
MOX-Report No. 57/2018

POD-assisted strategies for structural topology
optimization

Ferro, N.; Micheletti, S.; Perotto, S.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



POD-assisted strategies for structural topology

optimization

Nicola Ferro#, Stefano Micheletti#, Simona Perotto#

November 6, 2018

# MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica, Politecnico di Milano

Piazza L. da Vinci 32, I-20133 Milano, Italy

{nicola.ferro,stefano.micheletti,simona.perotto}@polimi.it

Abstract

We propose a new numerical tool for structural optimization design. To
cut down the computational burden typical of the Solid Isotropic Material
with Penalization method, we apply Proper Orthogonal Decomposition on
SIMP snapshots computed on a fixed grid to construct a rough structure
(predictor) which becomes the input of a SIMP procedure performed on
an anisotropic adapted mesh (corrector). The benefit of the proposed de-
sign tool is to deliver smooth and sharp layouts which require a contained
computational effort before moving to the 3D printing production phase.

1 Introduction

Topology optimization methods are nowadays popular thanks to recent develop-
ments in 3D and rapid prototyping printing techniques [1]. Topology optimiza-
tion can be demanding in terms of computational resources, especially when
complex structures are designed. Due to this issue, several mathematical meth-
ods are commonly employed to reduce the complexity of the problem at hand.
The purpose of such methods is to find a trade-off between accuracy and effi-
ciency, by devising procedures characterized by a reduced computational burden
without waiving the quality of the final manufactured product.

Our interest is in structural optimization among the several fields of appli-
cation. Different choices are viable to reach the above trade-off. For instance,
in [2, 3] we resort to a customized computational mesh with a contained number
of elements, providing smooth and sharp structures almost ready to be printed
via additive layer manufacturing. The main idea of this work is to employ a
different computational tool to reach the same goal, namely a model reduction
procedure based on the Proper Orthogonal Decomposition (POD) [4, 5]. POD is
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a standard technique to deal with parametric problems, widely employed in engi-
neering applications [6, 7, 8, 9, 10, 11]. POD exploits an offline/online paradigm,
when one first samples the parameter space to collect a certain number of high-
fidelity scenarios which are successively employed to extract an informative re-
duced basis for the space of the parametric solutions; then, this basis is used to
recover a new scenario with respect to the ones sampled. In general, the dimen-
sion of the reduced basis is considerably lower compared with the dimension of
the original problem.

As far as we are aware of, few papers address the employment of POD in
a structural optimization context. We cite, for instance, [12] where POD is
applied to multi-objective shape optimization, [13] combining POD with ho-
mogeneization techniques with a view to a multiscale model, and [14] where a
frequency response problem is tackled by combining a standard topology opti-
mization method with POD at an algebraic level.

Structural optimization can be pursued by means of different strategies, rang-
ing from size, to shape and topology optimization [15]. In this work, we focus
on topology optimization, namely the design tool seeking an optimal material
distribution in an initial domain, for assigned loads and boundary conditions,
under some constraints (see [15, 16, 17, 18, 19]). Typical optimality criteria are
represented by minimum volume, minimum compliance (or maximum stiffness),
maximum fundamental frequency in the dynamic case, while constraints can be
maximum allowed displacements and stresses, or a given fraction of the initial
volume.
Density-based methods are among the widely employed in the engineering com-
munity, which offer an alternative to level-set methods [20, 21], topological
derivative procedures [22], phase field techniques [23, 24], evolutionary approaches
[25], homogenization [16, 26], performance-based optimization [27].

Here we focus on the minimization of the compliance for a fixed volume frac-
tion, by resorting to the density-based SIMP (Solid Isotropic Material with Pe-
nalization) method [15, 16, 19]. In practice, it consists of solving a minimization
problem for an auxiliary density variable, identifying the material/void distribu-
tion, constrained by the linear elasticity equation. In particular, POD is properly
combined with SIMP, by generating a reduced basis for the density only. Ex-
tra care will be taken to deal with parameters involving the design constraints.
A straightforward combination of POD with SIMP leads to a numerical design
process which is efficient but lacks accuracy in some circumstances, in particular
when the collected snapshots are excessively either sharp or smooth in correspon-
dence with the material/void boundary. This first merging between POD and
SIMP is improved according to a predictor-corrector approach, where the POD
prediction is used as an initial guess for the corrector standard SIMP method,
further enriched with anisotropic mesh adaptation [2, 28]. We refer to this new
method as to PC-SIMPOD. It turns out that PC-SIMPOD is robuster than the
basic POD approach, providing the desired trade-off between fast simulations
and reliable structures, essentially ready-to-print thanks to mesh adaptation.
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The paper is organized as follows. In Section 2, the basic POD approach for
topology optimization is introduced and numerically checked on some benchmark
configurations, for different choices of the paramenters. Section 3 proposes the
PC-SIMPOD method, showing the improvements of this new procedure with
respect to the basic POD one. In Section 4, PC-SIMPOD is extended to a multi-
parameter setting with a view to practical engineering problems. Conclusions
are drawn in the last section with perspectives for the future.

2 POD for topology optimization

This section focuses on a first attempt to contain the computational cost of
SIMP algorithm, by resorting to POD. The assessment in Section 2.3 show that
we can achieve a considerable gain in terms of computational time even though
the predicted layouts are not as performing as expected, in terms of compliance.
An additional weak point turns out to be the proper tuning of the procedure
used to yield the snapshots for the offline phase.

2.1 The topology optimization technique

Structural topology optimization is a mathematical technique whose goal is to
provide an optimized structure fulfilling user-defined requirements. In the most
general formulation, it consists in redistributing the material inside an initial
design domain in order to satisfy mechanical performances combined with phys-
ical constraints. There are several models available in the specialized literature
that address the topology optimization problem (see, for instance, [17, 19, 29]
for a review on the topic).

Among the several approaches, level set methods and density-based tech-
niques are the most common ones. In both cases, the reference state equation
is represented by the linear elasticity problem, suitably incorporating informa-
tion about the material distribution through an auxiliary function. The level
set approach relies on a function χ governed by a time-dependent equation
which makes an initial contour propagating towards the optimized final lay-
out [20, 21, 30, 31, 32, 33]. Density-based methods modify the elasticity equation
by weighting the Lamé coefficients via a density function, ρ, which identifies the
allocation of the material in the structure. In particular, ρ takes values in [0, 1],
where ρ = 0 means void and ρ = 1 material. These methods include phase-field
models [24, 34, 23, 35] and the SIMP (Solid Isotropic Material with Penalization)
method [36, 15, 37, 38, 39].

In this paper, we focus on the SIMP method. To formalize SIMP method

3



we start from the density-modified elasticity problem
−∇ · σρ(u) = 0 in Ω

u = 0 on ΓD

σρ(u)n = f on ΓN

σρ(u)n = 0 on ΓF ,

(1)

where Ω ⊂ R2 defines the design domain with boundary ∂Ω; u = [u1, u2]T is
the displacement field; σρ(u) = ρp

[
2µε(u) + λI : ε(u)

]
is the penalized stress

tensor, with ρ the density function, p the penalization exponent set to 3 [15, 36],
ε(u) =

(
∇u + (∇u)T

)
/2 the strain tensor,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

the Lamé coefficients, with E the Young modulus, and ν the Poisson ratio, I
the identity tensor; f is a traction applied to a portion ΓN of ∂Ω; ΓD ⊂ ∂Ω
and ΓF = ∂Ω \ (ΓN ∪ΓD) denote the portion of the domain where the structure
is clamped and stress-free, respectively; n is the unit outward normal vector to
∂Ω.

With a view to the minimization of the structure compliance, G(u) =
∫

ΓN
f ·

u dγ, SIMP formulation becomes
find ρ ∈ L∞(Ω) such that

min
ρ∈L∞(Ω)

G(u(ρ)) :

{
aρ(u(ρ),v) = G(v) ∀v ∈ U
C(ρ,u(ρ)) ≤ 0

(2)

with

C(ρ,u(ρ)) =


∫

Ω
ρ dΩ− α|Ω|

ρmin − ρ,
ρ− 1,

and where u ∈ U = {v ∈ [H1(Ω)]2 : v = 0 on ΓD},

aρ(u,v) =

∫
Ω
σρ(u) : ε(v) dΩ,

is the bilinear form associated with (1), α > 0 is the maximum volume frac-
tion allowed for the optimized structure, |Ω| is the measure of the domain, and
ρmin ∈ (0, 1) is a lower value for the density to ensure the well-posedness of the
state equation. Notice that ρ 7→ u(ρ) defines the solution operator of the state
equation.

The discretization of problem (2) is tackled by using standard finite ele-
ments [40], yielding
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find ρh ∈ V r
h such that

min
ρh∈V rh

G(uh(ρh)) :

{
aρ(uh(ρh),vh) = G(vh) ∀vh ∈ U sh
C(ρh,uh(ρh)) ≤ 0

(3)

with

C(ρh,uh(ρh)) =


∫

Ω
ρh dΩ− α|Ω|

ρmin − ρh,
ρh − 1,

(4)

and where V r
h ⊆ H1(Ω) and U sh ⊂ U are the scalar and vector continuous finite

element spaces, associated with a triangulation, Th = {K}, of Ω, of degree r and
s, respectively and where it is understood that uh(ρh) ∈ U sh.

It is well-known that SIMP suffers from some issues, such as the mesh de-
pendence, the presence of undesired intermediate densities, and checkerboard
patterns [15, 41, 42]. In particular, to mitigate the checkerboard effect, it is
advisable choosing r ≤ s in (3)-(4). As an alternative, we follow the approach
proposed in [2, 3], by picking r = s = 1. For this particular choice, in the sequel
we adopt the simplified notation Vh and Uh.

The minimization is performed using a gradient-like method by properly
including the constraints [43].

2.2 The POD method applied to topology optimization

We now aim at performing a structure optimization driven by SIMP at a con-
tained computational cost. For this purpose, we introduce the parametrized
version of (3)-(4),

find ρµh ∈ Vh such that

min
ρµh∈Vh

G(uh(ρµh)) :

{
aµρ(uh(ρµh),vh) = Gµ(vh) ∀vh ∈ Uh
Cµ(ρµh,uh(ρµh)) ≤ 0

(5)

with

Cµ(ρµh,uh(ρµh)) =


∫

Ω
ρµh dΩ− α|Ω|

ρmin − ρµh,
ρµh − 1,

(6)

with µ a real parameter which may be related to the state equation and/or to
the constraint inequality.

Algorithm 1 provides a possible implementation of the computational proce-
dure employed to solve problem (5)-(6), denoted by SIMPµ.
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Algorithm 1 : SIMPµ
Input : CTOL, kmax, kmax1, kmax2, τ1, τ2, τ3, β, ρmin, µ

1: Set: ρ0
h = 1, k = 0

2: while k < kmax do
3: ρk+1

h = optimize(ρkh, kmax1, CTOL, ρmin, µ);

4: ρk+1
h = filter(ρk+1

h , τ1);

5: k = k+1;

6: endwhile

7: ρk+1
h = optimize(ρkh, kmax2, CTOL, ρmin, µ);

8: ρk+1
h = filter(ρk+1

h , τ2);

9: ρk+1
h = sharpening(ρk+1

h , β);

10: ρk+1
h = filter(ρk+1

h , τ3);

This version of SIMP algorithm is a variant of the basic approach, due to
the enrichment with both filtering and sharpening. This choice is justified with
a view to the offline phase of the POD algorithm. In particular, to perform the
filtering, we adopt the Helmholtz-type partial differential problem{

−τ2∆ρf + ρf = ρh in Ω

τ2∇ρf · n = 0 on ∂Ω,
(7)

with τ a real parameter measuring the thickness of the smoothed density, to be
properly tuned [44]. In practice, problem (7) is discretized with piecewise linear
finite elements.

Concerning the sharpening, we apply the projection step

ρS = 0.5

(
1 +

tanh(β(ρh − 0.5))

tanh(0.5β)

)
,

with β a parameter tuning sharpening features, to emphasize the density gradi-
ent, thus yielding a sharper material-void pattern [44, 45, 46]. We observe that
sharpening is, in general, applied to a filtered density. The particular alterna-
tion of filtering and sharpening adopted in Algorithm 1 will be more precisely
justified later on.

Function optimize implements a suitable algorithm for constrained mini-
mization. For this purpose, we adopt function IPOPT in FreeFem++ [47, 48].
In particular, CTOL is a tolerance for the stopping criterion, kmax1, kmax2 set
the maximum number of iterations allowed for the optimizer. Routine IPOPT

requires also the gradient of G and of C with respect to the density. For more
details about the computation of these gradients, we refer to [2].

According to an offline/online paradigm typical of a POD approach [4, 5], in
the offline phase we collect the solutions to the full-size problem by SIMPµ, called
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snapshots, into the response matrix, S, for a sufficiently large set of parameters,
{µi}Mi=1. In particular, we are interested in the output density of Algorithm 1,
so that

S = [ρhµ1 ,ρ
h
µ2 , ...,ρ

h
µM

] ∈ RN×M ,

with dim(Vh) = N < +∞, and where ρhµ ∈ RN collects the degrees of freedom of

ρhµ, solution to (5)-(6), with respect to the basis {ϕi}Ni=1 of Vh. Then, to identify
the POD basis we apply the singular value decomposition (SVD) [49] to S,

S = V ΣΦT ,

with V ∈ RN×N and Φ ∈ RM×M the orthogonal matrices collecting the left and
the right singular vectors of S, respectively, while Σ ∈ RN×M is the pseudo-
diagonal matrix of the singular values of S. The POD basis is thus identified
by the first l columns of V , {vi}li=1, with 0 < l ≤ M , so that the reduced
space V lPOD = span{v1, . . . ,vl} ⊂ RN . By exploiting the bijection between Vh
and RN [40], we define the subspace V l

h,POD of Vh associated with the subspace

V lPOD of RN . As far as the choice of l is concerned, different criteria can be
pursued [4, 5]. The role of SVD is to generate a reduced basis which turns out
to be particularly effective, by removing the redundancy in the response matrix.

Remark 2.1 A priori one could build a response matrix also for the displace-
ment. We have decided to work with the density matrix only, to contain the
computational cost of the offline phase. Additionally, first numerical checks have
highlighted a low accuracy for this double reduction. This topic is currently out
of the focus of this paper.

With a view to the online phase, we introduce matrix Vl = [v1, . . . ,vl] ∈
RN×l collecting the POD basis vectors, so that, with any vector wl ∈ Rl, we can
associate an element wN ∈ RN ∩ V lPOD given by

wN = Vlwl. (8)

For any wh ∈ V l
h,POD, by exploiting the standard expansion in terms of the finite

element basis, {ϕi}Ni=1, it follows that, for a suitable wN satisfying (8),

wh(x) =
N∑
i=1

wi ϕi(x) =
N∑
i=1

(
Vlwl

)
i

ϕi(x) =
N∑
i=1

( l∑
j=1

Vlijwlj

)
ϕi(x)

=
l∑

j=1

wlj ϕ̃j(x),

with ϕ̃j(x) =

N∑
i=1

Vlij ϕi(x), i.e., V l
h,POD = span{ϕ̃1, . . . , ϕ̃l} ⊂ Vh, and where we

denote by wi the i-th component of wN .
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We now pick a new value for the parameter µ, say µ = µ∗, with µ∗ 6= µi with
i = 1 . . . ,M , and we solve the following SIMPµ∗,POD problem

find ρµ
∗, l
h,POD ∈ V

l
h,POD such that

min
ρµ
∗, l
h,POD∈V

l
h,POD

G(uh(ρµ
∗, l
h,POD)) :

{
aµ
∗
ρ (uh(ρµ

∗, l
h,POD),vh) = Gµ∗(vh) ∀vh ∈ Uh

Cµ∗(ρµ
∗, l
h,POD,uh(ρµ

∗, l
h,POD)) ≤ 0

(9)

instead of the SIMPµ∗ in (5)-(6). Solution ρµ
∗, l
h,POD thus provides an approxima-

tion for ρµ
∗

h . The computational benefit expected from this procedure can be
ascribed to the fact that (9) involves a constrained minimization problem of di-
mension l instead of N , in general being l� N . This implies that few iterations
are required to converge. The challenge will be to assess also the reliability of
the POD solution.

From an implementative viewpoint, SIMPµ∗,POD is described by the following
variant of Algorithm 1:

Algorithm 2 : SIMPµ∗,POD

Input : CTOL, kmax, β, ρmin, µ∗

1: Set: ρ0
h = 1;

2: ρ1h = optimize(ρ0
h, kmax, CTOL, ρmin, µ∗);

3: ρ1h = sharpening(ρ1h, β);

4: Set: ρµ
∗, l
h,POD = ρ1h;

The whole POD procedure, labeled in the sequel by SIMPOD, is itemized in
Algorithm 3.

Algorithm 3 : SIMPOD

Input : M, {µi}Mi=1, l, µ∗

1: Set: S = [];

2: for i=1:M do

3: ρµih =SIMPµi;

4: S = [S,ρµih ];

5: endfor

6: [V,Σ,Φ] = svd(S);
7: construct space V l

h,POD;

8: ρµ
∗, l
h,POD = SIMPµ∗,POD;

We remark that the online phase turns out to be effective if the POD basis
does not consist of high-frequency modes. This can be achieved by employing
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smooth snapshots with a sufficiently sharp interface between void and material.
Actually, the optimizer returns jagged boundaries when no filtering and sharp-
ening are adopted, with associated highly oscillating POD modes. This justifies
the tight combination of optimization with filtering and sharpening in SIMPµ
algorithm.

The effort performed offline allows us to avoid any filtering in the online
phase, while keeping only sharpening.

2.3 Numerical results for SIMPOD

We focus on the topology optimization of two different structures, namely a
cantilever beam and a bridge. The parameter µ will assume a different meaning,
being associated with either the state equation or the inequality constraint.

Concerning the input values for Algorithms 1-2, we refer to Table 1, except
for the parameter µ and µ∗, changing through the test-cases.

SIMPµ SIMPµ∗,POD

CTOL= 5 · 10−3 CTOL= 5 · 10−3

kmax= 3 kmax= 300
kmax1= 50 β = 7.5
kmax2= 150 ρmin = 0.01
τ1 = 0.04
τ2 = 0.025
τ3 = 0.02
β = 5
ρmin = 0.01

Table 1: Input values for SIMPµ and SIMPµ∗,POD algorithms.

2.3.1 The SIMPOD cantilever beam

We consider the rectangular domain Ω = (0, 2)× (0, 1) ⊂ R2, with x = [x, y]T ∈
Ω. The clamped portion of the boundary is ΓD = {(x, y) : x = 0, 0 ≤ y ≤ 1}, the
traction f = [0,−100]T is imposed on ΓN = {(x, y) : x = 2, 0.45 ≤ y ≤ 0.55},
while the material constants are E = 1000 and ν = 1/3. A triangular structured
mesh consisting of 8100 elements discretizes the domain Ω, N being equal to
4186.

We first choose for parameter µ in (5)-(6) the volume fraction, α. The
response matrix is assembled with M = 20 snapshots, uniformly sampled in the
interval Iα = [0.2, 0.675]. For the online phase, we select two new values for the
volume fraction, namely, µ∗1 = α∗1 = 0.222 and µ∗2 = α∗2 = 0.578.

Figures 1 and 2, top-left show the full reference solutions, ρ0.222
h and ρ0.578

h ,
respectively, both computed via Algorithm 1 after skipping the last filtering
step and with the same inputs as in Table 1. The other panels in the same
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figures provide the POD density for the values of l in Tables 2 and 3. The main
difference between the two cases is that, while 4 POD modes suffice to detect the
topology for the structure in Figure 1, the more complex layout of the cantilever
in Figure 2 requires at least 16 modes.

From a quantitative viewpoint, we collect information of interest in Tables 2
and 3, i.e., the CPU time (in seconds1), the compliance, G, and the number
of iterations demanded by SIMPµ∗ and SIMPµ∗,POD to converge, where, for
SIMPµ∗ , the sum of the iterations involved in the four runs of optimize is
understood. The values in the two tables exhibit a different trend. For the
smaller volume fraction, a few iterations are demanded by the POD procedure,
with a consequent reduced CPU time compared with SIMPµ∗1 (by a factor 8 in
the worst case and 20 for l = 4). Nevertheless, the estimated compliance is more
than double compared with the reference value, 15.7588. For the larger value of
α∗, the predicted compliance is more reliable (with a mismatch of about 14%).
Moreover, few iterations suffice to compute the reference solution.

The numerical verification provides a partial justification to the different
behaviour in the tables. Actually, the smaller the volume fraction, the larger
the number of iterations required by SIMPµ∗ to converge, whereas the time
demanded by the POD approach essentially scales in the same way for both the
configurations.

Figure 1: SIMPOD cantilever test case - volume fraction α∗1: reference solution
(top-left); POD solution for l = 4 (top-right), l = 7 (bottom-left) and l = 13
(bottom-right).

We now make a different choice for parameter µ, namely we pick the position,
yf , where the traction is applied. Consequently, the Neumann boundary becomes

1The computations have been run on a GenuineIntel Pentium(R) Dual-Core CPU E6300
2.80 GHz 4GB RAM desktop computer.
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Figure 2: SIMPOD cantilever test case - volume fraction α∗2: reference solution
(top-left); POD solution for l = 1 (top-right), l = 5 (bottom-left) and l = 16
(bottom-right).

CPU time [s] G #iterations

SIMPµ∗1 140.71 15.7588 198

l = 4 7.27 55.3057 14
l = 7 11.14 44.1419 20
l = 13 16.58 36.0107 28

Table 2: SIMPOD cantilever test case - volume fraction α∗1: quantitative data
for SIMPµ∗1 and SIMPµ∗1,POD algorithms.

CPU time [s] G #iterations

SIMPµ∗2 41.95 4.9978 59

l = 1 4.52 6.8983 9
l = 5 10.83 6.1095 20
l = 16 27.14 5.7209 28

Table 3: SIMPOD cantilever test case - volume fraction α∗2: quantitative data
for SIMPµ∗2 and SIMPµ∗2,POD algorithms.

ΓN = {(x, y) : x = 2, |y − yf | ≤ 0.05} and α is now set to 0.5. Matrix S is
built starting from M = 11 snapshots, and selecting yf uniformly in the interval
[0, 1]. For the online phase, we choose µ∗ = y∗f = 0.111. The reference topology
is shown in Figure 3, top-left.

Figure 3, top-right, center and bottom, provides the layout predicted by
SIMPOD algorithm for the five values of l in Table 4. We remark that only
two modes provide a layout with the same topology as the reference structure,
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Figure 3: SIMPOD cantilever test case - traction position: reference solution
(top-left); POD solution for l = 1 (top-right), l = 2 (center-left), l = 3 (center-
right), l = 5 (bottom-left) and l = 8 (bottom-right).

CPU time [s] G #iterations

SIMPµ∗ 56.11 6.5420 79
l = 1 3.88 22.0962 8
l = 2 5.55 9.5097 11
l = 3 14.04 8.4831 27
l = 5 10.35 7.6995 18
l = 8 16.50 7.5410 16

Table 4: SIMPOD cantilever test case - traction position: quantitative data for
SIMPµ∗ and SIMPµ∗,POD algorithms.

except for some detail in the bottom-right portion of Ω. Eventually, 8 POD
modes furnish an accurate prediction for the expected cantilever, as confirmed
also by the quantitative analysis in Table 4. Actually, the reduction of the
computational time amounts to a factor of about 3.4, while the discrepancy on
the compliance is about 15%.
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2.3.2 The SIMPOD bridge

This second test case deals with the optimization of a bridge. The domain
is Ω = (0, 6) × (0, 1), discretized with an isotropic triangular mesh consisting
of 11260 elements, with N = 5840. The traction f = [0,−100]T is imposed
on the portion ΓN = {(x, y) : 2.9 ≤ x ≤ 3.1, y = 1} of the boundary. On
ΓD1 = {(x, y) : 0 ≤ x ≤ 0.06, y = 0} we impose that the vertical displacement
is null to model a roller, whereas on ΓD2 = {(x, y) : 5.94 ≤ x ≤ 6} both the
components of the displacements are set to zero. Finally, the material constants
are E = 1000 and ν = 1/3 as for the cantilever test case.

The parameter adopted for the POD analysis is the volume fraction, α. The
offline phase is performed with SIMPµ algorithm with the same input values as
in Table 1, except for τ3 which is now set to 0.05, and choosing M = 20 values of
µ evenly distributed in Iα = [0.2, 0.675]. The parameter selected for the online
phase is α∗ = 0.362.

Figure 4, top-left exhibits the reference solution together with three predic-
tions corresponding to an increasing number of POD modes. At least, 12 modes
have to be employed to obtain a somewhat accurate prediction, as shown in
Figure 4, top-right and bottom.

Concerning the data in Table 5, the computational saving provided by SIM-
POD is about eight times in the worst case, even though the predicted compli-
ance is not so accurate, differing from the reference one of about 19% for the
largest value of l (l = 12).

Figure 4: SIMPOD bridge test case - volume fraction: reference solution (top-
left); POD solution for l = 1 (top-right), l = 2 (bottom-left), l = 12 (bottom-
right).

CPU time [s] G #iterations

SIMPµ∗ 227.53 63.6929 273
l = 1 5.4 158.1365 8
l = 2 10.23 107.4605 14
l = 12 28.57 75.7358 35

Table 5: SIMPOD bridge test case - volume fraction: quantitative data for
SIMPµ∗ and SIMPµ∗,POD algorithms.
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3 An enhanced approach

In the previous section, a basic-POD approach for topology optimization has
been proposed and verified. As the numerical experiments show, the algorithm
succeeds in remarkably reducing the computational time, delivering a reliable
result, yet rough and, in general, less performing with respect to the reference
solution if the number of POD modes is not sufficiently large. To overcome this
limit, it is standard to resort to a larger number of snapshots. This option can be
prohibitive in terms of memory usage, since the number of entries in S linearly
depends on the number of snapshots, and the optimal value for both M and l
is, in general, not known a priori.

As an alternative, we here propose a new approach, where the output of
SIMPOD is used as the initial guess, cheap and rough, for a new run of a
topology optimization procedure, in the spirit of a predictor-corrector method,
named PC-SIMPOD.

3.1 A predictor-corrector SIMPOD (PC-SIMPOD) technique
enriched with mesh adaptation

The scheme here proposed exploits the advantages of SIMPOD (predictor) to
quickly obtain an initial guess (more accurate than a dummy choice) for the
optimization of the structure, so that the topology optimizer (corrector) can be
initialized in a neighbourhood of the solution. The expected result of such a
combination is that a few optimization iterations in the correction step suffice
to deliver a solution that is competitive with the one directly produced by the
SIMP method on a generic initial guess.

In particular, for the correction step, we adopt the adaptive version of SIMP
algorithm, namely SIMPATY, proposed in [2, 28], where the employment of
a fixed mesh as in Section 2.3 is replaced by a grid which sharply follows the
boundaries of the structure to be optimized. As shown in [2, 3], the main benefit
of SIMPATY is to yield sharp layouts characterized by smooth material/void
boundaries, almost ready for the 3D printing process. This is achievable using
an anisotropic mesh adaptation procedure driven by a sound mathematical tool,
namely an a posteriori error estimator.

Anisotropic meshes allow us to properly tune the size of mesh elements to-
gether with the corresponding shape and orientation. To get all this information,
we resort to the setting used in [50, 51, 52, 53], based on the affine transforma-
tion TK : K̂ → K, mapping the equilateral reference element K̂ inscribed in the
unit circle, into a generic element K of Th,

x = TK(x̂) = MK x̂ + bK ∀x̂ ∈ K̂,

where MK ∈ R2×2 deforms and rotates the reference element and bK shifts it.
The Jacobian MK can be factorized by successively applying the polar and the
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spectral decomposition, so that

MK = (RTKΛKRK)ZK ,

where ZK ∈ R2×2 is a rotation matrix, ΛK = diag(λ1,K , λ2,K) ∈ R2×2 collects
the eigenvalues of the symmetric positive definite matrix RTKΛKRK , with λ1,K ≥
λ2,K , andRTK = [r1,K , r2,K ] ∈ R2×2 is the orthogonal matrix of the corresponding
eigenvectors. Matrices ΛK and RK contain the geometric features of the element
K, namely the length, λi,K , of the semi-axes of the ellipse circumscribed to K,
and the directions, ri,K , of such axes, with i = 1, 2 (see Figure 5). Triangle K is
thus fully identified by the three quantities {λ1,K , λ2,K , r1,K}. The aspect ratio
sK = λ1,K/λ2,K ≥ 1 provides a measure of the deformation of the element, with
the understanding that high values for sK are associated with very stretched
elements.

Figure 5: Map TK from the reference element K̂ to the generic one K.

SIMPATY algorithm relies on a posteriori error estimator to generate the
anisotropic adapted mesh. We resort to an anisotropic variant of the recovery-
based error estimator proposed by O.C. Zienkiewicz and J.Z. Zhu in [54, 55, 56],
following [57, 53]. In particular, the estimator η for the H1(Ω)-seminorm of the
density discretization error, |ρ− ρh|H1(Ω), is given by

η2 =
∑
K∈Th

η2
K ,

with

η2
K =

1

λ1,Kλ2,K

2∑
i=1

λ2
i,K

(
rTi,K G∆K

(
E∇
)
ri,K

)
(10)

the element contribution, and where E∇ = [P (∇ρh)−∇ρh]∆K
is the recovered

error,

P (∇ρh)|K =
1

|∆K |
∑
T∈∆K

|T | ∇ρh|T

is the recovered gradient associated with K, obtained via an area-weighted av-
erage of the gradient of ρh computed on the patch ∆K of the elements sharing
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at least one vertex with K, |∆K | is the area of ∆K and G∆K
(·) ∈ R2×2 is the

symmetric positive semidefinite matrix with entries

[G∆K
(w)]i,j =

∑
T∈∆K

∫
T
wiwj dT with i, j = 1, 2, (11)

for any vector-valued function w = (w1, w2)T ∈ [L2(Ω)]2.
Estimator η is then turned into a practical information to build the new

adapted mesh. This is carried out via a metric-based procedure [58], which aims
at minimizing the number of elements to ensure a certain accuracy, η ≤ TOL, in
combination with an equidistribution of the error over the triangles. This leads to
the prediction of the optimal spacing, {λopt

i,K}2i=1, and orientation, {ropt
i,K}2i=1, for

each element K of the mesh via an iterative procedure. This can be accomplished
following [59], so that

λopt
1,K = g

−1/2
2

(
TOL2

2#Th |∆̂K |

)1/2

, λopt
2,K = g

−1/2
1

(
TOL2

2#Th |∆̂K |

)1/2

,

ropt
1,K = g2, ropt

2,K = g1,

(12)

with |∆̂K | = |∆K |/(λ1,Kλ2,K), and where {gi,gi}i=1,2 are the eigenvalue-eigenvector

pairs associated with the scaled matrix Ĝ∆K
(E∇) = G∆K

(E∇)/|∆K |, with
g1 ≥ g2 > 0, {gi}i=1,2 orthonormal vectors, and #Th denotes the cardinality
of the mesh elements.

The spacing and the orientation thus predicted, {λopt
i,K , r

opt
i,K}2i=1, become the

input to a metric-based mesh generator which produces the new anisotropic
adapted mesh. The process is repeated in an iterative loop, until some conver-
gence criterion is met.

The PC-SIMPOD with mesh adaptation procedure is itemized in Algorithm 4.

Algorithm 4 : PC-SIMPOD with anisotropic mesh adaptation

Input : MTOL, CTOL, TOL, kmax, ρmin, T 0
h , µ∗, l

1: k = 0, errM = 1 + MTOL;

2: Compute ρµ
∗, l
h,POD with Algorithm 3;

3: Set ρ0
h = ρµ

∗, l
h,POD;

4: while errM > MTOL & k < kmax do

5: kmax1=20-3k;

6: ρk+1
h = optimize(ρkh, kmax1, CTOL, ρmin, µ∗);

7: T k+1
h = adapt(T k

h , ρk+1
h , TOL);

8: errM = |#T k+1
h −#T k

h |/#T k
h ;

9: k = k + 1;

10: endwhile
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The routine adapt in line 7: generates the new adapted mesh identified by the
optimal spacing and orientation in (12). Concerning the stopping criterion, we
rely on the stagnation of the cardinality of the elements between two consecutive
meshes, to within the tolerance MTOL. We remark that an interpolation of the
density onto the new adapted mesh is understood at each change of the grid
before restarting the procedure (see [2] for more details). Moreover, neither
filtering nor sharpening are applied in this algorithm, since mesh adaptation
automatically provides smooth structures which avoid the employment of these
procedures.

3.2 Numerical results for PC-SIMPOD

We show here the improvements led by Algorithm 4 in terms of accuracy on the
test-cases in Section 2.3.1 and 2.3.2.

3.2.1 The PC-SIMPOD cantilever beam

We adopt as predictor density the output of SIMPOD algorithm for two different
values of l.
The scenario to be recovered is the same as in Figure 3, where the selected
parameter coincides with the traction position, namely µ∗ = 0.111. In more
detail, we start from the two less accurate POD approximations in Figure 3,
namely ρ0

h = ρµ
∗, 1
h,POD and ρ0

h = ρµ
∗, 2
h,POD. Concerning the input parameters for

Algorithm 4, we set

MTOL = 0.01, CTOL = 10−4, TOL = 0.125, kmax = 4, ρmin = 0.01,

while T 0
h coincides with the structured mesh of 8100 triangles in Section 2.3.1.

For the sake of comparison, the new reference solution coincides with the
output of Algorithm 4, skipping step 2:, and directly setting ρ0

h in 3: as the
approximation provided by SIMPµ∗ (see Figure 6, top).

Figure 6, center-bottom shows the output of PC-SIMPOD for l = 1 and
l = 2, respectively. We remark that the PC-SIMPOD approximation for l = 1
is very close to the reference structure even though the initial guess, ρµ

∗, 1
h,POD, is

poor. The final topology is slightly different from the expected one because of
the presence of an additional hole in the bottom-right corner, and it also exhibits
a bent contour in correspondence with the traction application point.
Starting from a barely richer initial guess is enough to obtain a much more
accurate layout, as shown in the bottom panel of the figure. Concerning the
computational mesh, it is evident that the anisotropic features allow us to detect
the void/material interface in a sharp manner and yield a smooth layout.

Table 6 enriches the quantities in the previous tables with additional in-
formation, namely the time, TC , required by the while loop in Algorithm 4,
the total number, #iterC , of iterations of optimize in the corrector step, the
mesh cardinality, #Th, and the maximum aspect ratio, maxK sK , of the final
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Figure 6: PC-SIMPOD cantilever test case - traction position: density (left) and

density superposed to the mesh (right) when ρ0
h =SIMPµ∗ (top), ρ0

h = ρµ
∗, 1
h,POD

(center), ρ0
h = ρµ

∗, 2
h,POD (bottom).

CPU time [s] G TC [s] #iterC #Th maxK sK
SIMPµ∗ 113.72 5.1831 59.32 61 5802 564.43
l = 1 51.09 6.5215 47.39 45 5920 97.33
l = 2 62.36 5.6006 57.06 58 5438 345.58

Table 6: PC-SIMPOD cantilever test case - traction position: quantitative data
for PC-SIMPOD for different choices of ρ0

h.

anisotropic adapted mesh.
The total CPU time demanded by PC-SIMPOD for l = 1, 2, is essentially half
the time associated with the same procedure starting from ρ0

h =SIMPµ∗ . As
expected, most of the computational time is spent in the while loop. The max-
imum discrepancy in the compliance is of about +10% with respect to the refer-
ence configuration. The adaptive procedure delivers in all the three cases meshes
with a similar number of triangles, which are, in general, highly stretched.
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3.2.2 The PC-SIMPOD bridge

We aim at reconstructing the structure in Figure 4, top-left starting from the
SIMPOD approximation in the bottom-right panel of the same figure (namely,
µ∗ = 0.362). Algorithm 4 is slightly modified by setting kmax1=15 for all itera-
tions, and choosing as input values

MTOL = 0.01, CTOL = 10−4, TOL = 0.1, kmax = 12, ρmin = 0.01,

with T 0
h the same mesh used for SIMPOD.

The reference solution, shown in Figure 7, top, is computed via Algorithm 4 di-
rectly setting the initial guess, ρ0

h, for the density as the approximation delivered
by SIMPµ∗ .

Figure 7 shows the good matching between the reference and the PC-SIMPOD
solutions despite some local differences can be detected. However, these hetero-
geneities do not affect the mechanical performance of the layout yielded by the
predictor. Actually, the compliance of the PC-SIMPOD bridge is thoroughly
comparable with the reference value, while the gain in terms of computational
time is remarkable (the CPU time is, in practice, halved).

Finally, the anisotropic mesh is highly stretched as confirmed by the values
of the maximum stretching factors in Table 7.

Figure 7: PC-SIMPOD bridge test case - volume fraction: density (left) and

density superposed to the mesh (right) when ρ0
h =SIMPµ∗ (top), ρ0

h = ρµ
∗, 12
h,POD

(bottom).

CPU time [s] G TC [s] #iterC #Th maxK sK
SIMPµ∗ 342.67 29.9937 115.02 62 32480 1540.80
l = 12 156.49 30.9364 104.66 58 43308 1310.30

Table 7: PC-SIMPOD bridge test case - volume fraction: quantitative data for
PC-SIMPOD for two choices of ρ0

h.
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4 Multi-parameter topology optimization

In Sections 2 and 3, we have focused on the case where structure optimization
depends on just one parameter. Nevertheless, realistic configurations involve
more parameters, simultaneously. For instance, with reference to test cases
tackled in the previous sections, it could be of interest to identify the optimal
configuration for a new pair (α, yf ).

From a formal viewpoint, SIMPµ formulation can be rewritten as in (5)-
(6) simply by replacing the scalar parameter µ by the q-dimensional vector of
parameters, µ = [µ1, µ2, ..., µq]T ∈ Rq. In practice, for each parameter µj , we
consider Sj different values, µjij , with ij = 1, . . . , Sj and j = 1, . . . , q. SIMPµ

algorithm is then employed to generate a discrete density ρ
µI
h for each parameter

µI = [µ1
i1
, µ2

i2
, . . . , µqiq ]

T ∈ Rq where I = [i1, i2, . . . , iq]
T ∈ Nq, with i1 = 1, . . . , S1,

i2 = 1, . . . , S2, iq = 1, . . . , Sq. The offline phase thus collects a total of M =
S1 S2 . . . Sq snapshots that have to be properly gathered into a generalization
of the standard response matrix usually referred to as atlas, A. With this aim,
several approaches can be employed, ranging from an arbitrary organization of
the densities ρ

µI
h into a two-dimensional (N × M) matrix to a q-dimensional

array. The first approach is viable if q is small and the standard SVD can be
employed to extract the POD basis. In such a case, the ordering of ρ

µI
h in A is

arbitrary. We adopt the index ordering based on the following for loops:

for i1 = 1:S1

for i2 = 1:S2

...

for iq = 1:Sq

...

end

end

end

On the contrary, for large values of q, the approach based on the q-dimensional
array turns out to be advisable and a Higher-Order SVD (HOSVD) can be
adopted as a more performing procedure to extract the reduced basis [60, 61].

Since we limit the numerical assessment to the case of two parameters, we
define A as

A =
[
ρ
µ11µ

2
1

h , ...,ρ
µ11µ

2
S2

h ,ρ
µ12µ

2
1

h , ...,ρ
µ12µ

2
S2

h , ...,ρ
µ1S1

µ21
h , ...,ρ

µ1S1
µ2S2

h

]
,

where the generic density ρ
µ1i1

µ2i2
h is the output of the multi-parameter version,

multi-SIMPµ, of Algorithm 1, with µ replaced by the vector µ = [µ1
i1
, µ2

i2
]T , and

we apply the standard SVD to A to extract the POD basis.
The online phase is started by selecting the new multi-parameter, µ∗ =

[µ∗,1, µ∗,2, ..., µ∗,q]T ∈ Rq, and by resorting to the multi-parameter version, multi-
SIMPµ∗,POD, of SIMPµ∗,POD.
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We will refer to the whole procedure here described as to multi-SIMPOD. In
a straightforward way, we can generalize the PC-SIMPOD procedure enriched
with anisotropic mesh adaptation to the multi-parameter case, denoting the
resulting procedure by multi-PC-SIMPOD.

Goal of the next section is to investigate the performances of both multi-
SIMPOD and multi-PC-SIMPOD methods.

4.1 Numerical results for multi-SIMPOD and multi-PC-SIMPOD

We first check the performances of multi-SIMPOD algorithm focusing on the
cantilever test case in Section 2.3.1, and by choosing as multi-parameter µ =
[µ1, µ2]T = [α, yf ]T . We investigate the sensitivity of the predicted layout to two
different atlas consisting of 25 and 50 snapshots. For the first atlas, A1, we set
S1 = S2 = 5 and

µ1 ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, µ2 ∈ {0, 0.25, 0.5, 0.75, 1}.

For the second atlas, A2, S1 = 10 and S2 = 5 corresponding to the following
samplings

µ1 ∈ {0.3, 0.325, 0.35, 0.375, 0.4, 0.45, 0.5, 0.55, 0.575, 0.6},
µ2 ∈ {0, 0.25, 0.5, 0.75, 1}.

The input parameters for SIMPµ are the same as in Table 1, except for τ3

and β now set to 0.0286 and 10, respectively, while SIMPµ∗,POD shares all the
input values. The computational mesh is the structured one as in Section 2.3.1.
The online multi-parameter is µ∗ = [µ∗,1, µ∗,2]T = [0.333, 0.444]T . As reference
structure, we consider the output provided by multi-SIMPµ∗ .

Figure 8 and Table 8 summarize the output of multi-SIMPOD procedure
from a qualitative and quantitative viewpoint, respectively. Entries in Table 8
preserve the same meaning as for the previous test cases. At least 5 POD modes
have to be adopted to correctly identify the traction area, while almost all of
the 25 modes are required to obtain a reliable prediction of the layout.

Similarly to the single-parameter setting, we observe a bad prediction of
the mechanical stiffness which is about 140% higher in the multi-SIMPOD case
(l = 22) with respect to the reference configuration. The computational time
reduces, however, by a factor 8.

Due to the poor structural performances of multi-SIMPOD for atlas A1, we
investigate if a finer sampling of the possible scenarios improves the quality of
the prediction by resorting to atlas A2.

In Figure 9, we compare the density distribution provided by multi-SIMPOD
for different choices of l with the reference configuration. At least 22 modes are
required to identify the final topology, whereas 41 modes deliver a sharp and
smooth structure very close to the reference one. Table 9 provides a more quan-
titative assessment. The performances are still not so satisfactory. Indeed, the
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Figure 8: multi-SIMPOD cantilever test case for atlas A1: reference solution
(top-left); POD solution for l = 3 (top-right), l = 4 (center-left), l = 5 (center-
right), l = 13 (bottom-left) and l = 22 (bottom-right).

CPU time [s] G #iterations

multi-SIMPµ∗ 172.08 7.4551 249
l = 3 8.68 39.4493 15
l = 4 19.33 33.7280 33
l = 5 13.92 29.4964 23
l = 13 26.38 19.9066 39
l = 22 21.56 17.9476 34

Table 8: multi-SIMPOD cantilever test case for atlas A1: quantitative data for
multi-SIMPµ∗ and multi-SIMPµ∗,POD algorithms.

mismatch between the two configurations in terms of mechanical stiffness is
about 100% higher in the multi-SIMPOD case (l = 41) with respect to the ref-
erence configuration. The gain in terms of computational time is now of a factor
about equal to 4. Moreover, it turns out that there are critical configurations
where a large number of iterations is demanded, possibly due to the switching
of the solution from two different minima of the compliance functional.

Moving from the improvements led by the PC-SIMPOD algorithm in Sec-
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Figure 9: multi-SIMPOD cantilever test case for atlas A2: reference solution
(top-left); POD solution for l = 4 (top-right), l = 17 (center-left), l = 22
(center-right), l = 31 (bottom-left) and l = 41 (bottom-right).

CPU time [s] G #iterations

multi-SIMPµ∗ 172.08 7.4551 249
l = 4 10.12 31.1832 18
l = 17 70.05 20.2008 109
l = 22 49.93 18.6441 75
l = 31 38.96 15.9707 52
l = 41 39.73 14.6244 46

Table 9: multi-SIMPOD cantilever test case for atlas A2: quantitative data for
multi-SIMPµ∗ and multi-SIMPµ∗,POD algorithms.

tion 3.2, we apply the multi-parameter version of such an algorithm to both at-
lases. Figure 10 compares the reference layout provided by multi-PC-SIMPOD
when fed by the output of multi-SIMPµ∗ , with the multi-PC-SIMPOD approx-
imation initialized by the structure predicted by multi-SIMPOD algorithm for
l = 4. There is no striking difference between the two cantilevers, except for a
slight discrepancy at the tip, which exhibits a mild bending when starting from
the first atlas.
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In Table 10, we gather the same quantities as in Table 6 for l = 4 and l = 22.
These two values for l are the only ones shared by Tables 8 and 9. Overall, the
four configurations do not yield appreciable differences in terms of compliance
and of computational time, for the same l. Also the meshes have a similar
number of elements as well as maximum aspect ratio. Nevertheless, since the
computational gain provided by the choice l = 4 is much higher compared with
l = 22 (about 3 and 2 times, respectively), we can reasonably assume that the
first choice pays off both in terms of accuracy and computational saving.

Figure 10: multi-PC-SIMPOD cantilever test case: density (left) and density

superposed to the mesh (right) when ρ0
h =multi-SIMPµ∗ (top), ρ0

h = ρµ
∗, 4

h,POD for

atlas A1 (center), ρ0
h = ρµ

∗, 4
h,POD for atlas A2 (bottom).

CPU time [s] G TC [s] #iterC #Th maxK sK
multi-SIMPµ∗ 249.81 7.3418 78.64 105 12770 921.32

A1 l = 4 76.45 7.5701 60.26 85 11146 342.75
l = 22 103.83 7.1408 82.79 110 9178 539.94

A2 l = 4 74.07 7.4773 65.05 90 12068 458.27
l = 22 124.98 7.4173 78.64 105 12914 349.10

Table 10: multi-PC-SIMPOD cantilever test case: quantitative data for multi-
PC-SIMPOD for different choices of ρ0

h.
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5 Conclusions

For the sake of clarity, in Table 11 we provide an overview of the methods consid-
ered in this paper, by highlighting some of the associated main features, based
on the numerical assessment in Sections 2.3, 3.2, 4.1. Namely, we supply a short
description of the methods, classified in offline and/or online (off⁄on-line),
computationally efficient and/or reliable (E ⁄R) with respect to the standard
SIMP algorithm [15, 16, 19], and based on a fixed or adapted (F ⁄A) mesh.

It turns out that three are the methods outperforming the others, namely,
SIMPATY and PC-SIMPOD for the single-parameter case, and multi-PC-
SIMPOD for the multi-parameter case. Nevertheless, Table 11 emphasizes qual-
itative information only. Thus, to compare more deeply SIMPATY with PC-
SIMPOD, we refer to Tables 6 and 7, while for SIMPATY versus multi-PC-
SIMPOD to Table 10. In general, it turns out that SIMPATY is slightly more
reliable as it provides structures with better mechanical properties, whereas PC-
SIMPOD and multi-PC-SIMPOD are more efficient, cutting down the CPU time
by a factor 2.

On the contrary, the plain application of POD to SIMP on a fixed mesh
leads to very efficient simulations which are, however, not so reliable from the
mechanical standpoint. Although there is still some room for improvements by
a more careful tuning of filtering and sharpening, we are confident that PC-
SIMPOD and multi-PC-SIMPOD methods are the ones to be supported as a
robust design tool for structural topology optimization. Moreover, we expect
that the advantages observed in the two-dimensional case will be magnified by
generalizing these methods to a 3D context, which represents the next step of
our research.

off⁄on-line E ⁄ R F ⁄ A

SIMPATY SIMP+anisotropic mesh adaption [2, 28] 7 ⁄ 3 3 ⁄ 3 7 ⁄ 3

SIMPµ SIMP+filtering+sharpening 3 ⁄ 7 7 ⁄ 3 3 ⁄ 7

SIMPµ∗,POD SIMP on the reduced space+sharpening 7 ⁄ 3 3 ⁄ 7 3 ⁄ 7

SIMPOD SIMPµ+SIMPµ∗,POD 3 ⁄ 3 3 ⁄ 7 3 ⁄ 7

PC-SIMPOD predictor: SIMPOD + corrector: SIMPATY 7 ⁄ 3 3 ⁄ 3 7 ⁄ 3

multi-SIMPµ multi-parameter SIMP+filtering+sharpening 3 ⁄ 7 7 ⁄ 3 3 ⁄ 7

multi-SIMPµ∗,POD multi-SIMP on the reduced space+sharpening 7 ⁄ 3 3 ⁄ 7 3 ⁄ 7

multi-SIMPOD multi-SIMPµ+multi-SIMPµ∗,POD 3 ⁄ 3 3 ⁄ 7 3 ⁄ 7

multi-PC-SIMPOD predictor: multi-SIMPOD + corrector: SIMPATY 7 ⁄ 3 3 ⁄ 3 7 ⁄ 3

Table 11: Main features of the methods considered in the paper.
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