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Abstract

In this work, we exploit the capability of virtual element methods in accommodat-
ing approximation spaces featuring high-order continuity to numerically approximate
differential problems of the form ∆pu = f , p ≥ 1. More specifically, we develop and
analyze the conforming virtual element method for the numerical approximation of
polyharmonic boundary value problems, and prove an abstract result that states the
convergence of the method in the energy norm.

1 Introduction

In the recent years, there has been a tremendous interest to numerical methods that ap-
proximate partial differential equations (PDEs) on computational meshes with arbitrarily-
shaped polygonal/polyhedral (polytopic, for short) elements. A non-exhaustive list of
such methods include the Mimetic Finite Difference method (see e.g., [4,8,16,20,22]), the
Polygonal Finite Element Method (see e.g., [43]),the polygonal Discontinuous Galerkin Fi-
nite Element Methods (see e.g., [5, 7, 11, 24, 26]) the Hybridizable Discontinuous Galerkin
and Hybrid High-Order Methods (see e.g., [31, 32]), the Gradient Discretization method
(see e.g., [34]. [33]), An alternative approach that is also proved to be very successful is
provided by the Virtual Element method (VEM), which was originally proposed in [14]
for the numerical treatment of second-order elliptic problems [28, 29], and readily ex-
tended to Cahn-Hilliard equation [3], Stokes equations [2], Laplace-Beltrami equation [35],
Darcy-Brinkam equation [44], discrete topology optimization problems [6], fracture net-
works problems [17], eigenvalue problems [38]. The mixed virtual element formulation
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was proposed in [21]; the nonconforming Virtual element formulations was proposed for
second-order elliptic problems in [12], and later extended to general advection-reaction-
diffusion problems, Stokes equation, the biharmonic problems, the eigenvalue problems,
and the Schrodinger equation in [9, 27, 30, 37, 48]. Efficient multigrid methods for the re-
sulting linear system of equations in [10]. A posteriori error estimates can be found in [25].

In this work, we propose the conforming VEM for the numerical approximation of
polyharmonic problems. A peculiar feature of VEM is the possibility of designing ap-
proximation spaces characterized by high-order continuity properties [15]. This turns out
to be crucial when differential operators of order higher than two have to be considered,
as, for example, in the numerical treatment of biharmonic problems (see, e.g., the plate
bending problem or the Cahn-Hilliard equation) and polyharmonic problems. The nu-
merical approximation of polyharmonic problems has been first addressed in the eighties
by [18] and, more recently, in [13,36,40,42,45]. It is worth mentioning an increasing inter-
est in the numerical approximation of models involving high-order differential operators,
e.g., [41, 46, 47] in the context of sixth order Cahn-Hilliard equations. To the best of our
knowledge, the conforming VEM proposed in this article is the first work addressing the
approximation of arbitrary-order polyharmonic problems on polygonal meshes.

The outline of the paper is as follows. In Section 2, we introduce the continuous
polyharmonic problem involving the differential operator ∆p for any integer p ≥ 1. In
Section 3, we introduce the conforming VEM approximation of arbitrary order. In this
case, the global VEM space is made of Cp−1 functions. As a collateral result, we obtain
a virtual element formulation that includes the VEM for the Poisson and the biharmonic
equation, where the basis functions are globally Cr for r ≥ 1. An abstract result proves the
convergence of the method in the energy norm that correspond to the differential operator
∆p. In this section, we also consider an alternative formulation with virtual element
spaces of arbitrarily regular basis functions by enriching the “bulk” degrees of freedom.
In Section 4, we derive the error estimates in different norms. Finally, in Section 5, we
offer our final comments and conclusions.

Notation and technicalities. Throughout the paper, we consider the usual multi-index
notation. In particular, if v is a sufficiently regular bivariate function and ν = (ν1, ν2) a
multi-index with ν1, ν2 nonnegative integer numbers, the function Dνv = ∂|ν|v/∂xν11 ∂x

ν2
2

is the partial derivative of v of order |ν| = ν1 + ν2 > 0. For ν = (0, 0), we adopt the
convention that Dνv coincides with v. Also, for the sake of exposition, we may use the
shortcut notation ∂xv, ∂yv, ∂xxv, ∂xyv, ∂yyv, to denote the first- and second-order partial
derivatives along the coordinate directions x and y; ∂nv, ∂tv, ∂nnv, ∂ntv, ∂ttv to denote
the first- and second-order normal and tangential derivatives of order one and two along
a given mesh edge; and ∂mn v and ∂mt v to denote the normal and tangential derivative of v
of order m along a given mesh edge. Finally, let n = (nx, ny) and τ = (τx, τy) be the unit
normal and tangential vectors to a given edge e of an arbitrary polygon K. We recall the
following relations between the first derivatives of v:

∂nv = nx∂xv + ny∂yv, ∂τv = τx∂xv + τy∂yv, (1)

and the second derivatives of v:

∂nnv = nTH(v)n, ∂nτv = nTH(v)τ , ∂ττv = τTH(v)τ , (2)

where matrix H(v) is the Hessian of v, i.e., H11(v) = ∂xxv, H12(v) = H21(v) = ∂xyv,
H22(v) = ∂yyv.
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2 The continuous polyharmonic problem

Let Ω ⊂ R2 be a convex polygonal domain with boundary Γ. For an integer p ≥ 1, we
are interested in developing the conforming Virtual Element method for the numerical
approximation of the following problem:

∆pu = f in Ω, (3a)

∂jnu = 0 for j = 0, . . . , p− 1 on Γ, (3b)

(recall the conventional notation ∂0
nu = u). Let

V ≡ Hp
0 (Ω) =

{
v ∈ Hp(Ω) : ∂jnv = 0 on Γ, j = 0, . . . , p− 1

}
.

We denote the duality pairing between V and its dual V ∗ by 〈·, ·〉. The variational
formulation of (3) reads as: Find u ∈ V such that

a(u, v) = 〈f, v〉 ∀v ∈ V, (4)

where, for any nonnegative integer `, the bilinear form on the left is given by:

a(u, v) =


∫

Ω∇∆`u · ∇∆`v dx for p = 2`+ 1,∫
Ω ∆`u∆`v dx for p = 2`.

(5)

Whenever f ∈ L2(Ω), we may consider the duality pairing between L2(Ω) and itself given
by the L2-inner product:

〈f, v〉 = (f, v) =

∫
Ω
fvdx. (6)

The existence and uniqueness of the solution to (4) follows from the Lax-Milgram
lemmabecause of the continuity and coercivity of the bilinear form a(·, ·) with respect
to ‖ · ‖V := | · |p,Ω which is a norm on Hp

0 (Ω). Moreover, since Ω is a convex polygon,
from [39] we know that u ∈ H2p−m(Ω) ∩Hp

0 (Ω) if f ∈ H−m(Ω), m ≤ p and it holds that
||u||2p−m ≤ C ||f ||−m. In the following, we denote the coercivity and continuity constants
of a(·, ·) by α and M , respectively.

3 The conforming Virtual Element approximation

3.1 Abstract framework

Let
{

Ωh

}
h

be a sequence of decompositions of Ω where each mesh Ωh is a collection
of nonoverlapping polygonal elements K with boundary ∂K, and let Eh be the set of
edges e of Ωh. Each mesh is labeled by h, the diameter of the mesh, defined as usual by
h = maxK∈Ωh

hK , where hK = supx,y∈K |x − y|. We denote the set of vertices in Th by

Vh = V i
h ∪V Γ

h , where V i
h and V Γ

h are the subsets of interior and boundary vertices, respec-
tively. Accordingly, V K

h is the set of vertices of K. The symbol hv denotes the average
of the diameters of the polygons sharing the vertex v. For functions in ΠK∈Ωh

Hp(K), we
define the seminorm ||v||2h =

∑
K∈Ωh

aK(v, v), being aK(·, ·) the restriction of a(·, ·) to K.

The formulation of the Virtual Element method for solving problem (4) only requires
three mathematical objects: the finite dimensional conforming Virtual Element space
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V p
h,r ⊂ V , the bilinear form ah(·, ·), and the linear functional 〈fh, ·〉. Their definition is the

topic of this section. Using such objects, we formulate the VEM as: Find uh ∈ V p
h,r such

that

ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ V p
h,r. (7)

The well-posedness of the VEM given in (7), which implies existence and uniqueness of
the solution uh, is a consequence of the Lax-Milgram lemma. An abstract convergence
result is available, which depends only on the following assumptions:

(H1) for each h and an assigned integer number r ≥ 2p− 1 we are given:

1. the global Virtual Element space V p
h,r with the following properties:

- V p
h,r is a finite dimensional subspace of Hp

0 (Ω);

- its restriction V p
h,r(K) to any element K of a given mesh Ωh, called the local

Virtual Element space, is a finite dimensional subspace of Hp(K);

- Pr(K) ⊂ V p
h,r(K) where Pr(K) is the space polynomials of degree up to r ≥ 1

defined on K

2. the symmetric and coercive bilinear form ah : V p
h,r × V

p
h,r → R admitting the

decomposition

ah(uh, vh) =
∑
K∈Ωh

aKh (uh, vh) ∀uh, vh ∈ V p
h,r,

where each local summation term aKh (·, ·) is also a symmetric and coercive
bilinear form;

3. an element fh of the dual space V ∗h , which allows us to define the continuous
linear functional 〈fh, ·〉.

(H2) for each h and each mesh element K ∈ Ωh, the local symmetric bilinear form aKh (·, ·)
possesses the two following properties:

(i) r-Consistency: for every polynomial q ∈ Pr(K) and function V p
h,r(K) we have:

aKh (vh, q) = aK(vh, q); (8)

(ii) Stability: there exist two positive constants α∗, α
∗ independent of h and K

such that for every vh ∈ V p
h,r(K) it holds:

α∗a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗aK(vh, vh). (9)

To apply the Lax-Milgram lemma we need ah(·, ·) to be coercive and continue. The coer-
civity of ah(·, ·) follows from the coercivity of a(·, ·) and the stability property (H2) (with
coercivity constant α∗α). The continuity of ah(·, ·) follows from its symmetry, assumption
(H2) and the continuity of a(·, ·) (with continuity constant α∗M). Denoting by Pr(Ωh)
the space of piecewise (possibly discontinuous) polynomials defined over the mesh Ωh, the
following abstract convergence result hold.
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Theorem 3.1. Let u be the solution of the variational problem (4). Then, for every
Virtual Element approximation uI in V p

h,r and any piecewise polynomial approximation
uπ ∈ Pr(Ωh) of u we have:

||u− uh||V ≤ C
(
||u− uI ||V + ||u− uπ||h + ||fh − f ||V ∗h,r

)
, (10)

where C is a constant independent of h that may depend on α, α∗, α
∗, M , and r, and,

||f − fh||V ∗h,r = sup
vh∈V p

h,r\{0}

〈f − fh, vh〉
||vh||V

(11)

is the approximation error of the right-hand side given in the norm of the dual space V ∗h,r.

Proof. The proof of this theorem is similar to the proofs of the convergence theorem in the
energy norm for the Virtual Element approximation of lower-order elliptic problems [14,
23]. We briefly sketch how the proof works for completeness of exposition. First, an
application of the triangular inequality implies that:

||u− uh||V ≤ ||u− uI ||V + ||uI − uh||V . (12)

Let δh = uh − uI . Starting from the definition of || · ||V , we find that:

α∗ ||δh||2V = α∗a(δh, δh)
[
use (9)

]
≤ ah(δh, δh)

[
use δh = uh − uI

]
≤ ah(δh, uh)− ah(δh, uI)

[
use (7)

]
≤ 〈fh, δh〉 −

∑
K∈Ωh

aKh (δh, uI) [add ±uπ
]

≤ 〈fh, δh〉 −
∑

K∈Ωh

(
aKh (δh, uI − uπ) + aKh (δh, uπ)

) [
use (8)

]
≤ 〈fh, δh〉 −

∑
K∈Ωh

(
aKh (δh, uI − uπ) + aK(δh, uπ)

)
[add ±u

]
≤ 〈fh, δh〉 −

∑
K∈Ωh

(
aKh (δh, uI − uπ) + aK(δh, uπ − u) + aK(δh, u)

) [
use (4)

]
= 〈fh − f, δh〉 −

∑
K∈Ωh

(
aKh (δh, uI − uπ) + aK(δh, uπ − u)

)
.

Then, we use (9), add and subtract u, use the continuity of aK , sum over all the elements
K, divide by ||δh||V , take the supremum of the right-hand side error term on V p

h,r\{0}, and
obtain

α∗ ||δh||V ≤ sup
vh∈V p

h,r\{0}

|〈fh − f, vh〉|
||vh||V

+M (α∗ ||uI − u||V + (1 + α∗) ||u− uπ||h) . (13)

The assertion of the theorem follows by using (13) in (12) and suitably defining constant
the C.

Let K ⊂ R2 be a polygonal element and set

aK(u, v) =


∫
K ∇∆`u · ∇∆`v dx for p = 2`+ 1,∫
K ∆`u∆`v dx for p = 2`.
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For an odd p, i.e., p = 2` + 1, a repeated application of the integration by parts formula
yields

aK(u, v) =−
∫
K

∆pu v dx+

∫
∂K

∂n(∆`u) ∆`v ds

+
∑̀
i=1

(∫
∂K

∂n(∆p−iu) ∆i−1v ds−
∫
∂K

∆p−iu ∂n(∆i−1v) ds

)
, (14)

while, for an even p, i.e., p = 2`, we have

aK(u, v) = −
∫
K

∆pu v dx+
∑̀
i=1

(∫
∂K

∂n(∆p−iu) ∆i−1v ds−
∫
∂K

∆p−iu ∂n(∆i−1v) ds

)
.

(15)

3.2 Virtual element spaces

For p ≥ 1 and r ≥ 2p− 1, the local Virtual Element space on element K is defined by

V p
h,r(K) =

{
vh ∈ Hp(K) : ∆pvh ∈ Pr−2p(K), Dνvh ∈ C0(∂K), |ν| ≤ p− 1,

vh ∈ Pr(e), ∂invh ∈ Pr−i(e), i = 1, . . . , p− 1 ∀e ∈ ∂K
}
, (16)

with the conventional notation that P−1(K) = {0}. The Virtual Element space V p
h,r(K)

contains the space of polynomials Pr(K), for r ≥ 2p− 1. Moreover, for p = 1, it coincides
with the conforming Virtual Element space for the Poisson equation [14]; for p = 2, it
coincides with the conforming Virtual Element space for the biharmonic equation [23].

We characterize the functions in V p
h,r(K) through the following degrees of freedom:

(D1) h
|ν|
v Dνvh(v), |ν| ≤ p− 1 for any vertex v of K;

(D2) h−1
e

∫
e
qvh ds for any q ∈ Pr−2p(e) and any edge e of ∂K;

(D3) h−1+j
e

∫
e
q∂jnvh ds for any q ∈ Pr−2p+j(e), j = 1, . . . , p− 1 and any edge e of ∂K;

(D4) h−2
K

∫
K
qvh ds for any q ∈ Pr−2p(K).

Here, as usual, we assume that P−n(·) = {0} for n ≥ 1. In (D3), the index j starts
from 1 instead of 0 since for j = 0 we would find the degrees of freedom that are already
listed in (D2) (recall that ∂jnvh = vh for j = 0). We note that for any sufficiently regular
two-dimensional domain Ω we have the embedding Cm(Ω) ⊂ Hp(Ω) if m ≤ p − 1. This
regularity is reflected by the previous choice of the degrees of freedom, which allows us to
reconstruct the trace of vh and the derivatives ∂jnvh ∈ Pr−j(e) on each edge of ∂K. Since
these polynomial traces on a given edge only depend on the edge degrees of freedom, the
traces are the same from inside the two mesh elements sharing that edge. To interpolate
vh ∈ Pr(e) we need r+ 1 conditions for each edge e. Let vA and vB denote the vertices of
edge e and use the shortcut notation: vA = vh(vA), ∂nvA = ∂nvh(vA), etc. Then,
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p = 3, r = 5 p = 3, r = 6

Figure 1: Triharmonic problem: edge degrees of freedom of the Virtual Element space Vh,r(K). Here, p
is the order of the partial differential operator and p = 3 corresponds to the triharmonic case; r = 5, 6 are
the integer parameters that specify the maximum degree of the polynomial subspace Pr(K) of the VEM
space Vh,r(K). The (green) dots at the vertices represent the vertex values and each (red) vertex circle
represents an order of derivation. The (black) dot on the edge represents the moment of vh|e; the arrows
represent the moments of ∂nvh|e; the double arrows represent the moments of ∂nnvh|e.

• the degrees of freedom (D1) provides vA, vB, ∂kτ vA and ∂kτ vB for k = 1, . . . , p−1, i.e.,
2p degrees of freedom, which are enough to interpolate vh|e in Pr(e) if r = 2p − 1.
When r > 2p−1 the remaining (r+1)−2p conditions required to interpolate vh|e in

Pr(e) are provided by the degrees of freedom (D2). The tangential derivatives ∂kτ vh|e
in Pr−k(e) for k = 1, . . . , r− 1 can be obtained by deriving k times the interpolated
polynomial vh|e along e;

• similarly, for each j = 1, . . . , p − 1, the degrees of freedom (D1) provides 2(p − j)
conditions, i.e., ∂kτ ∂

j
nvA and ∂kτ ∂

j
nvB, for k = j, . . . , p−1. The remaining r+1−2(p−j)

conditions to interpolate ∂jnvh in Pr−j(e) are provided by the (r−2p+j)+1 degrees

of freedom (D3). The tangential derivatives ∂kτ ∂
j
nvh|e in Pr−j−k(e) for k = 1, . . . , r−

j− 1 can be obtained by deriving k times the interpolated polynomial ∂jnvh along e.

Figure 1 illustrates the degrees of freedom on a given edge e for p = 3 (triharmonic case)
and r = 5, 6. Finally, we note that the internal degrees of freedom (D4) make it possible to
define the orthogonal polynomial projection of vh onto the space of polynomial of degree
r − 2p.

The dimension of V p
h,r(K) is

dimV p
h,r(K) =

p(p+ 1)

2
NK +NK

p−1∑
j=0

Pr−2p+j(e) + dimPr−2p(K)

=
p(p+ 1)

2
NK +NK

p−1∑
j=0

(r − 2p+ j + 1) +
(r − 2p+ 1)(r − 2p+ 2)

2
,

where NK is the number of vertices, which equals the number of edges, of K.

The following lemma ensures that the above choice of degrees of freedom is unisolvent
in V p

h,r(K).

Lemma 3.2. The degrees of freedom (D1)-(D4) are unisolvent for V p
h,r(K).

Proof. To ease the presentation, we first consider the lowest order space (r = 5) for the
triharmonic problem (p = 3). A counting argument implies that the cardinality of the
set of degrees of freedom (D1) − (D3) is equal to the dimension of V 3

h,5 (note that in
this specific case (D4) is empty as there is no volumetric integral in the right-hand side
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of (14)). Then, we are left to prove that a function vh in V 3
h,5 is zero if its degrees of

freedom are zero. From the previous discussion on the degrees of freedom, we know that
the edge polynomial interpolation of the traces of vh, ∂nvh, ∂nnvh and ∂ττvh, and, hence,
∆vh = ∂ttvh + ∂nnvh, must be zero if the degrees of freedom of vh are zero. Hence, from
(14) with ` = 1, we find that ‖∇(∆vh)‖2L2(K) = 0 inside K, which implies that ∆vh is
constant in K. Using the Divergence Theorem we find that:

∆vh|K| =
∫
K

∆vh dx =

∫
∂K

∂nvh ds = 0.

Therefore, vh is the solution of the boundary value problem ∆vh = 0 in K with boundary
conditions vh = 0 on ∂K, and, thus, vh = 0 in K.

The case of a generic p can be treated analogously by properly employing relations
(14) (odd p) and (15) (even p) in combination with the following observations:

(a) the polynomial trace ∆νvh|e = ∂αn∂
β
τ vh for every integers α, β, and ν (with ν ≥ 1)

such that α+ β = 2ν must be zero if the degrees of freedom (D1)− (D3) of vh are
zero;

(b) the volumetric integrals in (14) and (15) are zero if the degrees of freedom (D4) are
zero;

(c) aK(vh, vh) is a norm on Hp
0 (K).

To define the elliptic projection Π∇,Kr : V p
h,r(K) → Pr(K), we first need to introduce

the vertex average projector Π̂K : V p
h,r(K) → P0(K), which projects any smooth enough

function defined on K onto the space of constant polynomials. Let ψ be a continuous
function defined on K. The vertex average projection of ψ onto the constant polynomial
space is defined as:

Π̂Kψ =
1

NK

∑
v∈∂K

ψ(xv), (17)

where xv is the position of vertex v. Finally, we define the elliptic projection Π∇,Kr :
V p
h,r(K)→ Pr(K) as the solution of the finite dimensional variational problem

aK(Π∇,Kr vh, q) = aK(vh, q) ∀q ∈ Pr(K), (18)

Π̂KDνΠ∇,Kr vh = Π̂KDνvh |ν| ≤ p− 1. (19)

Such operator has two important properties:

(i) it is a polynomial-preserving operator in the sense that Π∇,Kr q = q for every q ∈ Pr(K).

(ii) Π∇,Kr vh is computable using only the degrees of freedom of vh. In fact, in view of the
integration by parts formulas (14) and (15), the right-hand side of (18) takes the
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form (depending on the parity of p):

aK(vh, q) =−
∫
K

∆pq vh dx+

∫
∂K

∂n(∆`q) ∆`vh ds

+
∑̀
i=1

{∫
∂K

∂n(∆p−iq) ∆i−1vh ds−
∫
∂K

∆p−iq ∂n(∆i−1vh) ds

}
, (20)

or

aK(vh, q) = −
∫
K

∆pq vh dx+
∑̀
i=1

{∫
∂K

∂n(∆p−iq) ∆i−1vh ds−
∫
∂K

∆p−iq ∂n(∆i−1vh) ds

}
.

(21)

In (20) and (21), ∆p−iq, and ∆pq are easily computable from q. The volumetric
integral on K can be expressed using the degrees of freedom (D5) since it is the
moment of vh against ∆pq, which is a polynomial of degree r − 2p. The edge traces
of ∆`vh, ∂n(∆i−1vh) and ∆i−1vh are computable from the degrees of freedom (D1)−
(D4) of vh by solving suitable polynomial interpolation problems.

Building upon the local spaces V p
h,r(K) for all K ∈ Ωh, the global conforming Virtual

Element space V p
h,r is defined on Ω as

V p
h,r =

{
vh ∈ Hp

0 (Ω) : vh|K ∈ V
p
h,r(K) ∀K ∈ Ωh

}
. (22)

We remark that the associated global space is made of Cp−1 functions. Indeed, the restric-
tion of a Virtual Element function vh to each element K belongs to Hp(K) and glues with
Cp−1-regularity across the internal mesh faces. The global degrees of freedom induced by
the local degrees of freedom are listed as follows:

- h
|ν|
v Dνvh(v), |ν| ≤ p− 1 for every interior vertex v of Ωh;

- h−1
e

∫
e
qvh ds for any q ∈ Pr−2p(e) and every interior edge e ∈ Eh;

-

∫
e
q∂nvh ds for every q ∈ Pr−5(e) and every interior edge e ∈ Eh;

- h−1+j
e

∫
e
q∂jnvh ds for any q ∈ Pr−2p+j(e) i = 1, . . . , p− 1 and every interior edge e ∈ Eh;

- h−2
K

∫
K
qvh ds for any q ∈ Pr−2p(K) and every K ∈ Ωh.

Remark 1. For p = 3 (triharmonic case) we can also consider the following modified lowest
order space

Ṽh,5(K) =
{
vh ∈ H3(K) : ∆3vh = 0, vh, ∂nvh, ∂nnvh ∈ C0(∂K),

vh ∈ P5(e), ∂nvh ∈ P3(e), ∂nnvh ∈ P2(e) ∀e ∈ ∂K
}

with associated dofs

9



(D1′) h
|ν|
v Dνvh(v), |ν| ≤ 2 for any vertex v of ∂K;

(D2′) he

∫
e
∂nnvh ds for any edge e of ∂K.

Using the same argument of the proof of Lemma 3.2, we can still prove that (i) the degrees
of freedom (D1′) and (D2′) are unisolvent in Ṽh,5(K); (ii) the space of polynomials of

degree 4 are a subspace of Ṽh,5(K); (iii) the elliptic projection of vh is still computable
from this choice of degrees of freedom; (iv) the associated global space

Ṽh,5 =
{
vh ∈ H3

0 (Ω) : vh|K ∈ Ṽh,5(K) ∀K ∈ Ωh

}
, (23)

which is obtained by gluing together all the elemental spaces Ṽh,5(K), is still made of C2

functions. Analogously, in the general case one can build the following modified lowest
order spaces (containing the space of polynomials of degree 2p− 2 )

Ṽ p
h,2p−1(K) =

{
vh ∈ Hp(K) : ∆pvh = 0, Dνvh ∈ C0(∂K), |ν| ≤ p− 1,

vh ∈ P2p−1(e), ∂invh ∈ P2p−2−i(e), i = 1, . . . , p− 1 ∀e ∈ ∂K
}
,

(24)

with associated dofs

(D1′) h
|ν|
v Dνvh(v), |ν| ≤ p− 1 for any vertex v of ∂K;

(D2′) h−1+j
e

∫
e
q∂invh ds for any q ∈ Pi−2(e) and any edge e of ∂K, i = 1, . . . , p− 1.

3.3 Construction of the bilinear form

We write the symmetric bilinear form ah : V p
h,r × V

p
h,r → R as the sum of local terms

ah(uh, vh) =
∑
K∈Ωh

aKh (uh, vh), (25)

where each local term aKh : V p
h,r(K)× V p

h,r(K)→ R is a symmetric bilinear form. We set

aKh (uh, vh) = aK(Π∇,Kr uh,Π
∇,K
r vh) + SK(uh −Π∇,Kr uh, vh −Π∇,Kr vh), (26)

where SK : V p
h,r(K) × V p

h,r(K) → R is a symmetric positive definite bilinear form such
that

σ∗a
K(vh, vh) ≤ SK(vh, vh) ≤ σ∗aK(vh, vh) ∀vh ∈ V p

h,r(K) with Π∇,Kr vh = 0, (27)

for two some positive constants σ∗, σ
∗ independent of h and K. The bilinear form aKh (·, ·)

has the two fundamental properties of consistency and stability stated by the following
lemma.

Lemma 3.3. The bilinear form aKh (·, ·) defined in (26) possesses both (i) r-stability and
(ii) consistency properties stated in (8) and (9), respectively, as required by assump-
tion (H2).
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Proof. The r-consistency property follows by noting that the stability term in (26) is zero
when one of its entries is a polynomial of degree r as Π∇,Kr is a polynomial-preserving
operator. The stability property is easily established by applying (9) to definition (26)
and setting α∗ = min(σ∗, 1) and α∗ = max(σ∗, 1), where σ∗ and σ∗ are the constants
defined in (27).

Furthermore, aKh (·, ·) is V -elliptic and continuous for every K, and so is the global
bilinear form ah(·, ·). The V -ellipticity of aKh (·, ·) is indeed a consequence of the left
inequality in (9). Since aKh (·, ·) is symmetric and coercive, it is a scalar product on Vh,r(K)
and satisfies the Cauchy-Schwarz inequality. Using the right inequality in (9) we (easily)
prove the continuity of aKh (·, ·) with respect to norm || · ||V,K :

aKh (uh, vh) ≤
(
aKh (uh, uh)

) (
aKh (vh, vh)

)
≤ α∗

(
aK(uh, uh)

) (
aK(vh, vh)

)
≤ α∗M ||uh||V,K ||vh||V,K ∀uh, vh ∈ V p

h,r(K). (28)

Collecting together the local terms, we can formulate the global V -ellipticity and continuity
properties as follows:

α∗a(vh, vh) ≤ ah(vh, vh) ≤ α∗aK(vh, vh) ∀vh ∈ V p
h,r (29)

ah(uh, vh) ≤ α∗M ||uh||V ||vh||V,K ∀uh, vh ∈ V p
h,r. (30)

3.4 Construction of the load term

We denote by fh the piecewise polynomial approximation of f on Ωh given by

fh|K = Π0,K
r−pf, (31)

for r ≥ 2p− 1 and K ∈ Ωh. Then, we set

〈fh, vh〉 =
∑
K∈Ωh

∫
K
fhvh dx. (32)

Using the definition of the L2-orthogonal projection we find that

〈fh, vh〉 =
∑
K∈Th

∫
K

Π0,K
r−pf vh dx =

∑
K∈Th

∫
K

Π0,K
r−p fΠ0,K

r−pvh dx =
∑
K∈Th

∫
K
f Π0,K

r−pvh dx.

(33)
The right-hand side of (33) is computable by using the degrees of freedom (D1) − (D5)
and the enhanced approach [1].

Remark 2. An alternative formulation that does not require the enhancement is given by
taking r = max(0, r− 2p) for r ≥ 2p− 1 and fh = Π0,K

r f . The resulting approximation is
suboptimal.

3.5 VEM approximation of polyharmonic problems with basis functions
of arbitrary degree of continuity

In this last section we briefly sketch the construction of global Virtual Element spaces
with higher order of continuity. More precisely, let us consider the local Virtual Element
space defined as before, for r ≥ 2p− 1:

V p
h,r(K) =

{
vh ∈ Hp(K) : ∆pvh ∈ Pr−2p(K), Dνvh ∈ C0(∂K), |ν| ≤ p− 1,

vh ∈ Pr(e), ∂jnvh ∈ Pr−j(e), j = 1, . . . , p− 1 ∀e ∈ ∂K
}
. (34)
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Differently from the previous section, we make the degrees of freedom depend on a
given parameter t with 0 ≤ t ≤ p − 1. For a given value of t we choose the degrees of
freedom of V K,r

h as follows

(D1) h|ν|Dνvh(v), |ν| ≤ p− 1 for any vertex v of K;

(D2) h−1
e

∫
e
vhq ds for any q ∈ Pr−2p(e), for any edge e of ∂K;

(D3) h−1+j
e

∫
e
∂jnvhq ds for any q ∈ Pr−2p+j(e), j = 1, . . . , p− 1 for any edge e of ∂K;

(D4′) h−2
K

∫
K
qvh ds for any q ∈ Pr−2(p−t)(K);

where as usual we assume P−n(·) = {0} for n = 1, 2, 3, . . ..

In view of the above choice of the degrees of freedom, the following properties hold
true:

1. the dofs are unisolvent. Indeed, proceeding as before, it is enough to use (14) or

(15) and observe that ∆ivh|e = ∂αn∂
β
τ vh with α + β = 2i is a polynomial uniquely

identified by the values of the dofs;

2. Pr(K) ⊂ V K,r
h , for r ≥ 2p− 1;

3. the choice (D4′) instead of (D4) still guarantees that the associated global space is
made of Cp−1 functions, but now (D1)-(D4′) can be employed to solve a differential
problem involving the ∆p−t operator by employing Cp−1(Ω) basis functions. For
instance:

(a) Choosing p and t such that p− t = 1 we obtain Cp−1 conforming VEM for the
solution of the Laplacian problem. For example, for p = 3, t = 2 and r = 5,
the local space V 3

h,5(K) endowed with the corresponding degrees of freedom

(D1) − (D4′) can be employed to build a global space made of C2 functions
for the approximation of the Laplace problem. It is worth mentioning that
the new choice (D4′) (differently from the original choice (D4)) is essential for
the computability of the elliptic projection (see (18)-(19)) with respect to the
bilinear form aK(·, ·) =

∫
K ∇(·)∇(·)dx.

(b) Choosing p and t such that p − t = 2 we get Cp−1 conforming VEM for the
solution of the Bilaplacian problem. For example, for p = 3, t = 1 and r = 5,
similarly to the previous case, the space V 3

h,5(K) together with (D1) − (D4′)

gives rise to a global space made of C2 functions that can be employed for the
solution of the biharmonic problem. Again, the particular choice (D4′) makes
possible the computability of the ellliptic projection with respect to the bilinear
form aK(·, ·) =

∫
K ∆(·)∆(·)dx.
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4 Convergence analysis

4.1 Mesh regularity and polynomial interpolation error estimates

We consider the following mesh regularity assumptions:

(M) There exists a positive constant γ independent of h (and K) such that {Ωh}:

(i) K is star-shaped with respect to every point of a ball of radius γhK , where hK
is the diameter of K;

(ii) for every edge e of the cell boundary ∂K of every cell K of Ωh, it holds that
he ≤ γhK , where he denotes the length of e.

We refer to γ as the mesh regularity constant.

In view of assumptions M(i)-M(ii) on Ωh, we define, for every smooth enough function
w the Virtual Element interpolant wI , which is the function in Vh,r uniquely identified
by the same degrees of freedom of w. More precisely, if χi(w) denotes the i-th global
degree of freedom of w, there exists a unique Virtual Element function wI ∈ Vh,r such
that χi(w−wI) = 0. Combining the Bramble-Hilbert Lemma and scaling arguments as in
the finite element framework (see, e.g., [14]and [19]) we can prove that for every K ∈ Ωh

and every function w ∈ Hβ(K), it holds

‖w − wI‖s,K ≤ Chmin(β,r+1)−s
K |w|β,K s = 0, 1, . . . , p (35)

for some positive constant C independent of h.
Under the same assumptions and using similar techniques, we can also prove that

the existence of a piecewise polynomial approximation wπ ∈ P`(Ωh) such that the local
estimate holds

‖w − wπ‖s,K ≤ Chmin(β,`+1)−s
K |w|β,K s = 0, 1, . . . , p, 1 ≤ β ≤ `+ 1, (36)

for some positive constant C independent of h and every mesh element K. The elliptic
projection Π∇,K` w and the L2-ortogonal projection Π0,K

` w of w are both instances of wπ
for which estimate (36) holds.

4.2 Convergence in the energy norm

By using standard estimates for the interpolation error, we can derive the convergence
rate of the approximation error in the energy norm. First, we need a technical lemma that
estimates the approximation error of the load term.

Lemma 4.1. Consider a function f ∈ Hr−(p−1)(Ω) and its L2-orthogonal projection on
the space of polynomials of degree r − p, denoted by fh = Π0,K

r−p. Then, there exists a
positive constant C, which is independent of h, such that

〈f − fh, vh〉 ≤ Chr+1 |f |r−(p−1) |vh|p ∀vh ∈ V p
h,r. (37)

13



Proof. First, we note that
(
I − Π0,K

r−p
)
f is orthogonal to the polynomials of degree r − p

(recall that r ≥ 2p − 1) and that vh belongs to Hp
0 (Ω). We employ the Cauchy-Schwarz

inequality (twice) and use (35) (with w = f and wπ = Π0,K
r−pf) to obtain the estimate:

〈f − fh, vh〉 =
∑
K∈Ωh

∫
K

(
I −Π0,K

r−p
)
f
(
I −Π0,K

p−1

)
vh dx ≤

∑
K∈Ωh

∣∣∣∣∣∣(I −Π0,K
r−p
)
f
∣∣∣∣∣∣

0,K

∣∣∣∣∣∣(I −Π0,K
p−1

)
vh

∣∣∣∣∣∣
0,K

≤ C
∑
K∈Ωh

h
r−(p−1)
K |f |r−(p−1),K hpK |vh|p,K ≤ Ch

r+1 |f |r−(p−1) |vh|p ,

where C denotes a positive constant independent of h.

Theorem 4.2. Let f ∈ Hr−p+1(Ω) and let u be the solution of the variational prob-
lem (4) and uh ∈ V p

h,r be the solution of the Virtual Element problem (7). Under the mesh
regularity assumption (M), we find that

||u− uh||V ≤ Ch
r−(p−1)

(
|u|r+p+1 + |f |r−p+1

)
. (38)

Proof. The assertion of the theorem follows by estimating each term of the right-hand side
of (10) separately and using interpolation estimate (35) and Lemma 4.1, cf. inequality (37).

4.3 Convergence in lower order norms

We first prove a technical lemma that will be useful in the error analysis of the next
subsections.

Lemma 4.3. Let f ∈ Hr−p+1(Ω) and let u be the solution of the variational problem (4)
and uh ∈ V p

h,r be the solution of the Virtual Element problem (7). Then, for any function

ψ ∈ Hβ(Ω) ∩Hp
0 (Ω) (β > p) it holds that

a(ψ, u− uh) ≤ Ch(r−(p−1))+min(β,r+1)−p
(
|u|r+p+1 + |f |r−p+1

)
||ψ||β , (39)

for some positive constant C independent of h.

Proof. To derive (39), we add and substract the Virtual Element interpolant of ψ denoted
by ψI to the left-hand side of (39), and, then, use (3) and (7), and obtain:

a(ψ, u− uh) = a(u− uh, ψ − ψI) + a(u− uh, ψI)

= a(u− uh, ψ − ψI) + 〈f − fh, ψI〉+ ah(uh, ψI)− a(uh, ψI)

= T1 + T2 + T3. (40)

To estimate term T1, we use the continuity of a(·, ·) with respect to the norm || · ||V =
| · |p, the estimate in the energy norm (38), and interpolation error estimate (35) (s = p)

T1 ≤ ||u− uh||V ||ψ − ψI ||V ≤ Ch
r−(p−1)

(
|u|r+p+1 + |f |r−(p−1)

)
|ψ − ψI |p (41)

≤ Ch(r−(p−1))+(min(β,r+1)−p)
(
|u|r+p+1 + |f |r−(p−1)

)
|ψ|β . (42)
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To estimate term T2, we first note that
(
I − Π0,K

r−p
)
f is orthogonal to the polynomials

of global degree up to r − p defined on K and that ψI ∈ Hp(Ω). Then, we apply the
Cauchy-Schwarz inequality (twice) and obtain:

〈f − fh, ψI〉 =
∑
K∈Ωh

∫
K

(
I −Π0,K

r−p
)
f
(
I −Π0,K

p−1

)
ψI dx ≤

∑
K∈Ωh

∣∣∣∣∣∣(I −Π0,K
r−p
)
f
∣∣∣∣∣∣

0,K

∣∣∣∣∣∣(I −Π0,K
p−1

)
ψI

∣∣∣∣∣∣
0,K

≤

 ∑
K∈Ωh

∣∣∣∣∣∣(I −Π0,K
r−p
)
f
∣∣∣∣∣∣2

0,K

 1
2
 ∑
K∈Ωh

∣∣∣∣∣∣(I −Π0,K
p−1

)
ψI

∣∣∣∣∣∣2
0,K

 1
2

.

The first term on the right is bounded by using local estimate (36):∣∣∣∣∣∣(I −Π0,K
r−p
)
f
∣∣∣∣∣∣

0,K
≤ Chr−(p−1)

K |f |r−(p−1),K .

The second term on the right is transformed by applying estimate (36) (with w = ψI and
wπ = Π0,K

p−1ψI), adding and subtracting ψ and applying estimate (35):∣∣∣∣∣∣(I −Π0,K
p−1)ψI

∣∣∣∣∣∣
0,K
≤ Chp |ψI |p,K ≤ Ch

p
(
|ψ|p,K + |ψI − ψ|p,K

)
≤ Chp

(
|ψ|p,K + hmin(β,r+1)−p |ψ|β,K

)
.

Collecting all the local terms, using the Cauchy-Schwarz inequality, and the assumption
that β ≥ p (so hp ≥ hmin(β,r+1)) yields:

T2 ≤ Chr−(p−1) |f |r−(p−1)

(
hp |ψ|p + hp+(min(β,r+1)−p) |ψ|β

)
≤ Chr+1 |f |r−(p−1) |ψ|β .

(43)

To bound T3, we first split it in the summation of local terms. Then, we use the
r-consistency and stability property of ah, and the continuity property of a and ah, and
we obtain

T3 =
∑
K∈Ωh

(
aKh (uh, ψI)− aK(uh, ψI)

)
=
∑
K∈Ωh

(
aKh (uh − uπ, ψI)− aK(uh − uπ, ψI)

)
=
∑
K∈Ωh

(
aKh (uh − uπ, ψI − ψπ)− aK(uh − uπ, ψI − ψπ)

)
≤ C ||uh − uπ||V ||ψI − ψπ||V . (44)

Adding and subtracting u and using the estimate in the energy norm (38) and the estimate
for the polynomial interpolation (36), we find that

||uh − uπ||V ≤ ||uh − u||V + ||u− uπ||V ≤ Ch
r−(p−1). (45)

Adding and subtracting ψ, and, then, using estimates (35) and (36) we find that

||ψI − ψπ||V ≤ ||ψI − ψ||V + ||ψ − ψπ||V ≤ Ch
min(β,r+1)−p ||ψ||β . (46)

The bound on T3 following by using (45) and (46) in (44):

T3 ≤ Ch(r−(p−1))+min(β,r+1)−p ||ψ||β . (47)

The assertion of the lemma follows by subtituting (42), (43), and (47), in (40).

15



In view of this lemma, we can readily state and prove the convergence theorems for
the four possible combinations of even and odd p and even and odd norm indices.

Theorem 4.4 (Even p, even norms). Let f ∈ Hr−p+1(Ω) and let u be the solution of
the variational problem (4) with p = 2` and uh be the solution of the Virtual Element
method (7). Then, there exists a positive constant C independent of h such that

|u− uh|2i ≤ Ch
r+1−2i

(
|u|r+p+1 + |f |r−(p−1)

)
, (48)

for every integer i = 0, . . . , `− 1.

Proof. For i = 0, . . . , `− 1, let ψ ∈ H2(p−i)(Ω) ∩Hp−i
0 (Ω) be the solution of the problem

∆p−iψ = ∆i(u− uh) ∈ L2(Ω), (49)

with the stability property

||ψ||2(p−i) ≤ C |u− uh|2i . (50)

We use (49) and integrate by parts to obtain:

|u− uh|22i =
∣∣∣∣∆i(u− uh)

∣∣∣∣2
0

=
(
∆i(u− uh), ∆i(u− uh)

)
=
(
∆p−iψ, ∆i(u− uh)

)
=
(
∆`ψ, ∆`(u− uh)

)
= a(ψ, u− uh)

where we employed the fact that |v|2i =
∣∣∣∣∆iv

∣∣∣∣
0

for any v ∈ Hp
0 (Ω). The assertion of

the theorem follows from an application of Lemma 4.3 (use β = 2(p − i) together with
r ≥ 2p− 1) and the stability property (50).

Theorem 4.5 (Even p, odd norms). Let f ∈ Hr−p+1(Ω) and let u be the solution of
the variational problem (4) with p = 2` and uh be the solution of the Virtual Element
method (7). Then, there exists a positive constant C independent of h such that

|u− uh|2i+1 ≤ Ch
(r+1)−(2i+1)

(
|u|r+p+1 + |f |r−(p−1)

)
, (51)

for every integer i = 0, . . . , `− 1.

Proof. For i = 0, . . . , `−1, let ψ ∈ H2(p−i)−1(Ω)∩Hp−i
0 (Ω) be the solution of the problem:

−∆p−iψ = ∆i+1(u− uh) ∈ H−1(Ω), (52)

with the stability property

||ψ||2(p−i)−1 ≤ C |u− uh|2i+1 . (53)

We use (52) and integrate by parts to obtain:

|u− uh|22i+1 =
∣∣∣∣∇∆i(u− uh)

∣∣∣∣2
0

=
(
∇∆i(u− uh), ∇∆i(u− uh)

)
=
(
∇∆i+1(u− uh), ∇∆i(u− uh)

)
=
(
∆p−iψ, ∆i(u− uh)

)
=
(
∆`ψ, ∆`(u− uh)

)
= a(ψ, u− uh)

where we employed the fact that |v|2i+1 =
∣∣∣∣∇∆iv

∣∣∣∣
0

for any v ∈ Hp
0 (Ω).

The assertion of the theorem follows from an application of Lemma 4.3 (use β = 2(p−i)
together with r ≥ 2p− 1) and the stability property (53).
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Theorem 4.6 (Odd p, even norms). Let u be the solution of the variational problem (4)
and let uh be the solution of the Virtual Element method (7). Then, there exists a positive
constant C independent of h such that

|u− uh|2i ≤ Ch
(r+1)−2i

(
|u|r+p+1 + |f |r−(p−1)

)
, (54)

for every integer i = 0, . . . , `− 1.

Proof. For i = 0, . . . , `, let ψ ∈ H2(p−i)(Ω) ∩Hp−i
0 (Ω) be the solution of the problem

−∆p−iψ = ∆i(u− uh) ∈ L2(Ω) (55)

with the stability property

||ψ||2(p−i) ≤ C |u− uh|2i . (56)

We use (58) and integrate by parts to obtain:

|u− uh|22i =
∣∣∣∣∆i(u− uh)

∣∣∣∣2
0

=
(
∆i(u− uh), ∆i(u− uh)

)
=
(
−∆p−iψ, ∆i(u− uh)

)
=
(
−∆`+1ψ, ∆`(u− uh)

)
=
(
∇∆`ψ, ∇∆`(u− uh)

)
= a(ψ, u− uh).

The assertion of the theorem follows from an application of Lemma 4.3 (use β = 2(p− i)
together with r ≥ 2p− 1) and the stability property (56).

Theorem 4.7 (Odd p, odd norms). Let u be the solution of the variational problem (4)
and let uh be the solution of the Virtual Element method (7). Then, there exists a positive
constant C independent of h such that

|u− uh|2i+1 ≤ Ch
(r+1)−(2i+1)

(
|u|r+p+1 + |f |r−(p−1)

)
, (57)

for every integer i = 0, . . . , `− 1.

Proof. For i = 0, . . . , `, let ψ ∈ H2(p−i)−1(Ω) ∩Hp
0 (Ω) be the solution of the problem:

−∆p−iψ = ∆i+1(u− uh) ∈ H−1(Ω), (58)

with the stability property

||ψ||2(p−i)−1 ≤ C |u− uh|2i+1 . (59)

We use (58) and integrate by parts to obtain:

|u− uh|22i+1 =
∣∣∣∣∇∆i(u− uh)

∣∣∣∣2
0

=
(
∇∆i(u− uh), ∇∆i(u− uh)

)
=
(
∇∆i+1(u− uh), ∇∆i(u− uh)

)
=
(
−∆p−iψ, ∆i(u− uh)

)
=
(
−∆`+1ψ, ∆`(u− uh)

)
=
(
∇∆`ψ, ∇∆`(u− uh)

)
= a(ψ, u− uh)

where again we employed the fact that |v|2i+1 =
∣∣∣∣∇∆iv

∣∣∣∣
0

for any v ∈ Hp
0 (Ω). The

assertion of the theorem follows from an application of Lemma 4.3 (use β = 2(p − i) − 1
together with r ≥ 2p− 1) and the stability property (59).
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5 Conclusions

In this paper, we developed the conforming Virtual Element discretization of arbitrary
order for polyharmonic problems, which requires the discretization of operator like ∆pu for
integer p ≥ 1. To this end, we introduced local and global Virtual Element approximation
spaces together with suitable discrete bilinear forms for odd and even p. The convergence
of the method has been proved and optimal error estimates derived in suitable norms.
The numerical implementation of the current method deserves a careful study because of
the severe ill-conditioning of the polyharmonic differential operator and the need of high
order polynomials, whose degree should be at least 5 in the simplest case p = 3. For this
reason, the implementation of this conforming VEM is under investigation and will be
addressed in a forthcoming publication.
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