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Abstract

This paper deals with the validation of constitutive models for healthy and unhealthy cerebral arterial

tissues by means of numerical simulations of static inflation tests on a cylindrical geometry representing

a specimen of anterior cerebral artery. The healthy arterial tissue is described by means of isotropic and

transversely isotropic models. In particular, we validate a transversely isotropic multi-mechanism law,

specifically proposed for the cerebral arterial tissue, for which the recruitment of the collagen fibers occurs

at finite strains. Moreover, we consider numerical simulations of unhealthy cerebral arterial tissues by

taking into account the mechanical weakening of the vessel wall that occurs during early development

stages of cerebral aneurysms. We study the effects of the mechanical degradation on kinematic quantities

of interest, namely the stresses distribution, that are commonly related to the progressive degradation of

the arterial tissue by simulating static inflation tests for both isotropic and transversely isotropic models,

including the multi-mechanism law.

Key words: cerebral arterial tissue; hyperelastic isotropic models; hyperelastic transversely isotropic models;
multi-mechanism; mechanical weakening; finite elements.

1 Introduction

The normal function of the brain’s control centers is dependent upon adequate supply of oxygen and nutrients
through a dense network of arteries establishing the cerebral blood circulation. However, the proper function
of cerebral arteries may be disrupted by injuries caused by trauma or by the occurrence of other cerebrovascu-
lar accidents (e.g. stroke or vasospasm) resulting from the development of cardiovascular diseases as cerebral
aneurysms. In the latter case, efforts to better understand the disease process require, among the different
aspects, the characterization of the mechanical response of the cerebral arteries to several hemodynamical
factors. In this respect, the definition of proper mathematical models based on the knowledge of the vessel
properties represents a critical step toward the enhanced understanding of cardiovascular diseases.
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As other blood vessels, cerebral arteries consist of three main concentric layers of material [1] of which the
innermost is the tunica intima, the middle one is the tunica media, and the outermost is the tunica adventitia;
in addition, the tunica intima and the media are separated by the internal elastic lamina. In healthy arteries,
the tunica media and the tunica adventitia are the main responsible of the overall mechanical properties
of the tissue, being the contribution provided by the tunica intima negligible [2]. The passive mechanical
properties of the media and adventitia are determined by those of their two main constituents: the elastin and
collagen fibers [2, 3]. The typical mechanical behavior of healthy arteries is highly nonlinear and anisotropic
with a stiffening effect occurring at high stresses [1, 4, 5]; such effect is due to the recruitment of the collagen
fibers embedded in the elastin network of the media and adventitia layers. This paper is concerned with the
numerical validation of isotropic and transversely isotropic mathematical models for the description of the in
vitro passive mechanical behavior of healthy cerebral arteries; in vivo effects as perivascular tissue and active
contraction of the arterial tissue are not considered in this study. As discussed in [3], several mathematical
models have been proposed for biological tissues, in particular blood vessels [6, 7]. Among these, most of the
constitutive laws describe the vessel wall, at the macroscopic scale, as a continuous body whose mechanical
behavior is modeled according to the finite elasticity theory [2, 3, 6, 8]. The most common constitutive
laws are of phenomenological type, for which isotropic models represent the artery as a single layer material
[6, 9]. Isotropic constitutive laws are largely used to model the arterial tissue due to their simplicity and the
limited number of material parameters that usually need to be estimated for characterizing the mechanical
response. For instance, the Mooney-Rivlin and the neo hookean models have been largely used in literature
to describe the arterial tissue [10, 11, 12, 13, 14]. However, they turned out to be inappropriate to fit the
experimental data considered in this work [15]. For that reason in this paper we use isotropic laws based on
the St. Venant-Kirchhoff [8] and exponential type models [9].

Based on the experimental observations of the anisotropic mechanical response of the arterial tissue,
since the seminal work in [2], several anisotropic models have been formulated to include in the constitutive
laws the mechanical contribution of the collagen fibers. Such models rely on the mechanical theory of fiber-
reinforced composites [16] for which the tissue is assumed to be composed by a single layer embedding two
constituents: the so called background material (whose main constituent is the elastin) and the fibrous
network (i.e. the collagen fibers) which endows the tissue with its anisotropic response to external loads. The
mechanical response of the background material is usually described by isotropic models, while the mechanical
contribution of the collagen fibers is represented by a finite number of fiber families [17, 18, 19, 20, 21], each
of them oriented along a characteristic direction for the tissue at rest. In this work, the recruitment of the
collagen fibers is supposed to occur either at zero strains [17, 20], or at finite strains [21, 22], yielding the
so called multi-mechanism constitutive law. We remark that the multi-mechanism model in [21, 22] was
specifically proposed after the analysis of the experimental measurements reported in [15]; for this reason we
consider this set of data. However, other studies have focused either on the characterization of the mechanical
behavior of cerebral arteries by considering inflation-extension tests [23] or on the mechanical properties of
other arteries (e.g. [24, 25]).

The arterial tissue behaves as a nearly incompressible material within the physiological range of defor-
mations. We enforce the nearly incompressibility constraint by penalizing the deformations of the tissue
leading to changes in its volume for which we employ the approach based on the multiplicative decomposi-
tion of deformation tensor into a volumetric and an isochoric part [26, 27]. The numerical validation of the
constitutive models is carried out by means of finite elements simulations of static inflation tests on a com-
putational domain representing a specimen of anterior cerebral artery for which experimental measurements
of the strain-stress relation are provided in [15].

Afterwards, we consider the mathematical modeling and numerical simulations of unhealthy cerebral
arterial tissue. Cardiovascular diseases such as cerebral aneurysms are related to degenerative changes in
the mechanical properties of the vessel wall driven by a complex interaction of biological and hemodynamic
factors. The understanding of the onset and the growth of cerebral aneurysms is still subject of debate, but
it is generally accepted that unphysiological hemodynamic forces (e.g. high wall shear stress [28]) play a
key role, in concomitance with genetic factors ([29]) and structural features of the cerebral arterial tissue
([30, 31, 32]). More specifically, as described in [15, 28, 30, 33, 34, 35], during the onset of a cerebral

2



aneurysm, the internal elastic lamina and the elastin network in the tunica media become markedly degraded
or fragmented. Indeed, the transition from the parent vessel [30] to aneurysm is characterized by a sharp
break in the media layer [31, 34]. Moreover, it has been observed in [36] that the tissue composing the dome
of a cerebral aneurysm [3] consists primarily of collagen fibers, while the elastin tends to be fragmented or
absent; in addition, the aneurysm growth involves a significant remodeling of the collagen fibers in the dome
[7, 37]. In this work, the weakening of the arterial tissue that occurs in diseased states of arteries, as in
the early stages formation of a cerebral aneurysm, is described by means of an isotropic weakening model
for the background material (elastin). According to the approach proposed in [38], the level of mechanical
weakening of the tissue is introduced in the constitutive model for healthy cerebral arterial tissue by means
of a dimensionless parameter D ∈ [0, 1). We consider different levels of mechanical weakening of the arterial
tissue prescribing a priori different values of D in the constitutive models. The influence of the modeling
choice on the deformations and stresses distribution throughout the body during static inflation tests is
studied for the different levels of mechanical weakening.

The paper is organized as follows. Section 2 introduces the kinematics quantities for the formulation of
the constitutive laws and presents the mathematical models used to describe the healthy cerebral arterial
tissue; in addition, the weakening model for the arterial tissue is presented. Section 3 deals with the finite
element approximation of the linear momentum equation governing the deformations of the tissue under the
action of external forces. The numerical results are presented and discussed in Section 4. Conclusions follow
in Section 5.

2 Mathematical modeling of the arterial tissue

This section deals with the mathematical modeling of the arterial tissue by taking into account the macro-
scopic nature of the vessel wall. Sec. 2.1 introduces the basic notations used to describe the motion of a
continuous body under the action of external forces. Sec. 2.2 presents the mathematical models for the
description of the healthy cerebral arterial tissue. Sec. 2.3 focuses on the description of the experimental
data fitting procedure for estimating the material parameters of the constitutive laws. Sec. 2.4 deals with
the mathematical modeling of unhealthy arterial tissue. In Sec. 2.5 we describe the choice of the weakening
parameter D for the comparisons of different constitutive models representing unhealthy cerebral arterial
tissues.

2.1 Kinematics of continuous media

The arterial tissue is assumed to be a continuous medium (also referred as continuous body) whose elastic
properties are represented by suitable mathematical models. The kinematics of the vessel wall is described
in terms of the vectorial and tensorial fields defined for the continuum theory [8]; the constitutive models
(laws) are formulated under the finite elasticity assumption [3].

Let B0⊂R
3 and B⊂R

3 be the reference and current configuration of a continuous body, respectively. The
position of a point in B0 is indicated by the material coordinatesX, while, in the current configuration, by the
spatial coordinates x. The motion from B0 to B experienced by the body under the action of external forces
is described by the nonlinear function φ(X, t) that maps any point X∈B0 into the point x∈B at each time
t ∈ R+. The material (i.e. Lagrangian) description of the displacement at each point X∈B0 is represented
by the vector d(X) = x −X ∈ R

3. Locally, the deformations of the body in the material coordinates are
described by the deformation gradient tensor F , the local volume ratio J (also referred as Jacobian) and the
right Cauchy-Green tensor C defined as:

F = ∇Xφ = ∇Xd+ I, J = det(F ) > 0, and C = F TF , (1)

respectively; ∇Xd is the material gradient of the displacement field and I is the second order identity tensor
in R

3 [8]. We focus on the mathematical modeling of the passive mechanical response of the arterial tissue
which is assumed to be an hyperelastic material whose mechanical behavior is characterized by means of a
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(a) Reference configuration B0 (b) Cross section of B0.
∆P = pin − pout, pout = 0.

Figure 1: Computational domain B0 representing the arterial specimen and data of problem (3).

scalar-valued function of the deformations (measured either by F or C), the so called strain energy function
W [8]. The stresses that occur in the body during its motion are measured in both the reference and current
configuration through the first Piola-Kirchhoff tensor P and the Cauchy stress tensor σ defined, respectively,
as:

P =
∂W

∂F
and σ =

1

J
PF T . (2)

The mechanical response of the body to external loads is governed by the linear momentum equation in
Lagrangian form complemented by suitable boundary conditions. Since in this work we specifically consider
inflation tests on cylindrical specimen of arteries, the mechanical problem is defined in the computational
domain B0 of Fig. 1(a) that represents a cylindrical geometry of internal radius r0 and thickness h (as in
Fig. 1(b)). The problem reads:

find d : B0 → R
3 :





Div(P (d)) = 0 in B0,
Pn = −poutn on Γout,
Pn = −pinn on Γin,
d = 0 on ΓD,

(3)

where ΓD is the subset of ∂B0 where homogeneous Dirichlet boundary conditions are imposed; the subsets
Γout and Γin indicate the external and internal surfaces of the body and n is the outward directed, unit vector
normal to the corresponding surface. pout and pin represent the pressures acting on Γout and Γin defining
the transmural pressure ∆P = pin − pout. We assume, for simplicity, that pout = 0, thus yielding ∆P = pin
(see Fig. 1(b)). The undeformed internal radius (r0 = 0.033 cm) and the vessel wall thickness (h = 0.010
cm) of the tissue represented in Fig. 1(b) correspond to the physiological dimensions of the anterior cerebral
artery described in [15, 22]. We set the length L of the cylindrical specimen L = 2. The range of transmural
pressures considered to validate the different constitutive models is the physiological one occurring in cerebral
arteries during one heart beat; therefore, ∆P ∈ [70, 150] mmHg [39].

The arterial tissue behaves as a nearly incompressible material within the physiological range of deforma-
tions [40]. In order to model such behavior, we adopt the approach based on the volumetric-isochoric split
of the deformation gradient tensor F [26, 27] which has been used in literature (e.g. [13, 19, 41, 42]) for
numerical simulations of the arterial tissue. According to [26], the local deformation gradient F and the right
Cauchy-Green C tensors are split into a so called volumetric and an isochoric part by means of the relations:

F =
(
J1/3I

)
F and C =

(
J2/3I

)
C, (4)

where the tensors J1/3I and J2/3I are associated with isotropic volume-changing deformations, while the
tensors F := J−1/3F and C := J−2/3C with volume-preserving deformations of the material, for which
det(F ) ≡ det(C) ≡ 1. Based on this kinematic assumption, the strain energy function W can be reformulated
in its penalty form as:

W = W(C, J) = U(J) +W(C), (5)
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where the volumetric term U(J) penalizes the volume-changing deformations and the isochoric part W(C)
characterizes the mechanical response of the material to external loads according to different constitutive
laws. The first Piola-Kirchhoff tensor P is defined according to Eq. (2) as:

P = P̃ + P =
∂U(J)

∂F
+

∂W(C)

∂F
, (6)

where P̃ and P measure the stresses due to volume-changing and isochoric deformations, respectively. We
remark that, in order to guarantee the existence of realistic physical solutions of Eq. (3), the strain energy
function in Eq. (5) has to satisfy the polyconvexity condition (see [43, 44]). In addition, both the functions
U(J) and W(C) must satisfy the requirement of objectivity under changes of coordinates systems [8]. We
discuss the choice of U and W in Secs. 2.2.1 and 2.2.2.

2.2 Volumetric and isochoric strain energy functions for the arterial tissue

2.2.1 The choice of the volumetric strain energy function U

Due to the polyconvexity requirements on the strain energy function W, the volumetric term U = U(J) must
be a strictly convex function of J endowed with a unique minimum in J = 1 [8]. This component of the
strain energy function W can be chosen independently from the isochoric term W of Eq. (5), even if the
decomposition approach is effective only when the functions U and W are properly balanced.

Different functions U have been proposed in literature (see for instance [27, 45, 46]); in this work, it is
assumed in the form:

U(J) =
κ

4

[
(J − 1)2 + log2J

]
, (7)

in order to penalize the cases J 6= 1 and J → 0 corresponding to unphysical solutions. The parameter κ,
which can be interpreted as a bulk modulus, assumes the role of a user-specified penalty parameter that is
suitably determined to weakly enforce the nearly incompressible response of the material in the physiological
range of deformations of the body. The choice of the parameter κ is a trade-off between the need to represent
the quasi-incompressible behavior of the tissue and to yield a physical meaningful displacement of the body.

2.2.2 The choice of the isochoric strain energy function W

We consider the healthy arterial tissue as a homogeneous body with constant material parameters for which
the layered structure of the vessel wall is neglected. As described in [1], the arteries show a highly nonlinear
and anisotropic mechanical behavior. In the last decades, structurally motivated models (as for instance
transversely isotropic laws), that take into account the fibrous nature of the tissue into the constitutive
relation, have been proposed and used in order to represent the anisotropic behavior of arteries [2, 21, 47].
However, isotropic models are still largely used to represent the arterial tissue [2, 3, 6]. For this reason, we
will consider both isotropic and transversely isotropic models. We remark that, in order for the strain energy
function W to satisfy the polyconvexity condition for all the deformations of the body, also the isochoric
strain energy function W must be a polyconvex function for all states of deformations.

2.2.3 Isotropic constitutive models

When the arterial tissue is modeled by means of isotropic models, it is assumed to be composed by a unique
elastic material by neglecting its fibrous nature. Due to requirements of frame indifference of the constitutive
law [8], the isochoric part of the strain energy function in Eq. (5), indicated as Wiso, is formulated in terms
of the principal invariants of C, as:

Wiso = Wiso(C) = Wiso(I1, I2, I3) = Wiso(I1, I2), (8)
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where:

I1 = Tr(C) = J−2/3I1, I2 =
1

2

[
Tr2(C)− Tr(C

2
)

]
= J−4/3I2 , and I3 = det(C) = J−2I3, (9)

with (I1, I2, I3) the principal invariants of C [8]. We remark that the explicit dependency of Wiso on I3 in
Eq. (8) can be dropped since I3 ≡ 1, due to the definition of the isochoric right Cauchy-Green tensor C.

A common constitutive model is the St. Venant-Kirchhoff (SVK) [8], for which:

Wiso = W
SVK

iso

(
I1, I2

)
=

(
λ

8
+

µ

4

)
I
2

1 −

(
3

4
λ+

µ

2

)
I1 −

µ

2
I2 +

9

8
λ+

3

4
µ, (10)

where λ and µ are the Lamé parameters, depending on the Young modulus E and Poisson’s ratio ν as:

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (11)

We recall that the Young modulus measures the mechanical stiffness of the material and the Poisson’s ratio
ν ∈ (0, 0.5) represents the relative change of volume of an elementary cube inside the body due to deformations
of the material. We remark that the incompressibility constraint is yielded for ν → 0.5.

In addition, we consider the first order exponential (EXP1) model proposed in [9], for which:

Wiso = W
EXP1

iso (I1) =
α1

2γ1

(
eγ1(I1−3) − 1

)
(12)

and the second order exponential model (EXP2) [44]:

Wiso = W
EXP2

iso (I1) =
α2

2γ2

(
eγ2(I1−3)2 − 1

)
, (13)

where α1, α2, γ1 and γ2 are suitable material parameters. In Eqs. (12) and (13) α1 and α2 measure the
mechanical stiffness of the arterial tissue, while γ1 and γ2 are representative of the level of nonlinearity of
the mechanical response of the vessel wall.

We remark that the strain energy functions associated to the exponential (EXP1 and EXP2) models of
Eqs. (12) and (13) satisfy the polyconvexity condition for all the states of deformations [44]. Conversely,
the SVK model does not satisfy this condition under compression states of deformations [8, 48]; however, we
observe that this situation does not occur during inflation tests of cylindrical geometries like the one repre-
sented in Fig. 1(a). We remark that the SVK constitutive model, and eventually its linearized approximation
are often used in literature to model the arterial tissue [10, 11, 42, 49, 50]; for this reason, we will include the
SVK model for a numerical comparison.

2.2.4 Transversely isotropic constitutive model

When modeling the passive mechanical response of the vessel wall by means of transversely isotropic models,
the tissue is assumed to be composed of an isotropic medium, also called background material, in which a
network of collagen fibers is immersed [2, 3]. Such models describe the overall mechanical behavior of the
arterial tissue as the sum of the contributions provided by its two main constituents. Based on experimental
observations, the two constituents are the elastin and the collagen fibers respectively, that are the main
components of the vessel wall [1, 2]. In literature (see [39, 44] and references therein) the transversely
isotropic models that are commonly employed are based on the theory of fiber-reinforced composites [16].
The contribution of the collagen fibers to the overall mechanical behavior of the tissue is usually modeled as
the sum of the mechanical responses of a finite number of families of collagen fibers. As described in [21, 22],
the collagen fibers contribute to the mechanical response of the arterial tissue only when activated. Indeed,
the recruitment of the collagen fibers has been hypothesized as the underlying mechanism for the mechanical
stiffening with increasing stress in arteries.
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Figure 2: Directions a
(i)
0 , i = 1, 2, of the families of collagen fibers in the reference configuration B0.

When the collagen fibers are activated, the isochoric strain energy function W characterizing transversely
isotropic materials, that we indicate by Wti, is decomposed into the sum of the load-bearing contributions
provided by the background material and the collagenous constituent as:

Wti = W
bg

ti +W
fibers

ti , (14)

where W
bg

ti characterizes the background material and W
fibers

ti models the fiber-reinforcing component of the
tissue. As described in [2], isotropic laws as those presented in Sec. 2.2.3 (SVK, EXP1, EXP2) can be used

to describe the background material. Conversely, the component W
fibers

ti of Wti takes into account for the
transversely isotropic effects in the mechanical response of N families of collagen fibers. For any point X
in the reference configuration B0, each family of collagen fibers is endowed with a characteristic direction

a
(i)
0 , for i = 1 . . . N , as highlighted in Fig. 2. Due to the weak interactions between the fiber families [2], the

strain energy function W
fibers

ti is written as the sum of N strain energy functions, W
fibers,(i)

ti , each of them
characterizing the mechanical behavior of the i-th family, as:

W
fibers

ti =
N∑

i=1

W
fibers,(i)

ti . (15)

The function W
fibers,(i)

ti , due to frame indifference requirements, can be formulated in terms of the so called

modified pseudo-invariants of C and the second order tensor (a
(i)
0 ⊗a

(i)
0 ) associated to the i-th family [8, 51],

indicated by I
(i)

4 and I
(i)

5 , as:

W
fibers,(i)

ti = W
fibers,(i)

ti (I
(i)

4 , I
(i)

5 ), (16)

where

I
(i)

4 = Tr
(
C(a

(i)
0 ⊗ a

(i)
0 )

)
= J−2/3 Tr

(
C(a

(i)
0 ⊗ a

(i)
0 )

)
= J−2/3I

(i)
4 , (17)

and

I
(i)

5 = Tr
(
C

2
(a

(i)
0 ⊗ a

(i)
0 )

)
= J−4/3 Tr

(
C2(a

(i)
0 ⊗ a

(i)
0 )

)
= J−4/3I

(i)
5 , (18)

being I
(i)
4 and I

(i)
5 the fourth and fifth invariants associated to C and the tensor (a

(i)
0 ⊗ a

(i)
0 ). From the

mechanical point of view, I
(i)
4 corresponds to the square of the stretch of the body along the fiber direction

a
(i)
0 , or alternatively, it can be interpreted as the square of the length of the deformed fiber in the current

configuration; I
(i)
5 measures the deformations of the i-th collagen fiber under shear conditions [52]. In the

transversely isotropic models under consideration, we set either W
bg

ti = W
EXP1

iso or W
bg

ti = W
EXP2

iso . The

isochoric strain energy function for the single collagen fiber family W
fibers,(i)

ti in Eq. (15) is chosen as a
second order exponential law along the fiber direction, that is:

W
fibers,(i)

ti

(
I
(i)

4 , I
(i)

5

)
= W

fibers,(i)

ti

(
I
(i)

4

)
=

α(i)

2γ(i)

(
eγ

(i)(I
(i)
4 −‖a

(i)
A

‖2)2 − 1
)
, (19)
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where α(i) and γ(i) are the mechanical stiffness and level of nonlinearity characterizing the i-th family of

collagen fibers, respectively, and ‖a
(i)
A ‖ is called the activation length of the i-th family of collagen fibers.

From the modeling point of view, ‖a
(i)
A ‖ is the length at which the recruitment of the i-th family of collagen

fibers occurs. The i-th family of collagen fibers is considered activated, i.e. it contributes to the mechanical

response of the arterial tissue, when I
(i)

4 is higher than the square of the activation length ‖a
(i)
A ‖ [21, 44].

According to [20, 44], the activation length corresponds to the length of the collagen fibers in the reference
configuration B0; therefore, for this class of models, the i-th family of collagen fibers is activated whenever

the activation condition, I
(i)

4 > ‖a
(i)
0 ‖2, is satisfied. In literature (see [19, 20, 44, 53]), the length of the i-th

fiber family in the reference configuration B0 is usually set to 1. In the following, this constitutive model
will be indicated as EXP2-RC. On the other hand, according to the multi-mechanism model [21, 22], the

recruitment of the i-th family of collagen fibers occurs whenever I
(i)

4 > ‖a(i)
MM‖2, where ‖a(i)

MM‖ is the

activation length associated to the i-th family in a deformed configuration of the body B
(i)
MM , called the

activation configuration. In [39], the activation length satisfies the condition ‖a(i)
MM‖ > 1 since, in the

reference configuration B0, the collagen fibers are assumed of unitary length. The strain energy function for
the collagen fibers in the multi-mechanism model will be indicated as EXP2-MM. We remark that the strain

energy function W
fibers,(i)

ti in Eq. (19) satisfies the polyconvexity condition for all states of deformations [44].
The full isochoric strain energy functionWti in Eq. (14) for transversely isotropic material reads as follows:

Wti(I1, I2, I3, I4, I5) = W
bg

ti (I1, I2) +W
fibers

ti (I4, I5), (20)

where I4 = {I
(i)

4 }Ni=1 and I5 = {I
(i)

5 }Ni=1 are the set of pseudo-invariants of the different fiber families. We
remark that, similarly to Eq. (8), the dependency of Wti on I3 has been dropped since I3 ≡ 1. When
including the activation condition in Eq. (20), the general formulation of the isochoric strain energy function
Wti reads:

Wti =





W
bg

ti (I1, I2), if I4 ≤ ‖aA‖
2,

W
bg

ti (I1, I2) +W
fibers

ti (I4, I5), if I4 > ‖aA‖
2,

(21)

where ‖aA‖
2 indicated the set of activation lengths {‖a

(i)
A ‖2}Ni=1. In Eq. (21), when assuming the activation

length equal to the one in the reference configuration, ‖a
(i)
A ‖2 = ‖a

(i)
0 ‖2 = 1, otherwise, for the multi-

mechanism model, we have ‖a
(i)
A ‖2 = ‖a(i)

MM‖2. In Eq. (21), the condition I4 > ‖aA‖
2 is verified if there

exists at least a fiber family i, with i = 1, . . . , N , such that I
(i)

4 > ‖a
(i)
A ‖2. It is worth pointing out that,

when the collagen fibers contribute to the mechanical response of the tissue, the isochoric part of the first
Piola-Kirchhoff tensor P for transversely isotropic models in Eq. (6) reads as follows:

P ti = P
bg

ti + P
fibers

ti = P
bg

ti +

N∑

i=1

P
fibers,(i)

ti . (22)

We include the collagen recruitment in the definition of P ti by means of an activation function that multiplies

the contribution P
fibers,(i)

ti as follows:

P ti = P
bg

ti +

N∑

i=1

(
1

π
arctan(ǫ(I

(i)

4 − ‖a
(i)
A ‖2)) +

1

2

)
P

fibers,(i)

ti , (23)

where ǫ is a dimensionless user-specified parameter which we choose as ǫ = 5.0 · 105 to model the abrupt
recruitment of the collagen fibers.

2.3 Determination of the material parameters from experimental data

In order to characterize the mechanical behavior of the healthy arterial tissue, it is necessary to estimate
the material parameters of the isochoric constitutive models described in Sec. 2.2.2. In this work, the
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material parameters of each isochoric model are determined by computing the least-squares approximation
[54] of experimental measurements of the strain-stress relation of cerebral arteries [15]. In [15] quasi-static
inflation tests up to the transmural pressure (∆P ) of 200 mmHg on cylindrical specimens of healthy human
anterior cerebral artery (ACA) are shown. In this work, similarly to [21, 22], the ACA is modeled as a
cylindrical membrane of undeformed internal radius (r0) and thickness (h) composed of a homogeneous and
incompressible material. We remark that, in virtue of the incompressibility assumption (i.e. J = 1), the
volumetric function U in Eq.(5) is identically null, while the modified invariants of C coincide with the
principal invariants of C, being C ≡ C (see Eqs. (9), (17), and (18)). In [15] the deformation of the internal
radius is measured by the circumferential stretch, indicated by λr, that is defined as λr = r/r0, with r being
the deformed radius at a certain level of transmural pressure ∆P . In order to fit the experimental data we
consider nonlinear functions T = T (λr) (detailed in Secs. 2.3.1 and 2.3.2) that relate the membrane tension
T to the circumferental stretch λr as in [21, 22, 55, 56]. In addition, the membrane tension is related to the
transmural pressure by means of the Young-Laplace equation, T = r ∆P ([15]). For a given constitutive
model for the cerebral arterial tissue, the nonlinear approximation of the experimental data is computed by
means of the Levenberg-Marquardt least-squares method [57].

Once the material parameters of a constitutive model have been estimated, the quality of the least-squares
approximation is evaluated by means of the R2 value [58] defined as:

R2 = 1−

ns∑

i=1

(
Ti − T (λi

r)
)2

ns∑

i=1

(
Ti − T

)2
, (24)

where ns is the number of strain-stress experimental measurements (λi
r , Ti), for i = 1, . . . , ns, T is the mean

measured membrane tension, and T (λi
r) is the membrane tension evaluated at the measured deformation λi

r.
The closer to one is the R2 value corresponding to a constitutive model, the better is the data fitting.

Secs. 2.3.1 and 2.3.2 present the functions T (λr) used to approximate the experimental measurements
for the constitutive models of Sec. 2.2.2 together with the values of the selected material parameters and the
corresponding R2 values. We recall that, as discussed in Sec. 2.2.1, the penalization parameter κ in Eq. (7)
is not involved in the parameter estimation procedure; we set κ = 9.0 · 106 dyn/cm2.

2.3.1 Determination of the material parameters for isotropic models

For isotropic models, under the incompressibility assumption (i.e. J = 1), Eq. (5) reduces to

W = Wiso(I1, I2) = Wiso(I1, I2). (25)

According to [22], the strain-stress function T = T (λr) for the data fitting is

T (λr) =
h

λr

(
λ2
r −

1

λ2
r

)(
2
∂Wiso

∂I1
+ 2

∂Wiso

∂I2

)
(26)

for each of the constitutive models of Sec. 2.2.3 (WSVK
iso , WEXP1

iso , and WEXP2
iso ). Fig. 3(a) shows the least-

squares approximation of the experimental data of [15] by means of the function T = T (λr) for each of
the isotropic constitutive models with the material parameters of Tab. 1. As indicated by the R2 value in
Tab. 1, in the case of the SVK model the experimental data are not properly approximated on the full range of
transmural pressures. Conversely, the data fitting improves when the EXP1 and EXP2 models are considered.
In these cases, as shown in Fig. 3(a), for transmural pressures higher than 50 mmHg, small differences are
observed between the two approximated strain-stress relations. On the other hand, see Fig. 3(b), for low
transmural pressures, the second order exponential (EXP2) model provides the best approximation of the
data with respect to the other two isotropic model.
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Figure 3: Least-squares approximation of the data in [15] using the isotropic models. Full range of transmural
pressures ∆P ∈ [0, 200] mmHg (left); low transmural pressures regime ∆P ∈ [0, 40] mmHg (right).

Model (Wiso) Parameters R2

WSVK
iso E = 1.1420 · 105, ν = 0.4500 0.9338

WEXP1
iso α1 = 7.6350 · 104, γ1 = 0.7410 0.9942

WEXP2
iso α2 = 6.8220 · 104, γ2 = 0.0609 0.9971

Table 1: Material parameters and R2 values for the isotropic models. E, α1, α2 [dyn/cm2]; ν, γ1,γ2 [-].

2.3.2 Determination of the material parameters for transversely isotropic models

Similarly to Eq. (25), under the incompressibility assumption (i.e. J = 1), Eq. (20) reduces to:

W = Wti(I1, I2, I4, I5) = Wbg
ti (I1, I2) +Wfibers

ti (I4, I5). (27)

As in other works where transversely isotropic models describe the arterial tissue (e.g. [17, 21, 59]), we
consider two families of collagen fibers oriented symmetrically with respect to the circumferential direction
of the cylinder as in Fig. 2. In addition, we remark that, for transversely isotropic models, the material
parameters α(i) and γ(i) in Eq. (19) are the same for all families of fibers. According to [21], for the
transversely isotropic models of Sec. 2.2.4 the function T = T (λr) reads as :

T (λr) =
h

λr

[
2

(
λ2
r −

1

λ2
r

)
∂Wbg

ti

∂I1
+

2∑

i=1

2
∂W

fibers,(i)
ti

∂I
(i)
4

λ2
r cos

2 β(i)

‖a
(i)
A ‖2

]
, (28)

where β(i) is the angle between the characteristic direction of the i-th fiber family in the reference configuration

B0, indicated by a
(i)
0 , and the circumferential axis eθ (see Fig. 2). We remark that in Eq. (28), due to

the representation of the arterial tissue as a membrane, the recruitment of the collagen fibers will occur
simultaneously throughout the thickness of the vessel wall [22]. In addition, we set β(1) = −β(2) and

‖a
(1)
A ‖2 = ‖a

(2)
A ‖2. In order to include in the least-squares approximation the activation condition (I

(i)
4 >
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‖a
(i)
A ‖2) of Eq. (21) we consider the following modified form of Eq. (28):

T (λr) =
h

λr

[
2

(
λ2
r −

1

λ2
r

)
∂Wbg

ti

∂I1
+

2∑

i=1

(
1

π
arctan(ǫ(I

(i)
4 − ‖a

(i)
A ‖2)) +

1

2

)
2
∂W

fibers,(i)
ti

∂I
(i)
4

λ2
r cos

2 β(i)

‖a
(i)
A ‖2

]
, (29)

to relate the membrane tension to the circumferential stretch. The activation stretch ‖a
(i)
A ‖2 depends on the

angle β(i) and on the circumferential stretch (λ
A,(i)
r ) at which the recruitment of the i-th family of collagen

fibers occurs by means of the relation [21]:

‖a
(i)
A ‖2 = (λA,(i)

r )2 cos2 β(i) + sin2 β(i), (30)

and we set λ
A,(1)
r = λ

A,(2)
r . As discussed in Sec. 2.2.4 we consider transversely isotropic models for which the

collagen fibers are activated when their deformed length is either greater than their length in the reference

configuration ‖a
(i)
0 ‖ or greater than a reference length ‖a(i)

MM‖. In the first case (EXP2-RC model) such

assumption implies that λ
A,(i)
r = 1 and theferore ‖a

(i)
A ‖2 = ‖a

(i)
0 ‖2 = 1, for i = 1, 2. Conversely, for the multi-

mechanism model (EXP2-MM model) λ
A,(i)
r > 1 and, therefore, ‖a

(i)
A ‖2 > 1, for i = 1, 2, [39]. In [21, 22]

an estimation of the circumferential stretch of activation in Eq. (30) is provided based on the measurements
reported in [15]. However, since no experimental observations on the circumferential stretch of activation were

reported in [15], we consider λ
A,(1)
r as an additional material parameter to be estimated for the EXP2-MM

model.
As discussed in Sec. 2.2.4, we employ either the EXP1 or EXP2 model to describe the mechanical be-

havior of the background material. In the following, a transversely isotropic model will be indicated by
the couple of strain energy functions used for the background material and the collagen fibers. Tab. 2
summarizes the material parameters and R2 value for each of the transversely isotropic models under con-
sideration. In Tab. 2, (αbg,γbg) represent the material parameters characterizing the background material

while (α(1),γ(1),β(1),λ
A,(1)
r ) are the material parameters for the single family of collagen fibers. We remark

that the least-squares approximation of the data improves when transversely isotropic models are used with
respect to isotropic models (Tab. 1). In addition, when the multi-mechanism model describes the collagen
fibers the approximation of the experimental data is further improved with respect to the EXP2-RC model.
Fig. 4(a) shows the membrane tension T (λr) for the (EXP1, EXP2-RC) and (EXP1, EXP2-MM) models.
Fig. 4(b) shows the function T (λr) when either the EXP1 or the EXP2 models describe the background
material and the collagen fibers are represented by the EXP2-MM model. In this case, the estimation of the

circumferential stretch of activation λ
A,(1)
r is strongly affected by the choice of the model for the background

material (see Fig. 4(b) and Tab. 2). This is due to the fact that, as shown in Fig. 3(b), the EXP2 model
fits better than the EXP1 law the data in the low pressure regime; therefore, when using the EXP2 model
for the background material, the collagen fibers are activated at a higher activation circumferential stretch
in order to fit the high transmural pressure regime.

We observe that, in Figs. 4(a) and 4(b), the recruitment of the collagen fibers at finite strains induces

the sharp change in the membrane tension T (λr) around the circumferential stretch of activation λ
A,(1)
r .

Although the (EXP2, EXP2-MM) model gives the best least-squares approximation of the experimental
measurement, it will not be employed in the numerical simulations of healthy cerebral arterial tissue due to
numerical issues related to the numerical solution of the structural mechanics problem (3) [60].

2.4 Mathematical modeling of elastin weakening

As described in Sec. 1, the onset of cerebral aneurysms is related to the mechanical degradation of the
mechanical properties of the elastin in the media layer. We describe the weakening of the arterial tissue that
occurs in diseased states of arteries (e.g. during the early phases of the formation of a cerebral aneurysm) by
means of an isotropic damage model. Following the approach proposed in [38, 61], a dimensionless weakening
parameter D ∈ [0, 1) is used to represent the level of mechanical weakening affecting the material. The
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Model ( Wti ) Material Parameters R2

WEXP1
ti +WEXP2-RC

ti

αbg
ti = 1.7471 · 104 , γbg

ti = 0.8620
α(1) = 1.4979 · 105 , γ(1) = 0.5736

β(1) = 0.9865
0.9951

WEXP2
ti +WEXP2-RC

ti

αbg
ti = 6.8220 · 104 , γbg

ti = 0.8620
α(1) = 6.008 · 10−6 , γ(1) = 0.8211

β(1) = 1.4984
0.9971

WEXP1
ti +WEXP2-MM

ti

αbg
ti = 3.5270 · 104 , γbg

ti = 0.3424
α(1) = 1.3370 · 105 , γ(1) = 0.2141

β(1) = 0.7473 , λ
A,(1)
r = 1.5009

0.9980

WEXP2
ti +WEXP2-MM

ti

αbg
ti = 5.5420 · 104 , γbg

ti = 3.0 · 10−4

α(1) = 1.3087 · 105 , γ(1) = 0.5133

β(1) = 0.8251 , λ
A,(1)
r = 1.6538

0.9985

Table 2: Parameters for the transversely isotropic models. αbg
ti , α

(1) [dyn/cm2]; β(1) [rad]; γbg
ti ,γ

(1), λ
A,(1)
r [-].
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Figure 4: Least-squares approximation of the data in [15] using the transversely isotropic models.

unhealthy arterial tissue is then described by means of one of the constitutive models described in Sec. 2.2.2
for which the parameter representing the mechanical stiffness of the material is reduced by a factor of D. The
arterial tissue is healthy and its mechanical properties intact when D = 0, while its full mechanical failure
occurs when D → 1.

As discussed in Sec. 2.1 the choice of the isochoric strain energy functionW (either isotropic or transversely
isotropic) characterizes the mathematical description of the arterial tissue. When describing an unhealthy
state of the arterial tissue, the weakening factor (1 − D) affects only the isochoric part in the additive
decomposition of the strain energy function (see Eq. (5)). Therefore, when using isotropic laws to model the
unhealthy vessel wall, Eq. (5) is transformed as follows:

Wiso(J, I1, I2;D) = U(J) +Wiso(I1, I2;D). (31)

12



When the vessel wall is described by the transversely isotropic model of Eq. (21), the weakening factor

could affect the strain energy for the background material W
bg

ti and the one describing the collagen fibers

W
fibers

ti in Eq. (14), or only one of the two. Based on the experimental observations on cerebral aneurysms,
for which only the elastin is degraded in the early stages development of cerebral aneurysms, we assume

that the weakening model affects only the mechanical contribution provided by the isotropic part W
bg

ti of the
strain energy function in Eq. (21). According to this choice, the transversely isotropic constitutive model for
the unhealthy vessel wall reads:

Wti(J, I1, I2, I4, I5;D) = U(J) +W
bg

ti (I1, I2;D) +W
fibers

ti (I4, I5). (32)

In [21, 39, 44, 62] the weakening parameter D which is a function of kinematics quantities that depend on
the history of the deformations that occur during the motion of the body, such as the maximum deformation
or the maximum value of elastic energy [44, 39]. We are interested in analyzing the influence on kinematics
quantities of interest for the modeling of unhealthy cerebral arterial tissue of isotropic and transversely
isotropic constitutive models at different levels of mechanical weakening of the arterial tissue. For this
reason, we fix a priori different values for D in the constitutive models of Eqs. (31) and (32). In order to have
consistent comparisons among the different numerical simulations, it is necessary to calibrate the weakening
parameter D for the different constitutive models; we detail this aspect in Sec. 2.5.

2.5 Calibration of the weakening parameter D for unhealthy cerebral arterial

tissue.

Based on the results obtained from the least-squares approximation of the experimental data, we represent
the unhealthy cerebral arterial tissue by introducing the weakening parameter D in three of the constitutive
models discussed in Sec. 2.2.2: the isotropic EXP2 model, and the transversely isotropic models (EXP1,
EXP2-RC) and (EXP1, EXP2-MM). The weakening parameter D is introduced in the constitutive models
by means of the factor (1−D) multiplying the material parameters representing the mechanical stiffness of
the material. Thus, the isochoric term Wiso in Eq. (31) for the isotropic EXP2 model (indicated as U-EXP2)
reads as:

Wiso(I1, I2;D) = W
U-EXP2

iso (I1, I2;DEXP2) =
(1−DEXP2)α2

2γ2

(
eγ2(I1−3)2 − 1

)
. (33)

The weakened background material in the transversely isotropic models is described by the following modified
form of the EXP1 model (indicated as U-EXP1):

W
bg

ti (I1, I2;D) = W
U-EXP1

iso (I1, I2;DEXP1) =
(1−DEXP1)α

bg

2γbg

(
eγ

bg(I1−3) − 1

)
. (34)

In the following, the transversely isotropic models for unhealthy cerebral arterial tissue will be indicated as (U-
EXP1, EXP2-RC) and (U-EXP1, EXP2-MM), respectively, andDEXP2-RC

EXP1 andDEXP2-MM
EXP1 will represent the

weakening paramter affecting the material properties of the background material in the (U-EXP1, EXP2-RC)
and (U-EXP1, EXP2-MM), respectively. As pointed out in Sec. 2.4, the mechanical weakening of the tissue
affects only the mechanical properties of the background material (Eq. (32)). Although different constitutive
models can be adjusted to a set of experimental measurements in order to represent the healthy cerebral
arterial tissue (Sec. 2.3), the choice of the weakening parameter D in Eqs. (33) and (34) has an important
effect on the characterization of unhealthy cerebral arterial tissues. Fig. 5 shows the strain-stress functions
T (λr) of Figs. 3(a) and 4(a) for the EXP2, (EXP1, EXP2-RC) and (EXP1, EXP2-MM) models for different
values of the weakening parameter D. We observe that, for D > 0.6 the three curves do not interesect in the
physiological range of transmural pressures (∆P ∈ [70, 150]). For this reason, the proper calibration of the
weakening parameter D according to the model describing the vessel wall is necessary. We have calibrated
the values of the parameter D for the three constitutive models with respect to a reference value for Dref

and the reference transmural pressure ∆Pref = 110 mmHg. More specifically, we have considered two cases.
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(b) U-EXP1, EXP2-RC
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(c) U-EXP1, EXP2-MM

Figure 5: Functions T (λr) for different values of the weakening parameter D.

Firstly, we have fixed Dref = DEXP2-MM
EXP1 = 0.75 for the (U-EXP1, EXP2-MM) model and determined the

values of DEXP2 and DEXP2-RC
EXP1 for the remaining two models such that the three functions T = T (λr)

intersect at the reference transmural pressure ∆Pref . Then, we followed the same approach considering
Dref = DEXP2-RC

EXP1 = 0.6 for the (U-EXP1, EXP2-RC). We remark that in the latter case, as shown in
Fig. 5(c), it is not possible to find a value of D ∈ [0, 1) for which the (U-EXP1, EXP2-MM) model yield
the reference deformation at the reference pressure. Fig. 6 shows the functions T = T (λr) for the three
constitutive models under consideration with the material parameters of Tabs. 1 and 2 and the values of the
weakening parameter D summarized in Tab. 3.

Case Weakening parameter D

Case 1 Dref = DEXP2-MM
EXP1 = 0.7500 , DEXP2-RC

EXP1 = 0.3010, DEXP2 = 0.1103

Case 2 Dref = DEXP2-RC
EXP1 = 0.6000 , DEXP2 = 0.2641

Table 3: Values for the weakening parameter D used in the numerical simulations.

3 Numerical approximation: the Finite Element Method

Problem (3) is solved by means of the Finite Element Method [63]. With this aim, let us introduce the

Hilbert space V of functions V (B0) = [H1
ΓD

(B0)]
3 =

{
ψ ∈ [H1(B0)]

3 s.t. ψ = 0 on ΓD

}
, for which the

weak formulation of problem (3) reads :
find d = d(X) ∈ V :

∫

B0

P (d) : ∇ψ dB0 =

∮

Γin

−pn ·ψ dΓin ∀ψ ∈ V. (35)

The discrete problem is obtained by approximating the reference configuration B0 by Bh
0 , a conforming mesh

(triangulation) of B0, and by considering a finite dimensional subspace Vh = (Xp
h ∩ V ) ⊂ V composed

of Lagrangian, piecewise continuous polynomial basis functions of local polynomial degree p ≥ 1 defining
the space (Xp

h). Let {ψA}
Nh

A=1, where Nh := dim(Vh), be the Lagrangian basis of Vh, in the form ψA =
(φAe1 + φAe2 + φAe3), where φA is a scalar Lagrangian function of Vh defined on the mesh Bh

0 , and (e1, e2, e3)
is the Euclidean base in R

3. The discrete weak formulation of problem (3) is given by:
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(b) Case 2

Figure 6: Functions T (λr) with the weakening parameters of Tab. 3.
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Figure 7: Inflating pseudo-time pressure profile p(t) for problem (3).

find dh = dh(X) =

Nh∑

A=1

3∑

j=1

(dh,j)AφA(X)ej ∈ Vh :

∫

Bh
0

P (dh) : ∇ψA dBh
0 =

∮

Γh
in

−phn ·ψA dΓh
in ∀ψA ∈ Vh, (36)

where the j-th component of the displacement field is defined as dh,j =

Nh∑

A=1

(dh,j)AφA, with j = 1, 2, 3. In

Eq. (36), Γh
in is the approximation of the internal surface Γin provived by the mesh Bh

0 , and ph is a suitable
approximation of the boundary data p on Γin (e.g. the L2-projection of p onto Xp

h(Γin)). We remark that
the nonlinear constitutive relations considered in this work lead to the nonlinear problem (36) which is solved
by means of the Newton method [54]. In order to guarantee the convergence of the Newton method for the
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values of transmural pressures of interest, we use a pseudo-time approach, for which the inflating pressure is
gradually applied by using a pseudo-time function p(t), represented in Fig. 7. At each iteration of the Newton
method, Eq. (36) is linearized with respect to the displacement field d (see [8, 44]) for which the tangent

matrix

(
JP =

dP (d)

dd

)
of the first Piola-Kirchhoff tensor P (d) is evaluated, and the resulting linear system

is solved by means of the GMRES method [64] preconditioned with the Additive-Schwarz method [65].

4 Numerical validation

We numerically validate the constitutive models described in Sec. 2.2.2, for which the material parameters
are reported in Tabs. 1 and 2. Firstly, we show results of numerical simulations of static inflation tests on
healthy cerebral arterial tissue. Then the weakening model discussed in Sec. 2.4 is considered and numerical
simulations on unhealthy cerebral arterial tissue are discussed.

The computational domain representing the cerebral artery (see Fig. 1) is discretized by a tetrahedral
mesh composed of 384,000 elements with P1 Lagrangian finite elements for which the total number of degrees
of freedom (DOFs) when approximating Eq. (36) is 241,200. The constitutive material models have been
implemented in the finite element library LifeV [66] by means of an expression template assembly framework
[67]. The numerical simulations have been run in parallel on 128 processors on the Cray XE6 supercomputer
Monte Rosa at the Swiss national supercomputing center CSCS in Lugano, Switzerland.

4.1 Inflation tests on healthy cerebral tissue

We report in Fig. 8 the magnitude of the displacement field at the cross section located at z = 1 cm for
∆P = 150 mmHg for the constitutive models of Sec. 2.2.2. As expected, the contour lines of the displacement
are concentric with the largest displacement occurring at the inner surface of the artery. The displacement
magnitude in Figs. 8(a)-(e) has been rescaled in order to show the correct qualitative behavior of all the
numerical solutions; Fig. 8(f) presents the radial displacement through the thickness of the vessel wall for
all the constitutive models. Figs. 9 and 10 show the strain-stress relations resulting from the least-squares
approximation of the experimental measurements (see Sec. 2.3) and the ones obtained by the numerical simu-
lations for the isotropic and transversely isotropic models, respectively. We report the circumferential stretch
λr at the internal radius of the domain in order to compare it with the experimental measurement presented
in [15]. The circumferential stretch was obtained from the numerical results computing the magnitude of the
displacement field on Γin at the cross section z = 1 cm such that the effects of Dirichlet boundary conditions
applied on ΓD (see Fig. 1(a)) are negligible.

For the SVK isotropic model, as observed in Fig. 9(a), with pressures ∆P ∈ [70, 150] the strain-stress
relation obtained from the numerical simulations does not adequately reproduce the one predicted by the
data fitting, especially for the high values of ∆P . Conversely, a good agreement between the numerical and
least-squares fitted strain-stress relations is observed for the EXP1 and EXP2 models. Such difference among
the isotropic models can be ascribed to the choice of the penalization parameter κ in Eq. (7). The larger
is κ, the smaller is the body displacement under the action of external forces. Thus, a value for κ that
represents a good compromise between the need to model the quasi-incompressible behavior of arteries and
to obtain a meaningful displacement field for a certain constitutive model, e.g. the EXP1 and EXP2 models,
may become inappropriate for another one, e.g. the SVK model. However, in this study, in order to have a
consistent comparison of the numerical results among the different cases under consideration, the same value
for the penalty parameter has been used in our numerical simulations.

Fig. 10 shows the strain-stress curves obtained from the least-squares approximation and numerical sim-
ulation for the (EXP1, EXP2-RC) and (EXP1, EXP2-MM) models respectively. We observe a good agree-
ment between the simulated strain-stress relations and the corresponding functions T (λr). For the (EXP1,
EXP2-RC) model the highest error occurs for high transmural pressures while for the multi-mechanism model,
i.e. (EXP1, EXP2-MM), the two curves are overlapped. However, in the latter case, the highest error occurs
around the activation circumferential stretch. As discussed in Sec. 2.3.2, this is due to the fact that, in the
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Figure 8: Displacement magnitude [cm] at the cross section at z = 1 cm and ∆P = 150 mmHg for different
material models.
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(c) EXP2

Figure 9: Strain-stress relation T (λr) and corresponding relation obtained from the numerical simulations
for the isotropic models of Sec. 2.2.2. The dots represent the experimental data in [15].

data fitting, due to the membrane modeling of the vessel wall, the recruitment of the collagen fibers occurs
simultaneously throughout the thickness of the vessel wall; this assumption does not hold in the numerical
simulations since the arterial wall is described as a full three dimensional model.

Fig. 11 shows the relative error between the function T (λr) and the ones obtained from the numerical
simulations. In the range of physiological transmural pressures, the maximum relative error is around 4% and
it is observed for the isotropic SVK model. However, from the strain-stress measurements presented in [15],
we can conclude that the relative error between the function T (λr) and the numerically simulated strain-
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(a) (EXP1, EXP2-RC)
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(b) (EXP1, EXP2-MM)

Figure 10: Strain-stress relation T (λr) and corresponding relation obtained from the numerical simulations
for the transversely isotropic models of Sec. 2.2.2. The dots represent the experimental data in [15].
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Figure 11: Relative error between the two strain-stress relations of Figs. 9 and 10 as a function of ∆P .

stress relations is compatible with (that is within the same range as) the one affecting the experimental
measurements in [15]. In the physiological range of pressures for the EXP1, EXP2 and the transversely
isotropic models, the relative error is below 2.5% confirming the good approximation of the least-squares
fitted strain-stress relation by the numerical simulations. In the low pressures regime (i.e. for ∆P ∈ [0, 20]
mmHg) the high relative errors are due to the use of linear finite elements for the discretization of Eq. (35)
and they are observed for all the constitutive models. Indeed, from the numerical point of view, high values of
the penalty parameter κ can lead to incorrect displacement fields or to locking phenomena when discretizing
Eq. (35) by means of P1 finite elements [53, 68]. In this work, the value for κ has been set in order to simulate
the nearly-incompressible behavior of blood vessels for ∆P ∈ [70, 150] mmHg; this may lead to displacements
which are not circumferentially symmetric for low transmural pressures, as shown in Fig. 12 (left). However,
such asymmetry can be addressed, for instance, by discretizing Eq. (35) by means of quadratic (P2) finite
elements, as shown in Fig. 12 (right). For this comparison we employ the isotropic EXP1 model and, in order
to have the same number of DOFs with the quadratic elements as in the linear case, a new mesh with 49,896
elements and 234,360 DOFs has been considered. In Fig. 12 we observe that for ∆P ∈ [70, 150] mmHg, the
use of P2 elements does not affect the circumferential stretch; therefore, we can conclude that the results
presented in Figs. 9 and 10 are not significantly affected by the choice of the finite element space.

In order to highlight the influence of the bulk modulus on the approximation of the circumferential stretch,
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P1 P2
(a) Transmural pressure ∆P = 2 mmHg

P1 P2
(b) Transmural pressure ∆P = 20 mmHg

P1 P2
(c) Transmural pressure ∆P = 70 mmHg

P1 P2
(d) Transmural pressure ∆P = 150 mmHg

Figure 12: Displacement magnitude [cm] at different inflating pressures using the isotropic EXP1 model:
using P1 elements (#DOFs: 241,200)(left); using P2 elements (#DOFs: 234,360)(right).

1 1.2 1.4 1.6 1.8 2 2.2
0

20

40

60

80

100

120

140

160

Circumferential stretch λ
r
 [−]

T
ra

n
sm

u
ra

l 
p
re

ss
u
re

 [
m

m
H

g
]

 

 

LSQ fitting	
k = 9.0e+6
k = 4.0e+6
k = 2.0e+6
k = 8.0e+5
k = 4.0e+5

(a) Strain-stress relation

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Transmural pressure [mmHg]

| λ
f −

 λ
s | 

/ 
λ

s

 

 

k = 9.0e+6	
k = 4.0e+6
k = 2.0e+6
k = 8.0e+5
k = 4.0e+5

(b) Relative error

Figure 13: Strain-stress relations for different values of κ for the isotropic SVK model with the material
parameters of Tab. 1.

Fig. 13(a) shows the strain-stress relations obtained for different values of κ in Eq. (7) using the SVK model
with the material parameters reported in Tab. 1. We observe the influence of the penalization parameter
on the computed displacement field and we show that, in this case, a different value of κ (i.e. κ = 4.0 · 106

dyn/cm2) would have led to a better approximation of the function T = T (λr) in the range of transmural
pressures of interest (see Fig. 13(b)).

Fig. 14 shows the approximation of the incompressibility constraint at the cross section z = 1 cm at
the inflating pressure of 150 mmHg for the constitutive models of Sec. 2.2.2. The largest error on the
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Figure 14: Volume ratio J and Javg at z = 1 cm, ∆P = 150 mmHg for the different material models;
κ = 9.0 · 106 dyn/cm2.

approximation of the volumetric constraint (J = 1) occurs at the internal surface of the artery where the
displacement is higher. The smallest error, around 4.5%, is obtained for the SVK model due to the smaller
radial displacement (see Fig. 9(a)) of the vessel with respect to those obtained with the other constitutive
laws. As discussed for Fig. 13, the choice of the penalization parameter κ strongly affects the numerical results
for the SVK model. Fig. 15 shows the Jacobian J at the cross section z = 1 cm at the inflating pressure
of 150 mmHg for two different values of κ (κ = 4.0 · 106 and κ = 9.0 · 106 dyn/cm2) using the SVK model.
We remark that, in Fig. 15, the Jacobian J is presented only for the values of κ such that the error on the
incompressibility constraint is lower than 20%. For the SVK model, Fig. 13(a) shows that for ∆P ∈ [70, 150]
mmHg, κ = 4.0 ·106 dyn/cm2 leads to a better approximation of the strain-stress relation T (λr) by means of
the numerical simulations; however, such choice for the penalization parameter yields a poor approximation of
the incompressibility constraint. For the constituive models of Sec. 2.2.2 the biggest error is reported for the
transversely isotropic models, as in Fig. 14. This suggests that, once again, the value of the penalty parameter
κ used for the numerical simulations should be tuned according to the constitutive law used to describe the
tissue. Fig. 14-(f) shows the relative error (percentage) on the incompressibility constraint for ∆P = 150
mmHg. More specifically, in Fig. 14-(f) the relative error is defined as Er = 100(Javg − 1), where Javg is
the average of the volume ratio along each one of the directions depicted in Fig. 14-(a). The oscillations
reported in Fig. 14-(f) highlight the mesh dependence of the numerical results. The averaged Jacobians
Javg in Fig. 14-(f) indicate that the value of κ used in the numerical simulations leads to an acceptable
approximation of the incompressibility constraint with the maximum relative error being approximatively
7%. In order to evaluate the mesh dependency on the approximation of the incompressibility constraint,
numerical simulations of static inflation tests have been carried out for two additional meshes: one coarser
and one finer than the reference mesh. For this numerical comparison, the tests have been carried out using
the isotropic EXP1 model and P1 finite elements. The coarser mesh is composed of 108,000 elements while the
finer one is composed of 2,960,640 tetrahedra, yielding to 72,480 and 1,852,800 DOFs, respectively. Fig. 16
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(a) κ = 4.0 · 106 dyn / cm2 (b) κ = 9.0 · 106 dyn / cm2

Figure 15: Volume ratio J for different values of the penalization parameter κ for the SVK model at the
pressure ∆P = 150 mmHg.
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Figure 16: Volume ratio J for different meshes of the computational domain.

shows the approximation of the incompressibility constraint at the cross section z = 1 cm at the inflating
pressure of 150 mmHg. No strong mesh refining effects are noticeable on the numerical solution suggesting
that the approximation of the condition J = 1 is mainly affected by the choice of the penalty parameter κ.

The numerical validation of the isotropic and transversely isotropic constitutive models for the mechanical
characterization of healthy cerebral arterial tissue has highlighted both modeling and numerical aspects that
should be considered when simulating the arterial wall mechanics. From the modeling point of view, the least
squares approximation and the numerical results suggest that, according to the range of transmural pressures
of interest, a suitably calibrated isotropic model (as e.g. EXP1 or EXP2) can lead, in terms of the data fitting
quality, to equivalent results than an anisotropic one, i.e. the (EXP1, EXP2-RC) model. In addition, the
possibility of modeling the recruitment of the collagen fibers at finite strains (EXP1, EXP2-MM) instead of at
zero strains leads to either a better approximation of the experimental measurements with a good agreement of
the numerical results. Moreover, the numerical results obtained using the EXP1, EXP2, (EXP1, EXP2-RC)
and (EXP1, EXP2-MM) indicate that when experimental observations of the characteristic directions of
collagen fibers are not available on human specimen of arteries, an isotropic model can be a viable alternative
to a transversely isotropic model; this has the advantage of reducing the number of material parameters
that need to be estimated and the computational cost of the assembling of the tangent matrix of the first
Piola-Kirchhoff tensor.

4.2 Inflation tests on unhealthy cerebral tissue

We now address the numerical simulation of unhealthy cerebral arteries by using the isotropic U-EXP2
and the transversely isotropic (U-EXP1, EXP2-RC) and (U-EXP1, EXP2-MM) laws. Among the isotropic
models, the choice of U-EXP2 is motivated by the good data fitting and agreement between the curve T (λr)
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Figure 17: Representation of the weakened portion of the computational domain.

(a) (U-EXP1, EXP2-MM) (b) (U-EXP2) (c) (U-EXP1, EXP2-RC)

Figure 18: Case 1: displacement field [cm] at the internal and external surfaces of the computational domain
at ∆Pref = 110 mmHg.

and the numerical results showed in Fig. 9(c).

We assumed that the weakening of the material properties occurs in a limited portion of the domain, also
referred as weakened region, that has been obtained from the intersection of the computational domain with
a sphere of radius rs = 0.095 cm and center C = (0, 0.09, 1.0), as indicated in Fig. 17.

Figs. 18 and 19 show the displacement field on the deformed mesh for ∆Pref = 110 mmHg for Case 1
and Case 2 (Sec. 2.5). In Figs. 18 and 19 the mesh has been deformed according to the displacement field
at the reference transmural pressure. We first notice that, for each of the two cases under consideration,
the maximum value of the displacement magnitude is similar for all the constitutive models. This proves
the correct calibration of the weakening parameter D both for Case 1 and Case 2. We also observe that, in
both cases the pattern of the displacement fields is affected by the choice of the arterial wall model. The
extension and shape of the area where the displacement field is influenced by the weakened region varies with
the constitutive model and the weakening parameter D. We observe that in Case 2, where the weakening
parameter D for the U-EXP2 and (U-EXP1, EXP2-RC) models is higher than in Case 1, the extension of
the area where the displacement field is influenced by the weakened region becomes larger than in Case 1. In
particular, for the (U-EXP1, EXP2-RC) model, it reaches the lower part of the cylinder and the displacement
field is higher that the one reported for the U-EXP2 model. The displacement field reported in Figs. 18 and
19 indicate the formation of a bulge corresponding to the weakened region of the domain.

Figs. 20 and 21 report the volume ratio J at z = 1 at the reference transmural pressure for Case 1 and 2.
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(a) (U-EXP1, EXP2-RC) (b) (U-EXP2)

Figure 19: Case 2: displacement field [cm] at the internal and external surfaces of the computational domain
at ∆Pref = 110 mmHg.

(a) (U-EXP1, EXP2-MM) (b) (U-EXP2) (c) (U-EXP1, EXP2-RC)

Figure 20: Case 1: Volume ratio J at ∆P = 110 mmHg.

(a) (U-EXP1, EXP2-RC) (b) (U-EXP2)

Figure 21: Case 2: Volume ratio J at ∆P = 110 mmHg.

As already reported in Fig. 14, the approach used in this work to describe the nearly-incompressible behavior
of arteries leads to an acceptable approximation of the incompressibility constraint.

Figs. 22, 23, 24 and 25 show the spatial distribution of the Von Mises stress σVM [8] in a central portion
of the computational domain for Case 1 and Case 2. In both cases the σVM varies between 2.5 · 105 and
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(a) (U-EXP1, EXP2-MM) (b) (U-EXP2) (c) (U-EXP1, EXP2-RC)

Figure 22: Case 1: Von Mises stress field [dyn/cm2] at the internal and external surfaces of the computational
domain at ∆Pref = 110 mmHg.

1.3 · 106 dyn/cm2 and, as expected, the largest value occurs at the internal surface of the cylinder, where the
radial displacement is higher. We observe that for Case 1 the Von Mises stress on the internal and external
surfaces of the cylinder does not present a strong variability with respect to the constitutive model. This is
related to the fact that the displacement field on the internal and external surfaces in Case 1 does not present
a strong variability with respect to the constitutive model (as presented in Fig. 18), due to the calibration
procedure described in Sec. 2.5. However, we report the dependency of the distribution of the Von Mises
stress through the thickness of the vessel wall on the constitutive model, as presented in Fig. 24. In Case 2,
represented in Figs. 23 and 25, the Von Mises stress presents a strong dependency on the constitutive model.
More specifically, the different displacement fields in Figs. 19 result in the different pattern of the Von Mises
stress, shown in Fig. 23. Fig. 25 indicates that for high levels of mechanical weakening, the variations of the
Von Mises stress through the thickness of the vessel wall are strongly affected by the choice of the constitutive
model. To conclude, Figs. 24 and 25 highlight the relevance of carefully choosing the constitutive model to
represent the unhealthy arterial tissue.

5 Conclusions

In this paper we have addressed the numerical validation of isotropic and transversely isotropic models
for the cerebral arterial tissue. The isotropic exponential type laws and the transversely isotropic models
adequately fit the experimental data. The numerical results showed a good agreement with the data fitting;
moreover, they highligthed the fact that isotropic models can be considered as a valuable option for the
modeling of the arterial tissue when experimental observations of the directions of the collagen fibers in the
tissue are not available. Afterwards we have analyzed the influence of the modeling choice for the unhealthy
cerebral arterial tissue on the results of numerical simulations of static inflation tests. We have considered
different levels of mechanical weakening of the vessel wall through a dimensionless weakening parameter D.
The numerical simulations have shown that the choice of the type of constitutive model (i.e. isotropic or
transversely isotropic) plays a key role in the spatial distribution of the mechanical stresses through the
thickness of the vessel wall. This highligths the relevance of properly select the constitutive model when
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(a) (U-EXP1, EXP2-RC) (b) (U-EXP2)

Figure 23: Case 2: Von Mises stress field [dyn/cm2] at the internal and external surfaces of the computational
domain at ∆Pref = 110 mmHg.

(a) (U-EXP1, EXP2-MM) (b) (U-EXP2) (c) (U-EXP1, EXP2-RC)

Figure 24: Case 1: Von Mises stress [dyn/cm2] at z = 1 cm and ∆P = 110 mmHg.

(a) (U-EXP1, EXP2-RC) (b) (U-EXP2)

Figure 25: Case 2: Von Mises stress [dyn/cm2] at z = 1 cm and ∆P = 110 mmHg.

addressing the study of the onset and development of cerebral aneurysms. Concerning the transversely
isotropic multi-mechanism model, specifically proposed for cerebral arteries, we have shown that it leads to
the best approximation of the experimental measurements. Moreover, due to recruitment of the collagen
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fibers at finite strains and the limited possibility of representing weakened states of the background material
in arteries, the multi-mechanism model seems to be a valuable option for the mathematical description of
the early stages development of cerebral aneurysm.
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[24] Sommer G., Regitnig P., Költringer L., Holzapfel G.A., “Biaxial mechanical properties of intact and layer-
dissected human carotid arteries at physiological and supraphysiological loadings,” American Journal of
Physiology. Heart and Circulatory Physiology, vol. 298, pp. 898–912, 2010.

[25] Kamenskiy A.V., Dzenis Y.A., MacTaggart J.N., Lynch T.G., Kazmi S.A.J., Pipinos I.I., “Nonlinear
mechanics behavior of the human common, external, and internal carotid arteries in vivo,” Journal of
Surgical Research, vol. 176, pp. 329–336, 2012.

[26] Flory P.J., “Thermodynamical relations for high elastic materials,” Transactions of the Faraday Society,
vol. 78, pp. 5222–5235, 1961.

[27] Odgen R.W., Nonlinear elastic deformations. New York: Courier Dover Publications, 1997.

[28] Sforza D.M., Putman C.M., Cebral J.R., “Hemodynamics of Cerebral Aneurysms,” Annual Review of
Fluid Mechanics, vol. 41, pp. 91–107, 2009.

[29] Wasserman S.M., “Adaptation of the endothelium to fluid flow: in vitro analyses of gene expression and
in vivo implications.” Vascular Medicine, vol. 9, pp. 34–45, 2004.

27



[30] Humphrey J.D., Canham P.B., “Structure, Mechanical Properties, and Mechanics of Intracranial Sac-
cular Aneurysms,” Journal of Elasticy, vol. 61, pp. 49–81, 2000.

[31] Sekhar L.N., Heros R.C., “Origin, growth and rupture of saccular aneurysms: a review.” Neurosurgery,
vol. 8, pp. 248–260, 1981.

[32] Austin G.M., Fisher S., Dickson D., Anderson D., Richardson S., “The significance of the extracellular
matrix in intracranial aneurysms.” Annals of Clinical & Laboratory Science, vol. 23, pp. 97–105, 1993.

[33] Ferguson G.G., “Physical factors in the initiation, growth, and rupture of human intracranial
aneurysms.” Journal of Neurosurgery, vol. 37, pp. 666–677, 1972.

[34] Campbell G.J., Roach M.R., “Fenestrations in the internal elastic lamina at bifurcations of the human
cerebral arteries.” Stroke, vol. 12, pp. 489–495, 1981.

[35] Humphrey J.D., Taylor C.A., “Intracranial and abdominal aortic aneurysms: similarities, differences,
and need for a new class of computational models.” Annual Reviews of Biomedical Engineering, vol. 10,
pp. 221–246, 2008.

[36] Stehbens W.E., “Histopathology of cerebral aneurysms,” Archives of Neurology, vol. 8, pp. 272–285,
1963.

[37] Kroon M., Holzapfel G.A., “A model for saccular cerebral aneurysm growth by collagen fibre remod-
elling.” Journal of Theoretical Biology, vol. 4, pp. 775–787, 2007.

[38] Kachanov L.M., “Time of rupture process under creep conditions,” Izvestija Akademii Nauk Sojuza
Sovetskich Socialisticeskich Respubliki (SSSR) Otdelenie Techniceskich Nauk (Moskra), vol. 8, pp. 26–
31, 1958.

[39] Dalong L., “Structural multi-mechanism model with anisotropic damage for cerebral arterial tissues and
its finite element modeling,” Ph.D. dissertation, University of Pittsburgh, 2009.

[40] Carew T.E., Vaishnav R.N., Patel D.J., “Compressibility of the arterial wall,” CirculationRresearch,
vol. 23, pp. 61–68, 1968.

[41] Gasser T.C., Schulze Bauer C.A.J., Holzapfel G.A., “A three-dimensional finite element model for arterial
clamping,” Journal of Biomechanical Engineering, vol. 124, pp. 355–363, 2002.

[42] Nobile F., Pozzoli M., Vergara C., “Time accurate partitioned algorithms for the solution of fluid-
structure interaction problems in haemodynamics,” Computer & Fluids, vol. 86, pp. 470–492, 2013.

[43] Ball J.M., “Convexity conditions and existence theorems in nonlinear elasticity,” Archive for Rational
Mechanics and Analysis, vol. 63, 1977.

[44] Balzani D., “Polyconvex anisotropic energies and modeling of damage applied to arterial walls,” Ph.D.
dissertation, University of Duisburg-Essen, 2006.

[45] Simo J.C, Taylor R.L., “Quasi-incompressible finite elasticity in principal stretches. continuum basis and
numerical algorithms,” Computer Methods in Applied Mechanics and Engineering, vol. 85, pp. 273–310,
1991.

[46] Miehe C., “Aspects of the formulation and finite element implementation of large strain isotropic elas-
ticity,” International Journal of Numerical Methods in Engineering, vol. 37, pp. 1981–2004, 1994.

[47] Kroon M., Holzapfel G.A., “Estimation of the distributions of anisotropic, elastic properties and wall
stresses of saccular aneurysms by inverse analysis,” Proceedings of the Royal Society A, vol. 464, pp.
807–825, 2008.

28



[48] Raoult A., “Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material,”
Applications of Mathematics, vol. 31, pp. 417–419, 1986.

[49] Malossi A.C.I., “Partitioned solution of geometrical multiscale problems for the cardiovascular system:
models, algorithms, and applications,” Ph.D. dissertation, École Polytechinque Fédérale de Lausanne,
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[62] Balzani D., Schöder J., Gross D., “Simulation of discontinuous damage incorporating residual stresses in
circumferentially overstretched atherosclerosis arteries,” Acta Biomaterialia 2, vol. 1, pp. 609–618, 2006.

[63] Quarteroni A., Valli A., Numerical Approximation of Partial Differential Equations. Berlin Heidelberg:
Springer-Verlag, 1999.

[64] Saad Y., Iterative methods for sparse linear systems. Philadelphia: Siam, 2003.

[65] Quarteroni A., Valli A., Domain Decomposition Methods for Partial Differential Equations. Oxford:
Oxford University Press, 1999.
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