)𝑢 

being 𝒙𝐴, 𝒙𝐵, 𝒙𝐶, 𝒙𝐷, with 𝒙𝑙 ≔ (𝑥𝑙, 𝑦𝑙 , 𝑧𝑙), the coordinates of four points of each surface, placed at the 

intersections between the surface and the vertical edges of the domain, see Figure 9 (right), and: 
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𝑢 =
𝑥 − 𝑥𝐴

𝑥𝐵 − 𝑥𝐴
,  𝑣 =

𝑦 − 𝑦𝐴

𝑦𝐷 − 𝑦𝐴
. 

A natural boundary condition 𝑝 = 0 is set on the top face of the domain, and a value 𝑝 = 1 is 

prescribed, instead, on the bottom face, all other faces having no-flux essential boundary conditions. 

Problem (1) is solved on such domain, with zero forcing term and 𝜇 = 1, and approximation order 𝑘 = 2. 

The obtained solution is reported in Figure 10, where the coloring is proportional to the computed pressure 

and two sections of the solution are also proposed. Figure 11 proposes a slice of the 3D solution on a plane 

normal to the 𝑧-axis and passing through the barycentre (0.5,  0.5, 0.5) of the domain. The steep change 

of the solution across interfaces can be clearly seen. The trace on the plane of the interfaces is highlighted 

in red and is approximated by a piecewise linear interpolant only for graphical purposes, whereas the exact 

geometry is used for the computations. The method MVEM for curvilinear border elements can easily 

deal with corner point meshes, without introducing any geometrical representation error. This is a key 

property for underground flow simulations, where such kind of non-planar interfaces often arise in 

applications.   

 

 
Figure 9: Corner point mesh. Domain and material composition (left); mesh definition (right). 

 

 

Figure 10: Corner point mesh. Pressure solution (left) with two sliced views (middle and right) 
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Conclusions 
In this work we have introduced an innovative extension to the recent mixed-virtual element method 

for problem with curved interfaces. For high order approximation, a quality description of problem 

geometry can be of paramount importance in many real applications, where geometrical error dominates 

the one introduced by the numerical approximation scheme. The single-phase flow problem is kept in its 

mixed formulation so that both pressure and Darcy flux are directly computed avoiding, for the latter, a 

post-processing which might deteriorate its accuracy. We have introduced the finite dimensional spaces 

for both the pressure and velocity, being the latter virtual since the shapes of the basis functions are not 

prescribed a-priori. Following the virtual element method philosophy, we have introduced a projection 

operator and a stabilization bilinear form so that all the ingredients become computable. In the last part of 

the work, we have presented four test cases showing the validity of the proposed approach in both two 

and three-dimensions and considering geometries and challenges typical of underground applications. In 

all the cases we have obtained accurate results, making the proposed approach attractive for real life 

applications. 
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