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Abstract
In this paper, we design and analyze aHybridHigh-Order discretizationmethod

for the steady motion of non-Newtonian, incompressible fluids in the Stokes ap-
proximation of small velocities. The proposed method has several appealing
features including the support of general meshes and high-order, unconditional
inf-sup stability, and orders of convergence that match those obtained for Leray–
Lions scalar problems. A complete well-posedness and convergence analysis of
the method is carried out under new, general assumptions on the strain rate-shear
stress law, which encompass several common examples such as the power-law and
Carreau–Yasuda models. Numerical examples complete the exposition.

1 Introduction

In this paper, we design and analyze a Hybrid High-Order (HHO) discretization method
for the steady motion of a non-Newtonian, incompressible fluid in the Stokes approxi-
mation of small velocities. Notable applications include ice sheet dynamics [3030], mantle
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convection [4242], chemical engineering [3232], and biological fluids rheology [3535, 2626]. We
focus on fluids with shear-rate-dependent viscosity, whose behavior is characterized by
a nonlinear strain rate-shear stress function. Physical interpretations and discussions of
non-Newtonian fluid models can be found, e.g., in [88, 3838]. Typical examples that are
frequently used in the applications include the power-law and Carreau–Yasuda model.

The earliest investigations of fluids with shear-dependent viscosities date back to
the pioneering work of Ladyzhenskaya [3434]. For a detailed mathematical study of the
well-posedness and regularity of the continuous problem, see also [3737, 3939, 2323, 33, 77]
and references therein. Early results on the numerical analysis of non-Newtonian fluid
flow problems were given in [4040, 22, 2828]. Later, these results were improved in [66] and
[2929] by proving error estimates that are optimal for fluids with shear thinning behavior
(described by a power law exponent r ≤ 2). In [66], the authors considered a conforming
inf-sup stable finite element discretization, while in [2929] a low-order scheme with local
projection stabilization was proposed. In both works, the use of Orlicz functions is
instrumental to unify the treatment of the shear thinning and shear thickening cases
(also called pseudoplastic and dilatant, respectively; cf. Example 2.42.4). More recently, a
finite elementmethod based on a four-field formulation of the nonlinear Stokes equations
has been analyzed in [4141]. Other notable contributions on the numerical approximation
of generalized Stokes problems include [2424, 3030, 3333, 3131].

The main issues to be accounted for in the numerical solution of non-Newtonian
fluid flow problems are the presence of local features emerging from the nonlinear
strain rate-shear stress relation, the incompressibility condition leading to indefinite
systems, the roughly varying model coefficients, and, possibly, complex geometries
requiring unstructured and highly-adapted meshes. The HHO method provides several
advantages to deal with the complex nature of the problem, such as the support of general
polygonal or polyhedral meshes, the possibility to select the approximation order, and
unconditional inf-sup stability. Moreover, HHO schemes can be efficiently implemented
thanks to the possibility of statically condensing a large subset of the unknowns for
linearized versions of the problem encountered, e.g., when solving the nonlinear system
by the Newton method. Hybrid High-Order methods have been successfully applied to
the simulation of incompressible flows of Newtonian fluids governed by the Stokes [11]
and Navier–Stokes equations [2222, 1111], possibly driven by large irrotational volumetric
forces [2121, 1515]. Works related to the problem of creeping flows of non-Newtonian fluids
are [1313] and [1717, 1818], respectively dealing with nonlinear elasticity and Leray–Lions
problems. Going from nonlinear coercive elliptic equations to the nonlinear Stokes
system involves additional difficulties arising from the pressure and the divergence
constraint. Finally, we mention, in passing, that HHO methods are members of a wider
family of polytopal methods that also includes, e.g., Virtual Element methods; cf., e.g.,
[44, 55] for their application to Newtonian incompressible flows.

The HHO discretization presented in this paper is inspired by the previously men-
tioned works. It hinges on discontinuous polynomial unknowns on the mesh and on
its skeleton, from which discrete differential operators are reconstructed. The recon-
struction operators are then used to define a consistency term inspired by the weak
formulation of the creeping flow problem and a cleverly designed stabilization term pe-
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nalizing boundary residuals. We carry out a complete analysis of the proposed method.
In particular, under general assumptions on the strain rate-shear stress function, we
derive error estimates for the velocity and pressure approximations. The energy-norm
error estimate for the velocity given in Theorem 5.15.1 is optimal in the sense that it yields
the same convergence orders established in [1818, Theorem 7] for the scalar Leray–Lions
elliptic problem. A key tool in our analysis is provided by Lemma 3.13.1, in which we prove
a generalization of the discrete Korn inequality of [1212, Lemma 1] to the non-Hilbertian
case. The other main contributions are a novel formulation of the requirements on the
strain rate-shear stress function allowing a unified treatment of pseudoplastic and dilatant
fluids and the identification of a set of general assumptions on the nonlinear stabilization
function ensuring the desired consistency properties along with the well-posedness of
the discrete problem.

The rest of the paper is organized as follows. In Section 22 we introduce the strong
and weak formulations of the nonlinear Stokes problem and present the assumptions on
the strain rate-shear stress function. The construction of the HHO discretization is given
in Section 33 by defining the discrete counterparts of the viscous and coupling terms.
Section 33 also contains the proof of the discrete Korn inequality and the discussion on
the nonlinear stabilization function. Section 44 establishes the well-posedness of the
discrete problem by proving the Hölder continuity and the strong-monotonicity of the
viscous term, as well as the inf-sup stability of the pressure-velocity coupling. In Section
55, we show the consistency of the discrete viscous function and coupling bilinear form.
These results are then used to prove the error estimate. In Section 66, we investigate the
performance of the method by performing a convergence test with analytical solution
on various families of refined meshes. Finally, in Appendix AA we provide a sufficient
condition for the strain rate-shear stress law to fulfill the assumptions presented in
Section 22.

2 Continuous setting

LetΩ ⊂ Rd , d ∈ {2, 3}, denote a bounded, connected, polyhedral open set with Lipschitz
boundary ∂Ω. We consider a possibly non-Newtonian fluid occupying Ω and subjected
to a volumetric force field f : Ω → Rd . Its flow is governed by the generalized Stokes
problem, which consists in finding the velocity field u : Ω→ Rd and the pressure field
p : Ω→ R such that

−∇·σ(·,∇su) +∇p = f in Ω, (1a)
∇·u = 0 in Ω, (1b)
u = 0 on ∂Ω, (1c)∫

Ω

p(x) dx = 0, (1d)

where∇· denotes the divergence operator applied to vector fields,∇s is the symmetric
part of the gradient operator ∇ applied to vector fields, and, denoting by Rd×ds the set
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of square, symmetric, real-valued d × d matrices, σ : Ω × Rd×ds → Rd×ds is the strain
rate-shear stress law. In what follows, we formulate assumptions on σ that encompass
common models for non-Newtonian fluids and state a weak formulation for problem (11)
that will be used as a starting point for its discretization.

2.1 Strain rate-shear stress law

We define the Frobenius inner product such that, for all τ = (τi j )1≤i, j≤d and η =
(ηi j )1≤i, j≤d in Rd×d , τ : η B

∑d
i, j=1 τi jηi j , and we denote by |τ |d×d B

√
τ : τ the

corresponding norm.

Assumption 2.1 (Strain rate-shear stress law) Let a real number r ∈ (1,+∞) be
fixed, denote by r ′ B r

r−1 ∈ (1,+∞) the conjugate exponent of r , and define the
singular exponent of r by

r◦ B min(r, 2) ∈ (1, 2]. (2)
The strain rate-shear stress law satisfies

σ(x, 0) = 0 for almost every x ∈ Ω, (3a)
σ : Ω × Rd×ds → Rd×ds is measurable. (3b)

Moreover, there exist real numbers σde ∈ [0,+∞) and σhc, σsm ∈ (0,+∞) such that, for
all τ,η ∈ Rd×ds and almost every x ∈ Ω, we have the Hölder continuity property

|σ(x, τ ) − σ(x,η) |d×d ≤ σhc
(
σr
de + |τ |

r
d×d + |η |

r
d×d

) r−r◦

r
|τ − η |r

◦−1
d×d , (3c)

and the strong monotonicity property

(σ(x, τ ) − σ(x,η)) : (τ − η)
(
σr
de + |τ |

r
d×d + |η |

r
d×d

) 2−r◦
r
≥ σsm |τ − η |

r+2−r◦
d×d .

(3d)

Some remarks are in order.

Remark 2.1 (Residual shear stress) Assumption (3a3a) can be relaxed by takingσ(·, 0) ∈
Lr ′ (Ω,Rd×ds ). This modification requires only minor changes in the analysis, not de-
tailed for the sake of conciseness.

Remark 2.2 (Singular exponent) Inequalities (3c3c)–(3d3d) can be proved starting from
the following assumptions, which correspond to the conditions (7171) characterizing an
r-power-framed function: For all τ,η ∈ Rd×ds with τ , η and almost every x ∈ Ω,

|σ(x, τ ) − σ(x,η) |d×d ≤ σhc
(
σr
de + |τ |

r
d×d + |η |

r
d×d

) r−2
r
|τ − η |d×d,

(σ(x, τ ) − σ(x,η)) : (τ − η) ≥ σsm
(
σr
de + |τ |

r
d×d + |η |

r
d×d

) r−2
r
|τ − η |2d×d .

These relations are reminiscent of the ones used in [1818] in the context of scalar Leray–
Lions problems. The advantage of assumptions (3c3c)-(3d3d), expressed in terms of the
singular index r◦, is that they enable a unified treatment of the cases r < 2 and r ≥ 2 in
the proofs of Lemma 4.14.1, Theorem 4.14.1, Lemma 5.15.1, and Theorem 5.15.1 below.
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Remark 2.3 (Relations between the Hölder and monotonicity constants) Inequalities
(3c3c) and (3d3d) give

σsm ≤ σhc. (4)

Indeed, let τ ∈ Rd×ds be such that |τ |d×d > 0. Using the strong monotonicity (3d3d) (with
η = 0), the Cauchy–Schwarz inequality, and the Hölder continuity (3c3c) (again with
η = 0), we infer that

σsm
(
σr
de + |τ |

r
d×d

) r◦−2
r
|τ |r+2−r

◦

d×d ≤ σ(·, τ ) : τ ≤ |σ(·, τ ) |d×d |τ |d×d

≤ σhc
(
σr
de + |τ |

r
d×d

) r−r◦

r
|τ |r

◦

d×d

almost everywhere in Ω. Hence, σsm
σhc
≤

(
σr

de+ |τ |
r
d×d

|τ |r
d×d

) |r−2|
r

. Letting |τ |d×d → +∞ gives
(44).

Example 2.4 (Carreau–Yasuda fluids) (µ, δ, a, r)-Carreau–Yasuda fluids, introduced
in [4444] and later generalized in [2929, Eq. (1.2)], are fluids for which it holds, for almost
every x ∈ Ω and all τ ∈ Rd×ds ,

σ(x, τ ) = µ(x)
(
δa(x) + |τ |a(x)

d×d

) r−2
a(x) τ, (5)

where µ : Ω→ [µ−, µ+] is a measurable function with µ−, µ+ ∈ (0,+∞) corresponding
to the local flow consistency index, δ ∈ [0,+∞) is the degeneracy parameter, a : Ω →
[a−, a+] is a measurable function with a−, a+ ∈ (0,+∞) expressing the local transition
flow behavior index, and r ∈ (1,+∞) is the flow behavior index. The Carreau–Yasuda
law is a generalization of the Carreau law (corresponding to a− = a+ = 2) that takes
into account the different local levels of flow behavior in the fluid. The degenerate
case δ = 0 corresponds to the power-law model. Non-Newtonian fluids described by
constitutive laws with a (µ, δ, a, r)-structure exhibit a different behavior according to
the value of r . If r > 2, then the fluid shows shear thickening behavior and is called
dilatant. Examples of dilatant fluids are wet sand and oobleck. The case r < 2, on the
other hand, corresponds to pseudoplastic fluids having shear thinning behavior, such
as blood. Finally, if r = 2, then the fluid is Newtonian and (11) becomes the classical
(linear) Stokes problem. We show in Appendix AA that the strain rate-shear stress law
(55) is an r-power-framed function with σde = δ,

σhc =



µ+
r−12

[
−
(

1
a+
− 1

r

)	
−1

]
(r−2)+ 1

r if r < 2,

µ+(r − 1)2
(

1
a−
− 1

r

)⊕
(r−2) if r ≥ 2,

and

σsm =



µ−(r − 1)2
(

1
a−
− 1

r

)⊕
(r−2) if r ≤ 2,

µ−
r−12

[
−
(

1
a+
− 1

r

)	
−1

]
(r−2)−1

if r > 2,

where ξ⊕ B max(0, ξ) and ξ	 B −min(0, ξ) denote, respectively, the positive and
negative parts of a real number ξ. As a consequence, it matches Assumption 2.12.1.
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2.2 Weak formulation

From this point on, we omit both the integration variable and the measure from integrals,
as they can be in all cases inferred from the context. We define the following velocity
and pressure spaces embedding, respectively, the homogeneous boundary condition for
the velocity and the zero-average constraint for the pressure:

U B
{
v ∈ W1,r (Ω,Rd ) : v|∂Ω = 0

}
,

P B Lr ′

0 (Ω,R) B
{
q ∈ Lr ′ (Ω,R) :

∫
Ω

q = 0
}
.

Assuming f ∈ Lr ′ (Ω,Rd ), the weak formulation of problem (11) reads: Find (u, p) ∈
U × P such that

a(u, v) + b(v, p) =
∫
Ω

f · v ∀v ∈ U, (6a)

−b(u, q) = 0 ∀q ∈ P, (6b)

where the function a : U ×U → R and the bilinear form b : U × Lr ′ (Ω,R) → R are
defined such that, for all v,w ∈ U and all q ∈ Lr ′ (Ω,R),

a(w, v) B
∫
Ω

σ(·,∇sw) : ∇sv, b(v, q) B −
∫
Ω

(∇·v)q. (7)

Remark 2.5 (Mass equation) The test space in (6b6b) can be extended to Lr ′ (Ω,R)
since, for all v ∈ U , the divergence theorem and the fact that v |∂Ω = 0 yield b(v, 1) =
−

∫
Ω
∇·v = −

∫
∂Ω
v · n∂Ω = 0, with n∂Ω denoting the unit vector normal to ∂Ω and

pointing out of Ω.

Remark 2.6 (Well-posedness and a priori estimates) It can be checked that, under
Assumption 2.12.1, the continuous problem (66) admits a unique solution (u, p) ∈ U × P;
see, e.g., [2929, Section 2.4], where slightly stronger assumptions are considered. For
future use, we also note the following a priori bound on the velocity:

|u|W 1,r (Ω,Rd ) .
(
σ−1sm‖f ‖Lr′ (Ω,Rd )

) 1
r−1 +

(
σ2−r◦
de σ−1sm‖f ‖Lr′ (Ω,Rd )

) 1
r+1−r◦ . (8)

To prove (88), use the strong-monotonicity (3d3d) of σ, sum (6a6a) written for v = u to (6b6b)
written for q = p, and use the Hölder and Korn inequalities to write

σsm
(
σr
de + ‖∇su‖

r
Lr (Ω,Rd×d )

) r◦−2
r
‖∇su‖

r+2−r◦
Lr (Ω,Rd×d ) . a(u,u) =

∫
Ω

f · u

. ‖f ‖Lr′ (Ω,Rd ) ‖∇su‖Lr (Ω,Rd×d ),

that is,

N B
(
σr
de + ‖∇su‖

r
Lr (Ω,Rd×d )

) r◦−2
r
‖∇su‖

r+1−r◦
Lr (Ω,Rd×d ) . σ

−1
sm‖f ‖Lr′ (Ω,Rd ) . (9)

Observing that ‖∇su‖
r+1−r◦
Lr (Ω,Rd×d )

. max
(
‖∇su‖Lr (Ω,Rd×d ), σde

)2−r◦
N , we obtain,

enumerating the cases for the maximum and summing the corresponding bounds,
‖∇su‖Lr (Ω,Rd×d ) . N

1
r−1 + (σ2−r◦

de N )
1

r+1−r◦ . Combining this inequality with (99) gives
(88).
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3 Discrete setting

In this section, we recall the notion of polyhedral mesh along with the definitions and
properties of L2-orthogonal projectors on local and broken polynomial spaces. Then,
after introducing the spaces of discrete unknowns for the velocity and the pressure, we
prove a discrete Korn inequality, define the discrete counterparts of the function a and
of the bilinear form b, and formulate the HHO scheme.

3.1 Mesh and notation for inequalities up to a multiplicative constant

We define a mesh as a couple Mh B (Th, Fh ), where Th is a finite collection of
polyhedral elements T such that h = maxT ∈Th hT with hT denoting the diameter of T ,
while Fh is a finite collection of planar faces F with diameter hF . Notice that, here
and in what follows, we use the three-dimensional nomenclature also when d = 2,
i.e., we speak of polyhedra and faces rather than polygons and edges. It is assumed
henceforth that the mesh Mh matches the geometrical requirements detailed in [1919,
Definition 1.7]. In order to have the boundedness property (1313) for the interpolator, we
additionally assume that the mesh elements are star-shaped with respect to every point
of a ball of radius uniformly comparable to the element diameter; see [1919, Lemma 7.12]
for the Hilbertian case. Boundary faces lying on ∂Ω and internal faces contained in Ω
are collected in the sets F b

h
and F i

h
, respectively. For every mesh element T ∈ Th , we

denote by FT the subset of Fh containing the faces that lie on the boundary ∂T of T .
For every face F ∈ Fh , we denote by TF the subset of Th containing the one (if F ∈ F b

h
)

or two (if F ∈ F i
h
) elements on whose boundary F lies. For each mesh element T ∈ Th

and face F ∈ FT , nTF denotes the (constant) unit vector normal to F pointing out of T .
Our focus is on the h-convergence analysis, so we consider a sequence of refined

meshes that is regular in the sense of [1919, Definition 1.9] with regularity parameter uni-
formly bounded away from zero. The mesh regularity assumption implies, in particular,
that the diameter of a mesh element and those of its faces are comparable uniformly in h
and that the number of faces of one element is bounded above by an integer independent
of h.

To avoid the proliferation of generic constants, we write henceforth a . b (resp.,
a & b) for the inequality a ≤ Cb (resp., a ≥ Cb) with real number C > 0 independent
of h, of the constants σde, σhc, σsm in Assumption 2.12.1, and, for local inequalities, of
the mesh element or face on which the inequality holds. We also write a ' b to mean
a . b and b . a. The dependencies of the hidden constants are further specified when
needed.

3.2 Projectors and broken spaces

Given X ∈ Th∪Fh and l ∈ N, we denote by Pl (X,R) the space spanned by the restriction
to X of scalar-valued, d-variate polynomials of total degree ≤ l. The local L2-orthogonal
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projector πlX : L1(X,R) → Pl (X,R) is defined such that, for all v ∈ L1(X,R),∫
X

(πlXv − v)w = 0 ∀w ∈ Pl (X,R). (10)

When applied to vector-valuedfields in L1(X,Rd ) (resp., tensor-valuedfields in L1(X,Rd×d )),
the L2-orthogonal projectormapping onPl (X,Rd ) (resp., Pl (X,Rd×d )) acts component-
wise and is denoted in boldface font. Let T ∈ Th , n ∈ [0, l + 1] and m ∈ [0, n]. The
following (n, r,m)-approximation properties of πlT hold: For any v ∈ W n,r (T,R),

|v − πlT v |Wm,r (T ,R) . hn−m
T |v |W n,r (T ,R) . (11a)

The above property will also be used in what follows with r replaced by its conjugate
exponent r ′. If, additionally, n ≥ 1, we have the following (n, r ′)-trace approximation
property:

‖v − πlT v‖Lr′ (∂T ,R) . h
n− 1

r′

T |v |W n,r′ (T ,R) . (11b)

The hidden constants in (1111) are independent of h and T , but possibly depend on d, the
mesh regularity parameter, l, n, and r . The approximation properties (1111) are proved
for integer n and m in [1717, Appendix A.2] (see also [1919, Theorem 1.45]), and can be
extended to non-integer vales using standard interpolation techniques (see, e.g., [3636,
Theorem 5.1]).

At the global level, for a given integer l ≥ 0, we define the broken polynomial space
Pl (Th,R) spanned by functions in L1(Ω,R) whose restriction to each mesh element T ∈
Th lies in Pl (T,R), and we define the global L2-orthogonal projector πl

h
: L1(Ω,R) →

Pl (Th,R) such that, for all v ∈ L1(Ω,R) and all T ∈ Th ,

(πlhv)|T B πlT v|T .

Broken polynomial spaces are subspaces of the broken Sobolev spaces

W n,r (Th,R) B
{
v ∈ Lr (Ω,R) : v|T ∈ W n,r (T,R) ∀T ∈ Th

}
.

We define the broken gradient operator ∇h : W1,1(Th,R) → L1(Ω,Rd ) such that, for
all v ∈ W1,1(Th,R) and all T ∈ Th , (∇hv) |T B ∇v |T . We define similarly the broken
gradient acting on vector fields along with its symmetric part∇s,h , as well as the broken
divergence operator∇h · acting on tensor fields. The global L2-orthogonal projector πl

h

mapping vector-valued fields in L1(Ω,Rd ) (resp., tensor-valued fields in L1(Ω,Rd×d ))
on Pl (Th,Rd ) (resp., Pl (Th,Rd×d )) is obtained applying πl

h
component-wise.

3.3 Discrete spaces and norms

Let an integer k ≥ 1 be fixed. The HHO space of discrete velocity unknowns is

U k
h B

{
vh = ((vT )T ∈Th, (vF )F ∈Fh ) : vT ∈ Pk (T,Rd ) ∀T ∈ Th, vF ∈ Pk (F,Rd ) ∀F ∈ Fh

}
.
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The interpolation operator Ikh : W1,1(Ω,Rd ) → U k
h maps a function v ∈ W1,1(Ω,Rd )

on the vector of discrete unknowns Ikhv defined as follows:

Ikhv B ((πk
Tv|T )T ∈Th, (π

k
Fv|F )F ∈Fh ).

For all T ∈ Th , we denote byU k
T and IkT the restrictions of Ikh andU

k
h to T , respectively

and, for all vh ∈ U
k
h , we let vT B (vT , (vF )F ∈FT ) ∈ U k

T denote the vector collecting
the discrete unknowns attached to T and its faces. Furthermore, for all vh ∈ U

k
h ,

we define the broken polynomial field vh ∈ Pk (Th,Rd ) obtained patching element
unknowns, that is,

(vh )|T B vT ∀T ∈ Th .

We define onU k
h theW1,r (Ω,Rd )-like seminorm ‖·‖ε,r,h such that, for all vh ∈ U

k
h ,

‖vh ‖ε,r,h B
*.
,

∑
T ∈Th

‖vT ‖
r
ε,r,T

+/
-

1
r

(12a)

with ‖vT ‖ε,r,T B
*.
,
‖∇svT ‖

r
Lr (T ,Rd×d ) +

∑
F ∈FT

h1−rF ‖vF − vT ‖
r
Lr (F,Rd )

+/
-

1
r

for all T ∈ Th .

(12b)

The following boundedness property for IkT can be proved adapting the arguments of
[1919, Proposition 6.24] and requires the star-shaped assumption on the mesh elements:
For all T ∈ Th and all v ∈ W1,r (T,Rd ),

‖IkTv‖ε,r,T . |v |W 1,r (T ,Rd ), (13)

where the hidden constant depends only on d, the mesh regularity parameter, r , and k.
The discrete velocity and pressure are sought in the following spaces, which embed,

respectively, the homogeneous boundary condition for the velocity and the zero-average
constraint for the pressure:

U k
h,0 B

{
vh = ((vT )T ∈Th, (vF )F ∈Fh ) ∈ U k

h : vF = 0 ∀F ∈ F b
h

}
,

Pk
h B P

k (Th,R) ∩ P.

By the discrete Korn inequality proved in Lemma 3.13.1 below, ‖·‖ε,r,h is a norm onU k
h,0

(the proof is obtained reasoning as in [1919, Corollary 2.16]).

3.4 Discrete Korn inequality

We prove in this section a discrete counterpart of the following Korn inequality (see [2727,
Theorem 1]): For all v ∈ U .

‖v‖W 1,r (Ω,Rd ) . ‖∇sv‖Lr (Ω,Rd×d ) . (14)
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We start by recalling a few preliminary results. The first concerns inequalities between
sums of powers, and will be often used in what follows without necessarily recalling
this fact explicitly each time. Let an integer n ≥ 1 and a real number m ∈ (0,+∞) be
given. Then, for all a1, . . . , an ∈ (0,+∞), we have

n−(m−1)	
n∑
i=1

am
i ≤

*
,

n∑
i=1

ai
+
-

m

≤ n(m−1)⊕
n∑
i=1

am
i . (15)

If m = 1, then (1515) holds with the equal sign. If m < 1, [4343, Eqs. (5) and (3)] with
α = 1 and β = m give nm−1 ∑n

i=1 am
i ≤

(∑n
i=1 ai

)m
≤

∑n
i=1 am

i . If, on the other hand,
m > 1, [4343, Eqs. (3) and (5)] with α = m and β = 1 give

∑n
i=1 am

i ≤
(∑n

i=1 ai

)m
≤

nm−1 ∑n
i=1 am

i . Gathering the above cases yields (1515).
The second preliminary result concerns the node-averaging interpolator. Let Th

be a matching simplicial submesh of Mh in the sense of [1919, Definition 1.8]. The
node-averaging operator Ikav,h : Pk (Th,Rd ) → Pk (Th,R

d ) ∩W1,r (Ω,Rd ) is such that,
for all vh ∈ Pk (Th,Rd ) and all Lagrange node V of Th , denoting by TV the set of
simplices sharing V ,

(Ikav,hvh )(V ) B



1
card(TV)

∑
τ ∈TV

vh |τ (V ) if V ∈ Ω,

0 if V ∈ ∂Ω.

For all F ∈ F i
h
, denote by T1,T2 ∈ Th the elements sharing F, taken in an arbitrary but

fixed order. We define the jump operator such that, for any function v ∈ W1,1(Th,Rd ),
[v]F B (v |T1 ) |F − (v |T2 ) |F . This definition is extended to boundary faces F ∈ F b

h
by

setting [v]F B v|F .

Proposition 3.1 (Boundedness of the node-averaging operator) For allvh ∈ Pk (Th,Rd ),
it holds

|vh − I
k
av,hvh |

r
W 1,r (Th,Rd ) .

∑
F ∈Fh

h1−rF ‖[vh]F ‖rLr (F,Rd ) . (16)

Proof. Combining [1919, Eq. (4.13)] (which corresponds to (1616) for r = 2) with the local
Lebesgue embeddings of [1919, Lemma 1.25] (see also [1717, Lemma 5.1]) gives, for any T ∈ Th ,

‖vh − I
k
av,hvh ‖

r
Lr (T ,Rd ) .

∑
F ∈FV,T

hF ‖[vh]F ‖rLr (F,Rd ), (17)

where FV,T collects the faces whose closure has non-empty intersection with T . Using the local
inverse inequality of [1919, Lemma 1.28] (see also [1717, Eq. (A.1)]) we can write

|vh − I
k
av,hvh |

r
W 1,r (Th,Rd ) .

∑
T ∈Th

h−rT ‖vh − I
k
av,hvh ‖

r
Lr (T ,Rd )

.
∑
T ∈Th

∑
F ∈FV,T

h1−rF ‖[vh]F ‖rLr (F,Rd )

.
∑
F ∈Fh

∑
T ∈TV,F

h1−rF ‖[vh]F ‖rLr (F,Rd )

≤ max
F ∈Fh

card(TV,F )
∑
F ∈Fh

h1−rF ‖[vh]F ‖rLr (F,Rd ),

10



where we have used the fact that h−rT ≤ h−rF along with inequality (1717) to pass to the second
line, and we have exchanged the sums after setting TV,F B

{
T ∈ Th : F ∩T , ∅

}
for all F ∈ Fh

to pass to the third line. Observing that maxF ∈Fh card(TV,F ) . 1 (since, for any F ∈ Fh ,
card(TV,F ) is bounded by the left-hand side of [1919, Eq. (4.23)] written for any T ∈ Th to which
F belongs), (1616) follows. �

Lemma 3.1 (Discrete Korn inequality) We have, for all vh ∈ U
k
h,0,

‖vh ‖
r
Lr (Ω,Rd ) + |vh |

r
W 1,r (Th,Rd ) . ‖vh ‖

r
ε,r,h . (18)

Proof. Let vh ∈ U
k
h,0. Using a triangle inequality followed by (1515), we can write

|vh |
r
W 1,r (Th,Rd ) . |I

k
av,hvh |

r
W 1,r (Th,Rd ) + |vh − I

k
av,hvh |

r
W 1,r (Th,Rd )

. ‖∇s(Ikav,hvh )‖r
Lr (Ω,Rd×d ) + |vh − I

k
av,hvh |

r
W 1,r (Th,Rd )

. ‖∇s,hvh ‖
r
Lr (Ω,Rd×d ) + |vh − I

k
av,hvh |

r
W 1,r (Th,Rd )

. ‖∇s,hvh ‖
r
Lr (Ω,Rd×d ) +

∑
F ∈Fh

h1−rF ‖[vh]F ‖rLr (F,Rd ),

where we have used the continuous Korn inequality (1414) to pass to the second line, we have
inserted ±∇s,hvh into the first norm and used a triangle inequality followed by (1515) to pass to
the third line, and we have invoked the bound (1616) to conclude. Observing that, for any F ∈ Fh ,
|[vh]F | ≤

∑
T ∈TF |vF − vT | by a triangle inequality, and using (1515), we can continue writing

|vh |
r
W 1,r (Th,Rd ) . ‖∇s,hvh ‖

r
Lr (Ω,Rd×d ) +

∑
F ∈Fh

∑
T ∈TF

h1−rF ‖vF − vT ‖
r
Lr (F,Rd ) = ‖vh ‖

r
ε,r,h,

where we have exchanged the sums over faces and elements and recalled definition (12a12a) to
conclude. This proves the bound for the second term in the left-hand side of (1818). Combining
this result with the global discrete Sobolev embeddings of [1717, Proposition 5.4] yields the bound
for the first term in (1818). �

3.5 Viscous term

3.5.1 Local symmetric gradient reconstruction

For all T ∈ Th , we define the local symmetric gradient reconstruction Gk
s,T : U k

T →

Pk (T,Rd×ds ) such that, for all vT ∈ U
k
T ,∫

T

Gk
s,TvT : τ =

∫
T

∇svT : τ +
∑
F ∈FT

∫
F

(vF −vT ) · (τnTF ) ∀τ ∈ Pk (T,Rd×ds ).

(19)
This symmetric gradient reconstruction, originally introduced in [1313, Section 4.2], is
designed so that the following relation holds (see, e.g., [1414, Proposition 5] or [1919, Section
7.2.5]): For all v ∈ W1,1(T,Rd ),

Gk
s,T (IkTv) = πk

T (∇sv). (20)

11



The global symmetric gradient reconstruction Gk
s,h : U k

h → P
k (Th,Rd×ds ) is obtained

patching the local contributions, that is, for all vh ∈ U
k
h ,

(Gk
s,hvh )|T B Gk

s,TvT ∀T ∈ Th . (21)

3.5.2 Discrete viscous function

The discrete counterpart of the function a defined by (77) is the function ah : U k
h×U

k
h →

R such that, for all vh,wh ∈ U
k
h ,

ah (wh, vh ) B
∫
Ω

σ(·,Gk
s,hwh ) : Gk

s,hvh + γsh (wh, vh ). (22)

In the above definition, recalling (44), γ is a stabilization parameter such that

γ ∈ [σsm, σhc], (23)

while the stabilization function sh : U k
h ×U

k
h → R is such that, for all vh,wh ∈ U

k
h ,

sh (wh, vh ) B
∑
T ∈Th

sT (wT , vT ), (24)

where the local contributions are assumed to satisfy the following assumption.

Assumption 3.1 (Local stabilization function) For all T ∈ Th , the local stabilization
function sT : U k

T ×U
k
T → R is linear in its second argument and satisfies the following

properties, with hidden constants independent of both h and T:

(S1) Stability and boundedness. Recalling the definition (12b12b) of the local ‖·‖ε,r,T -
seminorm, for all vT ∈ U

k
T it holds:

‖Gk
s,TvT ‖

r
Lr (T ,Rd×d ) + sT (vT , vT ) ' ‖vT ‖

r
ε,r,T . (25a)

(S2) Polynomial consistency. For all w ∈ Pk+1(T,Rd ) and all vT ∈ U
k
T ,

sT (IkTw, vT ) = 0. (25b)

(S3) Hölder continuity. For all uT , vT ,wT ∈ U
k
T , it holds, setting eT B uT −wT ,

���sT (uT , vT ) − sT (wT , vT )��� .(
sT (uT ,uT ) + sT (wT ,wT )

) r−r◦

r sT (eT , eT )
r◦−1
r sT (vT , vT )

1
r . (25c)

(S4) Strongmonotonicity. For alluT ,wT ∈ U
k
T , it holds, setting again eT B uT−wT ,(

sT (uT , eT ) − sT (wT , eT )
) (

sT (uT ,uT ) + sT (wT ,wT )
) 2−r◦

r & sT (eT , eT )
r+2−r◦

r .

(25d)

12



Remark 3.2 (Comparison with the linear case) If r = 2, sT can be any symmetric
bilinear form satisfying 11–22. Indeed, property 33 coincides in this case with the Cauchy–
Schwarz inequality, while, by linearity of sT , property 44 holds with the equal sign.

Lemma 3.2 (Consistency of sT ) For anyT ∈ Th and any sT satisfying Assumption 3.13.1,
it holds, for all w ∈ W k+2,r (T,Rd ) and all vT ∈ U

k
T ,

|sT (IkTw, vT ) | . h(k+1)(r◦−1)
T |w |r−r

◦

W 1,r (T ,Rd ) |w |
r◦−1
W k+2,r (T ,Rd ) ‖vT ‖ε,r,T , (26)

where the hidden constant is independent of h, T , and w.

Proof. The proof adapts the arguments of [1919, Propositon 2.14]. Using the polynomial
consistency property 22, we can write

|sT (IkTw, vT ) | = |sT (IkTw, vT ) − sT (IkT (πk+1
T w), vT ) |

. sT (IkTw, I
k
Tw)

r−r◦

r sT (IkT (w − πk+1
T w), IkT (w − πk+1

T w))
r◦−1
r sT (vT , vT )

1
r

. ‖IkTw‖
r−r◦

ε,r,T ‖I
k
T (w − πk+1

T w)‖r
◦−1
ε,r,T ‖vT ‖ε,r,T

. |w |r−r
◦

W 1,r (T ,Rd ) |w − π
k+1
T w |r

◦−1
W 1,r (T ,Rd ) ‖vT ‖ε,r,T

. h(k+1)(r◦−1)
T |w |r−r

◦

W 1,r (T ,Rd ) |w |
r◦−1
W k+2,r (T ,Rd ) ‖vT ‖ε,r,T ,

where we have used the Hölder continuity 33 and observed that, by the consistency property 22,
sT (IkT (πk+1

T w), IkT (πk+1
T w)) = 0 to pass to the second line, we have used the boundedness

property 11 to pass to the third line, the boundedness (1313) of IkT to pass to the fourth line, and the
(k + 2, r, 1)-approximation property (11a11a) of πk+1

T to conclude. �

In what follows, we will need generalized versions of the continuous and discrete
Hölder inequalities, recalled hereafter for the sake of convenience. Let X ⊂ Rd be
measurable, n ∈ N∗, and let t, p1, . . . , pn ∈ (0,+∞] be such that

∑n
i=1

1
pi
= 1

t . The con-
tinuous (t; p1, . . . , pn )-Hölder inequality reads: For any ( f1, . . . , fn ) ∈

∏n
i=1 Lpi (X,R),



n∏
i=1

f i
Lt (X,R)

≤

n∏
i=1
‖ f i ‖Lpi (X,R) . (27)

Let m ∈ N∗. For all f : {1, . . . ,m} → R and all q ∈ [1,+∞), setting ‖ f ‖q B(∑m
i=1 | f (i) |q

) 1
q , and ‖ f ‖∞ B max1≤i≤m | f (i) |, the discrete (t; p1, . . . , pn )-Hölder

inequality reads: For any f1, . . . , fn : {1, . . . ,m} → R,



n∏
i=1

f i
t
≤

n∏
i=1
‖ f i ‖pi . (28)

Proposition 3.3 (Properties of sh) Let sh be given by (2424) with, for all T ∈ Th , sT
satisfying Assumption 3.13.1. Then it holds, for all vh ∈ U

k
h ,

‖Gk
s,hvh ‖

r
Lr (Ω,Rd×d ) + sh (vh, vh ) ' ‖vh ‖

r
ε,r,h . (29a)

13



Furthermore, for all uh, vh,wh ∈ U
k
h it holds, setting eh B uh −wh ,

���sh (uh, vh ) − sh (wh, vh )��� .
(
sh (uh,uh ) + sh (wh,wh )

) r−r◦

r sh (eh, eh )
r◦−1
r sh (vh, vh )

1
r ,

(29b)(
sh (uh, eh ) − sh (wh, eh )

) (
sh (uh,uh ) + sh (wh,wh )

) 2−r◦
r & sh (eh, eh )

r+2−r◦
r .

(29c)

Finally, for any w ∈ U ∩W k+2,r (Th,Rd ), it holds

sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

sh (Ikhw, vh ) . h(k+1)(r◦−1) |w |r−r
◦

W 1,r (Ω,Rd ) |w |
r◦−1
W k+2,r (Th,Rd ) . (30)

Above, the hidden constants are independent of h and of the arguments of sh .

Proof. For the sake of conciseness, we only sketch the proof and leave the details to the
reader. Summing (25a25a) over T ∈ Th immediately yields (29a29a). The Hölder continuity property
(29b29b) follows applying to the quantity in the left-hand side triangle inequalities, using (25c25c),
and concluding with a discrete (1; r

r−r◦ ,
r

r◦−1, r)-Hölder inequality. Moving to (29c29c), starting
from |sh (eh, eh ) |, we use (25d25d) and apply a discrete (1; r+2−r◦2−r◦ ,

r+2−r◦
r )-Hölder inequality to

conclude. Finally, to prove (3030) we start from sh (Ikhw, vh ), expand this quantity according to
(2424), use, for all T ∈ Th , the local consistency property (2626) together with hT ≤ h, invoke the
discrete (1; r

r−r◦ ,
r

r◦−1, r)-Hölder inequality, and pass to the supremum to conclude. �

3.5.3 An example of viscous stabilization function

Taking inspiration from the scalar case (cf., e.g., [1717, Eq. (4.11c)]), a local stabilization
function that matches Assumption 3.13.1 can be obtained setting, for all vT ,wT ∈ U

k
T ,

sT (wT , vT ) B
∫
∂T
|∆k∂TwT |

r−2∆k∂TwT · ∆
k
∂TvT , (31)

where, denoting by Pk (FT ,Rd ) the space of vector-valued broken polynomials of total
degree ≤ k on FT , the boundary residual operator ∆k∂T : U k

T → P
k (FT ,Rd ) is such

that, for all vT ∈ U
k
T ,

(∆k∂TvT )|F B h
− 1

r′

F

(
πk
F (rk+1T vT − vF ) − πk

T (rk+1T vT − vT )
)

∀F ∈ FT ,

with velocity reconstruction rk+1T : U k
T → P

k+1(T,Rd ) such that∫
T

(∇srk+1T vT −G
k
s,TvT ) : ∇sw = 0 ∀w ∈ Pk+1(T,Rd ),∫

T

rk+1T vT =

∫
T

vT , and
∫
T

∇ssrk+1T vT =
1
2

∑
F ∈FT

∫
F

(vF ⊗ nTF − nTF ⊗ vF ).

Above,∇ss denotes the skew-symmetric part of the gradient operator∇ applied to vector
fields and ⊗ is the tensor product such that, for all x = (xi )1≤i≤d and y = (yi )1≤i≤d in
Rd , x ⊗ y B (xi y j )1≤i, j≤d ∈ Rd×d .
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Lemma 3.3 (Stabilization function (3131)) The local stabilization function defined by
(3131) satisfies Assumption 3.13.1.

Proof. The proof of 11 for r = 2 is given in [1313, Eq. (25)]. The result can be generalized to
r , 2 using the same arguments of [1717, Lemma 5.2]. Property 22 is an immediate consequence
of the fact that ∆k∂T (IkTw) = 0 for any w ∈ Pk+1(T,Rd ), which can be proved reasoning as in
[1919, Proposition 2.6].

Let us prove 33. First, we remark that, since the function α 7→ αr−2 verifies the conditions in
(70b70b), we can apply Theorem A.1A.1 to infer that the function Rd 3 x 7→ |x|r−2x satisfies for all
x,y ∈ Rd ,

��|x|r−2x − |y |r−2y�� .
(
|x|r + |y |r

) r−r◦

r |x − y |r
◦−1, (32a)(

|x|r−2x − |y |r−2y
)
· (x − y)

(
|x|r + |y |r

) 2−r◦
r & |x − y |r+2−r

◦

. (32b)

Recalling (3131), we can write

���sT (uT , vT ) − sT (wT , vT )��� ≤
∫
∂T

���|∆
k
∂TuT |

r−2∆k∂TuT − |∆
k
∂TwT |

r−2∆k∂TwT
��� |∆

k
∂TvT |

.

∫
∂T

(
|∆k∂TuT |

r + |∆k∂TwT |
r
) r−r◦

r
|∆k∂TeT |

r◦−1 |∆k∂TvT |

≤
(
sT (uT ,uT ) + sT (wT ,wT )

) r−r◦

r sT (eT , eT )
r◦−1
r sT (vT , vT )

1
r ,

where we have used (32a32a) to pass to the second line and the (1; r
r−r◦ ,

r
r◦−1, r)-Hölder inequality

to conclude.
Moving to 44, (32b32b) and the (1; r+2−r◦2−r◦ ,

r+2−r◦
r )-Hölder inequality yield

sT (eT , eT )

=

∫
∂T
|∆k∂TuT − ∆

k
∂TwT |

r

.

∫
∂T

(
|∆k∂TuT |

r + |∆k∂TwT |
r
) 2−r◦

r+2−r◦
[(
|∆k∂TuT |

r−2∆k∂TuT − |∆
k
∂TwT |

r−2∆k∂TwT

)
· ∆k∂TeT

] r
r+2−r◦

≤
(
sT (uT ,uT ) + sT (wT ,wT )

) 2−r◦
r+2−r◦

(
sT (uT , eT ) − sT (wT , eT )

) r
r+2−r◦ .

�

3.6 Pressure-velocity coupling

For all T ∈ Th , we define the local divergence reconstruction Dk
T : U k

T → P
k (T,R) by

setting, for all vT ∈ U
k
T , D

k
TvT B tr(Gk

s,TvT ). We have the following characterization
of Dk

T : For all vT ∈ U
k
T ,∫

T

Dk
TvT q =

∫
T

(∇·vT ) q +
∑
F ∈FT

∫
F

(vF − vT ) · nTF q ∀q ∈ Pk (T,R), (33)

as can be checked writing (1919) for τ = qId . Taking the trace of (2020), it is inferred that,
for all T ∈ Th and all v ∈ W1,1(T,Rd ), Dk

T (IkTv) = πkT (∇·v). The pressure-velocity
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coupling is realized by the bilinear form bh : U k
h × P

k (Th,R) → R such that, for all
(vh, qh ) ∈ U k

h × P
k (Th,R), setting qT B (qh )|T for all T ∈ Th ,

bh (vh, qh ) B −
∑
T ∈Th

∫
T

Dk
TvT qT . (34)

3.7 Discrete problem

The discrete problem reads: Find (uh, ph ) ∈ U k
h,0 × Pk

h
such that

ah (uh, vh ) + bh (vh, ph ) =
∫
Ω

f · vh ∀vh ∈ U
k
h,0, (35a)

−bh (uh, qh ) = 0 ∀qh ∈ Pk
h . (35b)

Before proceding, some remarks are in order.

Remark 3.4 (Discrete mass equation) The space of test functions in (35b35b) can be ex-
tended to Pk (Th,R) since, for all vh ∈ U

k
h,0, the divergence theorem together with the

fact that vF = 0 for all F ∈ F b
h
and

∑
T ∈TF

∫
F
vF · nTF = 0 for all F ∈ F i

h
, yield

bh (vh, 1) = −
∑
T ∈Th

∑
F ∈FT

∫
F

vF · nTF = −
∑
F ∈F i

h

∑
T ∈TF

∫
F

vF · nTF = 0.

Remark 3.5 (Efficient implementation) When solving the system of nonlinear alge-
braic equations corresponding to (3535) by a first-order (e.g., Newton) algorithm, all
element-based velocity unknowns and all but one pressure unknown per element can be
locally eliminated at each iteration by computing the corresponding Schur complement
element-wise. As all the computations are local, this procedure is an embarrassingly
parallel task which can fully benefit from multi-thread and multi-processor architec-
tures. This implementation strategy has been described for the linear Stokes problem in
[2121, Section 6.2]. After further eliminating the boundary unknowns by strongly enforc-
ing the boundary condition (1c1c), we end up solving, at each iteration of the nonlinear
solver, a linear system of size dcard(F i

h
)
(
k+d−1
d−1

)
+ card(Th ).

4 Well-posedness

In this section, after studying the stability properties of the viscous function ah and of
the velocity-pressure coupling bilinear form bh , we prove the well-posedness of problem
(3535).
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4.1 Hölder continuity and strong monotonicity of the viscous function

Lemma 4.1 (Hölder continuity and strong monotonicity of ah) For alluh, vh,wh ∈

U k
h , setting eh B uh −wh , it holds

���ah (uh, vh ) − ah (wh, vh )��� . σhc
(
σr
de + ‖uh ‖

r
ε,r,h + ‖wh ‖

r
ε,r,h

) r−r◦

r
‖eh ‖

r◦−1
ε,r,h ‖vh ‖ε,r,h,

(36a)(
ah (uh, eh ) − ah (wh, eh )

) (
σr
de + ‖uh ‖

r
ε,r,h + ‖wh ‖

r
ε,r,h

) 2−r◦
r & σsm‖eh ‖

r+2−r◦
ε,r,h .

(36b)

Proof. (i) Hölder continuity. Denote by |Ω|d the measure of Ω. Using a Cauchy–Schwarz
inequality followed by the Hölder continuity (3c3c) of σ, we can write

�����

∫
Ω

(
σ(·,Gk

s,huh ) − σ(·,Gk
s,hwh )

)
: Gk

s,hvh

�����

≤ σhc

∫
Ω

(
σr
de + |Gk

s,huh |
r
d×d + |G

k
s,hwh |

r
d×d

) r−r◦

r
|Gk

s,heh |
r◦−1
d×d |G

k
s,hvh |d×d

. σhc
(
|Ω|dσ

r
de + ‖Gk

s,huh ‖
r
Lr (Ω,Rd×d ) + ‖G

k
s,hwh ‖

r
Lr (Ω,Rd×d )

) r−r◦

r

× ‖Gk
s,heh ‖

r◦−1
Lr (Ω,Rd×d ) ‖G

k
s,hvh ‖Lr (Ω,Rd×d )

. σhc
(
σr
de + ‖uh ‖

r
ε,r,h + ‖wh ‖

r
ε,r,h

) r−r◦

r
‖eh ‖

r◦−1
ε,r,h ‖vh ‖ε,r,h,

(37)

where we have used the (1; r
r−r◦ ,

r
r◦−1, r)-Hölder inequality (2727) in the second bound and the

global seminorm equivalence (29a29a) together with the fact that |Ω|d . 1 (since Ω is bounded)
to conclude. For the stabilization term, combining the Hölder continuity (29b29b) of sh and the
seminorm equivalence (29a29a) readily gives

���sh (uh, vh ) − sh (wh, vh )��� .
(
σr
de + ‖uh ‖

r
ε,r,h + ‖wh ‖

r
ε,r,h

) r−r◦

r
‖eh ‖

r◦−1
ε,r,h ‖vh ‖ε,r,h, (38)

where we have additionally noticed that σr
de ≥ 0 to add this term to the quantity inside parenthe-

ses. Using the definition (2222) of ah , a triangle inequality followed by (3737) and (3838), and recalling
that γ ≤ σhc (cf. (2323)), (36a36a) follows.

(ii) Strong monotonicity. Using the strong monotonicity (3d3d) of σ and the (1; r+2−r◦2−r◦ ,
r+2−r◦

r )-
Hölder inequality (2727), we get

σ
r

r+2−r◦
sm ‖Gk

s,heh ‖
r
Lr (Ω,Rd×d )

≤

∫
Ω

(
σr
de + |Gk

s,huh |
r
d×d + |G

k
s,hwh |

r
d×d

) 2−r◦
r+2−r◦

) (
σ(·,Gk

s,huh ) − σ(·,Gk
s,hwh )

)
: Gk

s,heh
) r

r+2−r◦

.
(
σr
de + ‖Gk

s,huh ‖
r
Lr (Ω,Rd×d ) + ‖G

k
s,hwh ‖

r
Lr (Ω,Rd×d )

) 2−r◦
r+2−r◦

×

(∫
Ω

(
σ(·,Gk

s,huh ) − σ(·,Gk
s,hwh )

)
: Gk

s,heh

) r
r+2−r◦

.
(
σr
de + ‖uh ‖

r
ε,r,h + ‖wh ‖

r
ε,r,h

) 2−r◦
r+2−r◦

(∫
Ω

(
σ(·,Gk

s,huh ) − σ(·,Gk
s,hwh )

)
: Gk

s,heh

) r
r+2−r◦

,

(39)
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where the conclusion follows from the global seminorm equivalence (29a29a). Additionally, using
the strong monotonicity (29c29c) of sh together with the fact that σsm ≤ γ (cf. (2323)) and invoking
again the seminorm equivalence (29a29a), we readily obtain

σ
r

r+2−r◦
sm sh (eh, eh ) .

(
σr
de + ‖uh ‖

r
ε,r,h + ‖wh ‖

r
ε,r,h

) 2−r◦
r+2−r◦

(
γsh (uh, eh ) − γsh (wh, eh )

) r
r+2−r◦ .
(40)

Finally, combining again the norm equivalence (29a29a) with (3939) and (4040), and using (1515) yields

σ
r

r+2−r◦
sm ‖eh ‖

r
ε,r,h .

(
σr
de + ‖uh ‖

r
ε,r,h + ‖wh ‖

r
ε,r,h

) 2−r◦
r+2−r◦

(
ah (uh, eh ) − ah (wh, eh )

) r
r+2−r◦ .

Raising this inequality to the power r−2−r◦
r yields (36b36b). �

4.2 Stability of the pressure-velocity coupling

Lemma 4.2 (Inf-sup stability of bh) It holds, for all qh ∈ Pk
h
,

‖qh ‖Lr′ (Ω,R) . sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

bh (vh, qh ), (41)

with hidden constant depending only on d, k, r , Ω, and the mesh regularity parameter.

Proof. The proof follows the classical Fortin argument (cf., e.g., [99, Section 8.4]), adapted
here to the non-Hilbertian setting: we first prove that Ikh is a Fortin operator, then combine this
fact with the continuous inf-sup condition.

(i) Fortin operator. We need to prove that the following properties hold for any v ∈ W1,r (Ω,Rd ):

‖Ikhv‖ε,r,h . |v |W 1,r (Ω,Rd ), (42a)

bh (Ikhv, qh ) = b(v, qh ) ∀qh ∈ Pk (Th,R). (42b)

Property (42a42a) is obtained by raising both sides of (1313) to the power r , summing over T ∈ Th ,
then taking the rth root of the resulting inequality. The proof of (42b42b) is given, e.g., in [1919,
Lemma 8.12].

(ii) Inf-sup condition on bh . Let qh ∈ Pk
h
and set ch B

∫
Ω
|qh |r

′−2qh . Using a triangle inequality,
the Hölder inequality, and the fact that |Ω|d . 1, we get

‖|qh |r
′−2qh − ch ‖Lr (Ω,R) ≤ ‖qh ‖r

′−1
Lr′ (Ω,R)

+ |ch | |Ω|
1
r

d
≤ (1 + |Ω|d ) ‖qh ‖r

′−1
Lr′ (Ω,R)

. ‖qh ‖r
′−1

Lr′ (Ω,R)
,

(43)
where we have used the fact that |ch | ≤ ‖qh ‖r

′−1
Lr′ (Ω,R)

|Ω|
1
r′

d
along with 1

r +
1
r ′ = 1 in the second

bound and the fact that |Ω|d . 1 to conclude. Since qh ∈ Lr ′ (Ω,R), bound (4343) implies that
|qh |r

′−2qh − ch ∈ Lr
0 (Ω,R) B

{
q ∈ Lr (Ω,R) :

∫
Ω

q = 0
}
by construction. Thus, using the

surjectivity of the continuous divergence operator ∇· : U → Lr
0 (Ω,R), (c.f. [2525] and also [1010,

Theorem 1]), we infer that there exists vqh
∈ U such that

−∇·vqh
= |qh |r

′−2qh − ch and |vqh
|W 1,r (Ω,Rd ) . ‖|qh |

r ′−2qh − ch ‖Lr (Ω,R) . (44)
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Denote by $ the supremum in (4141). Using the fact that qh has zero mean value over Ω, the
equality in (4444) together with the definition (77) of b, and the second Fortin property (42b42b), we
have

‖qh ‖r
′

Lr′ (Ω,R)
=

∫
Ω

(
|qh |r

′−2qh − ch
)
qh = b(vqh

, qh )

= bh (Ikhvqh
, qh ) ≤ $‖Ikhvqh

‖ε,r,h . $‖qh ‖r
′−1

Lr′ (Ω,R)
,

where, to conclude, we have used (42a42a) followed by (4444) and (4343). Simplifying yields (4141). �

4.3 Well-posedness

We are now ready to prove the main result of this section.

Theorem 4.1 (Well-posedness) There exists a unique solution (uh, ph ) ∈ U k
h,0 × Pk

h
to the discrete problem (3535). Additionally, the following a priori bounds hold:

‖uh ‖ε,r,h .
(
σ−1sm‖f ‖Lr′ (Ω,Rd )

) 1
r−1 +

(
σ2−r◦
de σ−1sm‖f ‖Lr′ (Ω,Rd )

) 1
r+1−r◦ , (45a)

‖ph ‖Lr′ (Ω,R) . σhc

(
σ−1sm‖f ‖Lr′ (Ω,Rd ) + σ

|r−2 |(r◦−1)
de

(
σ−1sm‖f ‖Lr′ (Ω,Rd )

) r◦−1
r+1−r◦

)
.

(45b)

Proof. (i) Existence. Denote by Pk,∗
h

the dual space of Pk
h
and let Bh : U k

h,0 → Pk,∗
h

be such
that, for all vh ∈ U

k
h,0,

〈Bhvh, qh〉 B −bh (vh, qh ) ∀qh ∈ Pk
h .

Here and in what follows, 〈·, ·〉 denotes the appropriate duality pairing as inferred from its
arguments. Define the following subspace of U k

h,0 spanned by vectors of discrete unknowns
with zero discrete divergence:

W k
h B Ker(Bh ) =

{
vh ∈ U

k
h,0 : bh (vh, qh ) = 0 ∀qh ∈ Pk

h

}
, (46)

and consider the following problem: Find uh ∈W
k
h such that

ah (uh, vh ) =
∫
Ω

f · vh ∀vh ∈W
k
h . (47)

Existence of a solution to this problem for a fixed h can be proved adapting the arguments of
[1717, Theorem 4.5]. Specifically, equipW k

h with an inner product (·, ·)W ,h (which need not be
further specified), denote by ‖·‖W ,h the induced norm, and let Φh :W k

h →W k
h be such that,

for allwh ∈W
k
h , (Φh (wh ), vh )W ,h = ah (wh, vh ) for all vh ∈W

k
h . The strong monotonicity

(36b36b) of ah yields, for any vh ∈W
k
h such that ‖vh ‖ε,r,h ≥ σde,

(Φh (vh ), vh )W ,h ≥ σsm(σr
de+ ‖vh ‖

r
ε,r,h )

r◦−2
r ‖vh ‖

r+2−r◦
ε,r,h & σsm‖vh ‖

r
ε,r,h ≥ Crσsm‖vh ‖

r
W ,h,

where C denotes the constant (possibly depending on h) in the equivalence of the norms ‖·‖ε,r,h
and ‖·‖W ,h (which holds sinceW k

h is finite-dimensional). This shows thatΦh is coercive hence,
by [1616, Theorem 3.3], surjective. Let nowwh ∈W

k
h be such that (wh, vh )W ,h =

∫
Ω
f · vh for
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all vh ∈W
k
h . By the surjectivity ofΦh , there exists uh ∈W

k
h such thatΦh (uh ) = wh which,

by definition of wh and Φh , is a solution to the discrete problem (4747).
The proof of existence now continues as in the linear case; see, e.g., [99, Theorem 4.2.1].

Denote by U k,∗
h,0 the dual space of U

k
h,0 and consider the linear mapping `h ∈ U k,∗

h,0 such that,
for all vh ∈ U

k
h,0,

〈`h, vh〉 B

∫
Ω

f · vh − ah (uh, vh ).

Thanks to (4747), `h vanishes identically for every vh ∈ W
k
h , that is to say, `h lies in the polar

space ofW k
h which, denoting by B∗

h
: Pk

h
→ U k,∗

h,0 the adjoint operator of Bh , coincides in our
case with Im(B∗

h
) (see, e.g., [99, Theorem 4.14]). Hence, `h ∈ Im(B∗

h
), and there exists therefore

a ph ∈ Pk
h
such that B∗

h
ph = `h . This means that, for all vh ∈ U

k
h,0,

bh (vh, ph ) = 〈B∗hph, vh〉 = 〈`h, vh〉 =
∫
Ω

f · vh − ah (uh, vh ),

i.e., the (uh, ph ) satisfies the discrete momentum equation (35a35a). On the other hand, since
uh ∈ W

k
h , we also have, by the definition (4646) ofW k

h , bh (uh, qh ) = 0 for all qh ∈ Pk
h
, which

shows that the discrete mass equation (35b35b) is also verified. In conclusion, (uh, ph ) ∈ U k
h,0×Pk

h
solves (3535).
(ii) Uniqueness. We start by proving uniqueness for the velocity. Let (uh, ph ), (u′

h
, p′

h
) ∈

U k
h,0×Pk

h
be two solutions of (3535). Making vh = uh −u

′
h
in (35a35a) written first for (uh, ph ) then

for (u′
h
, p′

h
), then taking the difference and observing that bh (uh−u

′
h
, ph ) = bh (uh−u

′
h
, p′

h
) = 0

by (35b35b), we infer that

ah (uh,uh − u
′
h ) − ah (u′h,uh − u

′
h ) = 0.

Thus, the strong monotonicity (36b36b) of ah yields ‖uh − u
′
h
‖ε,r,h = 0, which implies uh = u

′
h

since ‖·‖ε,r,h is a norm on U k
h,0. Moreover, using the inf-sup stability (4141) of bh and (35a35a)

written first for uh then for u′
h
, we get

‖ph − p′h ‖Lr′ (Ω,R) . sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

bh (vh, ph − p′h )

= sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

(
ah (u′h, vh ) − ah (uh, vh )

)
= 0,

hence ph = p′
h
.

(iii) A priori estimates. Using the strong monotonicity (36b36b) of ah (with wh = 0), equation
(35a35a) together with (35b35b), and the Hölder inequality together with the discrete Korn inequality
(1414), we obtain

σsm
(
σr
de + ‖uh ‖

r
ε,r,h

) r◦−2
r ‖uh ‖

r+2−r◦
ε,r,h . ah (uh,uh ) =

∫
Ω

f · uh . ‖f ‖Lr′ (Ω,Rd ) ‖uh ‖ε,r,h .

(48)
We then conclude as in the continuous case to infer (45a45a) (see Remark 2.62.6). To prove the bound
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(45b45b) on the pressure, we use the inf-sup stability (4141) of bh to write

‖ph ‖Lr′ (Ω,R) . sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

bh (vh, ph )

= sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

(∫
Ω

f · vh − ah (uh, vh )
)

. ‖f ‖Lr′ (Ω,Rd ) + σhc(σr
de + ‖uh ‖

r
ε,r,h )

r−r◦

r ‖uh ‖
r◦−1
ε,r,h

. σhc

(
σ−1sm‖f ‖Lr′ (Ω,Rd ) + σ

|r−2 |(r◦−1)
de

(
σ−1sm‖f ‖Lr′ (Ω,Rd )

) r◦−1
r+1−r◦

)
,

where we have used the discrete momentum equation (35a35a) to pass to the second line, the Hölder
and discrete Korn (1414) inequalities together with the Hölder continuity (36a36a) of ah to pass to
the third line, and the a priori bound (45a45a) on the velocity together with σhc

σsm
≥ 1 (see (44)) to

conclude. �

5 Error estimate

In this section, after studying the consistency of the viscous and pressure-velocity
coupling terms, we prove an energy error estimate.

5.1 Consistency of the viscous function

Lemma 5.1 (Consistency of ah) Letw ∈ U∩W k+2,r (Th,Rd ) be such thatσ(·,∇sw) ∈
W1,r ′ (Ω,Rd×ds )∩W (k+1)(r◦−1),r ′ (Th,Rd×ds ). Define the viscous consistency error linear
form Ea,h (w; ·) : U k

h → R such that, for all vh ∈ U
k
h ,

Ea,h (w;vh ) B
∫
Ω

(∇·σ(·,∇sw)) · vh + ah (Ikhw, vh ). (49)

Then, under Assumptions 2.12.1 and 3.13.1, we have

sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

Ea,h (w;vh ) . h(k+1)(r◦−1)
[
|σ(·,∇sw) |W (k+1)(r◦−1),r′ (Th,Rd×d )+

σhc
(
σr
de + |w |

r
W 1,r (Ω,Rd )

) r−r◦

r
|w |r

◦−1
W k+2,r (Th,Rd )

]
. (50)

Proof. Let Θwh B I
k
hw and vh ∈ U

k
h,0. Expanding ah according to its definition (2222) in the

expression (4949) of Ea,h , inserting ±
(∫
Ω
σ(·,∇sw) : Gk

s,hvh +
∫
Ω
πk
h
σ(·,∇sw) : Gk

s,hvh
)
, and
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rearranging, we obtain

Ea,h (w;vh ) =
∫
Ω

(∇·σ(·,∇sw)) · vh+
∫
Ω

πk
hσ(·,∇sw) :Gk

s,hvh︸                                                               ︷︷                                                               ︸
T1

+

∫
Ω

(
σ(·,∇sw) − πk

hσ(·,∇sw)
)
:Gk

s,hvh︸                                                 ︷︷                                                 ︸
T2

+

∫
Ω

(
σ(·,Gk

s,hΘwh ) − σ(·,∇sw)
)
:Gk

s,hvh︸                                                ︷︷                                                ︸
T3

+ γsh (Θwh, vh )︸         ︷︷         ︸
T4

. (51)

We proceed to estimate the terms in the right-hand side. For the first term, we start by noticing
that ∑

T ∈Th

∑
F ∈FT

∫
F

vF · (σ(·,∇sw)nTF ) = 0 (52)

as a consequence of the continuity of the normal trace of σ(·,∇sw) together with the single-
valuedness of vF across each interface F ∈ F i

h
and of the fact that vF = 0 for every boundary

face F ∈ F b
h
. Using an element by element integration by parts on the first term of T1 along

with the definitions (2121) of Gk
s,h and (1919) of Gk

s,T , we can write

T1 =
(((

((((
(((

((((
((((∫

Ω

(
πk
hσ(·,∇sw) − σ(·,∇sw)

)
: ∇s,hvh

+
∑
T ∈Th

∑
F ∈FT

(∫
F

(vF − vT ) · (πk
Tσ(·,∇sw))nTF +

∫
F

vT · (σ(·,∇sw)nTF )
)

=
∑
T ∈Th

∑
F ∈FT

∫
F

(vF − vT ) ·
(
πk
Tσ(·,∇sw) − σ(·,∇sw)

)
nTF,

wherewehave used the definition (1010) ofπk
h
togetherwith the fact that∇s,hvh ∈ P

k−1(Th,Rd×ds ) ⊂
Pk (Th,Rd×ds ) to cancel the term in the first line, and we have inserted (5252) and rearranged to
conclude. Therefore, applying the Hölder inequality together with the bound hF ≤ hT , we infer

|T1 | ≤
*.
,

∑
T ∈Th

hT ‖σ(·,∇sw) − πk
Tσ(·,∇sw)‖r

′

Lr′ (∂T ,Rd×d )
+/
-

1
r′

*.
,

∑
T ∈Th

∑
F ∈FT

h1−rF ‖vF − vT ‖
r
Lr (F,Rd )

+/
-

1
r

. h(k+1)(r◦−1) |σ(·,∇sw) |W (k+1)(r◦−1),r′ (Th,Rd×d ) ‖vh ‖ε,r,h,
(53)

where the conclusion follows using the ((k+1)(r◦−1), r ′)-trace approximation properties (11b11b)
of πk

T along with hT ≤ h for the first factor and the definition (1212) of the ‖·‖ε,r,h-norm for the
second.

For the second term, we use the Hölder inequality and the seminorm equivalence (29a29a) to
write

|T2 | = ‖σ(·,∇sw) − πk
hσ(·,∇sw)‖Lr′ (Ω,Rd×d ) ‖G

k
s,hvh ‖Lr (Ω,Rd×d )

. h(k+1)(r◦−1) |σ(·,∇sw) |W (k+1)(r◦−1),r′ (Th,Rd×d ) ‖vh ‖ε,r,h,
(54)

where the conclusion follows from the ((k + 1)(r◦ − 1), r ′, 0)-approximation properties (11a11a) of
πk
T along with hT ≤ h for the first factor and the global norm equivalence (29a29a) for the second.
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For the third term, using the Hölder inequality and again (29a29a), we get

|T3 | ≤ ‖σ(·,Gk
s,hΘwh ) − σ(·,∇sw)‖Lr′ (Ω,Rd×d ) ‖vh ‖ε,r,h . (55)

We estimate the first factor as follows:

‖σ(·,Gk
s,hΘwh ) − σ(·,∇sw)‖Lr′ (Ω,Rd×d )

≤ σhc


(
σr
de + |Gk

s,hΘwh |
r
d×d + |∇sw |

r
d×d

) r−r◦

r
|Gk

s,hΘwh −∇sw |
r◦−1
d×d

Lr′ (Ω,R)

. σhc
(
σr
de + ‖Gk

s,hΘwh ‖
r
Lr (Ω,Rd×d ) + ‖∇sw‖

r
Lr (Ω,Rd×d )

) r−r◦

r
‖Gk

s,hΘwh −∇sw‖
r◦−1
Lr (Ω,Rd×d )

. σhc
(
σr
de + ‖Θwh ‖

r
ε,r,h + |w |

r
W 1,r (Ω,Rd )

) r−r◦

r
‖πk

h (∇sw) −∇sw‖
r◦−1
Lr (Ω,Rd×d )

. h(k+1)(r◦−1)σhc
(
σr
de + |w |

r
W 1,r (Ω,Rd )

) r−r◦

r
|w |r

◦−1
W k+2,r (Th,Rd ),

where we have used the Hölder continuity (3c3c) of σ in the first bound, the (r ′; r
r−r◦ ,

r
r◦−1 )-

Hölder inequality (2727) in the second, the boundedness ofΩ alongwith (29a29a) and the commutation
property (2020) ofGk

s,h in the third, and we have concluded invoking the (k+1, r, 0)-approximation
property (11a11a) of πk

T . Plugging this estimate into (5555), we get

|T3 | . h(k+1)(r◦−1)σhc
(
σr
de + |w |

r
W 1,r (Ω,Rd )

) r−r◦

r
|w |r

◦−1
W k+2,r (Th,Rd ) ‖vh ‖ε,r,h . (56)

Finally, using the fact that γ ≤ σhc together with the consistency (3030) of sh and the norm
equivalence (29a29a), we obtain for the fourth term

|T4 | . h(k+1)(r◦−1)σhc |w |
r−r◦

W 1,r (Ω,Rd ) |w |
r◦−1
W k+2,r (Th,Rd ) ‖vh ‖ε,r,h . (57)

Plug the bounds (5353), (5454), (5656), and (5757) into (5151) and pass to the supremum to conclude.
�

5.2 Consistency of the pressure-velocity coupling bilinear form

Lemma 5.2 (Consistency of bh) Let q ∈ W1,r ′ (Ω,R) ∩ W (k+1)(r◦−1),r ′ (Th,R). Let
Eb,h (q; ·) : U k

h → R be the pressure consistency error linear form such that, for all
vh ∈ U

k
h ,

Eb,h (q;vh ) B
∫
Ω

∇q · vh − bh (vh, π
k
hq). (58)

Then, we have that

sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

Eb,h (q;vh ) . h(k+1)(r◦−1) |q |W (k+1)(r◦−1),r′ (Th,R) . (59)

Proof. Let vh ∈ U
k
h,0. Integrating by parts element by element, we can reformulate the first

term in the right-hand side of (5858) as follows:∫
Ω

∇q · vh = −
∑
T ∈Th

*.
,

∫
T

q(∇·vT ) +
∑
F ∈FT

∫
F

q(vF − vT ) · nTF
+/
-
, (60)
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where the introduction of vF in the boundary term is justified by the fact that the jumps of q
vanish across interfaces by the assumed regularity and that vF = 0 on every boundary face
F ∈ F b

h
. On the other hand, expanding, for each T ∈ Th , Dk

T according to its definition (3333), we
get

− bh (vh, π
k
hq) =

∑
T ∈Th

*.
,

∫
T

πkT q (∇·vT ) +
∑
F ∈FT

∫
F

πkT q (vF − vT ) · nTF
+/
-
. (61)

Summing (6060) and (6161) and observing that the first terms in parentheses cancel out by the
definition (1010) of πkT since ∇·vT ∈ Pk−1(T,R) ⊂ Pk (T,R) for all T ∈ Th , we can write

Eb,h (q;vh ) =
∑
T ∈Th

*.
,�
��

���
���

∫
T

(πkT q − q)(∇·vT ) +
∑
F ∈FT

∫
F

(πkT q − q)(vF − vT ) · nTF
+/
-

≤
*.
,

∑
T ∈Th

hT ‖πkT q − q‖r
′

Lr′ (∂T ,R)
+/
-

1
r′

*.
,

∑
T ∈Th

∑
F ∈FT

h1−rF ‖vF − vT ‖
r
Lr (F,Rd )

+/
-

1
r

. h(k+1)(r◦−1) |q |W (k+1)(r◦−1),r′ (Th,R) ‖vh ‖ε,r,h,

where we have used the Hölder inequality along with hF ≥ hT whenever F ∈ FT in the second
line and the ((k + 1)(r◦ − 1), r ′)-trace approximation property (11b11b) of πkT together with the
bound hF ≤ h and the definition (1212) of the ‖·‖ε,r,h-norm to conclude. Passing to the supremum
yields (5959). �

5.3 Error estimate

Theorem 5.1 (Error estimate) Let (u, p) ∈ U ×P and (uh, ph ) ∈ U k
h,0×Pk

h
solve (66)

and (3535), respectively. Assume the additional regularity

u ∈ W k+2,r (Th,Rd ), σ(·,∇su) ∈ W1,r ′ (Ω,Rd×ds ) ∩W (k+1)(r◦−1),r ′ (Th,Rd×ds ),

and p ∈ W1,r ′ (Ω,R) ∩W (k+1)(r◦−1),r ′ (Th,R).

Then, under Assumptions 2.12.1 and 3.13.1,

‖uh − I
k
hu‖ε,r,h . h

(k+1)(r◦−1)
r+1−r◦

(
σ−1smN

2−r◦
f Nσ,u,p

) 1
r+1−r◦ , (62a)

‖ph − πkhp‖Lr′ (Ω,R) . h(k+1)(r◦−1)Nσ,u,p + h
(k+1)(r◦−1)2

r+1−r◦ σhcN
|r−2 |(r◦−1)
f

(
Nσ,u,p

σsm

) r◦−1
r+1−r◦

,

(62b)

where we have set, for the sake of brevity,

Nσ,u,p B σhc
(
σr
de + |u|

r
W 1,r (Ω,Rd )

) r−r◦

r
|u|r

◦−1
W k+2,r (Th,Rd )

+ |σ(·,∇su) |W (k+1)(r◦−1),r′ (Th,Rd×d ) + |p|W (k+1)(r◦−1),r′ (Th,R),

Nf B σde +
(
σ−1sm‖f ‖Lr′ (Ω,Rd )

) 1
r−1 +

(
σ2−r◦
de σ−1sm‖f ‖Lr′ (Ω,Rd )

) 1
r+1−r◦ .
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Remark 5.2 (Orders of convergence) From (6262), neglecting higher-order terms, we
infer asymptotic convergence rates of Ok

vel B
(k+1)(r◦−1)

r+1−r◦ for the velocity and Ok
pre B

(k+1)(r◦−1)2
r+1−r◦ for the pressure, that is,

Ok
vel =




(k + 1)(r − 1) if r < 2,
k+1
r−1 if r ≥ 2,

and Ok
pre =




(k + 1)(r − 1)2 if r < 2,
k+1
r−1 if r ≥ 2.

(63)

Notice that, owing to the presence of higher-order terms in the right-hand sides of (6262),
higher convergence rates may be observed before attaining the asymptotic ones; see
Section 66.

Proof. Let (eh, εh ) B (uh −Θuh, ph − p̂h ) ∈ U k
h,0 × Pk

h
where Θuh B Ikhu ∈ U

k
h,0 and

p̂h B πk
h

p ∈ Pk
h
.

Step 1. Consistency error. Let Eh : U k
h,0 → R be the consistency error linear form such that,

for all vh ∈ U
k
h,0,

Eh (vh ) B
∫
Ω

f · vh − ah (Θuh, vh ) − bh (vh, p̂h ). (64)

Using in the above expression the fact that f = −∇·σ(·,∇su) +∇p almost everywhere in Ω to
write Eh (vh ) = Ea,h (u;vh ) + Eb,h (p;vh ), and invoking the consistency properties (5050) of ah
and (5959) of bh , we obtain

$ B sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

Eh (vh ) . h(k+1)(r◦−1)Nσ,u,p . (65)

Step 2. Error estimate for the velocity. Using the strong monotonicity (36b36b) of ah , we get

‖eh ‖
r+2−r◦
ε,r,h . σ−1sm

(
σr
de + ‖uh ‖

r
ε,r,h + ‖Θuh ‖

r
ε,r,h

) 2−r◦
r

(
ah (uh, eh ) − ah (Θuh, eh )

)
. σ−1smN

2−r◦
f

(
ah (uh, eh ) − ah (Θuh, eh )

)
,

(66)

where we have used the a priori bound (45a45a) on the discrete solution along with the boundedness
(42a42a) of the global interpolator and the a priori bound (88) on the continuous solution to conclude.
Using then the discrete mass equation (35b35b) along with (42b42b) (written for v = u) and the
continuous mass equation (6b6b) to write bh (Ikhu, qh ) = b(u, qh ) = 0, we get bh (eh, qh ) = 0 for
all qh ∈ Pk

h
. Hence, combining this result with (6464) and the discrete momentum equation (35a35a)

(with vh = eh), we obtain

ah (uh, eh ) − ah (Θuh, eh ) =
∫
Ω

f · eh − ah (Θuh, eh ) −���
��bh (eh, ph ) = Eh (eh ). (67)

Plugging (6767) into (6666), we get

‖eh ‖
r+2−r◦
ε,r,h ≤ σ−1smN

2−r◦
f $‖eh ‖ε,r,h .

Simplifying, using (6565), and taking the (r +1−r◦)th root of the resulting inequality yields (62a62a).
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Step 3. Error estimate for the pressure. Using the Hölder continuity (36a36a) of ah , we have, for
all vh ∈ U

k
h,0,

���ah (Θuh, vh ) − ah (uh, vh )��� . σhc
(
σr
de + ‖Θuh ‖

r
ε,r,h + ‖uh ‖

r
ε,r,h

) r−r◦

r
‖eh ‖

r◦−1
ε,r,h ‖vh ‖ε,r,h

. σhcN
r−r◦

f ‖eh ‖
r◦−1
ε,r,h ‖vh ‖ε,r,h,

(68)
where the first factor is estimated as in (6666). Thus, using the inf-sup condition (4141), we can write

‖εh ‖Lr′ (Ω,R) . sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

bh (vh, εh )

= sup
vh ∈U

k
h,0, ‖vh ‖ε,r,h=1

(
Eh (vh ) + ah (Θuh, vh ) − ah (uh, vh )

)
. $ + σhcN

r−r◦

f ‖eh ‖
r◦−1
ε,r,h

. h(k+1)(r◦−1)Nσ,u,p + h(k+1)(r◦−1)2σhcN
|r−2 |(r◦−1)
f

(
σ−1smNσ,u,p

) r◦−1
r+1−r◦ ,

(69)

where we have used the definition (6464) of the consistency error together with equation (35a35a) to
pass to the second line, (6868) to pass to the third line (recall that $ denotes here the supremum in
the left-hand side of (6565)), and the bounds (6565) and (62a62a) (proved in Step 2) to conclude. �

6 Numerical examples

We consider a manufactured solution to problem (11) in order to assess the con-
vergence of the method, which was implemented within the SpaFEDTe library (cf.
https://spafedte.github.iohttps://spafedte.github.io). Specifically, we take Ω = (0, 1)2 and consider
the (1, 0, 1, r)-Carreau–Yasuda law (55) (corresponding to the power-law model) with
Sobolev exponent r ∈ {1.5, 1.75, 2, 2.25, 2.5, 2.75}. The exact velocity u and pressure p
are given by, respectively,

u(x, y) =
(
sin

(
π
2 x

)
cos

(
π
2 y

)
,− cos

(
π
2 x

)
sin

(
π
2 y

))
, p(x, y) = sin

(
π
2 x

)
sin

(
π
2 y

)
− 4
π2
.

The volumetric load f and the Dirichlet boundary conditions are inferred from the
exact solution. This solution matches the assumptions required in Theorem 5.15.1 for
k = 1, except the case r = 1.5 for which σ(·,∇su) < W1,r ′ (Ω,Rd×ds ). We consider the
HHO scheme for k = 1 on three mesh families, namely Cartesian orthogonal, distorted
triangular, and distorted Cartesian; see Figure 11. Overall, the results are in agreement
with the theoretical predictions, and in some cases the expected asymptotic orders of
convergence are exceeded. Specifically, for r , 2, the convergence rates computed on
the last refinement surpass in some cases the theoretical ones. As noticed in Remark
5.25.2, this suggests that the asymptotic order is still not attained. A similar phenomenon
has been observed on certain meshes for the p-Laplace problem; see [1818, Section 3.5.2]
and [2020, Section 3.7].
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Figure 1: Coarsest Cartesian, distorted triangular, and distorted Cartesian mesh used in
the numerical tests of Section 66.
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Figure 2: Numerical results for the test case of Section 66. The slopes indicate the
expected order of convergence expected from Theorem 5.15.1, i.e. O1

vel = 2(r − 1) and
O1
pre = 2(r − 1)2 for r ∈ {1.5, 1.75, 2}.
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Figure 3: Numerical results for the test case of Section 66. The slopes indicate the
expected order of convergence expected from Theorem 5.15.1, i.e. O1

vel = O
1
pre =

2
r−1 for

r ∈ {2.25, 2.5, 2.75}.

A Power-framed functions

In the following theorem, we introduce the notion of power-framed function and discuss
sufficient conditions for this property to hold.

Theorem A.1 (Power-framed function) Let U be a measurable subset of Rn with
n ≥ 1, (W, (·, ·)W ) an inner product space, and σ : U ×W → W . Assume that there
exists a Carathéodory function ς : U × [0,+∞) → R such that, for all τ ∈ W and
almost every x ∈ U,

σ(x, τ ) = ς (x, ‖τ ‖W )τ, (70a)

where ‖·‖W is the norm induced by (·, ·)W . Additionally assume that, for almost
every x ∈ U, ς (x, ·) is differentiable on (0,+∞) and there exist ςde ∈ [0,+∞) and
ςsm, ςhc ∈ (0,+∞) independent of x such that, for all α ∈ (0,+∞),

ςsm(ςrde + α
r )

r−2
r ≤

∂(ας (x, α))
∂α

≤ ςhc(ςrde + α
r )

r−2
r . (70b)

Then, σ is an r-power-framed function, i.e., for all (τ,η) ∈ W2 with τ , η and almost
every x ∈ U , the function σ verifies the Hölder continuity property

‖σ(x, τ ) − σ(x,η)‖W ≤ σhc
(
σr
de + ‖τ ‖

r
W + ‖η‖

r
W

) r−2
r
‖τ − η‖W , (71a)
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and the strong monotonicity property

(σ(x, τ ) − σ(x,η), τ − η)W ≥ σsm
(
σr
de + ‖τ ‖

r
W + ‖η‖

r
W

) r−2
r
‖τ − η‖2W , (71b)

with σde B ςde, σhc B 22−r◦+r−1 d2−r◦ e (r◦ − 1)−1ςhc, and σsm B 2r◦−r−dr−1 (r−r◦)e (r +
1 − r◦)−1ςsm, where r◦ is given by (22) and d·e is the ceiling function.

Remark A.2 (Notation) The boldface notation for the elements of W is reminescent of
the fact that Theorem A.1A.1 is used with W = Rd×ds in Corollary A.3A.3 to characterize the
Carreau-Yasuda law as an r-power-framed function and in Lemma 3.33.3 with W = Rd to
study the local stabilization function sT .

Proof. [Proof of Theorem A.1A.1] Let x ∈ U be such that (7070) holds, and τ,η ∈ W . By symmetry
of inequalities (7171) and the fact that σ is continuous, we can assume, without loss of generality,
that ‖τ ‖W > ‖η‖W > 0.
(i) Strong monotonicity. Let β ∈ (0,+∞) and let g : [β,+∞) → R be such that, for all
α ∈ [β,+∞),

g(α) B ας (x, α) − βς (x, β) − Csm(ςrde + α
r + βr )

r−2
r (α − β), with Csm B

2r◦−r
r+1−r◦ ςsm.

Differentiating g and using the first inequality in (70b70b), we obtain, for all α ∈ [β,+∞),
∂

∂α
g(α) ≥ ςsm(ςrde + α

r )
r−2
r − Csm

(
(r − 2)(ςrde + α

r + βr )−
2
r (α − β)αr−1 + (ςrde + α

r + βr )
r−2
r

)
≥ ςsm(ςrde + α

r )
r−2
r − (r + 1 − r◦)Csm(ςrde + α

r + βr )
r−2
r

≥ ςsm2r
◦−r (ςrde + α

r + βr )
r−2
r − (r + 1 − r◦)Csm(ςrde + α

r + βr )
r−2
r = 0,

where, to pass to the second line, we have removed negative contributions if r < 2 and used
the fact that (α − β)αr−1 ≤ ςrde + α

r + βr if r ≥ 2, to pass to the third line we have used
the fact that t 7→ tr−2 is non-increasing if r < 2, and the fact that β ≤ α otherwise, while the
conclusion follows from the definition of Csm. This shows that g is non-decreasing. Hence, for
all α ∈ [β,+∞), g(α) ≥ g(β) = 0, i.e.

ας (x, α) − βς (x, β) ≥ Csm(ςrde + α
r + βr )

r−2
r (α − β). (72)

Moreover, for all α, β ∈ (0,+∞), using (7272) (with β = 0) along with the fact that t 7→ tr−2 is
decreasing if r < 2 and inequality (1515) if r ≥ 2, we infer that

ς (x, α) + ς (x, β) ≥ Csm

(
(ςrde + α

r )
r−2
r + (ςrde + β

r )
r−2
r

)
≥ Csm21−

⌈
r−r◦

r

⌉
(ςrde + α

r + βr )
r−2
r .

(73)
We conclude that σ verifies (71b71b) by using (7272) and (7373) with α = ‖τ ‖W and β = ‖η‖W as
follows:
(σ(x, τ ) − σ(x,η), τ − η)W
= (τ ς (x, ‖τ ‖W ) − ης (x, ‖η‖W ), τ − η)W

= ‖τ ‖2W ς (x, ‖τ ‖W ) + ‖η‖2W ς (x, ‖η‖W ) − (τ,η)W [ς (x, ‖τ ‖W ) + ς (x, ‖η‖W )]
= [‖τ ‖W ς (x, ‖τ ‖W ) − ‖η‖W ς (x, ‖η‖W )] (‖τ ‖W − ‖η‖W )
+ [ς (x, ‖τ ‖W ) + ς (x, ‖η‖W )] (‖τ ‖W ‖η‖W − (τ,η)W )

≥ Csm2−
⌈
r−r◦

r

⌉ (
ςrde + ‖τ ‖

r
W + ‖η‖

r
W

) r−2
r

[
(‖τ ‖W − ‖η‖W )2 + 2(‖τ ‖W ‖η‖W − (τ,η)W )

]

= Csm2−
⌈
r−r◦

r

⌉ (
ςrde + ‖τ ‖

r
W + ‖η‖

r
W

) r−2
r
‖τ − η‖2W .

29



(ii) Hölder continuity. Now, setting Chc B
ςhc
r◦−1 and reasoning in a similar way as for the proof

of (7272) to leverage the second inequality in (70b70b), we have, for all α ∈ [β,+∞),

ας (x, α) − βς (x, β) ≤ Chc
(
ςrde + α

r + βr
) r−2

r (α − β). (74)

First, let r ≥ 2. Using (7474) (with β = 0) and the fact that t 7→ tr−2 is non-decreasing, we have,
for all α, β ∈ (0,+∞),

ς (x, α)ς (x, β) ≤ C2
hc

(
ςrde + α

r ) r−2
r

(
ςrde + β

r ) r−2
r ≤

[
Chc

(
ςrde + α

r + βr
) r−2

r

]2
. (75)

Thus, using inequalities (7474) and (7575) with α = ‖τ ‖W and β = ‖η‖W , we infer

‖σ(x, τ ) − σ(x,η)‖2W
= (τ ς (x, ‖τ ‖W ) − ης (x, ‖η‖W ), τ ς (x, ‖τ ‖W ) − ης (x, ‖η‖W ))W
= [‖τ ‖W ς (x, ‖τ ‖W ) − ‖η‖W ς (x, ‖η‖W )]2

+ 2ς (x, ‖τ ‖W )ς (x, ‖η‖W ) [‖τ ‖W ‖η‖W − (τ,η)W ]

≤

[
Chc

(
ςrde + ‖τ ‖

r
W + ‖η‖

r
W

) r−2
r

]2 [
(‖τ ‖W − ‖η‖W )2 + 2(‖τ ‖W ‖η‖W − (τ,η)W )

]

=

[
Chc

(
ςrde + ‖τ ‖

r
W + ‖η‖

r
W

) r−2
r
‖τ − η‖W

]2
,

(76)
hence σ verifies (71a71a) for r ≥ 2. Assume now r < 2. Using a triangle inequality followed by
(7474) and the left inequality in (1515), it is inferred that

‖σ(x, τ ) − σ(x,η)‖W ≤ ς (x, ‖τ ‖W )‖τ ‖W + ς (x, ‖η‖W )‖η‖W

≤ Chc

(
(ςrde + ‖τ ‖

r
W )

r−1
r + (ςrde + ‖η‖

r
W )

r−1
r

)
≤ 2

1
r Chc(2ςrde + ‖τ ‖rW + ‖η‖

r
W )

r−1
r

= 2
1
r Chc(2ςrde + ‖τ ‖rW + ‖η‖

r
W )

r−2
r (2ςrde + ‖τ ‖rW + ‖η‖

r
W )

1
r ,

≤ 2
1
r Chc(ςrde + ‖τ ‖

r
W + ‖η‖

r
W )

r−2
r (2ςde + ‖τ ‖W + ‖η‖W ),

where the last line follows from the fact that t 7→ tr−2 is decreasing and again (1515). If 2ςde +
‖τ ‖W + ‖η‖W ≤ 22−r ‖τ − η‖W , from the previous bound we directly get the conclusion, i.e.
(71a71a) with σhc = 22−r+ 1

r Chc. Otherwise, using (1515) and a triangle inequality yields

(ςrde + ‖τ ‖
r
W )

1
r (ςrde + ‖η‖

r
W )

1
r ≥ 2−

2
r′ (ςde + ‖τ ‖W )(ςde + ‖η‖W )

= 2−2( 1
r′
+1)

[
(2ςde + ‖τ ‖W + ‖η‖W )2 − (‖τ ‖W − ‖η‖W )2

]

≥ 2−2( 1
r′
+1)

[
(2ςde + ‖τ ‖W + ‖η‖W )2 − ‖τ − η‖2W

]

≥ 2−2( 1
r′
+1) (1 − 4r−2) (2ςde + ‖τ ‖W + ‖η‖W )2

≥ 2
2

(r−2)r −2
(
ςrde + ‖τ ‖

r
W + ‖η‖

r
W

) 2
r ,

(77)
where we concluded with (1515) together with the fact that 2−2( 1

r′
+1)

(
1 − 4r−2

)
≥ 2

2
(r−2)r −2.

Finally, raising both sides of (7777) to the power r − 2, we get a relation analogous to (7575). Hence,
proceeding as in (7676), we infer (71a71a). �
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Corollary A.3 (Carreau–Yasuda) The strain rate-shear stress law of the (µ, δ, a, r)-
Carreau–Yasuda fluid defined in Example 2.42.4 is an r-power-framed function.

Proof. Let x ∈ Ω and g : (0,+∞) → R be such that, for all α ∈ (0,+∞),

g(α) B
∂

∂α

[
αµ(x)

(
δa(x) + αa(x)

) r−2
a (x)

]
= µ(x)

(
δa(x) + αa(x)

) r−2
a (x) −1 (

δa(x) + (r − 1)αa(x)
)
.

We have for all α ∈ (0,+∞),

µ−(r◦ − 1)
(
δa(x) + αa(x)

) r−2
a(x)
≤ g(α) ≤ µ+(r + 1 − r◦)

(
δa(x) + αa(x)

) r−2
a (x) ,

and we conclude using (1515) together with Theorem A.1A.1. �
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