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Abstract

This work combines the Hierarchical Model (HiMod) reduction technique
with a standard Proper Orthogonal Decomposition (POD) to solve parametrized
partial differential equations modeling advection-diffusion-reaction phenomena
in elongated domains (e.g., pipes). This combination leads to what we define a
HiPOD model reduction, which merges the reliability of HiMod with the com-
putational efficiency of POD. Two different HiPOD techniques are presented and
assessed through an extensive numerical verification.
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1 Motivations

Parametrized partial differential equations (PDEs) arise in several contexts such as in-
verse problems, control, optimization, uncertainty quantification, and risk assessment.
In most of these applications, the number of parameters may become very large, so
that an efficient numerical approximation of parametric PDEs represents a challenging
computational issue (see, e.g., [2, 6, 7, 3]). Parametric model order reduction aims
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at reducing the computational effort associated with a parametric modeling in many-
query and real-time tasks, where the occurrence of the curse of dimensionality raises
the necessity to propose numerical methods to sustain the computational cost.

Many of the model reduction techniques currently employed in engineering prac-
tice exploit the offline/online paradigm to efficiently reduce the numerical effort. This is
the case, for instance, of the well-known reduced basis method [17, 33], where, during
the offline phase, a reduced basis is precomputed by solving a high-fidelity model (the
“truth”) for certain samples of the parameter, while, in the online phase, the reduced
model is evaluated to predict a new scenario (i.e., for a value of the parameter not pre-
viously sampled). From a practical viewpoint, the offline stage remains the bottleneck
of an offline/online decomposition, especially when many samples are needed like for
multiparametric problems.

To tackle this issue, we propose to replace the “truth” with a reduced order model
which exhibits a high accuracy although characterized by a contained computational
demand. For this purpose, we employ the reduced solution provided by a Hierarchical
Model (HiMod) discretization [12, 28, 31, 26] as high fidelity model. HiMod reduction
proved to be an effective tool to model partial differential problems characterized by
a privileged dynamics aligned with the dominant direction of the domain (e.g., flows
of fluid in channels, pipes or vessels), which may be locally modified by secondary
dynamics evolving along the transverse sections of the tube [29, 15, 8]. Analogously
to other model reduction procedures [34, 9, 16, 14, 10, 24], a HiMod discretization
moves from a standard separation of variables and approximates the mainstream and
the secondary dynamics by means of different numerical methods. For instance, in the
seminal papers, the main direction of the flux is discretized by one-dimensional (1D)
finite elements, while the transverse dynamics are recovered by using few degrees of
freedom, via a suitable modal basis. This separate discretization yields a system of
coupled 1D problems, whose coefficients include the effect of the transverse dynamics.
The reliability exhibited by HiMod is considerably higher compared with standard 1D
reduced models, whereas the computational effort remains absolutely affordable. In-
deed, HiMod reduction is characterized by a linear dependence of the computational
cost on the number of degrees of freedom in contrast to a standard finite element model
which demands a suitable power of such a number. The reduced basis is generated by
using a data-driven procedure. Following [4], we resort to a standard Proper Orthog-
onal Decomposition (POD) [21, 22, 20, 19, 36]. This choice allows us to set what we
define as a HiPOD model reduction. On the one hand, the employment of the HiMod
discretization significantly reduces the computational effort of the offline phase without
compromising its reliability; on the other hand, the online phase relies on the efficiency
of a POD formulation, so that a system of very small dimensionality is solved to ap-
proximate the parametric problem at hand.

In this paper, we focus on two HiPOD model reduction procedures. The first ap-
proach is very straightforward and it has been introduced in [4]. The second variant,
which represents the actual novelty of the paper, is more complex and takes advantage
of the separation of variables implied by a HiMod discretization. We also attempt a
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comparison between the HiPOD approaches, despite the heterogeneity of the two pro-
cedures.

The paper is organized as follows. Section 2 applies the HiMod discretization to
a reference parametric advection-diffusion-reaction problem and numerically assesses
the reliability of the high-fidelity model. Section 3 introduces the two HiPOD model
reduction procedures, and provides an extensive numerical verification to investigate
the robustness of the proposed approaches with respect to the truncation of the POD
basis, the extrapolation, and the possibility to explore multi-parametric settings. Finally,
some conclusions are drawn in the last section, and possible future developments of the
current work are provided.

2 HiMod reduction: the basic

HiMod reduction is performed under the specific assumption that the computational do-
main, Ω ⊂ Rd with d = 2, 3, can be expressed as a Cartesian product,

⋃
x∈Ω1D

{x}×Σx,
where Ω1D is a 1D horizontal supporting fiber, while Σx ⊂ Rd−1 denotes the transverse
section at the generic point x along Ω1D [12, 28, 31, 26]. The reference geometry is a
pipe, where the dominant dynamic is parallel to Ω1D, whereas the transverse dynamics
occur along fibers Σx. For the sake of simplicity, we select Ω1D ≡ (a, b) ⊂ R. For the
general case where Ω1D coincides with a bent centerline, we refer to [25, 29, 8]. Then,
via an invertible map Ψ : Ω → Ω̂, we change the physical domain Ω into a reference
domain Ω̂ = Ω1D × Σ̂, which shares the same supporting fiber as in Ω, and where
Σ̂ ⊂ Rd−1 denotes the reference fiber. In particular, for any point z = (x,y) ∈ Ω,
there exists a point ẑ = (x̂, ŷ) ∈ Ω̂, such that ẑ = Ψ(z), with x̂ ≡ x and ŷ = ψx(y),
where ψx : Σx → Σ̂ is the map between the generic and the reference transverse fiber.
Hereafter, we assume ψx to be a C1-diffeomorphism for all x ∈ Ω1D, and Ψ to be
differentiable with respect to z. The reference domain Ω̂ represents the setting where
the computations are actually performed, and where all the constants can be explicitly
computed. More details about maps Ψ and ψx are available in [28].

As a reference problem, we choose a parametrized elliptic PDE, defined on Ω,
which can be recast into the following weak form: given the parameter α ∈ P ,

find u(α) ∈ V s.t. a(u(α), v;α) = f(v;α) ∀v ∈ V, (1)

where P ⊂ Rp is the set of the admissible parameters; V ⊆ H1(Ω) is a Hilbert space
depending on the PDE problem and on the selected boundary conditions, with standard
notation for function spaces [11]; a(·, ·;α) : V × V × P → R and f(·;α) : V ×
P → R denote a parametrized bilinear and linear form, respectively, where the linearity
property holds with respect to all the variables but α. Suitable hypotheses are imposed
on the problem data to guarantee the well-posedness of formulation (1), for any α ∈ P .
Moreover, we assume an affine parameter dependence [17, 33].

We focus on a scalar linear advection-diffusion-reaction (ADR) problem completed,
for the sake of simplicity, with full homogeneous Dirichlet boundary conditions, so that
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the bilinear and the linear forms in (1) are

a(w, z;α) =

∫
Ω
µ∇w ·∇z dΩ +

∫
Ω

(
b ·∇w+σw

)
z dΩ, f(z;α) =

∫
Ω
fz dΩ, (2)

withw, z ∈ V = H1
0 (Ω). The parameter α coincides with one or several of the problem

data, chosen among the viscosity µ, the advective field b = [b1, . . . , bd]
T , the reaction

coefficient σ, the source term f , or a boundary value when boundary conditions, more
general with respect to the homogeneous Dirichlet data, are assigned.

HiMod reduction performs a different discretization along the supporting and the
transverse directions. For this purpose, we introduce a 1D discrete space, V1D ⊂
H1

0 (Ω1D) with dim(V1D) = Nh < +∞, of functions vanishing at a and b, and a
modal basis {ϕk}k∈N+ of functions defined on Σ̂ which are orthonormal with respect
to the L2(Σ̂)-scalar product and which satisfy the data assigned on ΓL = ∪x∈Ω1D

∂Σx.
For further details about the choice of the modal basis, also in the presence of general
boundary data on ΓL, we refer to [1, 15, 28]. Concerning V1D, a standard choice is the
finite element space [12, 28, 31, 26, 30, 32] or an isogeometric discretization when Ω is
not rectilinear [29, 8]. Thus, the HiMod reduced space can be defined as

Vm =
{
vm(x,y;α) =

m∑
k=1

Nh∑
j=1

ṽαk,jϑj(x)ϕk(ψx(y)), for x ∈ Ω1D,y ∈ Σx, α ∈ P
}
,

with {ϑj}Nh
j=1 a basis for the space V1D, so that ṽk(x;α) =

∑Nh
j=1 ṽ

α
k,jϑj(x) ∈ V1D

denotes the frequency coefficient of vm associated with the k-th modal function ϕk.
The modal index m ∈ N+ establishes the level of detail of the HiMod approxi-

mation in the hierarchy, {Vm}m, of reduced spaces. This index is selected by the user
through some preliminary (geometric or physical) information about the problem at
hand, or via an automatic procedure based on an a posteriori modeling error analy-
sis [30, 32]. Additionally, index m can be the same in the whole Ω, or it can be locally
tuned along the domain to match possible heterogeneities of the solution. We refer the
interested reader to [31, 26], where a survey about the different criteria to choose m is
provided.

The HiMod approximation to problem (1) becomes

find um(α) = um(x,y;α) ∈ Vm s.t. a(um(α), vm;α) = f(vm;α) ∀vm ∈ Vm,
(3)

for a given parameter α ∈ P and for a selected modal index m ∈ N+. Following [28],
we add a conformity and a spectral approximability assumption on the HiMod space,
Vm, to ensure the well-posedness of formulation (3), along with a standard density
assumption on space V1D to guarantee the convergence of the HiMod approximation
um(α) to the full solution u(α) in (1). From a computational viewpoint, after apply-
ing the HiMod expansion to the solution um(α) in (3) and choosing the test function
vm as the generic product ϑtϕq, with q = 1, . . . ,m and t = 1, . . . , Nh, the HiMod
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formulation turns into the system

Am(α)um(α) = fm(α), (4)

of m 1D coupled problems, where Am(α) ∈ RmNh×mNh and fm(α) ∈ RmNh are
the HiMod stiffness matrix and right-hand side, while um(α) ∈ RmNh is the vector
describing the solution,

um(x,y;α) =

m∑
k=1

Nh∑
j=1

ũαk,jϑj(x)ϕk(ψx(y)), (5)

discretized via the HiMod approach, where {ũαk,j}
m,Nh
k=1,j=1 are the modal coefficients

(see [12, 28] for additional computational details).
When the mainstream dominates the transverse dynamics (i.e., for small values of

m), the HiMod procedure has been shown to considerably reduce the computational
burden associated with a standard discretization of problem (1), without affecting the
accuracy of the simulation [23, 15, 8].

2.1 Reliability check of the HiMod reduction

The numerical assessment of this paper focuses on the two-dimensional (2D) setting.
In this section, we qualitatively investigate the reliability of the HiMod reduction on
two ADR problems completed with different boundary conditions, and we disregard
the role played by the PDE parameters at this stage. For the HiMod discretization,
we resort to linear finite elements (FE) along Ω1D, whereas we describe the transverse
dynamics with a sinusoidal modal basis. For a quantitative analysis as well as for a
three-dimensional (3D) verification of the HiMod approximation, we refer the reader
to [28, 1, 15, 8].

2.1.1 Test case 1

We define the domain Ω as the rectangle (0, 3) × (0, 1), while the problem data in (2)
are

µ(x, y) = 1, b(x, y) = [3, 0]T , σ(x, y) = 0, f(x, y) = 1− 2x+ 3y. (6)

The image at the top of Figure 1 shows the reference (full) solution computed with
linear FE on a uniform unstructured grid of 260058 triangles. The chosen data justify
the diffusive trend of the solution, which alternates a maximum to a minimum area.

With regards to the HiMod approximation, we subdivide the supporting fiber [0, 3]
into 60 uniform subintervals and we discretize the transverse dynamics by gradually
increasing the number, m, of modal basis functions. The bottom panels in Figure 1
show the HiMod approximations for m = 1 (left) and m = 2 (right). It is evident
that two modes are enough for ensuring a qualitatively good accuracy to the reduced
solution, with a considerable reduction in terms of degrees of freedom (dofs) (120 dofs
for the HiMod approximation to be compared with 373464 dofs for the FE model).
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Figure 1: HiMod verification (test case 1): reference FE (top) and HiMod (bottom)
solution for m = 1 (left) and m = 2 (right).

2.1.2 Test case 2

The domain Ω is now taken as the rectangle (0, 6) × (0, 1) and we select the problem
data as

µ(x, y) = 0.24, b(x, y) = [5, sin(6x)]T , σ(x, y) = 0,

f(x, y) = 10χC1(x, y) + 10χC2(x, y),
(7)

where χω denotes the characteristic function associated with the generic region ω ⊂ R2,
while C1 and C2 identify the ellipsoidal areas {(x, y) : (x− 0.75)2 + 0.4(y− 0.25)2 <
0.01} and {(x, y) : (x − 0.75)2 + 0.4(y − 0.75)2 < 0.01}, respectively. The ADR
problem is completed with a homogeneous Neumann data on ΓN = {(x, y) : x =
6, 0 ≤ y ≤ 1} and by a homogeneous Dirichlet condition on ΓD = ∂Ω \ ΓN , so
that V ≡ H1

ΓD
(Ω) in (1). The top image of Figure 2 displays the contour plot of the

approximation obtained with linear FE on a uniform and unstructured mesh consisting
of 553448 elements. We draw the attention of the reader to the oscillatory dynamics
induced by the sinusoidal field, and the presence of the two localized sources in C1

and C2. Notice that no stabilization is applied, despite the convection overcomes the
diffusion. HiMod reduction is applied by introducing a uniform subdivision of Ω1D

into 120 subintervals and by employing an increasing number of modes. We do not
introduce any stabilization also for the HiMod discretization. Figure 2, second-fourth
row shows the HiMod approximation for m = 2, m = 3 and m = 5, respectively. At
least five modes have to be employed to obtain a qualitatively reliable HiMod solution.
As expected, the number of HiMod dofs is considerably lower compared with the FE
case (600 versus 375296 dofs).

3 HiPOD techniques

The goal of the HiPOD techniques is to build a HiMod approximation for problem (1)
at a computational cost lower with respect to the one characterizing the HiMod system
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Figure 2: HiMod verification (test case 2): reference FE (first row) and HiMod solution
for m = 2 (second row), m = 3 (third row) and m = 5 (fourth row).
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(4). For this purpose, we resort to a POD approach, by adopting the offline/online
paradigm [21, 22, 20, 19, 36]. In particular, during the offline phase, we discretize
problem (1) via HiMod for different choices of α, to extract the POD (reduced) basis;
in the online phase, we employ such a basis to approximate the HiMod solution to (1)
for a value, α = α∗, of the parameter not yet sampled.

In this paper we explore two different HiPOD approaches. The first one is the
most straightforward one, and resorts to a projection procedure to perform the online
phase [4]. In the second approach, we drive the online phase by means of an interpola-
tion procedure, following [37]. Moreover, this second variant somehow takes advantage
of the separation of variables implied by a HiMod discretization. The leading feature of
a HiPOD technique is to contain the computational burden typical of an offline phase.
Actually, the POD is applied to solutions which have already been reduced via HiMod,
in contrast to standard approaches where full solutions (e.g., finite element approxima-
tions) are employed to sample the phenomenon at hand. Notice that, a priori, any model
reduction technique may replace the HiMod discretization during the offline phase.

3.1 The basic HiPOD approach

We start the offline phase by assembling the snapshot (or response) matrix S. To this
aim, we select p different values, αi, of the parameter α, and we compute the HiMod
approximation to the associated problem (1), for i = 1, . . . , p. We employ the same
discretization along Ω1D and the same modal expansion for the transverse dynamics,
so that, according to representation (5), each HiMod solution is identified by the mNh

coefficients {ũαi
k,j}

m,Nh
k=1,j=1 or, likewise, by vector

um(αi) =
[
ũαi

1,1, . . . , ũ
αi
1,Nh︸ ︷︷ ︸

k=1

, ũαi
2,1, . . . , ũ

αi
2,Nh︸ ︷︷ ︸

k=2

, . . . , ũαi
m,1, . . . , ũ

αi
m,Nh︸ ︷︷ ︸

k=m

]T ∈ RmNh , (8)

collecting the modal coefficients by mode. Thus, we assemble the snapshot matrix

S =
[
um(α1),um(α2), . . . ,um(αp)

]
∈ R(mNh)×p, (9)

and the matrix

V = S − 1

p

p∑
i=1

[
um(αi),um(αi), . . . ,um(αi)

]
∈ R(mNh)×p

characterized by a null average. Matrix V is the array actually employed to extract the
POD basis. For this purpose, we apply the Singular Value Decomposition (SVD) to V ,
to obtain

V = ΦΣΨT , (10)

where Φ ∈ R(mNh)×(mNh) and Ψ ∈ Rp×p are the unitary matrices gathering the left
and the right singular vectors of V , while Σ = diag (σ1, . . . , σγ) ∈ R(mNh)×p is the
pseudo-diagonal matrix of the singular values of V , with σ1 ≥ σ2 ≥ · · · ≥ σγ ≥ 0 and
γ = min(mNh, p) [13]. In the numerical assessment below, we always assume γ = p.
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The decomposition (10) allows us to define the POD orthogonal reduced basis,
being the set of the first l most significant left singular vectors, {φi}li=1, of V , so that
the reduced POD space is V l

POD = span{φ1, . . . ,φl}, with dim(V l
POD) = l and, in

general, l� mNh.
As to the choice of the integer l, different criteria can be adopted. For instance, one can
analyze the trend of the spectrum Σ or introduce a control on the variance, by selecting
the first l ordered singular values such that

Rl =

∑l
i=1 σ

2
i∑p

i=1 σ
2
i

≥ ε, (11)

for a positive user-defined tolerance ε [36].

Remark 3.1 As an alternative to the procedure above, the POD basis can be derived
by applying the spectral decomposition to the covariance matrix C = VTV ∈ Rp×p,
being assumed p � mNh. In particular, it holds that λi = σ2

i , and φi = λ−1
i Sci,

where {λi, ci} denotes the generic {eigenvalue, eigenvector} pair associated with C,
for i = 1, . . . , p [36].

Remark 3.2 (Snaphot choice) The choice of representative values for the parameter
α in (9) is a critical issue to make POD effective in practice. In general, it strictly
depends on the problem at hand. In particular, the model reduction is effective if the
selected snapshots cover the whole parameter space. This aspect is beyond the goal of
this work, albeit extremely interesting.

Now, the online phase approximates the HiMod solution to problem (1) for the
value α∗ of the parameter, with α∗ 6= αi for i = 1, . . . , p, at a lower computational cost
with respect to directly solving the HiMod system (4) for α = α∗. For this purpose, we
project system (4) onto the POD space, V l

POD, by computing the POD stiffness matrix
and right-hand side,

APOD(α∗) = (Φl
POD)TAm(α∗) Φl

POD ∈ Rl×l, fPOD(α∗) = (Φl
POD)T fm(α∗) ∈ Rl,

(12)
respectively, where matrix Φl

POD = [φ1, . . . ,φl] ∈ R(mNh)×l collects the POD basis
vectors by column, whileAm(α∗) and fm(α∗) are the HiMod stiffness matrix and right-
hand side in (4). Then, we solve the POD system of order l

APOD(α∗)uPOD(α∗) = fPOD(α∗), (13)

with uPOD(α∗) = [uα
∗

POD,1, . . . , u
α∗
POD,l]

T ∈ Rl. This allows us to approximate the
HiMod solution um(α∗) in (4) by using the POD basis as

um(α∗) ≈ ulHiPOD(α∗) =
l∑

s=1

uα
∗

POD,sφs ∈ RmNh ,

9



after solving a system of order l instead of mNh. Finally, thanks to expansion (5), we
obtain the HiPOD approximation ulHiPOD(α∗) to um(x,y;α∗).
The assembly of Am(α∗) and fm(α∗) in (12) constitutes the bottleneck of the basic Hi-
POD method, although this represents a computational burden typical of any projection-
based POD procedure. Nevertheless, the employment of a reduced rather than a full
model when building matrix S leads to a considerable reduction of the computational
effort, especially when m is a small value.

3.1.1 Numerical assessment

The basic HiPOD procedure is assessed on the test problems in Section 2.1.

Test case 3

To perform the offline phase, we assume an affine dependence of the problem data in
(2) on the independent variables, so that

µ(x) = µ0 + µxx+ µyy, b(x) = [b0 + bxx, b1 + byy]T ,

σ(x) = σ0 + σxx+ σyy, f(x) = f0 + fxx+ fyy.

Then, we hierarchically reduce 30 different problems, by setting µ0 = 1, σx = σy = 0,
f0 = 1, and by randomly varying the remaining nine parameters as

µx ∈ Pµx = [0, 2], µy ∈ Pµy = [0, 2], σ0 ∈ Pσ0 = [0, 3],

b0 ∈ Pb0 = [0, 3], b1 ∈ Pb1 = [0, 3], bx ∈ Pbx = [0, 2],

by ∈ Pby = [0, 2], fx ∈ Pfx = [−2, 2], fy ∈ Pfy = [−2, 2],

so that the parameter in (1) coincides with the vector α = [µx, µy, σ0, b0, b1, bx, by, fx, fy]
T

∈ R9 varying in P = Pµx × Pµy × Pσ0 × Pb0 × Pb1 × Pbx × Pby × Pfx × Pfy .
The HiMod discretization uses linear FE along the mainstream, associated with a uni-
form partition of Ω1D into 60 subintervals, and a modal expansion based on 10 sinu-
soidal modes. Figure 3, left shows the spectrum of matrix V , where the vertical lines
identify the dimension l for the POD space adopted in the online phase. The singular
values decrease rather slowly until a drop occurs at l = 17 (being rank(V)=17). This can
be ascribed to the large number of parameters involved, which limits the redundancy
across the snapshots. During the online phase we approximate the same problem as in
Section 2.1.1, so that

α∗ = [0, 0, 0, 3, 0, 0, 0,−2, 3]T ∈ P,

and the reference HiMod solution is the one in Figure 1, bottom-right. Starting from
the spectrum to the left side of Figure 3, we pick l = 2, 4, 7, 15, 17. The corresponding
value for the ratio Rl in (11) is given by 0.9352, 0.9832, 0.9952, 0.9999, 1, respec-
tively. Figure 4 provides the contour plots of ulHiPOD(α∗) for l = 2, 7, 15. Solutions
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Figure 3: Basic HiPOD reduction: singular values of matrix V for test case 3 (left) and
4 (right).

Figure 4: Basic HiPOD reduction (test case 3): HiPOD approximation for l = 2 (top),
l = 7 (middle) and l = 15 (bottom).
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u2
HiPOD(α∗) and u7

HiPOD(α∗) exhibit a good accuracy if we take into account that they
are obtained by solving a system of dimensionality 2 and 7, respectively and that we are
varying 9 parameters, contemporarily. The quality of the HiPOD approximation grad-
ually improves by increasing the dimension of the POD space, as confirmed also by
the values in Table 1 which gathers the L2(Ω)- and of the H1(Ω)−norm of the relative
modeling error obtained by replacing the HiMod solution u10(α∗) with the HiPOD ap-
proximation ulHiPOD(α∗), for different values of l. The modeling error quickly reduces
by increasing l. From a qualitative viewpoint, the HiPOD approximation u15

HiPOD(α∗)
is fully comparable with the HiMod approximation in Figure 1, bottom-right with a
reduction of the wall-clock time from 1.44 to 0.04 seconds1 (the time associated with
the HiPOD approximation clearly refers to the online phase only).

l = 2 l = 4 l = 7 l = 15 l = 17

L2(Ω)-norm 3.23e-01 5.98e-02 3.51e-02 2.70e-03 1.71e-03
H1(Ω)-norm 4.50e-01 1.23e-01 6.21e-02 7.61e-03 4.81e-03

Table 1: Basic HiPOD reduction (test case 3): relative modeling error for different
HiPOD approximations.

Test case 4

As reference setting, we consider now the test case in Section 2.1.2. We adopt the
following dependence on the independent variables for the problem data in (1),

µ(x) = µ0 + µxx+ µyy, b(x) = [b0, b1 sin(6x)]T ,

σ(x) = σ0 + σxx+ σyy, f(x) = f1χC1(x) + f2χC2(x).

During the offline phase, we compute the HiMod approximation for 30 different
ADR problems by setting µx = µy = σx = σy = 0, and by randomly varying

µ0 ∈ Pµ0 = [0.1, 10], b0 ∈ Pb0 = [2, 20], b1 ∈ Pb1 = [1, 3],

σ0 ∈ Pσ0 = [0, 3], f1 ∈ Pf1 = [5, 25], f2 ∈ Pf2 = [5, 25],

so that the parameter in (1) is provided by the vector α = [µ0, b0, b1, σ0, f1, f2]T taking
values in the set P = Pµ0 ×Pb0 ×Pb1 ×Pσ0 ×Pf1 ×Pf2 . The HiMod discretization
employs linear FE on a uniform partition of Ω1D into 120 subintervals, combined with
20 sinusoidal modes to discretize the transverse dynamics. Figure 3, right shows the
trend of the spectrum for the corresponding matrix V . This exhibits a very slow decay,
without any significant drop before the 29-th singular value (being rank(V) = 29).

1The computations have been run on a MacBookPro15,3 Intel Core i9 2.40GHz 32 GB desktop com-
puter.
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Figure 5: Basic HiPOD reduction (test case 4): HiPOD approximation for l = 2 (top),
l = 6 (center) and l = 16 (bottom).

The online phase is employed to approximate the solution to the problem in Sec-
tion 2.1.2. This is equivalent to set the parameter to

α∗ = [0.24, 5, 1, 0, 10, 10]T ∈ P.

Figure 5, top-bottom shows the HiPOD approximations u2
HiPOD(α∗), u6

HiPOD(α∗),
u16

HiPOD(α∗). As expected, the ratio Rl becomes closer to 1 when l increases, being
R2 = 0.6022, R6 = 0.9204, and R16 = 0.9959. Six POD modes suffice to recognize
already the general trend of the HiMod solution, whereas the HiPOD approximation
u16

HiPOD(α∗), which is obtained by solving a system of order 16, is fully comparable
with the HiMod approximation u5(α∗) in Figure 2, bottom, solution to a system of
dimension 600. This leads to significative savings in terms of computational effort,
the wall-clock time reducing from 14.53 seconds for the HiMod approximation to 0.20
seconds when resorting to the basic HiPOD approach.

Finally, Table 2 provides some quantitative information about the accuracy of the
HiPOD approximation, by collecting the L2(Ω)- and the H1(Ω)-norm of the relative
modeling error with respect to the HiMod approximation u20(α∗). The error reduction
is slightly slower compared with the values in Table 1, at least until a sufficiently large
number of POD modes is employed.
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l = 2 l = 4 l = 6 l = 8 l = 16 l = 29

L2(Ω)-norm 2.48e-01 1.98e-01 1.06e-01 3.67e-02 4.11e-03 1.42e.03
H1(Ω)-norm 3.39e-01 2.39e-01 1.31e-01 5.52e-02 1.09e-02 3.03e-03

Table 2: Basic HiPOD reduction (test case 4): relative modeling error for different
HiPOD approximations.

3.2 The directional HiPOD approach

The directional HiPOD method still combines HiMod reduction with POD, albeit through
a more complex procedure. Now, the SVD is employed several times to erase the re-
dundancy along the main stream and the transverse direction, separately, in accordance
with the separation of the variables underlying the HiMod approach. Then, the online
phase is carried out by means of an interpolation instead of a projection. This relieves
us from assembling the HiMod stiffness matrix and right-hand side associated with the
online parameter, as expected by (12).

The offline phase starts by collecting the information to build the response matrix.
To this aim, we compute the HiMod discretization to problem (1) for p different val-
ues, αi, of the parameter α, with i = 1, . . . , p. The corresponding modal coefficients,
{ũαi

k,j}
m,Nh
k=1,j=1, are re-ordered by mode into the m vectors

Uk(αi) = [ũαi
k,1, ũ

αi
k,2, . . . , ũ

αi
k,Nh

]T ∈ RNh k = 1, . . . ,m, (14)

instead of in a unique vector as in (8). Then, we employ vectors Uk(αi) to assemble
the response matrix

U = [U1(α1) · · ·Um(α1) |U1(α2) · · ·Um(α2) | · · · · · · · · · |U1(αp) · · ·Um(αp)]

=


ũα1

1,1 · · · ũα1
m,1 ũα2

1,1 · · · ũα2
m,1 · · · · · · ũ

αp

1,1 · · · ũ
αp

m,1

ũα1
1,2 · · · ũα1

m,2 ũα2
1,2 · · · ũα2

m,2 · · · · · · ũ
αp

1,2 · · · ũ
αp

m,2
...

...
...

...
...

...
...

...
...

...
...

ũα1
1,Nh

· · · ũα1
m,Nh

ũα2
1,Nh

· · · ũα2
m,Nh

· · · · · · ũ
αp

1,Nh
· · · ũ

αp

m,Nh

 .
Matrix U ∈ RNh×(mp) exhibits a block-wise structure associated with the parameters
αi such that, for each block, columns run over modes while rows run over FE nodes.
Now, we apply the SVD to matrix U , thus yielding

U = ΞΛKT ,

with Ξ ∈ RNh×Nh and K ∈ R(mp)×(mp) unitary matrices, and Λ ∈ RNh×(mp) a
pseudo-diagonal matrix. The left singular vectors {ξj}Nh

j=1 of U constitute an orthogo-
nal basis for RNh , so that each column of U can be expanded as

Uk(αi) =

Nh∑
j=1

T kj (αi)ξj k = 1, . . . ,m, i = 1, . . . , p. (15)
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In general, we can pick the first, say L with L ≤ Nh, most meaningful singular vectors
of U to identify the POD space, V L

POD,1 = span{ξ1, . . . , ξL}, associated with this first
phase of the directional HiPOD procedure, being dim(V L

POD,1) = L. Thus, vectors
Uk(αi) can be approximated as

Uk(αi) ∼=
L∑
j=1

T kj (αi)ξj k = 1, . . . ,m, i = 1, . . . , p, (16)

where equality holds when L = Nh (see (15)). Now, we re-organize coefficients
{T kj (αi)} by parameter, into the p vectors Tj(αi) = [T 1

j (αi), . . . , T
m
j (αi)]

T ∈ Rm
with i = 1, . . . , p, and we define the matrix

Sj = [Tj(α1), . . . ,Tj(αp)] =

 T 1
j (α1) . . . T 1

j (αp)
...

...
Tmj (α1) . . . Tmj (αp)

 ∈ Rm×p,

with j = 1, . . . , L. Then, we apply the SVD to each matrix Sj to obtain the L factor-
izations

Sj = RjDjP
T
j , (17)

with Rj ∈ Rm×m and Pj ∈ Rp×p unitary matrices, and Dj ∈ Rm×p the pseudo-
diagonal matrix collecting the singular values of Sj . Thus, columns Tj(αi) of Sj can
be represented in terms of the POD orthogonal basis {rkj }

µj
k=1, with µj ≤ m, constituted

by the most significant µj left singular vectors of Sj , as

Tj(αi) ∼=
µj∑
k=1

Qkj (αi)r
k
j j = 1, . . . , L, i = 1, . . . , p. (18)

With each j, we associate the POD space V µj
POD,2,j = span{r1

j , . . . , r
µj
j }, with

dim(V
µj

POD,2,j) = µj . Thus, the directional HiPOD procedure yields (L+1) POD bases
which, during the online phase, are employed to predict the HiMod approximation to
problem (1) for a new value, α∗, of the parameter, with α∗ 6= αi for i = 1, . . . , p.
For this purpose, first we compute an approximation for the coefficients Qkj (α

∗) in
(18), for j = 1, . . . , L and k = 1, . . . , µj , via a suitable interpolation of the (known)
values Qkj (αi) for i = 1, . . . , p; successively, we go through the directional procedure
backward, until obtaining an approximation for the vector Uk(α∗) in (14). In particular,
thanks to (18), we compute the L vectors

Tj(α
∗) = [T 1

j (α∗), . . . , Tmj (α∗)]T =

µj∑
k=1

Qkj (α
∗)rkj j = 1, . . . , L (19)

in Rm, and then, according to (16), we assemble the m vectors Uk
HiPOD(α∗) ∈ RNh as

Uk
HiPOD(α∗) = [uα

∗
POD,k,1, . . . , u

α∗
POD,k,Nh

]T =
L∑
j=1

T kj (α∗)ξj k = 1, . . . ,m.
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Finally, vectors Uk
HiPOD(α∗) allow us to approximate the HiMod solution um(α∗) as

um(α∗) ≈ uL,ML
HiPOD(α∗) =

m∑
k=1

[ Nh∑
j=1

uα
∗

POD,k,jϑj(x)
]
ϕk(ψx(y)),

withML = {µj}Lj=1, and where values uα
∗

POD,k,j provide an approximation of the actual
coefficient ũα

∗
k,j in (14) with αi = α∗.

Remark 3.3 (Role of the two levels) The singular value decomposition of the matrix
U , at the first level, mixes information about the HiMod coefficients at different finite
element nodes; on the other hand, the singular value decomposition of matrices Sj’s,
at the second level, reveals a possible redundancy of information for the coefficients
needed to describe the changes of the HiMod solution over different parameter con-
figurations. Therefore, one would expect that mild changes of the HiMod coefficients
across different values of the parameter lead to rank deficient matrices Sj’s, which
would translate in potentially little loss of accuracy when a dimensionality reduction is
performed accordingly.

To validate this conjecture, we set up a numerical test. At the i-th run of the of-
fline phase, we solve a Poisson problem completed with homogeneous Dirichlet bound-
ary conditions on the domain Ω = (0, Lx) × (0, Ly), so that the exact solution is
ui(x, y) = x

(
x− Lx

)[∑i
m=1 sin

(mπy
Ly

)]
. The parameter governing the offline phase

is the number i of HiMod modes used to reconstruct the solution ui in exact arith-
metic and, clearly, the complexity of the solution increases with i. Because solutions
of different problems require a different number of HiMod modes, the accuracy of the
HiPOD approximation is expected to be highly sensitive to the dimensionality reduc-
tion performed. Now, we employ the online phase to recover the solution ui, for a
random value of i, via the directional HiPOD reduction, and to measure the associated
(relative) error (see Table 3). This analysis shows that the accuracy obtained with the
HiPOD approximation is not sensitive to the threshold on the first level, but it is with re-
spect to the threshold at the second level. This is reasonable, as the second level retains
information about the importance of the HiMod modes in reconstructing the solution
and how these modes vary through the parameter space spanned in the offline phase.
Moreover, it can be noticed that matrices Sj’s exhibit un upper triangular pattern, due
to the growing complexity of the solution.

Remark 3.4 (Choice of the interpolation) Different interpolation procedures can be
adopted to compute coefficients Qkj (α

∗). Following [37], we adopt a standard linear
interpolation, a piecewise cubic Hermite interpolant and an interpolating radial basis
function. In the next section, we numerically investigate the performances of these three
approaches.
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ε2 = 0.6 ε2 = 0.9 ε2 = 0.99

ε1 = 0.6 L2(Ω)-norm 8.97e+00 2.54e+00 3.29e-04
H1(Ω)-norm 9.16e+01 4.41e+01 4.99e-02

ε1 = 0.9 L2(Ω)-norm 8.97e+00 2.54e+00 3.29e-04
H1(Ω)-norm 9.16e+01 4.41e+01 4.99e-02

ε1 = 0.99 L2(Ω)-norm 8.97e+00 2.54e+00 3.29e-04
H1(Ω)-norm 9.16e+01 4.41e+01 4.99e-02

Table 3: Directional HiPOD reduction: relative modeling error for different choices of
the tolerances to investigate the role of the two levels.

3.2.1 Numerical assessment

We numerically assess the reliability of the directional HiPOD procedure. First, we
consider the case where α coincides with a single scalar quantity; then, we generalize
the approach to the vector case, so that α will collect more parameters.

Test case 5

We adopt the solution to Test case 1 as the setting to be approximated during the online
phase. The viscosity coefficient, µ, which is here assumed constant, represents the
parameter driving the offline phase, so that α = µ. In particular, we hierarchically
reduce problem (1)-(2) for 20 different values of µ, with µ = µi uniformly sampled
in the interval Pµ = [0.15, 3] and µi 6= 1 for i = 1, . . . , 20, while preserving the
same values as in (6) for the other problem data. The HiMod discretization is the same
as adopted for Test case 3, so that we employ linear FE, associated with a uniform
partition of Ω1D into 60 subintervals, to discretize the main stream and 10 sinusoidal
modes to describe the transverse dynamics.

Concerning the choice ofL in (16) and of µi in (18), we resort to a control analogous
to the one in (11). In more detail, for two fixed tolerances, ε1 and ε2, with 0 ≤ ε1, ε2 ≤
1, we preserve the first L left singular vectors, ξj , of U and the first µj left singular
vectors, rkj , of Sj such that

RLPOD,1 =

∑L
j=1 λ

2
j∑Nh

j=1 λ
2
j

≥ ε1 and R
µj
POD,2 =

∑µj
k=1 d

2
j,k∑m

k=1 d
2
j,k

≥ ε2, (20)

respectively, with λj the singular value of U associated with ξj and j = 1, . . . , Nh,
and with dj,k the singular value of Sj corresponding to the k-th singular vector rkj and
k = 1, . . . ,m. As a first check, we choose ε1 = ε2 = ε. In particular, Table 4
collects the predictions for L, for the maximum value and for the median of the values
µj , for different choices of ε. As expected, the number of Hi-POD modes retained at
both stages increases when ε approaches 1. Moreover, a higher sensitivity of L to the
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ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999

L 1 3 5 7 10

maxj µj 4 6 8 9 10

medianµj 2 4 6 8 8

Table 4: Directional HiPOD reduction (test case 5): prediction for the POD modes.

Figure 6: Directional HiPOD reduction (test case 5): HiPOD approximation for ε = 0.6
(top), ε = 0.9 (middle) and ε = 0.99 (bottom).

selected tolerance is detected, when compared with the maximum value and the median
of µj’s.

The online phase is performed by setting α∗ = µ∗ = 1 ∈ Pµ, and by using a
radial basis function (RBF) interpolation [38]. In Figure 6, we compare the HiPOD
approximations associated with three of the selected tolerances. It is noticed that, at
the first level of the procedure, at least three POD modes have to be adopted to have an
approximation sufficiently reliable, which is equivalent to pick ε ≥ 0.9. On average,
the wall-clock time required by the directional HiPOD procedure is 0.08 seconds. This
time is fully comparable with the one associated with the basic HiPOD approach (0.04
seconds) and it is still considerably lower when compared with the wall-clock time
demanded by a HiMod reduction.

In Table 5, we analyze the convergence of the directional HiPOD approach, by
computing the L2(Ω)- and the H1(Ω)-norm of the relative error obtained by replac-
ing the HiMod solution u10(α∗) with the HiPOD approximation. Although a cross-
comparison between the basic and the directional HiPOD reduction techniques is not
straightforward due to the heterogeneity of the two approaches, we observe that the
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accuracy reached in Table 5 is higher with respect to the one ensured by Table 2. Ad-
ditionally, in order to estimate the maximum accuracy provided by the two methods,
we compute the error for both the HiPOD approximations when all the POD modes are
used (i.e., l = mNh for the basic approach, L = Nh and µj = m in (16) and (18),
respectively for the directional case). As Table 6 shows, the directional HiPOD proce-
dure allows us to gain (at least) one order of accuracy with respect to both the L2(Ω)-
and the H1(Ω)-norm.

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999

L2(Ω)-norm 4.66e-01 4.01e-02 3.11e-03 8.17e-04 1.37e-04
H1(Ω)-norm 4.62e-01 9.43e-02 1.05e-02 3.11e-03 5.71e-04

Table 5: Directional HiPOD reduction (test case 5): relative modeling error for different
HiPOD approximations.

basic HiPOD directional HiPOD basic HiPOD directional HiPOD
L2(Ω)-norm 1.71e-03 1.35e-04 1.42e-03 7.48e-05
H1(Ω)-norm 4.81e-03 2.20e-04 3.03e-03 4.20e-04

Table 6: Cross comparison between basic and directional HiPOD procedures: relative
modeling error for test case 4 (first and second column) and for test case 5 (third and
fourth column).

Finally, we run the directional HiPOD procedure by distinguishing the tolerances
in (20), in order to identify a possible criterion of choice for ε1 and ε2. To this goal, we
repeat the same error analysis as in Table 5, varying both ε1 and ε2 in the set of values
{0.6, 0.9, 0.99, 0.999, 0.9999}. Table 7 collects the results of this invetigation. It turns
out that the values of ε1 and ε2 have to be, in general, sufficiently close to 1 to have a
monotonically decreasing trend of the error when we fix a tolerance and vary the other
one. For this particular test case, a possible strategy to ensure this monotonicity can be
to select ε1 very close to 1 (ε1 = 0.9999) and make ε2 varying, or, as an alternative,
we can fix ε2 to 0.99, 0.999 or 0.9999 and gradually reduce the value for ε1. This
behaviour is shared by both the norms.

Test case 6

The benchmark configuration is now provided by Test case 2, where the HiPOD pa-
rameter α,coincides with the viscosity coefficient µ that we assume constant in this
case.

The offline phase involves the hierarchically reduction of problem (1)-(2) for ten
different values of the viscosity, uniformly sampled in the range Pµ = [1/30, 1], and all
the other problem data in (7) are preserved. The HiMod discretization adopted during
this stage uses linear FE along Ω1D, in correspondence with a uniform partition of
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ε2 = 0.6 ε2 = 0.9 ε2 = 0.99 ε2 = 0.999 ε2 = 0.9999
ε1 = 0.6 L2(Ω)-norm 2.58e-01 2.58e-01 2.57e-01 2.57e-01 2.57e-01

H1(Ω)-norm 4.61e-01 4.61e-01 4.59e-01 4.59e-01 4.59e-01
ε1 = 0.9 L2(Ω)-norm 5.43e-02 5.43e-02 2.01e-02 2.01e-02 2.01e-02

H1(Ω)-norm 1.50e-01 1.50e-01 5.91e-02 5.88e-02 5.88e-02
ε1 = 0.99 L2(Ω)-norm 3.73e-02 3.47e-02 5.80e-03 5.80e-03 5.80e-03

H1(Ω)-norm 8.90e-02 7.57e-02 2.83e-02 2.83e-02 2.83e-02
ε1 = 0.999 L2(Ω)-norm 3.72e-02 3.46e-02 1.34e-03 6.03e-04 6.03e-04

H1(Ω)-norm 8.85e-02 7.51e-02 4.01e-03 3.10e-03 2.91e-03
ε1 = 0.9999 L2(Ω)-norm 3.72e-02 3.46e-02 1.20e-03 5.57e-04 8.03e-05

H1(Ω)-norm 8.84e-02 7.50e-02 2.81e-03 1.21e-03 3.95e-04

Table 7: Directional HiPOD reduction (test case 5): sensitivity to the selected toler-
ances.

the supporting fiber into 120 subintervals, and 20 sinusoidal modes in the transverse
direction, analogously to what done in Test case 4.

We set α∗ = 0.24 ∈ Pµ in the online phase to recover the setting of interest. The
spectrum truncation in (20) is first driven by a unique tolerance, by selecting ε1 = ε2 =
ε.

The first row in Table 8 provides the number, L, of POD modes selected at the first
level of the HiPOD procedure, for five different choices of ε. The values in the table
highlight the presence of a strong redundancy. Indeed, L is considerably lower with
respect to Nh (= 120), even when ε is very close to 1. For instance, it suffices that
the POD space V L

POD,1 has a dimension equal to 13, to correctly describe the dynamics
along the main stream, as shown in Figure 7 which gathers the contour plots of the
HiPOD approximation for the three smallest values of ε. In general, the configuration
explored in this test case is more complex when compared with the one in Test case
5, where three POD modes at the first level are enough to ensure a reliable HiPOD
solution.

Also the values predicted for the dimensions µj in (18) are contained (see the second
row in Table 8). The wall-clock time required by the directional HiPOD procedure (on
average, 0.31 seconds) is comparable with the one taken by the basic HiPOD technique
(0.20 seconds), and still significantly smaller with respect to the time associated with
the HiMod approximation.

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999

L 2 4 13 24 35
maxj µj 5 9 12 14 18

medianµj 4 7 9 11 12

Table 8: Directional HiPOD reduction (test case 6): prediction for the POD modes.
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Figure 7: Directional HiPOD reduction (test case 6): HiPOD approximation for ε = 0.6
(top), ε = 0.9 (center) and ε = 0.99 (bottom).

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999

L2(Ω)-norm 2.06e-01 7.74e-02 4.41e-03 3.27e-04 7.48e-05
H1(Ω)-norm 4.72e-01 2.04e-01 2.31e-02 1.82e-03 4.20e-04

Table 9: Directional HiPOD reduction (test case 6): relative modeling error for different
HiPOD approximations.

The accuracy of the directional HiPOD approximation is quantified in Table 9, in
terms of the L2(Ω)- and of the H1(Ω)-norm of the POD relative error with respect
to the HiMod solution u20(α∗). The HiPOD procedure turns out to be very effective
by ensuring to reach a smaller error when compared with the values in Table 2. This is
corroborated by the third and fourth columns in Table 6, where the comparison between
the basic and the directional HiPOD procedures is carried out when exploiting the whole
POD bases.

Also for this test configuration, we explore the accuracy of the directional HiPOD
approximation when we differently select ε1 and ε2. The analysis in Table 9 is repli-
cated, by assigning the values 0.6, 0.9, 0.99, 0.999, 0.9999 to both the tolerances.
Table 10 provides the relative modeling error with respect to the reference HiMod so-
lution in terms of the L2(Ω)- and of the H1(Ω)-norms. Conclusions similar to the ones
for Table 7 can be drawn also for this test case. To ensure a monotonic trend for the
error norm, it is fundamental to choose ε1 very close to 1 (ε1 = 0.999 or ε1 = 0.9999)
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and gradually reduce ε2, or, as an alternative, to set ε2 to 0.99, 0.999 or 0.999, while
diminishing ε1.

ε2 = 0.6 ε2 = 0.9 ε2 = 0.99 ε2 = 0.999 ε2 = 0.9999
ε1 = 0.6 L2(Ω)-norm 2.06e-01 1.52e-01 1.42e-01 1.42e-01 1.42e-01

H1(Ω)-norm 4.72e-01 3.26e-01 3.09e-01 3.09e-01 3.09e-01
ε1 = 0.9 L2(Ω)-norm 1.61e-01 7.74e-02 5.56e-02 5.55e-02 5.55e-02

H1(Ω)-norm 3.90e-01 2.04e-01 1.68e-01 1.67e-01 1.67e-01
ε1 = 0.99 L2(Ω)-norm 1.52e-01 5.40e-02 4.40e-03 3.31e-03 3.31e-03

H1(Ω)-norm 3.52e-01 1.29e-01 2.31e-02 2.21e-02 2.21e-02
ε1 = 0.999 L2(Ω)-norm 1.52e-01 5.39e-02 2.91e-03 1.81e-03 1.72e-03

H1(Ω)-norm 3.51e-01 1.27e-01 7.31e-03 3.27e-04 2.71e-04
ε1 = 0.9999 L2(Ω)-norm 1.52e-01 5.34e-02 2.90e-03 1.98e-04 7.48e-05

H1(Ω)-norm 3.51e-01 1.27e-01 7.11e-03 8.99e-04 4.21e-04

Table 10: Directional HiPOD reduction (test case 6): sensitivity to the selected toler-
ances.

Finally, we use this test case to investigate the sensitivity of the directional HiPOD
reduction procedure to the interpolant used to compute the coefficients Qkj (α

∗) in (19).
For this purpose, we consider the four largest tolerances since ε = 0.6 provides an ex-
cessively poor approximation. According to Remark 3.4, we resort to a standard linear
interpolation (LIN), a piecewise cubic Hermite (PCH) interpolant and to an interpo-
lating RBF. Table 11 provides the L2(Ω)- and the H1(Ω)-norm of the relative error
associated with the directional HiPOD approximation with respect to the HiMod solu-
tion u20(α∗). The PCH and the RBF interpolants outperform the linear interpolation,
especially when a higher accuracy is required, with a slightly better performance for the
RBF approach.

ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999

LIN L2(Ω)-norm 7.74e-02 4.43e-03 1.56e-03 1.51e-03
H1(Ω)-norm 2.04e-01 2.32e-02 2.51e-03 1.77e-03

PCH L2(Ω)-norm 7.74e-02 4.41e-03 3.56e-04 1.60e-04
H1(Ω)-norm 2.04e-01 2.31e-03 1.92e-03 5.33e-04

RBF L2(Ω)-norm 7.74e-02 4.44e-03 3.27e-04 7.48e-05
H1(Ω)-norm 2.04e-01 2.31e-02 1.81e-03 4.20e-04

Table 11: Directional HiPOD reduction (test case 6): sensitivity to the interpolant op-
erator.

Test case 7

We analyze here the robustness of the directional HiPOD procedure in terms of extrap-
olation, to predict a scenario associated with a value, α∗, of the parameter out of the
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range P . The configuration selected for this check is the same as for Test case 6, where,
now, we pick α∗ = 1/60 /∈ Pµ. We exploit the offline phase of the previous test case,
and then, for comparison purposes, we adopt both the PCH and the RBF interpolations
to compute coefficients Qkj (α

∗) in (19). This choice is motivated by the higher reliabil-
ity exhibited, in general, by these two interpolants in terms of extrapolation properties.
Table 12 compares the modeling relative error associated with the two interpolants, in
terms of the L2(Ω)- and the H1(Ω)-norms. PCH and RBF procedures are fully compa-
rable, with a slightly better performance for the second interpolant. Figure 8 shows the
contour plots of the reference HiMod solution, u20(α∗), and of the directional HiPOD
approximation when resorting to the RBF interpolant and for ε1 = ε2 = ε = 0.9 and
0.99 (tolerances ε = 0.999, 0.9999 provide contour plots very similar to the bottom
panel). The difficulty intrinsic in an extrapolation procedure is confirmed by the value
to be picked for ε which has to be very close to 1 in order to yield a reliable HiPOD
solution.

ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999

PCH L2(Ω)-norm 2.75e-01 1.01e-01 9.79e-02 9.78e-02
H1(Ω)-norm 5.46e-01 2.13e-01 1.92e-01 1.92e-01

RBF L2(Ω)-norm 2.67e-01 5.31e-02 4.70e-02 4.68e-02
H1(Ω)-norm 5.36e-01 1.44e-01 1.02e-01 9.97e-02

Table 12: Directional HiPOD reduction (test case 7): robustness to extrapolation.

Test case 8

In this section we extend the HiPOD directional approach to the case of multiple pa-
rameters to be varied during the offline phase. The use of a vector of parameters leads
us to modify only the interpolation step of the procedure in Section 3.2, which now
involves a two-dimensional interpolant in order to recover coefficients Qkj (α

∗) in (19).
As a reference differential setting, we adopt the ADR problem in Test case 2, where

we identify the parameter with the vector α = [µ, b1]T which collects the diffusivity
coefficient and the x-component of the advective field, b = [b1, b2]T , the y-component
being preserved as in (7) (i.e., b2 = sin(6x)). The set of the admissible parameters is
P = Pµ × Pb1 , with Pµ = [1/30, 1] and Pb1 = [0.5, 10].

Due to the higher dimensionality of the parameter space, we extend the sampling
during the offline phase, by hierarchically reducing the ADR problem for p = 600
different choices of the parameter α. In particular, the interval Pµ is sampled with
30 uniformly distributed points, whereas we pick 20 uniformly spaced points along
the interval Pb1 . The HiMod approximation coincides with the one adopted for Test
cases 4 and 6, which employs a linear finite element discretization associated with a
uniform subdivision of Ω1D into 120 subintervals along the mainstream, enriched by
20 sinusoidal modal functions to approximate the transverse dynamics.
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Figure 8: Directional HiPOD reduction (test case 7): robustness to extrapolation. Hi-
Mod reference solution (top) and HiPOD approximation for ε = 0.9 (center) and
ε = 0.99 (bottom).

The POD truncation is carried out by identifying the two tolerances in (20), and by
setting ε = ε1 = ε2 = 0.6, 0.9, 0.99, 0.999, 0.9999.

The online phase is run to approximate the HiMod solution corresponding to the
choices α∗1 = [0.6, 5.1]T and α∗2 = [0.06, 9.3]T for the parameter. Concerning the
interpolation step, we adopt both the linear (LIN) and the piecewise cubic Hermite
(PCH) bidimensional interpolant operators. In Figures 9 and 10 we compare the ref-
erence HiMod solutions, u20(α∗1) and u20(α∗2), with the approximation provided by
the directional HiPOD reduction when combined with the PCH interpolation, and for
the different tolerances. A tolerance sufficiently close to 1 has to be selected to ob-
tain a reliable HiPOD solution. In particular, the choice α∗2 for the parameter turns out
to be particularly challenging for the HiPOD procedure (this is confirmed also by a
cross-comparison between the values in Tables 13 and 14).

Tables 13 and 14 offer more quantitative information, by gathering the L2(Ω)- and
the H1(Ω)-norm of the relative modeling error associated with the directional HiPOD
approximation. For the first choice of the parameter, α∗1 = [0.6, 5.1]T , it is not easy
to appreciate a remarkable difference between the two interpolants until the tolerance
becomes very close to 1. On the contrary, the parameter α∗2 = [0.06, 9.3]T highlights
the better performances of the PCH interpolation in terms of both the norms.
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Figure 9: Directional HiPOD reduction (test case 8) for α∗1 = [0.6, 5.1]T : HiMod
solution (first row) and HiPOD approximation associated with the PCH interpolant,
and for ε = 0.6 (second row), ε = 0.9 (third row), ε = 0.99 (fourth row).
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Figure 10: Directional HiPOD reduction (test case 8) for α∗2 = [0.06, 9.3]T : HiMod
solution (first row) and HiPOD approximation associated with the PCH interpolant, and
for ε = 0.6 (second row), ε = 0.9 (third row), ε = 0.99 (fourth row), ε = 0.999 (fifth
row) and ε = 0.9999 (sixth row).
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ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999

L 2 6 16 32 41
maxj µj 7 13 19 20 20

medianµj 5 10 16 19 20
LIN L2(Ω)-norm 1.81e-01 5.13e-02 3.81e03 6.33e-04 5.71e-04

H1(Ω)-norm 3.90e-01 1.37e-01 1.74e-02 2.10e-03 6.34e-04
PCH L2(Ω)-norm 1.82e-01 5.13e-02 3.72e-03 2.78e-04 4.23e-05

H1(Ω)-norm 3.90e-01 1.37e-01 1.74e-02 2.01e-03 2.51e-04

Table 13: Directional HiPOD reduction (test case 8): relative modeling error for dif-
ferent HiPOD approximations and sensitivity to the interpolant operator for α∗1 =
[0.6, 5.1]T .

ε = 0.6 ε = 0.9 ε = 0.99 ε = 0.999 ε = 0.9999

L 2 6 16 32 41
maxj µj 7 13 19 20 20

medianµj 5 10 16 19 20
LIN L2(Ω)-norm 2.92e-01 5.89e-02 1.49e02 1.25e-02 1.25e-02

H1(Ω)-norm 5.34e-01 1.73e-01 4.48e-02 2.76e-02 2.76e-02
PCH L2(Ω)-norm 2.93e-01 5.76e-02 9.22e-03 4.30e-03 4.14e-03

H1(Ω)-norm 5.24e-01 1.70e-01 3.62e-02 1.21e-02 9.53e-03

Table 14: Directional HiPOD reduction (test case 8): relative modeling error for dif-
ferent HiPOD approximations and sensitivity to the interpolant operator for α∗2 =
[0.06, 9.3]T .

4 Conclusions and developments

The numerical assessment in Sections 3.1.1 and 3.2.1 corroborates the reliability of the
two HiPOD reduction procedures. In particular, a more extensive check has been per-
formed on the directional approach, being the less straightforward one and representing
the main novelty of the paper. We have analyzed the performances of the directional
HiPOD procedure in terms of convergence, selection of the tolerances driving the trun-
cation of the POD bases, choice of the interpolant operator, and robustness with respect
to the extrapolation and a multi-parameter context.

The cross-comparison between the two HiPOD methods confirms the greater po-
tential of the directional variant, which, in Table 6, allows us to gain at least one order
of accuracy with respect to the basic technique, with respect to both the L2(Ω)- and the
H1(Ω)-norms. Despite both the HiPOD procedures deserving a more thorough investi-
gation in 3D and on more generic geometries, we believe that HiPOD model reduction
represents a promising tool. For instance, HiPOD could be used to effectively manage
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multi-quey contexts such as inverse problems, optimization strategies, data assimila-
tion techniques, parameter estimation algorithms. Therefore, HiPOD could become a
potential competitor against renown techniques, such as the reduced basis method and
the Proper Generalized Decomposition (PGD) (we refer to [27], where a first attempt
of comparing HiMod/HiPOD reduction with PGD is carried out).

Moreover, we notice that the technique we propose is fully general. In fact, we can
employ as the “truth” any reliable reduced model, as well as we can adopt methods
other than POD to generate the reduced basis. In [39], for instance, the authors ap-
ply a reduced basis approach to collect the high-fidelity information and use a greedy
algorithm to extract the essential information.

As for the possible future research topics, we mention the proposal of rigorous es-
timators to drive the POD selection ([18, 35]), the generalization to a nonlinear frame-
work where an empirical (discrete) interpolation ([5, 17, 33]) unavoidably leads to a
prohibitive computational burden. In addition, we aim at applying HiPOD reduction
techniques to hemodynamic problems to make scientific modeling a crucial decision
tool in clinical practice [8, 23].
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