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Abstract

The aim of this work is to solve parametrized partial differential equations in compu-
tational domains represented by networks of repetitive geometries by combining reduced
basis and domain decomposition techniques. The main idea behind this approach is to
compute once, locally and for few reference shapes, some representative finite element so-
lutions for different values of the parameters and with a set of different suitable boundary
conditions on the boundaries: these functions will represent the basis of a reduced space
where the global solution is sought for. The continuity of the latter is assured by a classical
domain decomposition approach. Test results on Poisson problem show the flexibility of
the proposed method in which accuracy and computational time may be tuned by varying
the number of reduced basis functions employed, or the set of boundary conditions used for
defining locally the basis functions. The proposed approach simplifies the pre-computation
of the reduced basis space by splitting the global problem into smaller local subproblems.
Thanks to this feature, it allows dealing with arbitrarily complex network and features
more flexibility than a classical global reduced basis approximation where the topology of
the geometry is fixed.

1 Introduction

The numerical solution of parametrized partial differential equations (µPDEs) in
large computational domains, representing networks of repetitive geometries charac-
terized by different parameters, is a problem arising in many applications. Notable
examples are the auto-similarities of the vessels constituting the cardiovascular sys-
tem or of the airways constituting the respiratory system, among many others.
This work introduces a flexible and versatile strategy that combines reduced basis
(RB) method and domain decomposition (DD) techniques by offering competitive
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performances both in terms of solution accuracy and related computational time.
Reduced order methods, and, in particular, the RB method, have been developed
for elliptic µPDEs [31] and successfully applied to Stokes [26,29,30,33] and Navier-
Stokes equations in [4,5,6,13,25,34]. This technique is particularly suitable in a
many query context where the solution has to be computed for many different val-
ues of the parameters. In fact it is able to drastically reduce the computational
time compared to other classical numerical technique (i.e. Finite Elements (FE))
for any additional solution (during the so-called online stage) once an initial small
set of basis functions has been computed (during the so-called offline stage) still
retaining a certified level of accuracy. The domain decomposition method [27] is a
viable procedure to further reduce the complexity of parametrized problems by de-
composing the global computational domain into smaller subdomains characterized
by an independent sets of parameters. In this sense, preliminary efforts to combine
reduced basis and domain decomposition, in order to reduce the global parametrized
problem to smaller local ones, have led to the introduction of the so-called reduced
basis element method (RBEM) in the context of the Laplace problem [19,20] and of
the Stokes problem [16,17], and more recently to the reduced basis hybrid (RBHM)
method [11], to the static condensation method (SCRBEM) [7,8,9,23], to the re-
duced basis methods used for heterogeneous domain decomposition (RBHDD) [22],
and to discontinuous Galerkin reduced basis element method (DGRBE) [1]. The
common idea behind these methods is the definition of local small sets of basis
functions, as solutions of proper µPDEs in the subdomains composing the com-
putational domain. Since each subdomain is parametrized by a smaller number of
parameters with respect to those of the global computational domain, the effort for
the offline basis computation is considerably smaller than that of a straightforward
RB approach. Nevertheless, these basis functions have to be suitably chosen for
defining a space for the solution of the original µPDEs in the global domain where
continuity of the solution along the internal subdomain interfaces is required. The
different treatments of this critical issue represents the ingredient characterizing
and differentiating the listed methods.
In this work we introduce the RDF method, whose name stems from RB, DD and
FE and whose preliminary version was proposed in [10], for the solution of linear
µPDEs . The novel ingredient is on the definition of the local basis functions, that
are computed as solution of subproblems defined in some reference shapes by using
a small set of interface basis functions (Lagrangian or Fourier bases) as boundary
conditions (BCs). Each interface basis is identified through an artificial parame-
ter and, for this reason, we will refer to them as parametric boundary conditions
(BCs). Such set of BCs will lead to local solutions used as a reduced basis space
suitable to represent, in the online phase, the traces of the global solution along the
internal interfaces. The parametric BCs allow to define flexible basis functions, with
ad hoc interface profiles able to accurately recover the final solution of the prob-
lem. Moreover, a small set of local finite element (FE) basis functions is included
in the reduced basis spaces in order to improve the final solution in critical parts
of the domains (tipically along the coupling of the subdomains). By summarizing,
the basic idea of the RDF method is to compute the global problem solution by a
Galerkin projection on a small dimensional space composed by NFE finite element
basis functions and NRB reduced basis functions, computed by using locally a set
of M parametric boundary conditions. Through an a-priori error estimate and de-
pending on the solution accuracy and the requested computational efficiency, the
method is tunable by varying its three main ingredients represented by the values
of NRB , NFE and M .
This paper is organized as follows. After this introduction, in Section 2 we provide
a detailed description of the linear elliptic problem including its parametrized for-
mulation. Section 3 is devoted to the finite element approximation of the problem,
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Section 4 to a detailed description of the RDF method with the description of the
local problems. In Section 5 we present an a-priori error estimate for the proposed
method. In Section 6 we compare the RDF method with respect to the already
existing methods combining RB and DD. Several numerical results are presented
regarding the RDF accuracy and computational complexity and tests for large net-
works in Section 7. In Section 8 a discussion on the performance of the RDF method
is carried out in light of the numerical results obtained and the theoretical analysis
developed. Finally Section 9 is devoted to drawing conclusions and perspectives.

2 Problem Setting

We consider the RFD method applied to elliptic parametric PDEs in domains com-
posed by the union of non-overlapping subdomains that can be regarded as a geo-
metrical deformations of some reference shapes.
The aim of the method is, for a given a µPDE, to approximate rapidly and reliably
its solution, not only for different parameter values, but also for different geometri-
cal configurations, defined as every desired combinations (e.g. network) of deformed
reference shapes.

2.1 The parametric elliptic boundary value problem

Suppose that Ω is an open and bounded domain in R2, with Lipschitz-continuous
boundary Γ = ∂Ω. Let VΩ and HΩ be real, separable Hilbert spaces defined on the
spatial domain Ω. We identify HΩ with its dual space denoted by H ′Ω . Furthermore,
we suppose that VΩ is dense in HΩ with compact embedding, i.e. VΩ ↪→ HΩ ≡
H ′Ω ↪→ V ′Ω . Analogously, we consider the Hilbert space VΓ of the traces of VΩ on
the boundary Γ and its dual V ′Γ . By 〈· , ·〉H and 〈· , ·〉V we denote the inner products
in HΩ and VΩ , respectively.
We assume that the symbol µo represents a set of scalar parameters addressing
physical features of the problem, µo = (µo1, . . . , µop) ∈ Do, where Do ⊂ Rp.
Let us focus on linear parametric partial differential equations (µPDEs) written in
operator form:

A (ỹ(µo);µo) = F (µo) in V ′Ω , (2.1)

with Dirichlet boundary conditions BD(ỹ(µo);µo) = GD(µo) in VΓD and/or Neu-
mann boundary conditions BN (ỹ(µo);µo) = GN (µo) in V ′ΓN where ΓD and ΓN
provide a disjoint partition of the domain boundary Γ . By A (· ;µo) : VΩ → V ′Ω
we denote the parametric linear second-order differential operator, by BD(· ;µo) :
VΩ → VΓD and BN (· ;µo) : VΩ → V ′ΓN respectively the Dirichlet and Neumann
boundary conditions operator, by F (µo) the parametric source term and by GD(µo)
and GN (µo) the parametric boundary data.
In order to assure the well posedness of (2.1) additional problem specific assump-
tions may be needed. For second-order elliptic equations we often choose the func-
tions spaces VΩ = H1(Ω), HΩ = L2(Ω), VΓ = H1/2(Γ ).
For any µo ∈ Do let us introduce the parameter-dependent bilinear form:

a(u, v;µo) = 〈A (u;µo), v〉V ′,V for u, v ∈ VΩ and µo ∈ Do,

which satisfies the following assumptions. There exist two constants β ≥ 0 and
α > 0 independent of µo ∈ Do such that∣∣a(u, v;µo)

∣∣ ≤ β ‖u‖V ‖v‖V for all u, v ∈ VΩ and µo ∈ Do,

a(u, u;µo) ≥ α ‖u‖
2
V for all u ∈ VΩ and µo ∈ Do.
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Under these assumptions there is a unique solution given by ỹ(µo) to (2.1). Intro-
ducing a lifting function yΓ (µo) ∈ VΩ of the Dirichlet boundary condition we may
decompose ỹ(µo) as:

ỹ(µo) = yo(µo) + yΓ (µo),

where yo(µo) ∈ V 0
Ω = {v ∈ VΩ |BD(v;µo) = 0 in VΓD}.

In variational form, the problem of finding ỹ(µo), solution of (2.1), becomes: for
µo ∈ Do, find y(µo) ∈ V 0

Ω such that

a(yo(µo), v;µo) = f(v;µo) ∀v ∈ V 0
Ω , (2.2)

with f(v;µo) = 〈F (µo)−A(yΓ (µo);µo), v〉V ′,V for v ∈ V 0
Ω and µo ∈ Do. Note that

the formulation (2.2) is general enough to embrace second order elliptic problem
with Dirichlet boundary conditions or, in addition, homogeneous Neumann bound-
ary conditions; see, e.g., in [3,14,35].

2.2 Parametrized and decomposable computational domain

We define a small number of reference shapes Ω̂k, k = 1, . . . ,K and we consider
the computational domain defined as a non-overlapping union of deformed refer-
ence shapes: Ω̄ = ∪Rr=1Ω̄r where Ωr = T k(Ω̂k,µ

k
r ) and T k is the parametric map

associated to the domain Ω̂k able to deform the geometry through the parameter
µk. Let us consider, for instance, that we want to solve problem (2.2) in a domain
defined by the union of geometrical deformation of three shapes, see Figure 1.

Fig. 1 Example of reference shapes (left) and computational domain Ω (right).

In general, the definition of the reference shapes, as well as their parametric maps,
is arbitrary and strictly dependent on the geometric features of the desired compu-
tational domain and on the feasibility of defining suitable local maps. For instance,
in the shown example, Ω̂2 and Ω̂3 would be represented as a single reference shape
by using a more complex parametric map. Since every reference shape Ω̂k defines,
through its map, a subdomain in the computational domain, the parameter vec-
tors µk (besides the maps T k) may refer to different geometrical features and they
can include a different number of parameters, such that µk ∈ Dk ⊂ Rp(k) i.e.
µ1 = (µ1

1, µ
1
2) ∈ D1 ⊂ R2 (p(1) = 2) and µ3 = µ3

1 ∈ D3 ⊂ R1 (p(3) = 1). In
Figure 1 a potential representation of the computational domain is shown, where
Ω1 = T 1(Ω̂1,µ

1
1), Ω2 = T 2(Ω̂2,µ

2
1), Ω3 = T 3(Ω̂3,µ

3
1) and Ω4 = T 2(Ω̂2,µ

2
2).

We denote with µij a component of the vector µi, while with µik a value of the

vector µi defining a possible deformation of the geometry. Moreover we introduce
a correspondence t(r) : {1, . . . , R} → {1, . . . ,K} able to associate for every subdo-
main of Ω its reference shapes; in the given example we have t(1) = 1, t(2) = 2,
t(3) = 3 and t(4) = 2. With respect to the parametric maps T k, many possible op-
tions are available, for instance simple affine maps can be defined by hand (suitable
for stretching domains like Ω̂2), non-affine maps can be suitable for more complex
deformations, i.e. free form deformations [15], transfinite maps [11,12,18], etc. The
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RB methods require to deal with affine parametric dependent problem, so that if
we consider a non-affine map, the empirical interpolation method (EIM) [2] is nec-
essary to recover the affinity of the linear and bilinear forms of the problem.
Once we introduce the reference shapes, together with their geometrical deforma-
tions and the desired computational domain Ω, we define the corresponding refer-
ence domain Ω̂ = ∪Rr=1Ω̂t(r) by replacing its original subdomains by their reference

shapes, see Figure 2. Moreover, we define further subdomains Ω̂rΓ , r = 1, . . . , 4
in every reference subdomains such that Γ̂r = ∂Ω̂t(r)\∂Ω̂ ⊂ Ω̂rΓ ⊂ Ω̂t(r) and we

denote with Ω̂Γ ⊂ Ω̂ the union of the subdomains Ω̂rΓ , Ω̂Γ = ∪Rr=1Ω̂rΓ .

Fig. 2 Reference domain Ω̂ and subdomains associated to the example in Figure 1 (left). Graphical

representation of the subdomains Ω̂rΓ , r = 1, . . . , 4, in Ω̂ (right).

We recast problem (2.2) in the defined reference domain Ω̂. We introduce the pa-
rameter vector µ = (µo,µ

t(1), . . . ,µt(R)) ∈ D = Do × Dt(1) × · · · × Dt(R) and by
the use of the geometrical tensors coming from the parametric maps, problem (2.2)
can be defined in the reference domain as follows: for µ ∈ D find y(µ) ∈ V = V 0

Ω̂
=

{v ∈ VΩ̂ |BD(v;µo) = 0 in VΓ̂D} such that

a(y(µ), v;µ) = f(v;µ) ∀v ∈ V, (2.3)

with f(v;µ) = 〈F (µ) − A(yΓ (µ);µ), v〉V ′,V for v ∈ V and µ ∈ D. We choose

the functions spaces VΩ̂ = H1(Ω̂), VΓ̂ = H1/2(Γ̂ ). Finally, by assuming that the
linear and bilinear forms are affine in the parameter dependence, or otherwise can
be approximated by an affine decomposition, we can write the forms of equation
(2.3) as follows:

a(y(µ), v;µ) =

Ma∑
q=1

Θaq (µ)aq(y(µ), v), f(v;µ) =

Mf∑
q=1

Θfq (µ)fq(v). (2.4)

3 Finite element approximation

The Galerkin method to numerically solve problem (2.3) consists in finding an
approximate solution yN (µ) ∈ V N , where V N is a family of subspaces of V , with
finite dimension N (typically large). The final solution ỹN (µ) is then recovered
by adding the projection of the lifting function yΓ (µ) on V N , such that ỹN (µ) =
yN (µ) + yNΓ (µ). Therefore the approximate problem becomes: find yN (µ) ∈ V N
such that

a(yN (µ), vN ;µ) = f(vN ;µ), ∀vN ∈ V N . (3.1)

Problem (3.1) is usually called the Galerkin approximation of problem (2.3).
Using finite elements (FE) reduces to a particular choice for the subspace V N . We
consider a triangulation T N of Ω̂ and let K be the generic element of T N . In
particular we use piecewise linear functions and define:

V N = X1
N ≡ {vN ∈ C0(Ω̂) : vN |K ∈ P1 ∀K ∈ T N } ∩H1

0,ΓD (Ω̂). (3.2)

We consider T Nr ⊂ T N , r = 1, . . . , R, the part of the triangulation T N associated to
each subdomain Ω̂t(r)\Ω̂Γ ⊂ Ω̂ and the corresponding space of functions V Nr ⊂ V N .
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Moreover we denote with T NΓ ⊂ T N the part of the triangulation T N associated to

the subdomain Ω̂Γ ⊂ Ω̂ and the corresponding space V NΓ ⊂ V N . To avoid further
indices, we use N as a common index representing the finite element spaces, while
each space may have a different dimensions, i.e. Ni = dim(V Ni ), i = 1, . . . , R, and
NΓ = dim(V NΓ ).

Since the bilinear and linear forms in (3.1) are defined by integrals on Ω̂ we can
split them according to the introduced triangulations, such that:

a(u, v,µ) =

R∑
r=1

ar(u, v;µ) + aΓ (u, v;µ), f(v;µ) =

R∑
r=1

fr(v;µ) + fΓ (v;µ), (3.3)

where ar(·, ·;µ) and fr(·;µ) are defined in Ω̂t(r)\Ω̂Γ and aΓ (·, ·;µ) and fΓ (·;µ) in

Ω̂Γ and they can be reformulated in their affine decompositions:

ar(y(µ), v;µ) =

Mr
a∑

q=1

Θraq (µ)arq(y(µ), v); fr(v;µ) =

Mr
f∑

q=1

Θrfq (µ)frq (v), r = 1, . . . , R,

(3.4)

aΓ (y(µ), v;µ) =

MΓ
a∑

q=1

ΘΓaq (µ)aΓq (y(µ), v); fΓ (v;µ) =

MΓ
f∑

q=1

ΘΓfq (µ)fΓq (v). (3.5)

The solution of problem (3.1) can be seen as:

yN (µ) =

R∑
r=1

Nr∑
i=1

yri φ
r
i +

NΓ∑
k=1

yΓk φ
Γ
k , (3.6)

where we denote with {φri , i = 1, . . . ,Nr}, r = 1, . . . , R, a basis of V Nr and {φΓk , k =
1, . . . ,NΓ } a basis of V NΓ . Moreover, problem (3.1) can be rewritten as follows:

Nr∑
j=1

yrja
r(φrj , φ

r
i ;µ) +

NΓ∑
k=1

yΓk a
Γ (φΓk , φ

r
i ;µ) = fr(φri ;µ), r = 1, . . . , R, i = 1, . . . ,Nr,

R∑
r=1

Nr∑
i=1

yri a
r(φri , φ

Γ
k ;µ) +

NΓ∑
k=1

yΓk a
Γ (φΓk , φ

Γ
k ;µ) = fΓ (φΓk ;µ), k = 1, . . . ,NΓ .

(3.7)

The algebraic linear system associated to (3.7) is:
A1 A1Γ

. . .
...

AR ARΓ
AT1Γ · · · ATRΓ AΓΓ




Y1

...
YR

YΓ

 =


F1

...
FR
FΓ

 . (3.8)

By recalling the affine decompositions (3.4) and (3.5), we define for r = 1, . . . , R:

[Yr]j = yrj , [Ar]i,j =

Mr
a∑

q=1

Θraq (µ)arq(φ
r
j , φ

r
i ), [Fr]j =

Mr
f∑

q=1

Θrfq (µ)frq (φrj), i, j = 1, . . . ,Nr,

[ArΓ ]i,j =

MΓ
a∑

q=1

ΘΓaq (µ)aΓq (φrj , φ
Γ
i ), j = 1, . . . ,Nr, i = 1, . . . ,NΓ ,

[AΓΓ ]i,j =

MΓ
a∑

q=1

ΘΓaq (µ)aΓq (φΓj , φ
Γ
i ), [YΓ ]j = yΓj , [FΓ ]j =

MΓ
f∑

q=1

ΘΓfq (µ)fΓq (φΓj ), i, j = 1, . . . ,NΓ ,
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where, Nr is the number of Lagrangian bases of V Nr and NΓ the number of La-
grangian bases on V NΓ .

4 The RDF method

We propose now a new strategy to couple the finite element method and the reduced
basis method in the framework of non-overlapping domain decomposition. The
described approach, can be seen as full order model in DD framework and the
solution of the problem as a Galerkin projection of problem (3.1) onto a finite
element subspace V N defined as follows:

V N = V N1 ⊕ · · · ⊕ V NR ⊕ V NΓ , (4.1)

where V Nj = span{φji , i = 1, . . . ,Nj}, j = 1, . . . , R, V NΓ = span{φΓk , k = 1, . . . ,NΓ }.
The idea of the RDF method is to consider a reduced order model to solve problem
(3.1), more precisely the solution is found through a Galerkin projection on the sub-
space V N ⊂ V N composed by the subspaces V Nt(j) ⊂ V

N
j built by the RB functions

precomputed in the reference domains Ω̂t(j) and the subspace V NΓ that remains the
same of the FE approximation, i.e. the subspace built by the FE functions associ-
ated to the nodes belonging to the subdomain Ω̂Γ . In other words, we replace V N

defined in (4.1) by the following composed space:

V N = V Nt(1) ⊕ · · · ⊕ V
N
t(R) ⊕ V

N
Γ . (4.2)

As already done in the existing RB approaches coupled with DD techniques (i.e.
RBEM [19], RBHM [11] and [21]), in the RDF method the local RB functions
defining the spaces V Ni are computed through local parametric problems using a
greedy algorithm. Here, a new feature of the RDF approach is represented by the
use of parametric BCs in the local problems that allows the definition of effective
and versatile local reduced basis functions and spaces. Moreover, we exploit the
repetitiveness of the computational domain in order to deal with a low dimension-
ality of the parameter space. The idea is to build few local RB spaces V RBk only

for the reference shapes Ω̂k, k = 1, . . . ,K. The bases of these RB spaces are used
for defining the spaces V Nt(j), j = 1, . . . , R, in Ω̂. Since the subdomains in Ω̂ are

obtained by translations of Ω̂k, the mapping of the corresponding functions in Ω̂t(j)
is straightforward. In order to define these functions in the whole domain Ω̂, we
define them equal to zero in the remaining part of the domain Ω̂\Ω̂t(j) and in Ω̂Γ
where we use the FE basis functions. Then we can apply the reduced order strategy.

4.1 Local parametrized problems for computing the RB functions

The computation of the RB functions is performed locally in the reference shapes
and during the offline step [28]. The idea is that the RB spaces are independent
on the number of subdomains that will compose the whole computational domain.
The way to define these basis functions is, in principle, arbitrary and can depend on
the physical characteristics of the problem. The behavior of these functions affects
strongly the numerical solution of the final system we want to solve and its accuracy
with respect to the exact solution of the problem.
The goal at this stage is to construct local sets of basis functions that are rich
enough to define the online global space where we find an accurate and continuous
final solution of the problem. To perform this task, we have to take into account
two main aspects; first, these functions, defined locally, will be used as bases to
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recover the solution on the whole domain Ω. In particular, this means that the BCs
used on the local problems will define an interface basis space along the internal
interfaces of the decomposed computational domain that has to recover the trace of
the final solution. On the other hand, we have to take into account that each local
problem depends on local parameters coming from the original problem and their
values are unknown at this stage.
For each reference shape Ω̂i we define a local parametric problem coming from
the operators of the original problem and using different local boundary conditions
(BCs) on the boundaries Γ̂λ identified through an additional artificial parameter
µλ. The latter will be used for connecting the different shapes and will represent
the internal interfaces of the global computational domain. By recalling the origi-
nal linear parametric problem (2.1) in Ω, we define the following parametric local
problems in each reference shape Ω̂i, for i = 1, . . . ,K:

Ai(ỹ(µ̃i);µoi) = Fi(µoi) in V ′
Ω̂i
,

BDi(ỹ(µ̃i);µoi) = GDi(µoi) in VΓ̂Di ,

BNi(ỹ(µ̃i);µoi) = GNi(µoi) in V ′
Γ̂Ni

,

BDi(ỹ(µ̃i);µoi) = λ(µλ) in VΓ̂λ ,

(4.3)

where Γ̂Di and Γ̂Ni are parts of the external boundaries of the final computational
domain. The parametric linear differential operators Ai(·;µoi), the BC operators
BDi(·;µoi), BNi(·;µoi), the source term Fi(µoi) and boundary data GDi(µoi) and
GNi(µoi) come form the original problem in Ω and are defined in different domains
(the reference shapes). We define µ̃i = (µoi, µλ) where µoi ∈ Do ×Di represents a
set of scalar parameters addressing physical and geometrical features of the original
problem in Ω̂i, the parameter µλ ∈ Dλ characterizes the profile of the function λ(µλ)
on the boundaries that will represent the internal interfaces of the computational
domain. By varying the parameter µλ, λ(µλ) represents a basis function of a local
space function W defined along Γ̂λ. If the space W is well chosen and the RB
functions are defined through the solution of these local problems (for a set of
parameter values) the trace of the final solution along the internal interfaces will be
well interpolated and, because of the linearity of the problem, the reduced solution
suitably accurate. The more parametric BCs we use locally, that is the larger is
the space W considered, the better the final global solution will be recovered. On
the other hand, by introducing local parametric BCs, we increase the complexity
of the local problems that lead to a larger parameter vector and consequently more
expensive computational times of the RB basis selection.
We now describe the reduced basis spaces V RBi , i = 1, . . . ,K, used for defining the
space V N introduced in (4.2). By considering, for i = 1, . . . ,K, the weak formulation
of problems (4.3) and by introducing the corresponding lifting functions yΓ (µ̃i) ∈
VΩ̂i of the Dirichlet BCs, we may decompose ỹ(µ̃i) as ỹ(µ̃i) = yo(µ̃

i) + yΓ (µ̃i),

where yo(µ̃
i) ∈ V 0

Ω̂i
= {v ∈ VΩ̂ |BDi(v;µoi) = 0 in VΓ̂i ∪ VΓ̂λ}. We define the

following problems for i = 1, . . . ,K: for µ̃i ∈ Di × Do × Dλ find y(µ̃i) ∈ V 0
Ω̂i

such

that

ai(yo(µ̃
i), v; µ̃i) = fi(v; µ̃i) ∀v ∈ V 0

Ω̂i
(4.4)

with fi(v; µ̃i) = 〈Fi(µo) − Ai(yΓ (µ̃i);µo), v〉V ′,V for v ∈ V 0
Ω̂i

. By using the affine

decomposition of the problems (with the empirical interpolation if necessary) we
apply the offline stage of the classical reduced basis method for the parametrized
problems (4.4) in Ω̂i in order to select a set of suitable parameter values {µ̃ij =

(µjoi, µ
j
λ), j = 1, . . . , Ni} that defines the local reduced basis functions, in particular

we use the greedy algorithm [31].
Finally the local RB spaces are defined as the spaces of the FE solutions yN (µ̃ij)
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of (4.4) corresponding to the parameters values µ̃ij , j = 1, . . . , Ni, selected by the
greedy algorithm and properly orthonormalized in order to define the RB spaces:

V RBi = {ξij , j = 1, . . . , Ni}, i = 1, . . . ,K. (4.5)

In general, for each reference domain, we define an independent parametric problem
and we perform independent greedy algorithms (through parallel computations) and
we define K reduced basis spaces with their proper number Ni of basis functions.
The choice of the space W and the function λ(µλ) used as local BCs strongly
affects the accuracy of the final solution of the problem as well as the computational
complexity of the greedy algorithm. The relationship between the choice of W and
(i) the accuracy, (ii) the computational complexity and (iii) the performances of
the method, will be more clear when addressing specific model problems. We refer
to Section 7.4 for a detailed explanation of the local problems together with several
possible options for defining W , in particular by using either Lagrange bases or
Fourier bases. Related results regarding the offline complexity, the solution accuracy
reached during the online stage and the corresponding computational times will be
deeply investigated and commented.

4.2 Galerkin projection on the reduced space

The RDF method consists in approximating (3.1) using a subspace generated by
the local reduced basis functions, that is: find yN (µ) ∈ V N such that:

a(yN (µ), vN ;µ) = f(vN ;µ), ∀vN ∈ V N . (4.6)

The solution of problem (4.6) can be split as:

yN (µ) =

R∑
r=1

Nt(r)∑
i=1

αri ξ
t(r)
i +

NΓ∑
k=1

αΓk φ
Γ
k , (4.7)

where ξji and φΓk are defined in (4.5) and (3.6), respectively and the coefficients αri
and αΓk depend on µ. Problem (4.6) can therefore be written as:

Nt(r)∑
i=1

αri a
r(ξ

t(r)
j , ξ

t(r)
i ;µ) +

NΓ∑
k=1

αΓk a
Γ (φΓk , φ

t(r)
i ;µ) = fr(ξri ;µ), r = 1, . . . , R, i = 1, . . . , Nt(r),

R∑
r=1

Nt(r)∑
i=1

αri a
r(ξ

t(r)
i , φΓk ;µ) +

NΓ∑
k=1

αΓk a
Γ (φΓk , φ

Γ
k ;µ) = fΓ (φΓk ;µ), k = 1, . . . ,NΓ

(4.8)

and, in matrix form, as:
ΦT1 A1Φ1 ΦT1 A1Γ

. . .
...

ΦTRARΦR ΦTRARΓ
AT1ΓΦ1 · · · ATRΓΦR AΓΓ




Y1

...
YR

YΓ

 =


ΦT1 F1

...
ΦTRFR
FΓ

 , (4.9)

where for r = 1, . . . , R:

[Yr]j = αrj , j = 1, . . . , Nt(r), ΦTr = [ξ
t(r)
1 , . . . , ξ

t(r)
Nt(r)

], [YΓ ]j = αΓj , j = 1, . . . ,NΓ ;

we recall that Nt(r) is the number of RB basis functions of V RBt(r) and NΓ the number

of Lagrangian bases on V NΓ .
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4.3 Online/Offline computational decoupling

As for all RB methods, the Online/Offline computational decoupling is crucial for
the effectiveness of the proposed RDF method. All the computations involving the
construction of the local reduced basis functions are performed in an offline stage;
this corresponds to the classical offline stage of the reduced basis method applied to
the local problems. The offline/online computational decomposition also applies to
the matrix assembling of the linear system (4.9). Thanks to the affine decomposition
of the problem, the parameter independent parts of the required matrices can be
assembled starting from the FE ones of the FE linear system (3.8) (of dimension
N1 + · · · + NR + NΓ ) by pre- and post-multiplication by the matrices Φr defined
offline. Finally, the RDF system (4.9) can be easily assembled online by assembling
the precomputed local matrices and the parametric coefficients of the linear and
bilinear forms (Θraq (µ) and Θrbq (µ) defined in (3.4) and (3.5)). The global dimension
of the final problem will be Nt(1) + · · ·+Nt(R) +NΓ (with Nt(i) � Ni).

5 A priori error estimates

We are interested in providing some a priori error estimates between the exact
solution y(µ) of problem (2.3) and the RDF one yN (µ) of problem (4.6). We will
suppose that an a-priori inequality:

‖y(µ)‖V ≤ C‖f(·,µ)‖V ′ ,

where C is a proper constant, holds for the solution of problem (2.3).
We start by noting that, thanks to Galerkin projection and Céa’s Lemma (see [24]),

‖y(µ)− yN (µ)‖V ≤
M

α
inf

wN (µ)∈V N
‖y(µ)− wN (µ)‖V , (5.1)

where M and α are, respectively, the continuity and coercivity constants. Consider
now the following inequality:

inf
wN (µ)∈V N

‖y(µ)− wN (µ)‖V ≤ ‖y(µ)− yN (µ)‖V + ‖yN (µ)− pN (µ)‖V +

+ inf
wN (µ)∈V N

‖pN (µ)− wN (µ)‖V ,
(5.2)

where:
pN (µ) = argmin

qN (µ)∈V N

qN (µ)|Γ∈W

qN (µ) solves (2.3)

‖yN (µ)− qN (µ)‖V .

The first term in estimate (5.2) represents the FE error and decays to zero as hk, k
being the piecewise polynomial degree (see [24]).
The second term in estimate (5.2) represents the difference between the FE solu-
tion of problem (3.1) and the FE solution which satisfies further conditions on the
internal interfaces Γ̂ = ∪Rr=1Γ̂r: its trace on Γ̂ belongs to the discrete space W.
Decomposing the term on the different subdomains,

‖yN (µ)− pN (µ)‖V =

(
R∑
r=1

‖yN (µ)− pN (µ)‖2H1(Ω̂r)

)
1/2,

the functions yN (µ) and pN (µ) can be seen in each subdomain Ωr as solutions of
the local problems (4.3) with different Dirichlet BCs, corresponding to their traces
along Γ̂r respectively. Thanks to the trace inequality:

‖vN ‖H1(Ω̂r)
≤ C2‖vN ‖H1/2(Γ̂r)

, ∀vN ∈ H1(Ω̂r),
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where C2 is another constant depending on the measure of Ω̂r, we have:

‖yN (µ)−pN (µ)‖H1(Ω̂r)
≤ ‖yN (µ)−dN (µ)‖H1(Ω̂r)

≤ C2‖yN (µ)−dN (µ)‖H1/2(Γ̂r)
,

where
dN (µ) = argmin

qN (µ)∈V N

qN (µ)|Γ∈W

qN (µ) solves (2.3)

‖yN (µ)− qN (µ)‖H1/2(Γ̂r)
.

The last term in the previous double inequality depends on how well the trace of a
finite element function can be approximated by a linear combination of the bases of
W. Particularly this term is zero if these bases coincide with φΓi |Γ̂ , i = 1, . . . ,NΓ ,
the FE basis functions associated to the nodes along the interfaces. More in general,
it tends to zero when the dimension of the space W tends to the number NΓ of the
finite element bases along the interfaces.
Finally, the third term in estimate (5.2) measures the difference between the auxil-
iary function pN (µ) and its best RDF approximation. Since the RDF space V N is
defined as in (4.2) we have that the inf of ‖pN (µ) − wN (µ)‖V over the wN (µ) is
for sure smaller or equal than the value taken by choosing wN (µ) equal to pN (µ)
on the subdomain Ω̂Γ ⊂ Ω̂ that represents the support of the FE basis functions of
V NΓ . Therefore we have:

inf
wN (µ)∈VN

‖pN (µ)− wN (µ)‖V ≤ inf
wN (µ)∈VN

wN|ΩΓ
=pN

‖pN (µ)− wN (µ)‖V

= inf
wN (µ)∈VN

wN|ΩΓ
=pN

‖pN (µ)− wN (µ)‖H1(Ω̂\Ω̂Γ ),
(5.3)

where Ω̂\Ω̂Γ represents the subdomain of Ω̂ obtained by the union of the supports
of the RB basis functions. Hence, this term may be reduced either by lowering the
tolerance of the greedy algorithm (which amounts to increase the number of local
reduced basis functions) or by enlarging the subdomain Ω̂Γ such that the measure
of Ω̂\Ω̂Γ is reduced.
Summarizing the error introduced by solving the problem with the RDF method is
affected by four quantities which represent a trade-off for accuracy and computa-
tional costs:

• the maximum diameter h of the elements of the triangulation Th, that affects
the accuracy of the underlying FE solutions,

• the dimension of the space W used for recovering the trace of the solution along
the internal interfaces,

• the number Ni of reduced basis on the domain Ω̂i,
• the number NΓ of nodes where we consider as bases the FE ones.

6 Comparison to existing methods

In this section, we highlight the originality of the method presented in this manuscript
with respect to similar methods that share with our RDF method the feature of
combining RB and DD: the reduced basis element method (RBEM) [17,16,19,20],
the reduced basis hybrid method (RBHM) [11], the static condensation reduced
basis element method (SCRBEM) [23] and reduced basis methods used for hetero-
geneous domain decomposition (RBHDD) [22].
As already mentioned in the Introduction, the common goal of these methods is
to extend the range of applicability of the classical RB method and to improve its
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flexibility principally in terms of more realistic geometrical configurations defining
the computational domain. Indeed a complex geometry (e.g. a network) defined by
a large set of parameters may be difficult to address by classical RB methods.
In general, the combination of RB and DD methods offers a more flexible tool for
the solution of µPDEs, nevertheless we have to take into account the further costs
and effort of the coupling conditions needed to ensure the continuity of the solutions
at the interfaces.
In the following we summarize the basic ideas of the previously listed methods, in
order to focus on the novel ingredients proposed in the current RDF method.
The RBEM, just like the RDF method, considers local reduced basis spaces built
by suitable local snapshots associated to the solutions of suitable restricted local
problems. Several options have been used in literature for the computation of these
bases in RBEM, but never parametric BCs (like in the RDF). For instance, one
possibility is represented by the definition of local problems in a domain composed
by one subdomain (block) and a small part of the contiguous subdomains, along
the interfaces of the latter proper fixed BCs are used. In this way, by varying the
geometrical parameter values, the restrictions of the local solutions in each block
have different interface profiles and not bound to any particular BCs [17].
The final RBEM solution is found through a Galerkin projection on the reduced
spaces, moreover this method requires an additional ingredient: the Lagrangian mul-
tipliers associated to the jump of the state variables along the internal interfaces.
This procedure has some limitations for the Stokes problem, it ensures only the
continuity of the velocity of the RBEM solution but not that of the normal stress
[16,17].
The RBHM is built upon the idea of the RBEM and it is mainly thought for the
Stokes problem [11]. It introduces an alternative way for the computation of the
local snapshots in order to deal with solutions that, due to their construction, once
coupled they feature continuous stresses along the internal interfaces. The idea is to
consider for each reference subdomain three different local Stokes problems, one for
each possible position of the corresponding internal interface in the whole computa-
tional domain (inflow, middle or outflow). The solution of the local Stokes problems
with zero-stress BCs imposed to the boundary that correspond to the internal in-
terface are considered as snapshots of the RBHM. Due to the fact that all these
snapshots have zero-stress on the internal interfaces, by construction the final solu-
tion will have continuous normal stress. In order to be able to recover also the value
of the normal stress (not zero) of the final solution we need to enrich the spaces of
the snapshots. This is done by adding to the local spaces a global coarse solution of
the original problem, which is then restricted to the subdomains and added to the
local spaces. Finally the RBHM solution is provided, as well as the RBEM, through
a Galerkin projection on the reduced velocity and pressure spaces and the use of
the Lagrangian multipliers associated to the jump of the velocity functions.
Both methods, RBEM and RBHM, provide a suitable solution of the Laplace prob-
lem, nevertheless the local bases are not able to provide a complete versatile solution
of the whole problem, since they are strongly related to the local problems, that
are somehow less flexible than having parametric BCs as in the RDF. The RDF
method has been developed in order to improve the performance and versatility of
the RBHM, by avoiding the computation of a global coarse solution and the use of
Lagrange multipliers, with the aim of extending it for the Stokes problem.
The SCRBEM makes use of the RB method for speeding up the computational
time of local functions, called bubble functions, needed to solve a standard static
condensation problem along the internal interfaces of the decomposed domain, in
particular dealing with the associated Schur complement [7]. Since every subdomain
is characterized by a set of parameters, the bubble functions are parametric and are
approximated by the RB method used locally in a standard way. However, even if
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each RB bubble function is rapidly computed, the number of bubble functions, and
consequently the number of RB spaces required, can be very large (especially in a
three dimensional context) since it equals the number of degrees of freedom on each
internal interface. The idea of the bubble functions can be compared to the RDF
concept of the interface basis functions used as local BCs (Lagrangian or Fourier).
While in the SCRBEM a RB space is built for every single bubble function, in the
RDF every different interface basis function is seen as an interface profile associated
to a parameter, and this parameter is included in the set of local subdomain pa-
rameters, such that for each subdomain there exists only one RB local space able to
cover changes of parameter values and of interface profiles. This strategy allows to
reduce the number of local reduced spaces and the global amount of bases required,
specially in the case of Fourier basis set.
The RBHDD shares the main idea with the RDF method, however it is aimed
at solving heterogeneous domain decomposition problems, e.g. parametric Stokes-
Darcy problems. Together with the coupling of heterogeneous equations, this method
differs from the RDF for a new option used to define interfaces profiles, coming from
the traces of proper global solutions (obtained by varying the parameters values of
the problem). As in the RDF method, the set of different interface profiles is repre-
sented through an additional parameter used for the selection of the basis, however
this option is strongly related to the final geometry of the problem, that in RDF
wants to remain completely arbitrary.
By concluding, in the following we list the advantages of the RDF method with
respect with the described existing ones.

– Compared with the RBEM and RBHM, the introduction of the additional para-
metric BCs in the RDF method allows to improve considerably the accuracy of
the solution at the cost of a slight increase of the local problem complexity. The
latter is due to the use of the additional interface parameter that allows to deal
with a much more generic interface profiles, able to capture every behaviour of
the final global solution. Moreover, in the RDF method neither a global coarse
solution nor the use of the Lagrangian multipliers are required.

– With respect to the SCRBEM, the proposed RDF method represents a good
trade-off between CPU time and accuracy thanks to many possible combina-
tions of choices to be adopted for the basic ingredients of the method (number
of RB functions, number of local parametric BCs and number of FE bases used).
Moreover, while in the SCRBEM the number of RB spaces is considerably large
(one for each mesh node along the interface multiplied by the number of refer-
ence shapes required), in the RDF method only one RB space is used for each
reference shape.

– Finally, compared with RBHDD method, the RDF method has the capability to
deal with a much more general combination of computational domains, since the
local BCs are generic and not obtained from global solutions of the problem as in
the RBHDD. The RDF approach allows to compute offline the basis functions
independently from the assembling of the final global computational domain
vastly increasing the range of problems solvable online.

7 Numerical results

In this section, we present some numerical results obtained by using the RDF
method to approximate a steady conduction Laplace problem represented by a
thermal fin with an arbitrary number of subdomains. This problem has previously
solved as test problem in the framework of the classical RB method in [32] and of
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the RBEM in [20]. We will consider two different main sets of reduced basis func-
tions arising from two different choices of parametric Dirichlet BCs for the local
problems: the Lagrange functions and the Fourier functions. Then we compute the
corresponding relative errors between the RDF and the FE solution. Finally we
carry out several numerical tests obtained by varying the main ingredients of the
RDF method: the dimension of the space W used for defining the basis functions
along the internal interfaces (i. e. the BCs of the local problems); the number Ni of
reduced basis used per subdomain Ωi; the number NΓ of FE basis functions used
to enrich the RB space. A discussion about the computational time savings with
respect to the FE method will also be made.

7.1 Thermal fin problem

We consider the computational domain composed by the union of R non-overlapping
subfins Ωr, r = 1, · · · , R, each constituted by a different material, with its own
constant thermal conductivity µr1. Each block can be seen as a deformation of a ref-
erence one Ω̂r, see Figure 3 (left), through a suitable affine map and a geometrical
parameter µr2, that defines the length of the fins of the blocks, so that x = T (x̂, µr2),
x ∈ Ωr, x̂ ∈ Ω̂r.
Figure 3 (right) shows a possible configuration for the computational domain with
R = 4. In this case there are 4 physical parameters µ1 = [µ1

1, . . . , µ
4
1] and 4 ge-

ometrical parameters µ2 = [µ1
2, . . . , µ

4
2], so that Ωµ2

= ∪Rr=1Ωr. We assume that
µi1 ∈ [0.1, 10] and µi2 ∈ [3, 9], for i = 1, . . . , 4.

Fig. 3 Scheme for the geometrical transformation of a single block (left) and example of compu-
tational domain composed by R=4 blocks (right).

We impose a non-zero uniform temperature at the bottom of the multiblock (Γin),
zero temperature on the vertical surfaces of the spreaders and at the top of the
domain (Γout), and zero heat flux (conservative) on the remaining boundaries of
the fins (Γ ). We are interested in studying the temperature distribution inside the
whole computational domain when the number of blocks and the corresponding
values of the parameters vary.
The governing steady conduction problem for the temperature u in the thermal fin
is: 

µ1∆u = 0 in Ωµ2
,

u = 1 on Γin,
u = 0 on Γout,

∂u

∂n
= 0 on Γ ,

(7.1)

where µ1 = µ1(x) = µi1 if x ∈ Ωµi2 i = 1, . . . , 4.
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7.2 Geometrical parametrization of the problem

We define here the geometrical parametrization of the elliptic problem (7.1) with
affine parametric dependence. Let us introduce a piecewise affine map [31] T (x̂, µr2) :

Ω̂r → Ωr such that x = Cµr2 x̂ + cµr2 . We denote with Ω̂ = ∪Rr=1Ω̂r the reference

domain of Ω = ∪Rr=1Ωr. For this problem we have only one reference domain, that
we denote here by Λ, and we consider the map Tr : Λ→ Ω̂r, as shown in Figure 4.

Fig. 4 Computational domain Ω composed by R=4 deformed blocks Ωr(left) and reference do-

main Ω̂ composed by R = 4 reference blocks Ω̂r (center) and reference shape Λ (right).

The weak formulation of problem (7.1) together with its affine decomposition reads:
find û0 ∈ V0(Ω̂) such that ∀v̂ ∈ V0(Ω̂):

aµ(û0, v̂) =

R∑
r=1

4∑
q=1

Θrq(µ)arq(û0, v̂) = −
R∑
r=1

4∑
q=1

Ψrq (µ)frq (v̂) = fµ(v̂). (7.2)

7.3 RB and FE basis function description

To define the reduced approximation space, we show graphically in Figure 5 some
particular RB functions vri , r = 1, . . . , 4, associated to the solutions of local heat
conduction problems on Λ by imposing non-homogeneous constant Dirichlet BCs
on Γ̂T and Γ̂B and then mapped onto the subdomains Ω̂r as described in Section
4. We defer to Section 7.5 for a detailed numerical description on the way the local
BCs are set for the local problems together with the representation of further local
solutions featuring other interface profiles.

Fig. 5 Example of RB functions associated to each subdomain Ω̂r, r = 1, . . . , 4.

The number of reduced basis functions computed is N, and the same set is used
on each subdomain. Figure 6 (left) shows the FE functions associated to each node
belonging to the subdomain Ω̂Γ . We recall from Section 4, that the FE basis func-
tions used in the RDF method are defined in Ω̂Γ , the union of subdomains of Ω̂
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containing the internal interfaces. In order to be able to visualize all the functions
involved in the considered FE subspace, we used a very coarse mesh that consists
of only 15 interface nodes. These are the FE functions that enrich the final reduced
space.

Fig. 6 FE functions associated to every node belonging to the internal interfaces Γ̂r and plotted in
the same graph (left).Example of RB function associated to subdomain Ω̂2 (center).FE functions

associated to the nodes belonging to a larger subdomain Ω̂Γ and plotted in the same graph (right).

The dimension of Ω̂Γ is arbitrary and can be fixed in the online phase of the method.
Let us consider the case where the number of nodes involved in Ω̂Γ is larger than
the previous example. In this case, the support of the RB functions is smaller as
it is given by the subdomains Ω̂r\Ω̂Γ , r = 1, . . . , R. We show in Figure 6 (center)
an example of the function v2i in this different configuration but still obtained as
the solution of local heat conduction problems on Λ by imposing non-homogeneous
constant Dirichlet BCs on Γ̂T and Γ̂B . As before, we show in Figure 6 (right) the
plot of all the FE functions associated in this case to a larger subdomain Ω̂Γ by
using a very coarse grid for the scope of the visualization. In order to emphasize that
the method is suitable for domains with an arbitrary number of blocks, Ω̂ was first
defined by 4 subdomains (Figures 5 and 6, left ), then by 3 subdomains (Figures 6,
center and right).

In the following section we present some strategies for the computation of the local
reduced basis functions, since the idea is to define a basis able to recover the solution
for a problem featuring an arbitrary domain configuration.

7.4 Local thermal fin subproblems

We consider the reference shape Λ and we want to define the reduced basis space
VRB . We introduce the following parametric local Laplace problem in a generic
subdomain Ωr. We denote with ΓT and ΓB the two boundaries of Ωr that may
correspond to the inlet, the outlet or the internal interfaces in the whole domain
Ω. We denote with the function λ(µλ) the Dirichlet BC on ΓD = ΓT ∪ ΓB . The
parameter µλ characterizes the profile of the function λ(µλ) on the boundary ΓD.


µr1∆u = 0 in Ωµr2 ,

u = λ(µλ) on ΓD,
∂u

∂n
= 0 on Γr.

(7.3)

On the weak formulation of problem (7.3), we can apply the same local affine de-
composition to recast problem (7.3) on Ω̂r and consequently on Λ, that represents
a translation of Ω̂r.
Thanks to the lifting function uΓ = uΓ (µ, µλ) ∈ Vh, µ = (µ1, µ2), we define on Λ
the finite element approximation ũ of problem (7.3) such that ũ = u + uΓ and we
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find u = u(µ, µλ) ∈ Vh, such that

Ma∑
q=1

Θaq (µ)aq(u, vh) = −
Mf∑
q=1

Θfq (µ, µλ)fq(vh), ∀vh ∈ Vh, (7.4)

where

Vh = X1
h ≡ {vh ∈ C0(Λ) : vh|K ∈ P1 ∀K ∈ Th} ∩H1

0ΓD .

We apply now the greedy algorithm of the classical reduced basis method for the
parametrized problem (7.4) in Λ in order to select a set of suitable parameter values
{(µi, µiλ), i = 1, . . . N} that will identify the local reduced basis functions.

7.5 The local BCs and the local greedy algorithms

We deal with two possible options when defining the set of local BCs of problem
(7.4) defined in Λ. In particular, we consider, first, that λ(µiλ), i = 1, . . . ,M , are the

M Lagrangian piecewise functions defined on Γ̂T and Γ̂B (see Figure 4). Then, we
explore the possibility to define λ(µiλ), i = 1, . . . ,M as M different Fourier functions

on Γ̂T and Γ̂B . The next subsections describe in detail the role of both sets of bases
in the offline stage of the method.

7.5.1 The Lagrangian piecewise interface functions

Our first options are W = WH represented by different spaces of Lagrangian piece-
wise basis functions defined on the interfaces Γ̂T and Γ̂B . Every space WH is char-
acterized by Lagrangian bases with a different support dimension, denoted by H.
The µλ is defined in a discrete domain of integer numbers and the function λ(µλ)
indicates the Lagrangian function associated to the node of the interface numerated
by the number µλ.
We suppose that Γ̂T and Γ̂B have the same dimension and denote by NΓ the num-
ber of nodes on these boundaries. We assume that the nodes of the mesh belonging
to Γ̂T and Γ̂B are equipartitioned and h is the distance between two adjacent nodes.
For every space WH the support of λ(µλ) can be smaller or equal to the interface
length, H ≤ (NΓ − 1)h, so that the number of the Lagrangian functions defining
WH is equal or smaller than the number of nodes NΓ . We associate a value of

µλ ∈ {1, 2, . . . , 2( (NΓ−1)h
H + 1)} to identify each Lagrangian basis functions.

We assume at first, that the support coincides with the interface Γ̂T or Γ̂B , so that
H = (NΓ−1)h (in these numerical tests we have (NΓ−1)h = 1) and µλ ∈ {1, . . . , 4}
(we recall that we have parametric BCs on two interfaces). The functions λ(1) and
λ(2) are defined as the Lagrangian piecewise functions associated to the two ex-
treme nodes of Γ̂T and equal to zero on Γ̂B and λ(3) and λ(4) are the Lagrangian
piecewise functions associated to the two extreme nodes of Γ̂B and equal to zero
on Γ̂T , see Figure 7. Figure 8 shows, for an arbitrary value of the parameter µ, the
solutions u(µ, µλ) of (7.4) by fixing H = (NΓ − 1)h and in correspondence of the
“Lagrange BCs” λ(µλ) with µλ = 1, 2, 3, 4.
By varying the value of H, we have different sets of Lagrangian functions λ(µλ) to
be used as BCs and consequently we have different sets of possible values of µλ. By
recalling that in the local parametric problem (7.4) the parameters are µ = (µ1, µ2)
and µλ, we observe that the parameter µ1 (for the specific considered problem) does
not influence the solution u(µ, µλ) of problem (7.4), so that we can set µ1 = 1 and
consider only two parameters involved in the greedy algorithm: µ2 and µλ. Figure
9 shows the distribution of the parameter values µi2 and µiλ selected by the greedy
algorithm, with H = 1.
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Fig. 7 Local BCs on Γ̂T and Γ̂B for H=1 and µλ = 1, 2, 3, 4.

Fig. 8 Solutions u(µ, µλ) of (7.4) µλ = 1, 2, 3, 4, H = 1.

Fig. 9 Parameter values of the selected µi2 (left) and µiλ (right), i = 1, . . . , N during the greedy
algorithm for H = 1.

In general, we can reduce the value of H in order to consider a larger space of
Lagrangian functions along the interface that may better approximate the final
solution of the problem. We consider a second example with H = 1/2, in this
case µλ ∈ {1, . . . , 6} and the profiles of the function λ dependent on µλ are shown
in Figure 10 (here we report only the interface in which λ is non-zero). Figure 11
shows, for fixed parameter µ, the solutions u(µ, µλ) of (7.4) associated to the values
µλ = 1, . . . , 6 for H = 1/2. Figure 12 (left) shows the distribution of the parameter
values µiλ selected during the greedy algorithm, with H = 1/2. The distribution of
the parameter values µi2 is similar to the previous case.

We report in detail a last case in which H = 1/4 and µλ ∈ {1, . . . , 10} and the
displacements of the function λ in dependence of µλ are shown in the Figure 13.
Figure 14 shows, for fixed parameter µ, the solutions u(µ, µλ) of (7.4) associated
to the values µλ = 1, . . . , 10 for H = 1/4.

Figure 12 (right) shows the distribution of the parameter values µiλ selected during
the greedy algorithm, i = 1, . . . , N. Also in this case the distribution of the param-
eter values µi2 is similar to the previous cases.
We note that in the three cases, the selected values of µλ have a bigger concentra-

tion in the interval [1, max(µλ)
2 ], for which λ(µλ) is not zero along Γ̂T , that is the

boundary close to the geometrical deformation (see the geometrical representation
of Λ in Figure 4). In particular, in this set of functions, the number of selected bases
with BCs equal to the Lagrangian basis corresponding to the extreme nodes of Γ̂T
is larger with respect to the others. These solutions are obviously more affected
to the geometrical deformation of the domain, so that the greedy algorithm needs
to select more basis functions referred to these value of µλ in correspondence of
different values of µ2.
We can decrease the value of H progressively until we consider H = h, in this case
we take one Lagrangian basis for each node on the interface and µλ ∈ {1, . . . , 2NΓ }.
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Fig. 10 Local BCs on Γ̂T and Γ̂B for H=1/2 and µλ = 1, 2, 3, 4, 5, 6.

Fig. 11 Solutions u(µ, µλ) of (7.4), µλ = 1, 2, 3, 4, 5, 6, H = 1/2.

Fig. 12 Parameter values of the selected µiλ, i = 1, . . . , N during the greedy algorithm for H = 1/2
(left) and H = 1/4 (right).

In theory, this is the case in which we can approximate in the best way the final
solution, but we have a large range of the parameter values of µλ, this means that
we increase both the computational complexity of the greedy algorithm and the
number of the reduced basis functions necessary to reach a suitable accuracy. For
these numerical tests we set 65 FE nodes belonging to the interface Γ̂T as well as
to the interface Γ̂B , so that if H = h the maximum number of possible Lagrangian
functions is 130. Figure 15 shows the average of the relative errors between the RB
and FE solutions obtained by solving the local problem (7.4) and by using differ-
ent values of H for the setting of the BCs. The errors are reported by varying the
number of reduced basis (computed by the greedy algorithm). We observe that by
enlarging the range of possible values of µλ, the number of reduced basis functions
needed to reach a suitable accuracy become bigger. For instance, we note that in
the case of maxµλ = 130, i.e. H=h (the case of one Lagrange function for each
interface nodes), the error curve drastically decreases when N > 130. This is due
to the fact that a basis corresponding to a particular Lagrangian function can not
be well approximated by a combination of the solutions corresponding to the other
independent Lagrangian basis (centered on the other different nodes of the inter-
faces). Then the minimum number of local reduced basis functions corresponds to
the number of local Lagrangian basis functions used as BC.
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Fig. 13 Local BCs on Γ̂T and Γ̂B for H=1/4 and µλ = 1, . . . , 10.

Fig. 14 Solutions u(µ, µλ) of (7.4), µλ = 1, 2, . . . , 10, H = 1/4.

Fig. 15 Average of relative error between the RB local solution of (7.4) and the FE one on a
sample test of 1000 parameter values.

7.5.2 The Fourier interface functions

With the aim of improving the offline stage, we explore a second option: the use of
W = WM as Fourier functions spaces associated to the local parametric BCs for the
problem (7.4). Also in this case we have to fix the number, denoted by M, of possible
functions to consider on Γ̂T or Γ̂B . The function λ(µλ), when it is different from
zero, by varying the value of the parameter µλ, represents a Fourier basis function
defined on Γ̂T or Γ̂B . In particular, we consider the following set of M different local
BCs, by defining λ as follows: if µλ = 1, . . . ,M/2

λ(µλ) =

{
cos(m(µλ)πx) x ∈ Γ̂T ,m(µλ) = µλ − 1,

0 x ∈ Γ̂B ,
(7.5)
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and if µλ = M/2 + 1, . . . ,M

λ(µλ) =

{
0 x ∈ Γ̂T

cos(m(µλ)πx) x ∈ Γ̂B ,m(µλ) = µλ −M/2− 1,
(7.6)

Figure 16 shows the function λ by varying the values of µλ ∈ {1, . . . , 6}.

Fig. 16 Local BCs on Γ̂T and Γ̂B for M=6 and µλ = 1, . . . , 6.

Figure 17 shows, for a fixed parameter µ, the solutions u(µ, µλ) of (7.4) associated
to the value M = 6 and µλ = 1, . . . , 6.

Fig. 17 Solutions u(µ, µλ) of (7.4) in correspondence of µλ = 1, . . . , 6.

Figure 18 (left) shows the distribution of the parameter values µiλ selected during
the greedy algorithm with M = 6.

Fig. 18 Parameter values of the selected µiλ, i = 1, . . . , 100 during the greedy algorithm when
M = 6(left) and M = 10 (right).

By increasing the quantity M , we add more functions to the previous set of BCs,
as shown in Figure 19 by the plot of the function λ(x, µλ), when it is non-zero, for
M = 10 and consequently µλ = 1, . . . ,M/2. By following the same descriptions of
the previous case, we show, for M = 10, both the set of basis functions and the
distributions of the parameter values µiλ, i = 1, . . . , N , in Figures 20 and 18 (right).
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Fig. 19 Local BCs on Γ̂T and Γ̂B for M=10 and µλ = 1, . . . , 5.

Fig. 20 Solutions u(µ, µλ) of (7.4) in correspondence of µλ = 1, . . . , 10.

Figure 21 shows the average of the relative errors between the RB local solution
and the FE one obtained by solving the local problem (7.4) and by using different
boundary “Fourier” conditions by varying the number of reduced basis functions
(computed by the greedy algorithm). The same considerations of the Lagrangian
case about the offline computation complexity hold this time. Due to the fact that
the support of the Fourier bases is larger than that of the Lagrange bases, the
number of reduced basis functions that we need in order to reach a certain accuracy
is considerably smaller than in the Lagrange case.

Fig. 21 Average of relative errors between the RB local solution of (7.4) and the FE one on a
samples set of 1000 parameter values.

7.6 Global solution and error analysis

Several numerical tests have been carried out in order to test all the different options
introduced in the previous section. In the following subsections we report how the
choice of λ(µλ) (and that of M or H) affects the accuracy of the global approximated
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solution. The results will be shown in relation to different combinations of (i) the
set of local BCs, (ii) the number of nodes involved in the FE region and (iii) the
number of reduced basis functions used. Moreover, some considerations regarding
the computational saving will follow.

7.6.1 Varying the set of local BCs

We have performed, in different and independent offline stages, several greedy al-
gorithms in order to build many reduced basis spaces. As already mentioned, each
reduced basis space represents a possible choice for applying the described RDF
method. In particular, we have always used a fine mesh of 37505 nodes and 65 lo-
cal interface nodes and we have considered 7 options for the Lagrangian piecewise
functions, by setting H = 1, 1/2, 1/4, 1/16, 1/32, 1/64 and 20 options of the Fourier
fuctions, by setting M = 4, 6, 8, . . . , 40. Then we have applied the RDF method by
using the 26 different local reduced basis spaces on the 3 blocks network configu-
ration to approximate the Laplace problem (7.1) by using 100 randomly selected
parameter samples.
Figure 22 (left) shows the average relative errors between the RDF solution and the
finite element solution, depending on the number of local BCs used (dependent on
H) and the number of reduced basis functions used in each block (N), by using the
Lagrangian piecewise functions set.
The same comparison has been performed with the Fourier set of BCs. Precisely, we
have built in different and independent offline stages 19 reduced basis spaces com-
puted through the greedy algorithm and each time by imposing a different value of
M = {4, . . . , 40}. Figure 22 (right) shows the average relative errors between the
RDF solution and the FE solution obtained again as function of the number of local
BCs (dependent on M) and the number of reduced basis functions (N).

Fig. 22 Average relative error between the RDF the FE solutions on a samples set of 100 param-
eter values by using different Lagrangian BCs (left) and different Fourier BCs (right).

We note that, in both cases, for a fixed number of local BCs, the error decreases by
increasing the number of local RB functions and reaches a plateau that depends on
the number M or H characterizing the choice of the RB space. On the other hand,
for a fixed number of local RB functions the error diminishes by increasing the num-
ber of local BCs, however, if the number of local RB functions is too small, the error
increases as the RB space is not large enough to accurately approximate solutions
corresponding to all the different local BCs. Here the domain Ω̂Γ involves only the
nodes on the internal interfaces. Moreover, we observe that, at least for the prob-
lem considered, the Fourier basis used to recover the trace of the solution along the
internal interfaces seems a more practical and effective choice for the RDF method.
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This choice allows to reach a reasonable level of accuracy by using a smaller number
of RB functions if compared to the choice of the Lagrangian BCs. For instance, in
order to achieve an accuracy of the order 10−6, by using the Fourier option we have
to choose M=16 and N=50, while by using the Lagrange option this requires more
than 200 RB functions and, at least, H=1/32. Figure 23 shows the RDF solution
obtained by using Fourier BCs, M = 6 and N = 40 corresponding to the parameter
values µ1 = (4.3725, 9.7089),µ2 = (4.3947, 9.5760),µ3 = (2.0272, 4.9052).

Fig. 23 RDF Solution for a three blocks configuration corresponding to µ1 =
(4.3725, 9.7089),µ2 = (4.3947, 9.5760),µ3 = (2.0272, 4.9052), obtained by using Fourier BCs,
M = 6, N=40.

7.6.2 Extending the finite element region

The second battery of tests that we have performed is concerned with a larger defi-
nition of the domain Ω̂Γ . Figure 24 (left) reports the average relative error between
the RDF solution and the FE one by considering the FE region Ω̂Γ comprising
about 4.32% nodes of the total number of mesh nodes of the domain. Error was
computed by using the spaces of Fourier BCs and by varying the number of RB
functions and the local BCs.

Fig. 24 Average relative error between the RDF and FE solutions on a sample set of 100 param-
eter values by using local Fourier BCs, (i) Ω̂Γ composed of 4.32% nodes of the total number of
mesh nodes and by varying the number of RB functions N and the number of boundary functions
M (left) and (ii) by using M = 10 and by varying N and the percentage of nodes involved in the
FE regions.

We observe that the error plot has a similar pattern than the one obtained with
FE nodes considered only on the internal interfaces, with the difference that here
the error values have a lower order of magnitude. For instance, this time, in order
to reach an accuracy error of 10−6 it is necessary to choose M=5 and N=25. In
the next section we discuss how the addition of further FE functions affects the
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computational time. In order to clearly visualize (still in the case of Fourier option)
the decreasing of the error by enlarging the subdomain Ω̂Γ (i.e. increasing the
number of FE functions), we report in Figure 25 (left) the relative error between
the RDF solution and the FE one by increasing the FE functions and by varying
the number of local BCs. This result shows that the enlargement of Ω̂Γ by adding
nodes proximal to the internal interfaces at fixed number of local RB functions is
particularly effective for a specific range of the number of local BCs (5 ≤M ≤ 22).

Fig. 25 Average relative error between the RDF and FE solutions by using local Fourier BCs,
N=50 RB functions and by varying the number of boundary functions and the number of nodes
in Ω̂Γ (left). Average computational time of the RDF method as percentage of the FE method
applied to the global problem by varying the number of RB functions used and the number of
nodes in Ω̂Γ (right). For both plots we used a sample set of 100 parameter values.

Figure 24 (right) shows the relative error between the RDF solution and the FE
solution by increasing both the number of RB and FE functions (by using the
Fourier option and M=10). Therefore, by increasing the number of FE functions is
a viable strategy to decrease the error. When FE nodes are 100% of the total (limit
case), RDF reduces to the FE method on the global domain. The pictures relative
to different numbers of local BCs present similar patterns.
Figure 25 (right) shows the computational time of the RDF method as percentage
of the FE method applied to the global problem. The computational time increases
when increasing either the number of local RB functions and the number of FE
functions.
By a suitable combination of number of FE nodes and local RB functions we can
achieve a good trade-off between computational time saving and accuracy.

7.6.3 Increasing the number of blocks

The last train of tests has been performed by increasing the number of blocks on the
computational domain. The number of FE bases used for enriching the RB space
equals the number of nodes belonging to the internal interfaces. Figure 26 displays
the relative errors between the RDF solution and the FE solution by using the
Fourier local BCs with values M = 6, M = 20 and M = 36, the errors are plotted
versus the number R of computational domains (R = 3, . . . , 50) and the number N
of reduced basis functions.
To start with, we note that the order of magnitude of the error does not depend on
the number of blocks composing the domain. Moreover, the method can be tuned
a-priori according to the desired solution accuracy and computational time. For
instance, a very low approximation error (e.g 10−8) can be achieved by using a large
set of BCs (M=32), but a large number of RB functions will be required (N ≈ 90).
This level of accuracy can not be reached with a smaller set of BCs (i.e. M=6),
however if the required accuracy is larger, say about 10−5, it is more convenient to
use a low number of BCs, since the number of the required RB functions will be



26

Fig. 26 Relative error between the RDF solution and the FE solution by varying the number
of blocks (R) on the domain and the number of RB functions (N) with M = 6 (left), M = 20
(central), M = 32 (right).

low as well. We need 25 RB functions if M = 6, 40 RB functions if M = 20, more
than 50 RB functions if M = 32.
Finally, regarding the computational times, we observe that the performance of
the RDF method compared with the FE one is still attractive even if the number
of needed RB functions is large and if several blocks compose the computational
domain. Figure 27 (right) shows the percentage of the computational time of the
RDF time with respect to the FE method by varying both the number of blocks
(R) and the number of RB functions (N). Figure 27 (left) shows the computational
time (in seconds) of both methods. We remark that the type of RB functions (as
well as the options of local BCs) does not affect the computational time.

Fig. 27 Computational time of the RDF method and the FE method in seconds (left) and RDF
cpu times as percentage of the FE one (right) applied to an increasing number of blocks on the
domain and varying the number of reduced basis functions.

8 Concluding remarks on the numerical results

In this section we revisit the results presented in Section 7.6 in the light of the
a priori error estimate of Section 5, stating that the RDF error depends on the
maximum diameter h of the elements of the triangulation Th, the number NΓ of
nodes involved in Ω̂Γ , the number N of reduced basis functions on the subdomains
Ω̂i, and the function space W used for the local BCs and its dimension. We focus
on the last three factors as they affect the error between the RDF solution and the
FE one.
We start considering the number and the type of local BCs determining the space
W. We used both piecewise linear Lagrangian bases and Fourier hierarchical bases.
The convergence of the local greedy algorithm depends on the number of local BCs
but not on the type of BCs (Fourier or Lagrangian). Particularly, the number of
local reduced basis functions N (necessary to achieve a prefixed tolerance) sensibly
increases if we increase the number of local BCs. As a matter of fact, by increasing
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the number of possible parametric BC profiles, the range of the parameter µλ in-
creases as well, hence we need a larger number of RB functions. However, the kind
of BCs chosen may affect the global RDF error. In this respect, the Fourier basis
functions are more efficient than the piecewise Lagrangian one.
From the computational point of view, treating a larger number of RB functions
requires a larger computational time during both the online and offline phases. In
general, by increasing the number of RB functions the error of the RDF method
decreases but the offline computational time (required for their selections) and the
online computational time (the size of the local RB submatrices leading to a larger
algebraic linear system) increase. Moreover we note that the RB submatrices are
full. The dimension of the FE region also affects both the accuracy and the online
computational time of the method. In general, by increasing this dimension, the
error of the RDF method decreases, but the online computational time increases
(meaning that we add to final linear system sparse matrices of dimensions equal to
the number of nodes in the FE region).
The results shown in Section 7.6 suggest however to take some cautions when
tuning the method. For example, it may be inefficient to increase the number of
local reduced basis N because, at some point, the second term in our a priori error
estimate may be dominating. In this circumstance, increasing N only slows down
the online computational time without yielding any substantial benefits from the
point of view of the RDF accuracy. On the other side, increasing the number of
local boundary conditions without increasing N may lead to the opposite situation
in which the third term of the error estimate is dominating hence not producing
any improvement on the accuracy of the RDF solution but possibly reducing it due
to a worse approximation of the local solutions.
The challenge of the method is to find the best combination of parameters (i. e.
a reasonable trade-off) to reach a desired accuracy by minimizing the online and
offline computational times.

9 Conclusions and perspectives

In this work we introduced a new method (RDF) that efficiently combines reduced
basis method, domain decomposition techniques and finite element method. The
method is particularly suitable for parametrized PDEs in networks of repetitive
blocks and has been successfully applied to second order elliptic problems. By ex-
ploiting the repetitiveness of few reference blocks, the method reduces drastically
the offline computational time with respect to global reduced basis approach, es-
pecially for large networks. In fact the reduced basis functions are pre-built locally
on the few reference blocks (using specific BCs) whose space of parameters is much
lower than that of the global one. Moreover, finite element basis functions are used
to enrich the reduced space. The method is flexible in the sense that by modifying
the dimension of the local reduced bases, the number of finite element functions
involved, the space used for the local BCs and its dimension, it is possible to tune
and balance the accuracy and computational time. In general, by increasing the
value of these parameters the accuracy of the numerical RDF solution is increased,
the drawback, however, is that also both online and offline computational times
may be affected.
Future developments may include further investigation of the theoretical framework,
as a posteriori error estimates, extension to Stokes problems and testing of other,
possibly more effective, basis functions for the trace of the solution on the internal
interfaces.
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Fédérale de Lausanne (2012)

11. Iapichino, L., Quarteroni, A., Rozza, G.: A reduced basis hybrid method for the coupling of
parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Engrg.
221–222, 63–82 (2012)
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