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Abstract

An accurate modeling of reactive flows in fractured porous media is a key ingredient to
obtain reliable numerical simulations of several industrial and environmental applications. For
some values of the physical parameters we can observe the formation of a narrow region or layer
around the fractures where chemical reactions are focused. Here the transported solute may
precipitate and form a salt, or vice-versa. This phenomenon has been observed and reported
in real outcrops. By changing its physical properties this layer might substantially alter the
global flow response of the system and thus the actual transport of solute: the problem is
thus non-linear and fully coupled. The aim of this work is to propose a new mathematical
model for reactive flow in fractured porous media, by approximating both the fracture and
these surrounding layers via a reduced model. In particular, our main goal is to describe the
layer thickness evolution with a new mathematical model, and compare it to a fully resolved
equidimensional model for validation. As concerns numerical approximation we extend an
operator splitting scheme in time to solve sequentially, at each time step, each physical process
thus avoiding the need for a non-linear monolithic solver, which might be challenging due to
the non-smoothness of the reaction rate. We consider bi- and tridimensional numerical test
cases to asses the accuracy and benefit of the proposed model in realistic scenarios.

1 Introduction

The study of reactive flows in porous media is a challenging problem in a large variety of appli-
cations, from geothermal energy to CO2 sequestration up to the study of flow in tissues or that
of the degradation of monuments and cultural heritage sites. In many cases the porous material
presents networks of fractures that may greatly affect the flow field. These fractures could be
responsible for the fast transport of reactants and heat and thus, in the proximity of fractures,
it is possible to observe strong geochemical effects such as mineral precipitation, dissolution of
transformation that can significantly alter the structure of the porous matrix. Depending on the
relative speed of reaction and transport, namely depending on Damköler number, we can observe
different patterns: a diffused effect on a large part of the domain, or steeper concentration profiles
leading to mineral precipitation focusing in thin layers around the fractures.

This work presents a mathematical model for this phenomenon based on a geometrical model
reduction that allows to represent thin, heterogeneous portions of the domains, such as fractures,
as lower dimensional manifolds immersed in the rock matrix. The proposed model does indeed
follow an important line of research of flow in fractured porous media where fractures are modeled
as one-codimensional manifolds (typically planar) immersed in porous media. These models, often
indicated as hybrid, or mixed-dimensional, describe the evolution of flow and related fields inside
the fracture using a dimensionally reduced set of equations, and coupling conditions with the
surrounding porous media. With no pretence of being exhaustive, we give a brief overview of
literature related to the techniques used in this framework. A first hybrid-dimensional model for
the coupling of Darcy’s flow in porous media and a single immersed fracture has been presented
in [32], and later extended to networks of fractures by several authors, among which [19, 38, 22].
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Figure 1: An example of fractures where it is evident the presence of a thin layer of altered material
in the vicinity of the fracture. The alteration is due to geochemical processes driven by the fluid
carried by the fractures.

In all those works single-phase flow was considered, while in [24, 12, 1] the authors deal with two-
phase flow formulation. To treat this class of problems, a large variety of numerical schemes have
been exploited. The literature on the subject is vary vast, we give here only a few suggestions for
the interested readers. Discretization methods for this type of problems are broadly subdivided
into conforming and non-conforming. In a conforming method the computational grid used for the
porous media is conformal to that used in the fractures, which means that the elements of the grid
used to discretize the fractures coincide geometrically with facets of the mesh used for the porous
medium. In this setting, many numerical schemes have been proposed, from classical finite volume
approaches, like in [39], to mimetic finite differencing [5], gradient schemes [13], discontinuous
Galerkin [4] and hybrid-high order schemes [15], just to mention some recent works. We recall
also some literature concerning non-conforming methods, which can be again subdivided into two
subsets. The first concerns the so called geometrically non-matching discretizations, where the
grid used in the fracture is completely independent to that of the porous media. Among this type
of techniques we mention the embedded discrete fracture network (e-DFM) [23, 40] and approaches
based on the use of eXtended finite elements [18]. In the second set we have techniques where the
fracture is still geometrically conforming with the porous media grid, but the computational grid
can be different on the two sides. In this class we mention the framework presented in [9, 33] where
a mortaring-type technique is used to connect the solution on domains of different dimensions.
See also [17, 7] for a comparison of some of these models.

In this paper we extend the model presented in [27, 25], where the authors developed a model
for flow in fractured media accounting for dissolution-precipitation processes that may alter the
flow behavior in of both fractures and rock matrix. In [27, 25] the fracture is represented by
an immersed one-codimensional manifold and special interface conditions were devised for the
diffusion-transport-reaction problem. However, it is known, see Figure 1, that the geochemical
processes may heavily affect a very thin layer around the fracture. Simulating the processes in that
region is crucial, but since it is part of the rock matrix we would need a very fine grid resolution
to obtain an accurate approximation. Consequently, in this work we consider a model where also
those layers are described with a one-codimensional representation. Thus, the proposed hybrid-
dimensional model comprises three embedded structures, one for the fracture and two for the
damage zone surrounding the fracture at the two sides. We consider the simple reaction model for
solute/mineral reactions illustrated in [25], in particular we will consider a single mobile species
dissolved in water, representing one of the two ions in a salt precipitation reaction, and track
its transport solving the single phase Darcy problem and a suitable advection-diffusion-reaction
PDE. Simultaneously, we will keep track of the corresponding precipitate concentration in the
domain. The model is similar to the one proposed in [16, 21, 25, 31, 26] to model fault cores and
their surrounding damage zones. It couples three lower dimensional domains among them and
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with the surrounding porous matrix by means of multi-dimensional conservation operators and
suitable interface conditions. This procedure is applied to the Darcy problem and to the evolution
equation for the solute concentration. It could be easily extended to the heat equation to obtain
a more complete physical description of the problem. Another original contributions of this work
consists in the fact that the thickness of the reactive layers is not fixed a priori, but computed
at each time based on the local Darcy velocity and solute concentration. To this aim, we have
derived a simplified problem on the direction normal to the fracture that provides an idealized,
but useful estimate of the area affected by precipitation.

The numerical discretization is based on a sequential operator splitting strategy for the decou-
pling of the equations, and on mixed finite elements for a good spatial approximation of the fluxes.
The model is implemented in the open source library PorePy, a simulation tool for fractured and
deformable porous media written in Python, see [29]. Some numerical tests are presented, with
the aim of verifying the applicability of the proposed reduced model and its limits, for both two
and three-dimensional settings.

The paper is structured as follows: in Section 2 the single and multi-layer mathematical model
is introduced and described in details. We introduce also the model to describe the evolution of
the layer surrounding the fracture. Section 3 defines the numerical discretization, in space and
time. In particular, a splitting scheme in time is detailed to allow the solution of each physical
process sequentially. In Section 4 we present the numerical test cases for the comparison between
the new model and the one already present in literature. Finally, Section 5 is devoted to the
conclusions.

2 Mathematical model

Let us start by illustrating the governing equations before performing dimensional reduction of
the fracture region. We will consider here a simple setting with a single fracture, and depict the
domains in two dimensions for simplicity, even if the presentation is given in a general setting and
three-dimensional results will be presented in Section 4.

Let Θ ⊂ Rd, with d = 2 or 3, be the domain filled by porous material, where we can identify
three parts, as depicted in Figure 2: the porous matrix Ω, occupying the larger part of the domain;
the fracture γ, characterized by a small thickness, called aperture, and a disconnected subdomain
µ, formed by two layers (µ− and µ+) adjacent the fracture at both sides. The domain Ω is split in
two disjoint parts Ω+ and Ω− by the two sides of the layer. Clearly, Θ = Ω∪ γ ∪ µ and Ω, γ, and
µ have mutually disjoint interior. In the following, barred quantities are given boundary data.

Ω− Ω+

µ− µ+

γ

Figure 2: Equi-dimensional representation of the rock matrix Ω, the fracture γ and surrounding
layers µ.

We assume that Θ is filled by a single phase fluid, water, with constant density, and that
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average fluid velocity qΘ and pressure pΘ can be obtained as the solution of the Darcy’s problem

k−1
Θ qΘ +∇pΘ = 0

∂tφΘ +∇ · qΘ + fΘ = 0
in Θ× (0, T )

pΘ = pΘ on ∂Θp × (0, T )

qΘ · ν = qΘ on ∂Θq × (0, T )

(1)

where φΘ denotes the porosity (variable in space and time), kΘ = kΘ(φΘ) is the intrinsic perme-
ability tensor (already divided by fluid viscosity), which can depend on porosity and may show
large variations among the three different subdomains, and fΘ is a volumetric forcing term. The
boundary ∂Θ is subdivided into two disjoint subsets ∂Θp and ∂Θu such that ∂Θ = ∂Θp ∪ ∂Θq.
We assume that ∂Θp 6= ∅. The pΘ and qΘ are given boundary conditions. Note that, even if
the subdomains are characterized by different physical parameters, we have continuity of pressure
and flux at the interface between Ω and µ, and µ and γ. Finally we denote with T > 0 the final
simulation time.

The Darcy’s problem is coupled with a simple chemical system with two species, [35]: a solute
U , whose concentration is denoted by u, and a precipitate W , whose concentration is denoted by
w. The solute U can represent the anion and cation in a salt precipitation model. Thanks to
the usual assumption of electrical equilibrium, the concentrations of these two species are equal.
The solute is transported by water, therefore its evolution is governed by an advection-diffusion-
reaction equation for u, while that of the precipitate can be described by an ordinary differential
equation for w at each point in Θ. We have then

χΘ − qΘuΘ + φΘDΘ∇uΘ = 0

∂t(φΘuΘ) +∇ · χΘ + φΘrw(uΘ, wΘ; θΘ) = 0
in Θ× (0, T )

uΘ = uΘ on ∂Θu × (0, T )

χΘ · ν = χΘ on ∂Θχ × (0, T )

uΘ(t = 0) = uΘ,0 in Θ× {0}

, (2a)

and

∂t(φΘwΘ)− φΘrw(uΘ, wΘ; θΘ) = 0 in Θ× (0, T )

wΘ(t = 0) = wΘ,0 in Θ× {0}
, (2b)

Here the problem is presented in mixed form and χΘ is the total flux accounting for advection and
diffusion. DΘ is the diffusion coefficient and rw the reaction rate, whose expression depends on
the type of reaction considered. In the following we will use a linear (oversimplified) model where

rw(u,w; θ) = λ(θ)u, (3)

as well as a more complex model, taken from [11], and used in [3, 25],

rw(u,w; θ) = λ(θ) {max[r(u)− 1, 0] +H(w) min[r(u)− 1, 0]} . (4)

In both cases, the reaction rate depends on λ (which can be a constant or depend on the local
temperature according to Arrhenius law) and on the reactant concentration. While in (3) the
transformation of U into W proceeds in a single direction until u = 0, the more realistic equation
(4) could describe a reaction that proceeds in both directions depending on the solute concentration
compared to the equilibrium one (taken equal to one in this a-dimensional setting). It also accounts
for the fact that mineral dissolution must stop when w = 0, hence the dependence on the Heaviside
function H(w) = max(0, w), [30].

Finally, the porosity φΘ can change in time as the result of mineral precipitation with the
following law

∂tφΘ + ηΘφΘ∂twΘ = 0 in Θ× (0, T )

φΘ(t = 0) = φΘ,0 in Θ× {0}
, (5)
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with ηΘ being a positive parameter. See [41] for an in-depth discussion of the microscale phe-
nomenon at the basis of (5).

The transport-reaction process can be characterized by means of the Damkhöler number, which
can be interpreted as the ratio between the characteristic times of transport and reaction [6]. If
the dominant transport mechanism is advection we can define the first Damköhler number as

DaI =
λφL

‖q‖

where L is the characteristic length of the phenomenon. Conversely, if diffusion is prevalent, one
should consider the second Damköler number

DaII =
λL2

D
.

In both cases, a large Damköhler number means that reaction is fast compared to transport and
will result in a precipitation (or dissolution) concentrated in space. In this work, we treat situations
arising for high Damköhler number.

Problem 1 (Equi-dimensional problem) The problem of reactive transport in the porous me-
dia Θ× (0, T ) gives (qΘ, pΘ,χΘ, uΘ, wΘ, φΘ) by solving the coupled equations (1), (2), (5).

2.1 Standard fracture-matrix flow and transport model

We are interested in the effect of mineral precipitation on fractured porous media. In the standard
setting, like the one illustrated in [27], the portion µ is still considered as part of the d-dimensional
domain, while fractures are modeled as lower dimensional entities, since they are characterized by
a small aperture compared to the other characteristic lengths. We indicate with Ψ = Ω ∪ µ and
Ψ± = Ω± ∪µ±. A sketch of the domain is shown in Figure 3, where γ indicates now, with a slight
abuse of notation, the center line of the fracture, with aperture εγ . While, with Γ we indicate
∂µ∩ γ, i.e. the portion of the boundary of the porous matrix that coincides geometrically with γ.
Indeed, Γ is formed by two parts, Γ+ and Γ−, corresponding to the + and − parts of the porous
matrix, on the right and left side of the fracture in Figure 3, respectively. We remark that in the
figure, Γ is drawn separately form γ, but in fact Γ and γ coincide geometrically.

To make the notation more compact in the hybrid-dimensional setting, from now on we use
the following convention. When no subscript is present a scalar and vector field is understood as
the compound variable of fields defined in the different hybrid-dimensional domains. For instance,
q = (qΨ, qγ) represents the fluxes in the rock matrix Ψ and in the fracture γ, each indicated with
the corresponding subscript. Analogously for p = (pΨ, pγ). Moreover, in the following, for a given
field f we indicate with trβ f the trace of f on β. In particular, trΓ− and trΓ+ indicate the trace
operators on the two parts of Γ.

We can define the jump operator for a scalar function p and the normal component of a vector
function q, as

[[p]]γ = trΓ+ pΨ − trΓ− pΨ and [[q · n]]γ = trΓ+(qΨ · n)− trΓ−(qΨ · n),

where n is the normal to γ pointing towards the + side. We can also define the average operators,

{p}γ =
1

2
(trΓ+ p+ trΓ− p) and {q · n}γ =

1

2
(trΓ+(qΨ · n) + trΓ−(qΨ · n)).

In this framework, the governing equations should be formulated for the variables qΨ and pΨ

in the porous matrix domain Ψ, and for the flux qγ , and the pressure pγ in the fracture γ. We note
that qγ is aligned along γ, i.e. qγ ·n = 0, and we can define on γ a mixed-dimensional divergence
∇γ · as

∇γ · q = ∇ · qγ − [[q · n]]γ ,
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γ

Γ− Γ+

Ω− Ω+

µ− µ+

n

Figure 3: Mixed-dimensional representation of the rock matrix Ω, the equi-dimensional layers µ
and the lower-dimensional fracture γ.

where ∇ · qγ is the standard divergence on the tangent space of γ and the jump term accounts for
the exchange between fracture and porous matrix. We note that in a two-dimensional setting like
the one depicted in Figure 3, ∇ · qγ = ∂yqγ , where y is, in general, the intrinsic coordinate of γ.
More details on those operators may be found in the cited literature. In this case the boundary of
Ψ is divided in the following three non-intersecting subsets ∂Ψ = ∂Ψu ∪ ∂Ψq ∪Γ, with the similar
division also for the boundary in the solute equation.

The resulting mixed dimensional set of equation is, in the domain Ψ,

k−1
Ψ qΨ +∇pΨ = 0

∂tφΨ +∇ · qΨ + fΨ = 0
in Ψ× (0, T )

pΨ = pΨ on ∂Ψp × (0, T )

qΨ · n = qΨ on ∂Ψu × (0, T )

(6a)

and also in the fracture γ

ε−1
γ k−1

γ qγ +∇pγ = 0

∂tεγ +∇γ · q + fγ = 0
in γ × (0, T )

pγ = pγ on ∂γp × (0, T )

qγ · n = qγ on ∂γu × (0, T ).

(6b)

Note that the mixed-dimensional divergence couples the equations in the porous matrix with those
in the fracture. Equations are complemented with the following interface conditions on Γ,

k−1
γ εγ{q · n}γ − [[p]]γ = 0

k−1
γ εγ

4
[[q · n]]γ + pγ − {p}γ = 0

in Γ× (0, T ) (6c)

where we have assumed an isotropic permeability kγ in the fracture, i.e. permeability is the same
in the tangential and normal direction. The first condition (6c) states that the net flux of qΨ

through γ is proportional to the jump of pressure across the fracture, while the second states that
the flux exchange between porous matrix and fracture is proportional to the difference between
the pressure in the fracture and the average pressure in the surrounding porous medium. We may
note that the second relation is a particular case of that proposed in [20, 32], where a family of
conditions have been proposed depending on a modeling parameter.

Accordingly, the advection-diffusion-reaction problem can be written in mixed-form in the rock
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matrix as

χΨ − qΨuΨ + φΨDΨ∇uΨ = 0

∂t(φΨuΨ) +∇ · χΨ + rΨ = 0
in Ψ× (0, T )

uΨ = uΨ on ∂Ψu × (0, T )

χΨ · ν = χΨ on ∂Ψχ × (0, T )

uΨ(t = 0) = uΨ,0 Ψ× {0}

(7a)

and in the fracture γ as

χγ − qγuγ + εγDγ∇uγ = 0

∂t(εγuγ) +∇γ · χ+ rγ = 0
in γ × (0, T )

uγ = uγ on ∂γu × (0, T )

χ · ν = χγ on ∂γχ × (0, T )

uγ(t = 0) = uγ,0 in γ × {0}

(7b)

with the same definition for the mixed dimensional divergence operator and a similar interface
conditions

D−1
γ εγ ({χ · n}γ − {q · n}γ)− [[u]]γ = 0

D−1
γ εγ

4
([[χ · n]]γ − [[q · n]]γ) + uγ − {u}γ = 0

in Γ× (0, T ). (7c)

The porosity φΨ evolves in time according to (5), and fracture aperture can vary due to mineral
precipitation with the following law:

∂tεγ + ηγεγ∂twγ = 0 in γ × (0, T )

εγ(t = 0) = εγ,0 in γ × {0}.
(8)

Problem 2 (Fracture mixed-dimensional problem) The problem of reactive transport in the
fractured porous media gives in Ψ× (0, T ) the fields (qΨ, pΨ,χΨ, uΨ, wΨ, φΨ) and in γ× (0, T ) the
fields (qγ , pγ ,χγ , uγ , wγ , εγ) by solving the coupled equations (6), (7), (5) for φΨ, and (8).

2.2 Multi-layer flow and transport model

In the previous section we have revised a mixed-dimensional model where only the fracture is
treated as a lower dimensional interface. However, if we assume that fractures play a major role
on fluid flow and solute transport, we can identify cases in which the Damköler number is high, and
consequently the precipitation (or dissolution) of minerals is concentrated in a thin region close to
the fracture. This occurs, for instance, if solute is injected in clean water through a fracture, the
fracture is more permeable than the surrounding domain and reaction is significantly faster than
transport. In this case, as shown in [25], the solute profile decays rapidly in a thin region near the
fracture. It is then difficult to capture the phenomenon numerically without resorting to a very
fine grid in the porous region near the fracture where most geochemical reactions occurs, which
we call reactive layer.

To reduce the computational cost, we propose here a three layers model where also the reactive
layers µ surrounding the fracture are represented as lower dimensional domains, of thickness εµ,
suitably coupled with the fracture on one side and the porous matrix on the other side. The
derivation of such multi-layer model is similar to the one presented in [16, 21, 25, 31, 26], where
its introduction was motivated by the modelling of faults and their surrounding damage zone.

To keep the notation simple, we preserve the same notation used in the previously described
model, even if the domains are geometrically different, since µ is now formed by two lower di-
mensional reactive layers µ− and µ+, located at each side of the fracture γ. Moreover, we let
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µ− µ+γ

M− M+Γ− Γ+

Ω− Ω+n

Figure 4: Mixed-dimensional representation of the rock matrix Ω, damage zone µ, and fault γ.

M = {M−,M+} denote the interface between Ω and µ, while Γ = {Γ−,Γ+} is now the interface
between µ and γ, see Figure 4. Note that even if γ, µ, M , Γ are geometrically superimposed, they
play a different role in the model: lower dimensional domains and interfaces, respectively.

In addition to qΩ, pΩ, qγ , and pγ , we define the flux qµ, and the average pressure pµ in µ.
Similarly, uµ, wµ will denote the concentrations in µ, and χµ the relative flux. We follow also here
the convention that fields without a subscript identify the collection of quantities in the different
domains.

While now M can be identified as the part of the boundary of Ω that coincides with the model
of the fracture, here Γ = {Γ−,Γ+} are fictitious additional interfaces needed to define the coupling,
and on which we define the normal fluxes qΓ and χΓ, both scalar.

We also need to revise the definition of jump and average operators. In particular,

[[p]]µ− = pγ − trM− pΩ and [[p]]µ+ = trM+ pΩ − pγ ,

{p}µ− =
1

2
(pµ− + trM− pΩ) and {p}µ+ =

1

2
(trM+ pΩ − pµ+),

and

[[q · n]]µ− = qΓ− − trM−(qΩ · n) and [[q · n]]µ+ = trM+(qΩ · n)− qΓ+ ,

{q · n}µ− =
1

2
(qΓ− − trM−(qΩ · n)) and {q · n}µ+ =

1

2
(trM+(qΩ · n)− qΓ+),

depending on whether we are considering µ− or µ+ of µ, respectively. While,

[[p]]γ = pµ+ − pµ− and {p}γ =
1

2
(pµ− + pµ+),

{q · n}γ = qΓ+ − qΓ− and {q · n}γ =
1

2
(qΓ− + qΓ+).

Analogous definitions for hold for u, w and χ.
We are now in the position to define the mixed dimensional divergence operators in this new

setting: given a vector field q we have

∇µ · q = ∇ · qµ − [[q · n]]µ and ∇γ · q = ∇ · qγ − [[q · n]]γ , (9)

where, following the convention, qµ and qγ are the components of q in the corresponding lower
dimensional domains, while ∇γ · and ∇µ· the divergence operator acting on the corresponding
domain.

We now write the differential problem representing the new mixed-dimensional model, where
we also impose boundary conditions for the flux and for the pressure on portions of the boundaries
of Ω, µ and γ, indicated by the subscript u and p, respectively. Note that ∂Ω = ∂Ωu∪∂Ωp∪M , with
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a similar division also for the boundary in the solute equation. We also assume, for well-posedness,
that ∂Ωp is not empty.

In the porous matrix we have

k−1
Ω qΩ +∇pΩ = 0

∂tφΩ +∇ · qΩ + fΩ = 0
in Ω× (0, T )

pΩ = pΩ on ∂Ωp × (0, T )

qΩ · n = qΩ on ∂Ωu × (0, T )

, (10a)

while for the layer µ we have

ε−1
µ k−1

µ qµ +∇pµ = 0

∂t(εµφµ) +∇µ · q + fµ = 0
in µ× (0, T )

pµ = pµ on ∂µp × (0, T )

uµ · ν = uµ on ∂µu × (0, T )

, (10b)

and, finally, for in the fracture we have

ε−1
γ k−1

γ qγ +∇pγ = 0

∂tεγ +∇γ · q + fγ = 0
in γ × (0, T )

pγ = pγ on ∂γp × (0, T )

uγ · ν = uγ on ∂γu × (0, T )

. (10c)

Note that the fracture is considered filled just by fluid, and that the flow velocity is sufficiently small
to model it using lubrication theory, which gives an equation akin to Darcy’s with a “porosity”
equal to 1. Fracture aperture can change as an effect of precipitation. Moreover, we have the
following interface conditions on M and Γ, respectively,

εµk
−1
µ {q · n}µ − [[p]]µ = 0

εµk
−1
µ

4
[[q · n]]µ + pµ − {p}µ = 0

on M × (0, T )

εγk
−1
γ {q · n}γ − [[p]]γ = 0

εγk
−1
γ

4
[[q · n]]γ + pγ − {p}γ = 0

on Γ× (0, T ).

(10d)

Similarly, the transport and reaction problem in the multi-layer domain becomes, first for the rock
matrix

χΩ − qΩuΩ + φΩDΩ∇uΩ = 0

∂t(φΩuΩ) +∇ · χΩ + rΩ = 0
in Ω× (0, T )

uΩ = uΩ on ∂Ωu × (0, T )

χΩ · ν = χΩ on ∂Ωχ × (0, T )

uΩ(t = 0) = uΩ,0 in Ω× {0}

, (11a)

while for the layer µ we have

χµ − qµuµ + εµφµDµ∇uµ = 0

∂t(εµφµuµ) +∇µ · χ+ rµ = 0
in µ× (0, T )

uµ = uµ on ∂µu × (0, T )

χµ · ν = χµ on ∂µχ × (0, T )

uµ(t = 0) = uµ,0 in µ× {0}

, (11b)
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and finally for the fracture γ

χγ − qγuγ + εγDγ∇uγ = 0

∂t(εγuγ) +∇γ · χ+ rγ = 0
in γ × (0, T )

uγ = uγ on ∂γu × (0, T )

χγ · ν = χγ on ∂γχ × (0, T )

uγ(t = 0) = uγ,0 in γ × {0}.

(11c)

The interface conditions on Γ and M similar to (10d) to couple concentrations and fluxes in the
subdomains,

εµD
−1
µ ({χ · n}µ − {q · n}µ)− [[p]]µ = 0

εµD
−1
µ

4
([[χ · n]]µ − [[q · n]]µ) + pµ − {p}µ = 0

on M × (0, T )

εγD
−1
γ ({χ · n}γ − {q · n}γ)− [[p]]γ = 0

εγD
−1
γ

4
[[q · n]]γ + pγ − {p}γ = 0.

on Γ× (0, T ).

(12)

In this multi-layer model the porosities φΩ and φµ depend on the corresponding values of precip-
itate concentration according to (5), and fracture aperture εγ follows (8). The only missing part
is a model for the evolution of the thickness εµ, which will be discusses in the next section.

Problem 3 (Multi-layer fractured mixed-dimensional problem) The problem of reactive
transport in the multi-layer fractured porous media gives in Ω×(0, T ) the fields (qΩ, pΩ,χΩ, uΩ, wΩ, φΩ),
in µ × (0, T ) the fields (qµ, pµ,χµ, uµ, wµ, φµ, εµ), in γ × (0, T ) the fields (qγ , pγ ,χγ , uγ , wγ , εγ),
and in Γ × (0, T ) the interface fluxes (qΓ, χΓ) by solving the coupled equations (10), (11), (5) for
φΩ and φµ, and (8) for εγ . While for εµ one of the model discussed in Subsection 2.3.

2.3 A model for layer thickness

We want to obtain a model for the thickness of the layers µ, i.e. we want to model εµ as a function
of the physical parameters and the solution itself, to compute values that can change in space and
in time accounting for chemical reactions. We recall that we assume that there is a well-identifiable
region, around the fracture, where dissolution or precipitation take place, and that this region is
“thin” if reaction is sufficiently fast with respect to the transport mechanism of interest, advection
and/or diffusion. However, we cannot obtain this information from the solute and precipitate
distribution in the porous matrix due, in practice, to insufficient grid resolution. For this reason
we have resorted to one-dimensional models that will allow us to compute analytical solutions for
the evolution of the layer in simplified settings. In particular we assume that

• the transport of solute near the fracture can be approximated as one-dimensional in the
direction normal to the fracture, for each section;

• the changes in porosity due to precipitation have a small impact on the advection field;

• solute is transported more easily in the fracture, thus the concentration of solute in the frac-
ture can be considered as a boundary condition for its diffusion/advection in the neighboring
layers;

• the Damköler number is such that, from the solute profile we can, after fixing a cutoff
concentration value, find a small thickness εµ for each of the two layers µ+ and µ− at each
time t.

Consider Figure 5: starting from the solute concentration in the fracture we obtain the concen-
tration profile in the neighborhood. If, for instance, we consider a precipitation model such that
precipitation occurs where u > 1 then the region µ is encompassed by the corresponding con-
centration isoline. If εµ is small enough, it is reasonable to use the proposed mixed-dimensional
model, by collapsing µ into a lower dimensional domain, as explained previously.
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Figure 5: On the left, an example of solute concentration distribution around a fracture. On the
right, the corresponding isolines.

2.3.1 Pure advection, linear reaction

In the simplified case of no diffusion, and with the advection field given by the Darcy velocity
normal to the fracture, we can obtain an analytical expression for the solute concentration under
the assumptions stated above. We are assuming that flux is exiting the fracture, i.e. the normal
Darcy velocity Q is positive and can be considered constant in time.

If we denote with s the arc length in the direction normal to the fracture the one-dimensional
problem for solute concentration reads:

φ∂tu+Q∂su = −λφu in (0,+∞)× (0, T )

u = uγ on 0× (0, T )

u(t = 0) = 0 in (0,+∞)× {0}

and has the exact solution u(s, t) = u0 (s−Qt/φ) exp(−φλ/Qs) where

u0 =

{
uγ s = 0

0 s > 0
and u =

{
uγ exp(−φλ/Qt) s ≤ Qt/φ
0 s > Qt/φ

.

Note that, with this linear reaction term, we have precipitation whenever u > 0, however, in
practice, we can choose a cut-off value, i.e. the layer is defined by the condition u(s, t) > δ.

Thus, we seek the point s = εµ where u(εµ, t) = δ. We obtain

εµ = Q/φmin(t,− ln(δ/uγ)/λ), (13)

i.e. the layer thickness grows linearly in time until it reaches its steady state value. The time to
reach the steady state can be estimated as t = ln(δ/uγ)/λ.

2.3.2 A more realistic reaction term

The linear decay term considered in the previous section is however too simple for most diagenetic
processes. For the case of mineral precipitation, under some simplifying assumptions, one can
consider the reaction term given in (4). If we consider just the case of mineral precipitation, i.e.
we assume that the solution is supersaturated, its expression simplifies to

rw(u) = −λ
(
u2 − 1

)
.

Under the assumptions stated in the previous section, we can estimate the thickness of the layer
where precipitation occurs by solving the following one dimensional problem in the direction
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normal to the fracture

φ∂tu+Q∂su = −λφ
(
u2 − 1

)
in (0,+∞)× (0, T )

u = uγ on 0× (0, T )

u(t = 0) = 0 in (0,+∞)× {0}
.

At steady state, with ∂tu = 0, the problem above admits the exact solution

u(s) =
C + exp(2λφs/Q)

exp(2λφs/Q)− C
with C =

uγ − 1

uγ + 1

to satisfy the boundary condition at the interface with the fracture. Note that, with this reaction
model, precipitation only occurs where u > 1 i.e. where the concentration is above equilibrium.
Therefore we consider a cutoff value u = 1 + δ with δ < 1 a small enough number, and seek the
corresponding layer thickness

C + exp(2λφεµ/Q)

exp(2λφεµ/Q)− C
= 1 + δ ⇒ εµ =

Q

2λφ
log

(
C

2 + δ

δ

)
. (14)

Once again the steady state layer thickness depends linearly on the ratio Q/λ. In this case however
it is more difficult to obtain an expression for its growth in time: for this reason, in the results
section, we will just verify this estimate and defer the actual application of this model to future
work.

3 Numerical approximation

In this section we discuss the approximation strategies adopted to solve the model presented in
Problem 3, in particular the spatial and temporal approximation schemes and the procedure to
solve the resulting coupled and non-linear system. In Subsection 3.1 we consider the temporal
discretization of the problem along with the splitting algorithm, which can be considered an
extension of the one introduced and studied in [25]. In Subsection 3.2 we will briefly present the
spatial discretization adopted.

3.1 Time discretization and splitting

The global physical problem, in (10), involves several processes that are coupled in a non-linear
way. To overcome the need for a monolithic non-linear solver, and rely more on legacy simulation
codes, suited for each single physical process, we consider a splitting strategy in time, such that
each equation can be solved separately. However, we recall that the operator splitting approach
usually introduces an additional error in time. Furthermore, since some of our physical variables
(i.e., porosity, solute, and precipitate) are very sensitive to volume changes we also need to design
the splitting strategy such that no mass or volume is unexpectedly lost. Finally, since the reaction
term for the solute may be rather complex and highly non-linear, an additional operator splitting
is employed to separate the diffusive and advective part from the reaction in equations (11). In
this way, we can use ad-hoc numerical schemes to solve the latter.

For these reasons, we extend the strategy developed in [25] to our needs, in particular incorpo-
rating the physical processes linked to the reactive layers µ. The extension is quite straightforward,
however we recall the splitting algorithm for reader’s convenience. We divide the time interval in
N steps and we denote with tn = n∆t, with ∆t the time step assumed constant for simplicity. We
set the initial condition as

φ0
Ω = φΩ,0 ε0γ = εγ,0 φ0

µ = φµ,0 ε0µ = εµ,0 θ0
Ω = θΩ,0 θ0

γ = θγ,0 θ0
µ = θµ,0

u0
Ω = uΩ,0 u0

γ = uγ,0 u0
µ = uµ,0 w−1

Ω = w0
Ω = wΩ,0 w−1

γ = w0
γ = wγ,0 w−1

µ = w0
µ = wµ,0.

In each time step (tn, tn+1), we perform the following steps.
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1. To get a better estimate of the porosity as well as the fracture aperture computed in the
Step 2, we extrapolate the concentration of the precipitate as in [28, 2]. We obtain

w∗
Ω = 2wnΩ − wn−1

Ω and w∗
γ = 2wnγ − wn−1

γ and w∗
µ = 2wnµ − wn−1

µ .

2. We then compute the porous media and layer porosity and fracture aperture, from (5) for
φΩ and φµ and (8) for εγ , by the following relations

φ∗Ω =
φnΩ

1 + ηΩ(w∗
Ω − wnΩ)

and φ∗µ =
φnµ

1 + ηµ(w∗
µ − wnµ)

and ε∗γ =
εnγ

1 + ηγ(w∗
γ − wnγ )

.

Note that we do not compute an estimate of the thickness layer εµ since the models presented
in Subsection 2.3 are not differential.

3. To prepare the computation of the pressure and Darcy velocity, we update the permeability
of the porous media kΩ(φ∗Ω) as well as fracture and layer permeabilities kγ(ε∗γ) and kµ(εnµ, φ

∗
µ,

respectively.

4. We solve the Darcy problem (10) to get pressure and Darcy velocity in the domain, in the
fracture and in the layer: (qn+1

Ω , pn+1
Ω ), (qn+1

γ , pn+1
γ ), and (qn+1

µ , pn+1
µ ), respectively, as well

as the interface flux qΓ on the interface Γ. For the discretization of the temporal derivative
of porosity φΩ and φµ and fracture aperture εγ we consider both their value predicted in
Step 2 and at time n− 1.

5. We solve the advection-diffusion part of the solute equation, (11), to obtain an intermediate

value of the solute: u
n+ 1

2

Ω , u
n+ 1

2
γ , and u

n+ 1
2

µ . Also the interface flux χΓ is computed on Γ.
Note that we do not consider for this point the reaction term.

6. In the previous point we have accounted for porosity changes using φ∗Ω and φ∗µ, as well as

fracture aperture changes using ε∗γ . The intermediate value of the solute u
n+ 1

2

Ω , u
n+ 1

2
γ and

u
n+ 1

2
γ already accounts for the change in pore volume, then also the precipitate in the porous

domain, fracture, and layer have to be updated to account for the same variation

w
n+ 1

2

Ω = wnΩ
φnΩ
φ∗Ω

and w
n+ 1

2
γ = wnγ

εnγ
ε∗γ

and w
n+ 1

2
µ = wnµ

φnµ
φ∗µ
.

7. We then solve the reaction step for both the solute and precipitate, by starting from the

values of (w
n+ 1

2

Ω , w
n+ 1

2
γ , w

n+ 1
2

µ ) and (u
n+ 1

2

Ω , u
n+ 1

2
γ , u

n+ 1
2

µ ) to get the values of (w∗∗
Ω , w∗∗

γ , w
∗∗
µ )

and (u∗∗Ω , u
∗∗
γ , u

∗∗
µ ).

8. Since the precipitate has changed in the previous step, we need to update the porosity of
the porous matrix and layer as well as the fracture aperture. Considering the model (5) for
φΩ and φµ and (8) for εγ , we obtain

φn+1
Ω =

φnΩ
1 + ηΩ(w∗∗

Ω − wnΩ)
and εn+1

γ =
εnγ

1 + ηγ(w∗∗
γ − wnγ )

and φn+1
µ =

φnµ
1 + ηµ(w∗∗

µ − wnµ)

We also compute the thickness of the layer εn+1
µ by following one of the model presented in

Subsection 2.3.

9. As the last point in the algorithm, we update the solute and precipitate concentrations
to account for the variation of porosity and fracture aperture at the previous point. We
compute

wn+1
Ω = w∗∗

Ω

φ∗Ω
φn+1

Ω

un+1
Ω = u∗∗Ω

φ∗Ω
φn+1

Ω

wn+1
γ = w∗∗

γ

ε∗γ

εn+1
γ

un+1
γ = u∗∗γ

ε∗γ

εn+1
γ

wn+1
µ = w∗∗

µ

φ∗µ

φn+1
µ

un+1
µ = u∗∗µ

φ∗µ

φn+1
µ

.
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The set of ordinary differential equations to be solved in Step 7 depends on the reaction
function chosen. See [34, 25, 14] for an example. For the time discretization of Step 7 in our case
we have considered a second order Runge-Kutta scheme. For the other equations the first order
Implicit Euler scheme is used for their temporal discretization. The operator splitting approach
also introduces an error which, in our case, is of order one in time. Globally, we obtain a first
order scheme in time.

3.2 Spatial discretization

The spatial discretization considered for the full problem is specific for each physical phenomenon
and for each spatial dimension, since the schemes for fracture and layer are written on their
tangent space. We consider schemes with compatible degrees of freedoms, meaning that they are
associated only to cells (primary variables) and faces (fluxes), and no interpolation operators will
be required. Since the focus of the present work is not on innovative spatial discretizations to
solve the problem, but rather on the model, and since we use well known schemes, we only briefly
mention them.

To compute a reliable Darcy velocity, which is then used as an input in the other problems, the
numerical method has to be locally mass conservative and provide a good quality approximation
of the fluxes. For this reason, our choice is to discretize the pressure equation, in its mixed form,
with the lowest-order Raviart-Thomas finite element for the Darcy velocity and piece-wise constant
elements for the pressure fields. This scheme is also particularly suited for strong permeability
variations typical of the underground. See [36, 37, 8] for a more detailed discussion.

For the numerical solution of the solute and temperature fields, we consider a two-point flux
approximation for the diffusion operator and a weighted upstream for the advective part. See
[17, 39, 29] for a more extensive discussion.

The coupling between the subdomains (porous media, fracture, and layer) is done via Lagrange
multipliers that represent the normal flux exchange between them. See [9, 33, 10, 29] for more
details and analysis.

4 Results

In this section we present two groups of test cases to validate the previously introduced model. In
the first group of test cases, in Subsection 4.1, we consider a 2D domain with one fracture, adapting
the geometry of second example of [25] to our needs. In this geometry we compare the classical
fracture-matrix model described in Problem 2 with the new multi-layer model in Problem 3, for
increasing levels of complexity in the physical parameters. In Subsection 4.2 instead we consider
a test case in three-dimensions, by adapting the geometry and data of Case 1 of [7]. In all the
examples, the considered numerical scheme cannot handle the case of zero fracture aperture or layer
thickness: for this reason, at the initial time when the reactive layer has not started developing
yet, we will set a very low starting value for εµ. See [9] for a different approach that is able to
handle vanishing fracture aperture. Since the presented model for the layer thickness evolution
considers mostly an advective field as main driving force, we will set the diffusion coefficient for the
solute transport problem to a low value to obtain results that are in agreement with the theory.

The following examples are implemented with the Python library PorePy [29] and the scripts
of each test case are freely available on GitHub.

Finally, even if the current model may be coupled with a heat equation as in [25] in these
experiments we consider a given, constant temperature field and therefore a fixed and uniform in
space reaction rate λ.

4.1 Two-dimensional problem

In this set of tests, we consider part of the geometrical setting introduced in the second example
of [25]. We refer to Table 1 for a list of the data and physical parameters common to the three
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δ = 0.1 φΩ,0 = 0.2 φµ,0 = 0.2 εγ,0 = 10−3 εµ,0 = 10−8

k0 = 1 kγ,0 = 102 κγ,0 = 102 kµ,0 = 1 κµ,0 = 1

µ = 1 f = 0 fγ = 0 fµ = 0 qno−flow
∂Ω = 0

pout−flow
∂Ω = 0 pin−flow

∂Ω = 1 pin−flow
∂γ = 10−1 pin−flow

∂µ = 10−1 d = 10−8

dµ = 10−6 δµ = 10−6 dγ = 10−6 δγ = 10−6 uΩ,0 = 0

χno−flow
∂Ω = 0 uin−flow

∂Ω = 2 uout−flow
∂Ω = 0 uγ,0 = 0 uin−flow

∂γ = 2

uµ,0 = 0 uin−flow
∂µ = 2 λ− = 100 r(u) = u

Table 1: Common data for the examples in Subsection 4.1.
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Figure 6: On the left, domain Ω, fracture γ, and the two sides of the layer µ for the cases of
Subsection 4.1. At the center the computational grid used for the multi-layer model and on the
right the finer computational grid used for the simulation of the fracture-matrix model (without
the layer).

cases presented in this section. The porous medium, represented by the domain Ω = (0, 1)2, is
partially cut by a single fracture γ = {(x, y) ∈ Ω : y = x − 0.1, x ≤ 0.9} with the surrounding
layers µ, which geometrically coincide with γ. See Figure 6 for a graphical representation.

One of the main criteria in our evaluation, apart from a graphical observation of the solution,
is the comparison between the thickness of the layer µ estimated with model in Problem 3 and
the one obtained from the simulation of the matrix-fracture Problem 2 as in [25], with a grid fine
enough to capture the concentration gradients around the fracture. This latter high resolution
simulation will numerically validate the accuracy of the proposed model in this setting. Clearly,
both test cases in this section deviate from the assumptions at the basis of the theoretical model for
the layer thickness (13): the transport of solute from the fracture is not exactly one-dimensional,
there is a small diffusive effect, and, if porosity is allowed to change due to precipitation, the Darcy
velocity cannot be considered constant. Our aim is to test the robustness of the model prediction
for different cases, to establish its usefulness in realistic situations.

The simulation has 100 time steps of equal length, with ending time Tf = 0.2. For the
multi-layer model we consider a uniformly refined mesh of 38435 triangles for the porous media,
290 segments for the layer and 145 segments for the fracture, while for the model where only the
fracture is a lower dimensional object, we have considered a very fine grid around the fracture itself
which gives a non-uniform triangular grid composed of 107841 elements. The fracture is discretized
with 906 equal segments. See Figure 6 for the graphical representation of the computational grids.

4.1.1 Case 1

For this case we consider the data and geometry describe above, and we additionally set the
following parameters: ηΩ = 0, ηγ = 0, and ηµ = 0 thus the porosity φΩ and φµ, as well as the
fracture aperture εγ , are fixed for the entire simulation and are equal to their initial value. In
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this case the Darcy velocity q is constant in time in the entire domain (although not necessarily
exactly normal to the fracture).

In Figure 7 we compare the pressure and Darcy velocity, along with the solute and precipitate
obtained with the two models and corresponding discretizations. First of all let us note that,
since ηΩ is null, pressure and Darcy velocity are fixed in time The solution shows the advantage
of adopting the introduced model, since we can observe that with a fast enough reaction most of
the dynamics for the solute and precipitate develops very close to the fracture γ. The graphical
difference in the solute and precipitate distribution is mainly due to the fact that, in the multi-
layer model, the part of the solution with the higher concentrations is represented by the reduced
variables uµ, wµ in the one-dimensional layers. In Figure 8 we see the layer thickness at the end of
the simulation. Since it depends on the Darcy velocity at fracture-layer interface, the top part of
the layer (the one closer to the outflow) is wider than on the bottom part. For both sides, at their
tip the aperture results in a much higher value due to the outflow from the fracture tip. Given the
small layer thickness, we can consider the proposed model to be in its range of applicability, i.e.
the layers can be reduced to their center line. Finally, Figure 9 shows the graphical comparison
between the solute along two specifics lines normal to the fracture: l1 which connects (0, 1) and
(1, 0), crossing the fracture at (0.5, 0.5) and layers, and l2 which connects (0.3656, 1.3293) and
(1.3658, 0.3293), passing close to the fracture tip. The concentration profiles computed with the
matrix-fracture and the multi-layer models are plotted against the arc curve length coordinate
along l1 and l2. These profiles are compared with the layer thickness predicted by (13), marked
by the dots in position (a1,2 ± ε±µ , δ), where a1 = 0.778 (for line l1) and a2 = 0.7521 (line l2) are
the intersections with the fracture. These dots correspond to the point where solute concentration
drops below the cutoff value (δ = 0.1), and thus mark the border of the layer µ±.

We can notice that for l1 the results are in good agreement, while for l2 we get accurate results
only for the top part of the layer. For the bottom part of µ on its tip, the model assumption that
the flow is mostly normal however, in this particular case, is not valid since the outflow from the
fracture tip creates strongly bidimensional effects in the solution.

We can conclude that, in this setting, the multi-layer reduced model is an attractive and
effective alternative which gives coherent results with the model of [25].

4.1.2 Case 2

In this second test case of the group, we allow for a more complex physical interaction between
the variables by setting ηΩ = 5 · 10−2, ηγ = 5 · 10−2, and ηµ = 5 · 10−2: thus, the porosity and
consequently then the permeability change in time and alter pressure and Darcy velocity fields.
The problem becomes more coupled. We would like to understand if the presented model gives
reasonably accurate outcomes even if this setting does not satisfy the hypotheses at the basis of
the derived layer evolution (even more than the previous case).

Let us consider a graphical comparison of the solution obtained with the two models, reported
in Figure 10. Comparing the pressure profile with the one obtained in the test case of Sub-
subsection 4.1.1, we clearly see the effect of the η parameters on porosity and fracture aperture.
The fracture indeed now becomes less permeable (due to its shrinking aperture) as well as the
layer surrounding it (due to decreasing porosity).

We note that the predicted and observed thickness of the layer is such that, also in this case, it
is beneficial to adopt a multi-layer approach. We notice also that the fracture aperture is smaller
closer to the inflow of the problem: this is due to the solute that enters the domain, flows mainly
into the fracture and precipitates there, altering its aperture. This results in a slower fracture flow
which in turn affects the overall process. Figure 11 represents the layer thickness and porosity
at the end of the simulation. The difference between the two sides is evident, mainly due to the
difference in the flow exiting the fracture on the two sides. Finally, in Figure 12 we compare the
solute on the same lines specified in the previous Sub-subsection 4.1.1, l1 and l2. The model for
the thickness layer prediction is now slightly less accurate then before, due to the effect of the not
null η parameters, however we still find good qualitative agreement between the results.

We can conclude that, also in this setting, the multi-layer reduced model is able to represent
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Figure 7: Graphical representation of the pressure (top), solute (centre), and precipitate (bottom)
for the test case described in Sub-subsection 4.1.1 at the end of the simulation. On the left for the
multi-layer reduced model in Problem 3 and on the right for the matrix-fracture model in Problem
2.
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Figure 8: Layer thickness for both sides (top layer on the left, bottom layer on the right) at the
end of the simulation time for the test case in Sub-subsection 4.1.1.
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Figure 9: Profile of the solute along two lines normal to the fracture, l1 on the left and l2 on the
right. The blue line represent the solute profile obtained with the proposed multi-layer model,
while the red line with the equi-dimensional layers µ and a fine grid. The green and yellow dot
represent the point (a± ± ε±µ , δ) for the top and bottom layer respectively. Results for the test
case in Sub-subsection 4.1.1.

the effects quite accurately with a much lighter computational cost than a refined grid, even if we
are outside of the assumptions for the layer thickness evolution.

4.1.3 Case 3

In this example we consider the same data of Case 1 in Sub-subsection 4.1.1 but the reaction
rate is now modeled with a non-linear function of the solute. We set r(u) = u2, rw(u) =
−λmax

(
u2 − 1, 0

)
. In this case we will note that precipitation occurs only if u exceeds 1, the

non-dimensional equilibrium value.
The aim of this test is to validate the formula (14) for the prediction of the layer thickness.

Since this expression is derived only for the steady state and not for the actual evolution of εµ,
we cannot run the multi-layer model in Problem 3 but only the fracture-matrix Problem 2 and
observe whether the solute/precipitate distribution corresponds to our predictions. The use of
this reaction rate in the multi-layer model would require the derivation of an expression or an
approximation of the layer thickness in time, which will be the subject of future work.

Due to the chosen data, since η = 0, the porosity and fracture aperture are fixed at their initial
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Figure 10: Graphical representation of the pressure (top), porosity (centre), and fracture aperture
(bottom) for the test case described in Sub-subsection 4.1.2 at the end of the simulation. On the
left for the multi-layer reduced model in Problem 3 and on the right for the matrix-fracture model
in Problem 2.
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Figure 11: Layer thickness for both sides (top layer on the left, bottom layer on the right) at the
end of the simulation time for the test case in Sub-subsection 4.1.2.

value and thus the pressure field and Darcy velocity are the same as in Case 1, and represented on
the top of Figure 7. The solute and precipitate in the rock matrix are represented in Figure 13,
which shows for both fields the existence of a narrow region surrounding the fracture with very
different values than the remaining part of the rock matrix. This justifies once again the necessity
to adopt a reduced model to describe the layer around the fracture. Moreover, note that further
away form the fracture the solute concentration is below the equilibrium value (u = 1) therefore
no precipitation occurs.

Figure 14 shows the comparison between the layer thickness predicted with (14) and the one
graphically estimated from the numerical results of model in Problem 2. For the comparison we
consider again the lines l1 and l2 introduced previously. First of all, on both lines we can observe
a peak in the solute profiles in correspondence of the fracture. The value of solute concentration
then decreases quickly reaching the plateau value u = 1. As done in the previous cases we can
compare the predicted layer thickness, according to (14), with the numerical results: this time
the dots correspond to the points in position (a1,2 ± ε±µ , 1 + δ), where a1 = 0.778 (for line l1) and
a2 = 0.7521 (line l2) and δ = 0.1. We can observe a good agreement between the predicted and
measured layer size in both cases, even close to the fracture tip.

Even if for the non-linear case more analysis should be done, these results can be considered
promising and they confirm the feasibility of adopting a reduced model for the layer µ around the
fracture.
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Figure 12: Profile of the solute along two lines normal to the fracture, l1 on the left and l2 on
the right. The blue line represent the solute profile obtained with the proposed multi-layer model,
while the red line with the equi-dimensional layers µ and a fine grid. The green and yellow dot
represent the point (a1,2 ± ε±µ , δ) for the top and bottom layer respectively. Results for the test
case in Sub-subsection 4.1.2.

Figure 13: Solute and precipitate in the rock matrix at the end of the simulation time for the test
case in Sub-subsection 4.1.3.

4.2 Three-dimensional problem

For this test case we consider a three dimensional setting inspired from the Case 1 of [7]. In
particular, we adopt the same geometry and part of the data for the flow problem at the outset
of the simulation. The aim of this test case is to validate the proposed model in Problem 3 in
a three-dimensional setting. Referring to Figure 15, the bottom part of the domain has higher
porosity and permeability than the remaining part. We note that the inflow part of the boundary
is slightly larger that the one in [7] to allow direct inflow into the fracture and layer, and thus
obtain a simpler flow pattern around the fracture that fits the assumptions of our model. For the
data used in the simulation see Table 2. The computational grid is composed of 11436 tetrahedra
for the porous media, 470 triangles for the fracture and 940 triangles for the layer. The final
simulation time is 5 · 105 divided uniformly in 100 time steps. We note that the final time is
shorter than in [7] since most of the dynamic of our interest happens at an early stage.

Figure 16 shows the pressure and solute in the rock matrix at the end of the simulation time.
We notice that the fracture remains highly conductive and also that the solute in the rock matrix
is quite low. Indeed, at the end of the simulation time, most of the dynamics happened only in
the fracture and surrounding layer. In Figure 17 we represent the fracture aperture and solute at
the end of the simulation time. As noted before, the fracture remains highly conductive and the
inflow concentration of the solute is transported quickly in the whole fracture. This also implies
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Figure 14: Profile of the solute along two lines normal to the fracture, l1 on the top and l2 on
the bottom. On the right a zoom around the estimated values. The red line represent the solute
profile obtained with the equi-dimensional layers µ and a fine grid. The green and yellow dot
represent the point (a1,2 ± ε±µ , δ + 1) for the top and bottom layer respectively. Results for the
test case in Sub-subsection 4.1.3.

also precipitation inside the fracture and thus fracture aperture variation, as well as a strong
influence on the layer thickness evolution.

Figure 18 show the dynamics inside the layer. We obtain more precipitate in the top part of
the layer µ due to the inflow into the layer itself from the top part of the rock matrix, and also
because, in the bottom part of µ, the solute tends to flow towards the outflow boundary at the
bottom, resulting in a smaller concentration of precipitate in the bottom part of µ. The layer
thickness is also represented, with two different scales, overlapped with the Darcy velocity in the
fracture, as a proxy for the flow exchange between the fracture and the layer. We see that the top
part of the layer is rather thin and in principle might be neglected, however on the bottom part
a higher value of the thickness reveals the importance of having the layer explicitly represented.
The aperture in this case is not uniform, but rather, larger near the outflow of the problem, as
one could expect.

Considering the size of the computational domain, the values of the layer thickness obtained
is in the limit of a reduced model. To be able to capture this small layer around the fracture,
and thus use the model in Problem 2, we should refine the grid obtaining a problem that is
too computational expensive to solve, even for such simple test case. This test case, with the
considered data, shows the importance of the presented multi-layer reduced model, which can be
considered an attractive alternative.
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Figure 15: Computational domain for the test case in Subsection 4.2. The magenta represents the
fracture and the layer, the red part is the inflow boundary region while the green is the outflow.
Finally, the yellow block is the part with different matrix porosity and permeability.

cutoff = 0.1 φlow
Ω,0 = 0.2 φhigh

Ω,0 = 0.25 φµ,0 = 0.25 εγ,0 = 4 · 10−3

εµ,0 = 10−8 klow
0 = 10−6 khigh

0 = 10−5 kγ,0 = 10−1 κγ,0 = 10−1

kµ,0 = 10−5 κµ,0 = 10−5 µ = 1 f = 0 fγ = 0

fµ = 0 qno−flow
∂Ω = 0 pout−flow

∂Ω = 1 pin−flow
∂Ω = 4 qno−flow

∂γ = 0

qno−flow
∂µ = 0 d = 10−12 dµ = 10−12 δµ = 10−12 dγ = 10−12

δγ = 10−12 uΩ,0 = 0 χno−flow
∂Ω = 0 uin−flow

∂Ω = 2 uout−flow
∂Ω = 0

uγ,0 = 0 χno−flow
∂γ = 0 uin−flow

∂γ = 2 uµ,0 = 0 χno−flow
∂µ = 0

uin−flow
∂µ = 2 λ− = 10−6 r(u) = u ηΩ = 0.5 ηγ = 0.5

ηµ = 0.5

Table 2: Data for the examples in Subsection 4.2.

5 Conclusion

In this work we have introduced a mathematical model that is able to simulate in an accurate, yet
affordable way simple reactive transport flow problems in the presence of a fracture. In particular,
when the reaction rate is high enough compared to transport, we observe that a narrow region,
denoted as reactive layer, forms just around the fracture: here the porous medium has different
physical properties from the surrounding porous matrix due to mineral precipitation or dissolution.
These changes in porosity and permeability might substantially alter the flow field, resulting in
a fully coupled and non-linear mathematical model. Moreover, in this layer we expect steep
gradients of the variables, in particular the solute and precipitate. For large Damköhler numbers,
as proven by numerical simulations and experimental observations, these reactive layers can be

Figure 16: On the left, the pressure field and, on the right, the solute for the test case in Subsection
4.2.
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Figure 17: On the left, the fracture aperture and, on the right, the fracture solute for the test case
in Subsection 4.2.

extremely thin, to the point that it is difficult to capture their geometry and solution dynamics
with a refined computational grid. For this reason in this work we have proposed and tested
a reduced model where not only the fractures, but the reactive layers as well are represented
as co-dimension 1 objects coupled with the porous matrix, and among themselves. We have
derived, under suitable assumptions, a model for the evolution in time of the layer thickness which
provided reliable results compared to a very refined numerical simulation of the corresponding
equi-dimensional model. The model has been derived and tested for a simple linear reaction rate
model and, at the steady state only, for a more complex reaction rate that accounts for equilibrium
solubility and supersaturation. By increasing further the complexity of the reaction rate we expect
that the model for the layer evolution might become more involved and will require a numerical
approximated solution (as opposed to a closed form expression) to estimate, at each point and
each time step, the layer thickness: this will be part of a future study. In the numerical study
we have also shown a three-dimensional model where the proposed approach might be even more
attractive to substantially lighten the computational burden associated with mesh refinement.
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