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UNCERTAINTY QUANTIFICATION OF HUMAN ARTERIAL NETWORK

PENG CHEN 1 · ALFIO QUARTERONI1 2 · GIANLUIGI ROZZA1

Abstract: This work aims at identifying and quantifying uncertainties from various sources in
human cardiovascular system based on a one dimensional arterial network. A general analysis of differ-
ent uncertainties and probability characterization with log-normal distribution of these uncertainties
is introduced. Deriving from a deterministic one dimensional fluid structure interaction model, we
establish the stochastic model as a coupled hyperbolic system incorporated with parametric uncer-
tainties to describe the blood flow and pressure wave propagation in the arterial network. By applying
a stochastic collocation method with sparse grid technique, we study systematically the statistics and
sensitivity of the solution with respect to many different uncertainties in a relatively complete arterial
network validated against clinical measurements for the first time.

Keywords: uncertainty quantification, sensitivity analysis, stochastic collocation method, cardio-
vascular modelling, human arterial network, wave propagation

1 Introduction

Mathematical modelling and numerical simulation of human cardiovascular system have undergone
a vast development over the last few decades thanks to better understanding of the morphology
and functionality of cardiovascular system, the availability of abundant clinical data as well as fast
growing of computational resources [34, 21]. Specifically, various deterministic models targeted for
the full human arterial tree, or specific sites (e.g. the carotid bifurcation, the aortic arch etc.), have
been established [21, 2]. For instance, Navier-Stokes equations and elastic or viscoelastic equations
are coupled together to characterize the fluid structure interaction property between the blood flow
and the arterial wall in three dimensional configurations [21]; the one dimensional hyperbolic system
simplified from the full three dimensional equations together with appropriate coupling conditions
at the vascular junctions are widely used to describe the blood flow and pressure wave propagation
phenomena in the arterial tree; geometrical multiscale models coupling the macrosvascular network
(large arterials), mesovascular network (medium or small arterials) as well as microvascular network
(arterioles or capillaries) are investigated for the hope to simulate systematically the physiological
blood flow in the entire human vascular network [28, 22, 26]. Moreover, models for tissue perfusion [16],
mass transfer [45], bypass design [36], electromechanical activity of the heart [12] and so on have also
been developed with specific objectives. Meanwhile, various efficient computational techniques [18, 7,
21, 15, 25] have also enhanced greatly for the cardiovascular modelling and simulation.

However, there are always discrepancies between measurements and the deterministic simulation
results, since many uncertainties exist in cardiovascular system due to its complexity, diversity and
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variability [21]. For instance, the evolution of cerebral aneurysm can be influenced evidently by ran-
dom external pressure or inflows [39]; the development of carotid atherosclerosis might be highly
related to the inhomogeneous randomly distributed components of blood as well as the pattern of
blood flow, whose geometry may be uncertain in a large degree due to the accumulation of fatty ma-
terial [34]. Some of the uncertainties, namely epistemic uncertainties, can be reduced by more precise
measurement or more advanced noise filtering techniques, while the other of them, namely aleatory
uncertainties, are very difficult if not impossible to be accurately captured due to the inhomogeneous
and multiscale properties of the cardiovascular system that undergoes an instantly and intrinsically
variation owing to, for instance, the surrounding tissue pressure or external work force [21]. To identify
and quantify these uncertainties, even if partially, and incorporate them into the well developed deter-
ministic models will benefit not only for more accurate modelling and simulation of the cardiovascular
system, but also for better understanding of the cardiovascular diseases. Therefore, development and
analysis of efficient computational methods for uncertainty quantification becomes very important for
mathematical modelling and numerical simulation of cardiovascular system.

In the modelling of the complex cardiovascular system, uncertainties are inevitably encountered
from various sources and may play an important role in computational simulation. When it comes to
mathematical modelling, these uncertainties may be classified in general in the following categories:

1. Computational geometries: Blood flow in the vascular system and the heart depends on the
geometry of the blood lumen and blood vessel, which could be uncertain in a large extent, e.g.,
for what concerns, branch separation or bifurcation, high deflection bends, arterial wall thickness,
lumen narrowed down by atherosclerosis or balloon-like bulge in the wall due to aneurysms. In
fact, geometrical noise typically comes from the reconstruction of the geometry of the blood
vessel with data from medical image devices, such as CT or MRI [34].

2. Mathematical models: There have been many mathematical models built in different geomet-
rical scales and for different physical properties. Depending on the computational geometry,
we may have multiscale models accounting for the detailed or simplified fluid velocity field and
pressure with rigid or compliant walls. Based on the physical properties, we can characterize
blood flow with Newtonian or non-Newtonian rheology, with or without viscoelastic or inertial
properties, etc. [21]. Uncertainties thus arise from adoption of different mathematical models.

3. Physical parameters: When the mathematical model is established, the coefficients or physical
parameters in the mathematical model is exposed to various uncertainties due to crude or un-
available measurements. The outcome of the blood flow simulation is undoubtedly determined
at a certain extent by these physical parameters accounting for material properties of fluid and
structure, such as the permeability, elasticity, compliance or Young’s modulus of the arterial
wall, the diffusivity of substance dissolved in the inhomogeneous blood solvent and so on [45].

4. Boundary conditions: Even for the same mathematical model and the same physical pa-
rameters, the confidence in the output of the computational simulation also depends on the
uncertainties of boundary conditions prescribed on the boundary of the computational domain,
including the inlet velocities or flow flux, outlet resistance or lumped parameter models, the
interaction on the interface between the lumen and the arterial wall, etc [39].

5. External sources or forces: The transport of the main substance is carried by the blood, which
also contains some other substances that make the chemical reaction between these different
and contacting substances possible, resulting in increase or decrease of the substance of interest.
Meanwhile, the flow rate of the blood is influenced by the surrounding tissue or uncertain
distribution of external work force, which may also lead to the variation of the blood flow [21].

In order to have more precise characterization and interpretation of the cardiovascular system by
mathematical modelling and numerical simulation, these uncertainties must be taken into account
with different emphasis depending on the purpose. How to identify and propagate the influential
uncertainties in the mathematical modelling on different levels is still at the beginning of investiga-
tion [39, 2, 44]. In fact, there is no mature techniques to characterize and represent these heterogeneous
uncertainties arising from different sources, let alone systematic analysis of the influence of them to the
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cardiovascular system. Preliminary work has been carried out for parametric uncertainty quantifica-
tion in a local region or part of the vascular network with only one or two types of parameters [39, 44].
The authors in [39] proposed an adaptive stochastic collocation framework for uncertainty quantifica-
tion and propagation in cardiovascular simulations. They studied the radius of the abdominal aortic
aneurysm, the radius and inflow velocity of the carotid artery bifurcation as well as flow split of the
LPA/RPA as random variables following either Gaussian or uniform distribution to account for the
uncertainty impact on blood flow modelled by three dimensional Navier-Stokes equations with rigid
arterial wall in a small region. A main part of the vascular network with 37 arterial segments with in-
dependent and uniformly distributed parameters for each segment was described by a one dimensional
stochastic model by the authors in [44]. In particular, they considered the sensitivity of pressure with
respect to the uncertainty of material parameter (e.g. Young modulus) in different segments and apply
generalized polynomial chaos combined with stochastic collocation method to compute the solution.

In this work, we concentrate on and highlight the following three aspects for uncertainty quantifica-
tion in the human arterial tree: 1, we first investigate several parametric uncertainties independently
for time dependent sensitivity and stochastic convergence analysis; 2, and then we study systemati-
cally many different sources of parametric uncertainties (around 10) listed above at the same time and
examine their distinct importance to cardiovascular simulation via global sensitivity analysis; 3, we
also consider parameter dependent boundary conditions (resistance) in each distal boundary site and
geometrical parameter (cross-section area) in each arterial segment obeying independent and identical
probability distribution to unveil the most important region where the uncertainty is located for the
quantity of interest. For this set of preliminary and explanatory analyses, we build a one dimensional
stochastic fluid structure interaction model for the systemic arterial tree based on a one dimensional
deterministic model validated by clinical measurements [35]. Although it couldn’t be applied to study
the local flow fields as in three dimensional modelling with detailed geometry, e.g. secondary flow, wall
shear stress, vorticity of the velocity field, we are satisfied with this simplified one dimensional model
for the fact that it is intrinsically a coupled hyperbolic system suitable to describe the blood flow
and pressure wave propagation in the global vascular network. Moreover, we consider the vascular
network with great completeness of the systemic circulation, incorporating the detailed description of
the cerebral and coronary arteries, wall viscoelastic properties, wall friction and convection accelera-
tion effect as well as realistic distal boundary conditions at the terminal sites characterized by three
element windkessel model [35, 27]. These advantages enable us in a large extent to carry out more
realistic uncertainty quantification in the global vascular network with many parameters.

In section 2 we summarize the deterministic fluid structure interaction model of the human arterial
tree with brief description of the coupling condition and the lumped parameter model for the terminal
boundary as well as the basic numerical approximation scheme. Based on the deterministic model we
formulate the stochastic model in the probability framework and introduce the stochastic collocation
method to solve the stochastic system. Criteria for statistical and sensitivity analysis are defined
according to the representation of stochastic collocation solution. In section 3, we study the statistics
and sensitivity of the solution with respect to different uncertainties in three aspects: 1, stochastic
regularity and nonlinearity of the solution as well as the convergence analysis of the collocation method
in the case of one dimensional parametric uncertainty; 2, systematic time averaged and time dependent
sensitivity analysis of all the uncertainties over one heart beat in the case of moderate (10) dimensional
parametric uncertainty; 3, quantification of the dependence of uncertainty location with independent
random variables to account for uncertainty of resistance at each distal boundary and reference area
in each arterial segment in the case of high (47 and 103) dimensional parametric uncertainty.

2 Mathematical modelling of the human arterial tree

2.1 Deterministic modelling: one dimensional fluid structure interaction

We introduce the simplified one dimensional deterministic fluid structure interaction model to describe
the blood flow in arteries and its interaction with the blood vessel displacement following [20, 32]. In
the absence of bifurcation, each segment of the arteries can be considered as a cylindrical compliant
and impermeable tube with cross section S(t, x), being t ∈ (0, T ] the time and x ∈ [0, L] the axial
coordinate. The radius r of the tube and the pressure P of the blood flow are assumed to be functions
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of only t and x. We also assume that the velocity u of the blood flow is dominated in the axial
coordinate and depends on t, x and r with the profile s(r, θ) = θ−1(θ + 2)(1 − rθ), where we have
θ = 2 for parabolic Poiseuille profile, θ = 9 for more physiological Womersley profile and θ → ∞ for
a simple flat profile [21]. The state variables for the study of wave propagation phenomena, namely
the cross-sectional area A, the volumetric flow rate Q and the average pressure P , are defined by

A(t, x) =

∫

S(t,x)

dS, Q(t, x) =

∫

S(t,x)

uxdS, P (t, x) =
1

A

∫

S(t,x)

PdS. (2.1)

By integrating the three dimensional Navier-Stokes equations on a generic section S and replacing the
velocity and pressure by the state variables defined in (2.1) (see [32, 21, 27] for details), we obtain the
following simplified one dimensional equations governed by mass and momentum conservation law



















∂A

∂t
+
∂Q

∂x
= 0 in (0, T ]× [0, L],

∂Q

∂t
+

∂

∂x

(

α
Q2

A

)

+
A

ρ

∂P

∂x
+ kr

Q

A
= 0 in (0, T ]× [0, L],

(2.2)

where the second term and the fourth term of the momentum equation account for the convective
acceleration effect and the wall friction effect, respectively. α and kr are the Coriolis coefficient and
friction coefficient defined as

α =
1

A

∫

S(t,x)

s2dS, kr = −2π
µ

ρ

ds

dr

∣

∣

∣

r=1
, (2.3)

being µ the kinematic viscosity, ρ the blood density and r = 1 on the arterial wall.
In order to close the fluid system (2.2) consisting of two equations and three variables A,Q and

P , we need to provide an additional relation between the pressure and the wall deformation and thus
the cross section area according to certain constitutive law of the arterial wall, for instance [32]

P − Pext = ψ̂(A) + ψ̃(A) := β

(

√

A

A0
− 1

)

+ γ

(

1

A
√
A

∂A

∂t

)

, (2.4)

which incorporates not only the elastic effect in the first term but also the viscoelastic effect in the
second term. The coefficients β and γ entail the physical parameters for the material property of the
arterial wall in the following formula

β =

√

π

A0

hE

1− ν2
, γ =

T tanφ

4
√
π

hE

1− ν2
, (2.5)

where h,E, ν,A0 are the wall thickness, Young modulus, Poisson coefficient and reference sectional
area under only external pressure Pext; the viscoelastic parameters T and φ are the wave characteristic
time and angle determining the viscoelasticity effect. More complex wall models can also be employed
by taking into account inertia, longitudinal elasticity, etc. [20]. Initial conditions for system (2.2) can
be chosen in the reference state, being A = A0, Q = 0 and P = Pext or any other state with data
extracted from either numerical simulations or clinical measurements [21].

For numerical approximation of system (2.2), we apply operator splitting techniques, decomposing
the volumetric flow rate into two parts Q = Q̂+Q̃ that account for the elastic effect and the viscoelastic
effect respectively, and rewrite (2.2) for the elastic component in the conservation form [27]

∂Û

∂t
+
∂F (U)

∂x
+ S(U) = 0 in (0, T ]× [0, L], (2.6)

where U = [A,Q]T and Û = [A, Q̂]T are the total and conservative variables, F = [Q,F2]
T are the
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corresponding fluxes with

F2 =

∫ A

A0

A

ρ

∂ψ̂

∂A
dA+ α

Q2

A
, (2.7)

and S = [0, S2]
T consists of the friction and the non-uniformity of the geometry and the material with

S2 = kr
Q

A
+
A

ρ

(

∂ψ̂

∂A0

∂A0

∂x
+
∂ψ̂

∂β

∂β

∂x

)

− ∂

∂A0

∫ A

A0

A

ρ

∂ψ̂

∂A
dA

∂A0

∂x
− ∂

∂β

∫ A

A0

A

ρ

∂ψ̂

∂A
dA

∂β

∂x
. (2.8)

As for the viscoelastic part, we obtain from system (2.2)

1

A

∂Q̃

∂t
− ∂

∂x

(

γ

ρA3/2

∂Q

∂x

)

= 0 in (0, T ]× [0, L]. (2.9)

There have been several numerical discretization schemes applied to approximate (2.6) and (2.9), e.g.
second order Taylor-Galerkin [20], discontinuous Galerkin [40], spectral/hp element [44]. We choose
the second order Taylor-Galerkin finite element approximation for simplicity, which is more convenient
to deal with the operator splitting techniques [27]. It can be shown [32] that (2.6) is a first order non-
linear hyperbolic system so that some compatibility condition is needed to enable the computation
of state variables at the first and last nodes. Moreover, the system (2.6) and (2.9) are closed by
imposing valid boundary conditions, such as physiological flow rate, terminal absorbing conditions or
lumped parameter models, for instance, the three element windkessels consisting of two resistors and
one capacitor described by the ordinary differential equation

P − Pv + CR2
dP

dt
= (R1 +R2)Q+ CR1R2

dQ

dt
in (0, T ], (2.10)

where Pv is the prescribed venous pressure, C is the capacitance and R1, R2 are the resistances with
the common relation R1 = 4R/5, R2 = R/5 where R = R1 +R2 is the total resistance [35].

The one dimensional fluid structure interaction model (2.2) and (2.4) together with proper initial
and boundary conditions is among the most popular way to describe the blood flow and its interaction
with the arterial wall in each arterial segment locally [35]. In order to construct all the segments
structurally and functionally to form the human arterial tree, suitable coupling conditions are needed
at the bifurcations. It is demonstrated in [20] that a domain decomposition approach by keeping
the mass conservation and total pressure continuity are satisfactory for characterizing blood velocity
and pressure wave propagation without evident dissipation of energy in the arterial branching. More
explicitly, supposing there are Np proximal segments and Nd distal segments at a certain joint, we
impose the following equations for the proximal and distal state variables (Qp, P p) and (Qd, P d)

Np
∑

n=1

Qp
n =

Nd
∑

m=1

Qd
m, and P p

n = P d
m, ∀n = 1, . . . , Np,m = 1, . . . , Nd. (2.11)

This approach can be realized numerically by nonlinear Richardson strategy, using Newton or inexact
Newton method combined with Broyden algorithm for updating Jacobian matrix, see [27] for details.

2.2 Stochastic modelling: quantifying uncertainties

As introduced in section 1, there are many different kinds of uncertainties arising from diverse sources
of the human arterial tree with distinct features. Among several possible approaches to describe
these uncertainties, e.g., evident theory, fuzzy set theory, probability theory, the latter ones provide
a general framework to characterize various uncertainties more precisely in a quantitative way [6, 4].
Given a complete probability space (Ω,F ,P), which consists of the set of outcomes Ω, the σ-algebra
of events F and a probability measure P : F → [0, 1], we can define a random variable Y : Ω → R

such that for every Borel set B ⊂ R we have Y −1(B) = {ω : Y (ω) ∈ B} ∈ F . Provided that
the random variable depends also on temporal or spatial coordinate, we have stochastic process or
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random fields [6]. The stochastic system of the one dimensional fluid structure interaction model
corresponding to the deterministic system (2.6), (2.9) and (2.10) becomes: find the stochastic state
processes (A,Q, P ) : (0, T ]× [0, L]×Ω → R

3, such that P-almost surely the following equations hold
with proper initial boundary conditions:







































∂Û

∂t
(t, x, ω) +

∂F (U)

∂x
(t, x, ω) + S(U)(t, x, ω) = 0 in (0, T ]× [0, L]× Ω,

1

A

∂Q̃

∂t
(t, x, ω)− ∂

∂x

(

γ

ρA3/2

∂Q

∂x

)

(t, x, ω) = 0 in (0, T ]× [0, L]× Ω,

P (t, ω)− Pv + CR2
dP

dt
(t, ω) = (R1 +R2)Q(t, ω) + CR1R2

dQ

dt
(t, ω) in (0, T ]× Ω.

(2.12)

For each realization ω ∈ Ω, we assume that the stochastic system (2.12) shares the same mathematical
properties as its deterministic counterpart, in particular, being still a hyperbolic system. The stochas-
ticity of the state variables is propagated from the random inputs accounting for the uncertainties
of involved parameters in the system, including the geometrical parameters, physical parameters as
well as parameters arising from boundary conditions and external pressure. These parameters can be
either represented by random variables or stochastic processes following certain probability distribu-
tions. In order to calibrate the probability distributions from various data sources such as literatures,
measurements or experts’ opinions, we may employ statistical inference techniques, for instance, linear
and nonlinear regression, maximum likelihood estimation, maximum entropy, etc. [17, 42].

In the absence of sufficient data for calibration, we assume a general log-normal distribution for the
parametric uncertainties with two considerations: 1, the deterministic value available in the literature,
e.g. [35], is the most likely value with high probability (close to the expectation) while the value far
from this center has low probability (with small deviation), for which normal or log-normal distribution
qualifies by the maximum entropy theory [17]; 2, the parametric uncertainties should not change the
sign of the parameter value, i.e. the probability to change the sign should be (or be close to) zero,
for which the log-normal distribution is more appropriate since its image is R+. Without loss of
generality, we assume the random parameter perturbed by a log-normal distributed random variable
as

η(t, x, ω) = eµe+σvY (ω)η(t, x), (2.13)

where η(t, x) is the deterministic parameter under consideration, which might depend on time and
space, and η(t, x, ω) is the randomized parameter; Y is a random variable obeying standard normal
distribution, which is transformed by two prescribed parameters µe, σv to a log-normal random variable
as X(ω) = exp(µe + σvY (ω)) with expectation E[X] = exp(µe + σ2

v/2), variance V[X] = (exp(σ2
v) −

1) exp(2µe + σ2
v), standard deviation S[X] =

√

V[X] and the mode exp(µe − σ2
v) (where the density

function is maximized). Figure 2.1 displays the probability density functions of the random variable
Y following standard normal distribution (left) and the transformed random variable X following
log-normal distribution with different values of the parameter µe, σv (right), which represent different
degrees of uncertainty characterized by signal-to-noise ratio (SNR= E[X]/S[X] [9]). We choose the
mode as 1 so that µe = σ2

v to guarantee that the deterministic value of parameter η has the highest
probability. For the choice µe = 0.01, σv = 0.1 we have SNR ≈ 9.975, or the noise-to-signal ratio
1/SNR ≈ 10%, for µe = 0.0625, σv = 0.25, we have 1/SNR ≈ 25.4% and µe = 0.25, σv = 0.5, we have
a relatively large noise-to-signal ratio 1/SNR ≈ 53.3%.

Supposing that the random inputs can be represented by K random variables Y = (Y1, . . . , YK)
with joint probability density functions ρ(Y ) = ΠK

k=1ρk(Yk) calibrated from available data, we have
that the stochastic state processes depend on the uncertainties only through Y in the image Γ := Y (Ω),
i.e. (A,Q, P ) : (0, T ] × [0, L] × Γ → R

3. In another word, we can view the stochastic system
(2.12) as a parametrized system. Therefore the random realization ω ∈ Ω in (2.12) can be replaced
by the parameter y ≡ Y (ω) ∈ Γ and to solve the stochastic system (2.12) is equivalent to solve
a deterministic system at each parameter y ∈ Γ. The transformation from stochastic system to
parametric system is the starting point for the application of fast stochastic computational methods
that have been developed recently, including stochastic collocation method [43, 3], stochastic Galerkin
method [6], reduced basis method [8], spectral decomposition method [31], low rank tensor Krylov
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Figure 2.1: Left, standard normal density function; right, several log-normal density functions

subspace method [24] and so on. Provided that the solution of the parametric system is smooth
enough with respect to the parameter y, these methods have been proved to achieve exponential or
sub-exponential convergence rate, much faster than the algebraic convergence rate N−1/2 of Monte-
Carlo method [19]. Moreover, stochastic collocation method, similar to Monte-Carlo method, turns
out more applicable for nonlinear and complex system due to its non-intrusive feature that enables us
to use the deterministic solver directly and repeatedly without mathematical reformulation [5, 13].

Given the collocation points in Γ ⊂ R, e.g., −∞ < y0 < y1 < y2 < · · · < yN < ∞ as well as the
corresponding functions f(yn), 0 ≤ n ≤ N (state variables (A,Q, P ) in our context), we define the
univariate Nth order Lagrangian interpolation

UNf(y) =

N
∑

n=0

f(yn)ln(y), where ln(y) =
∏

m 6=n

y − ym

yn − ym
0 ≤ n ≤ N. (2.14)

Rewrite the univariate interpolation formula (2.14) with the index k for the kth dimension as

UNk
f(yk) =

∑

y
nk
k

∈Θk

f(ynk

k )lnk

k (yk), where Θk = {ynk

k ∈ Γk, nk = 0, . . . , Nk} for some Nk ≥ 1 (2.15)

then the multivariate interpolation is given as the tensor product of the univariate interpolation

(UN1
⊗ · · · ⊗ UNK

) f(y) =
∑

y
n1

1
∈Θ1

· · ·
∑

y
nK
K

∈ΘK

f(yn1

1 , . . . , ynK

K )
(

ln1

1 (y1)⊗ · · · ⊗ lnK

K (yK)
)

. (2.16)

In order to alleviate the “curse of dimensionality” in the interpolation on the full tensor product grid for
high dimensional problems, we employ the Smolyak sparse grid interpolation that considerably reduces
the number of the total collocation nodes by removing most of the cross-dimensional collocation nodes
in an optimizing way while keeping high order interpolation in each dimension [41]. It achieves fast
convergence rate without much sacrifice of accuracy compared to the same level of the full tensor
product interpolation, in particular for analytic problem, and is proven to be one of the most efficient
and widely used stochastic collocation methods [43, 30]. The general Smolyak formula reads

Sqf(y) =
∑

q−K+1≤|i|≤q

(−1)q−|i|

(

K − 1
q − |i|

)

(

U i1 ⊗ · · · ⊗ U iK
)

f(y), (2.17)
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where |i| = i1 + · · ·+ iK with the multivariate index i = (i1, . . . , iK) defined via the two possible sets

Xs(q,K) :=

{

i ∈ NK
+ , ∀ ik ≥ 1 :

K
∑

k=1

ik ≤ q

}

or Xp(q,K) :=

{

i ∈ NK
+ , ∀ ik ≥ 1 :

K
∏

k=1

ik ≤ q

}

(2.18)

and the set of collocation nodes of the sparse grid is thus collected as

H(q,K) =
⋃

q−K+1≤|i|≤q

(

Θi1 × · · · ×ΘiK
)

, (2.19)

where #Θik = 1 if ik = 1, and #Θik = 2ik−1 + 1 when ik > 1 in a nested structure. Note that we
denote U ik ≡ UNk

defined in (2.15) for Nk = 2ik−1. We define q − K as the level of interpolation.
Figure 2.2 depicts the full tensor product grid, sparse grid with index sets Xs(q,K) and Xp(q,K) with
collocations nodes defined as Gauss-Hermite quadrature abscissas [11] for two independent random
variables obeying standard normal distribution, from which we can observe a large reduction of the
total number of collocation nodes, especially for the sparse grid with index set Xp(q,K). More
advanced techniques, such as anisotropic sparse grid [29], sparse grid constructed via hierarchical
surplus [23] and reduced basis [13], have been developed by taking advantage of stochastic regularity
and a posteriori error estimate for further reduction of the computational cost.
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Figure 2.2: Two dimensional (K = 2) full tensor product grid (left, 81 nodes) and sparse grid with
index set Xs(q,K) (middle, 49 nodes) and index set Xp(q,K) (right, 25 nodes), all the collocation
nodes are chosen as Gauss-Hermite quadrature abscissas with the level of interpolation q −K = 3

By repeatedly solving a deterministic system at each collocation node (2.19), we can construct
an explicit formula for the stochastic state variables at any parameter y ∈ Γ via the sparse grid
interpolation (2.17). In practice, we are more interested in the evaluation of the statistics of the state
variables, such as expectation or variance, which can be computed straightforwardly as

E[f ] ≈ E[Sqf ] =

∫

Γ

Sqf(y)ρ(y)dy =
∑

q−K+1≤|i|≤q

(−1)q−|i|

(

K − 1
q − |i|

)

E
[(

U i1 ⊗ · · · ⊗ U iK
)

f
]

(2.20)

where the tensor product expectation can be evaluated by the following quadrature formula

E[(UN1
⊗ · · · ⊗ UNK

) f ] =
∑

y
n1

1
∈Θ1

· · ·
∑

y
nK
K

∈ΘK

f(yn1

1 , . . . , ynK

K )
(

wn1

1 × · · · × wnK

K

)

, (2.21)

being (ynk

k , wnk

k ), 1 ≤ k ≤ K the quadrature abscissas and weights according to the joint probability
distribution function and UNk

≡ U ik , 1 ≤ k ≤ K. The evaluation of variance is computed by

V[f ] = E
[

(f − E[f ])2
]

≈ E
[

Sqf
2
]

−
(

E[Sqf ]
)2
. (2.22)

In order to improve the accuracy of the numerical integral in (2.20) and the numerical interpolation
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in (2.17), it is favourable to select the collocation points as the quadrature abscissas. Available
quadrature rules include Clenshaw-Curtis quadrature (with Chebshev Gauss Lobatto nodes), Gaussian
quadrature based on various orthogonal polynomials and so on [33, 30].

Another interest is to study the sensitivity of the state variables with respect to different param-
eters, or in another word, how the solution depends on each parameter at some realization y ∈ Γ,
namely local or pointwise sensitivity analysis [37], as well as how much weight that the uncertainty
arising from each parameter contributes to the total variation of the solution in the name of global
sensitivity analysis [38, 10]. In the uncertainty quantification of the human arterial tree, we are more
interested in how different parameters affect the blood flow and pressure wave propagation system-
atically, therefore, the global sensitivity analysis. Following [10], we define the variance based global
sensitivity index - main effect of the kth parameter as

Gk[f ] =
V[E[f |yk]]

V[f ]
, k = 1, . . . ,K, (2.23)

where V[E[f |yk]] is the variance of the expectation of the variable f conditioned on the kth parameter
yk, accounting for the contribution to the total variance of the solution by this parameter. More
explicitly, it can be evaluated approximately via the sparse grid interpolation by

V[E[f |yk]] ≈
∫

Γk

(

∫

Γ∗

k

Sqf(y)ρ(y
∗
k)dy

∗
k

)2

ρ(yk)dyk −
(
∫

Γ

Sqf(y)ρ(y)dy

)2

, (2.24)

where yk is the kth element of y in one dimensional parameter space Γk and y∗k is the adjoint counter-
part or all the other elements of y, a K − 1 dimensional parameter living in the parameter space Γ∗

k.
The advantage of (2.23) attributes to its ability to measure the relative importance of different param-
eters and thus provide a guide for the effort (spent on collecting data, selecting statistical inference
techniques, etc.) to quantify the uncertainty arising from each of them.

3 Some numerical results and analysis

3.1 Set up of simulation

We take the one dimensional human arterial tree with schematic representation from [35], see Figure
3.1 for details. It represents the main systemic arterial tree with great completeness, including the
aortic arch and the coronary network, the principal abdominal aorta branches as well as the cerebral
arterial tree. There are 103 segments in the arterial tree, indexed from 1 to 103, thus 103 one
dimensional fluid structure interaction models (2.2) coupled together at the junctions by (2.11). Each
of the 47 distal boundaries are described by one lumped parameter model (2.10). At the proximal
boundary of Ascending aorta 1 (1), a physiological flow rate over one heart beat of 0.8 second is
imposed as the boundary condition. The value of geometrical parameters including arterial segment
length and lumen diameter as well as the terminal resistance and compliance are set according to
the data presented in [35]. The parameter θ for the velocity profile is set to 9, leading to a more
physiological Womersley flow. Poisson coefficient ν = 0.5 represents an incompressible arterial wall.
Wall thickness h, Young modulus E, characteristic time T and characteristic angle φ are chosen the
same as in [27].

For physiological considerations, we are mainly interested in the blood flow rate and pressure at the
following 18 representative locations (8 in the cerebral arterial tree and 10 in the main arterial tree)
marked with circle in Figure 3.1: Right coronary RCA (96), Ascending aorta 2 (95), Left common
carotid (15), Left radial (22), Abdominal aorta A (28), Left external iliac (44), Right anterior tibial
(55), Right femoral (52), Thoracic aorta A (18), Right subclavian B, axillary, brachial (7), Middle
cerebral M1 (73), Right ant. cerebral A2 (76), Right ant. choroidal (100), Right post. cerebral 2 (64),
Basilar artery 2 (56), Right vertebral (6), Left internal carotid (16), Left ophthalmic (82).

We implement the solver for the coupled stochastic system (2.12) based on the deterministic solver
implemented in LifeV [1], a parallel library written in C++, for the one dimensional fluid structure
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Figure 3.1: Schematic representation of the human arterial tree, taken from [35]. A: main systemic
arterial tree. B: detail of the aortic arch and the coronary network. C: detail of the principal abdominal
aorta branches. D: blown-up schematic of the detailed cerebral arterial tree, connected via the carotids
(segments 5 and 15) and the vertebrals (segments 6 and 20) to the main arterial tree. R: right; L: left.

interaction model of the human arterial tree. The spatial and temporal discretization are specified
as 2 mesh elements for 1 centimeter and 2 milliseconds per time step, respectively. Piecewise linear
polynomial functions are used as the finite element bases. The output of blood flow rate and pressure
is taken in the time interval of the sixth heart beat (4.0 - 4.8 seconds), when the simulation reaches a
relatively stable periodic state. Although the discretization has been rather crude in order to reduce
the computational time, it is fine enough to capture the right wave propagation phenomena accurately
compared to a finer discretization presented in [27]. It takes around 25 minutes to run the simulation
for six heart beats by 16 processors (Intel Xeon Nehalem 2.66 GHz). Thanks to the non-intrusive
property of the stochastic collocation method, we can run the stochastic simulation at each random
realization or collocation node in a complete parallel structure. For instance, it takes around 50 hours
to run the stochastic simulations with the second level of interpolation for 10 random variables or the
first level of interpolation for 103 random variables by 10×16 processors.

3.2 One dimensional parametric uncertainty

The boundary conditions - prescribed physiological flow rate Q(t) and terminal resistance at differ-
ent locations R(location), the geometrical parameter - reference area of the arterial wall A0(x), the
physical parameter - Young modulus E(x) and many other parameters, are different among people
of different ages, sizes, genders and other factors. Even for the same person, these parameters may
vary according to the work effort, healthy state, etc. In this section we study independently the
uncertainty effect of these parameters to the blood flow and pressure wave propagation with differ-
ent degrees of uncertainties. We first define the a posteriori error of the statistics (expectation and
standard deviation) approximated by the stochastic collocation method in level l = q −K (2.17) as

error(El[f ]) =
||E[Sq+1f ]− E[Sqf ]||

||E[Sq+1f ]||
, error(Sl[f ]) =

||S[Sq+1f ]− S[Sqf ]||
||S[Sq+1f ]||

, (3.1)

where the norm ||v|| is space and time averaged value of the quantity v.
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Figure 3.2: Imposed physiological flow rate for one heart beat (left), expectation with deformation by
standard deviation of flow rate and pressure at the locations 28 and 15 during the sixth heart beat
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Figure 3.3: The dependence of pressure (left) and flow rate with respect to the random variable X
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Figure 3.4: The dependence of pressure with respect to different random variables X accounting for
the uncertainties of the parameters area A0 (left), resistance R (middle) and Young modulus E (right)

The prescribed physiological flow rate for one heart beat is displayed on the left of Figure 3.2,
which is randomized by a log-normal distributed random variable X(ω) = exp(µe + σvY (ω)) (2.13)
with µe = 0.01, σv = 0.1 and Y follows standard normal distribution, see Figure 2.1. The statistics are
computed via (2.20) and (2.22). The expectation E[·] and expectation with deformation by standard
deviation E[·]−S[·] and E[·]+S[·] of the flow rate and the pressure at the location of Abdominal aorta A
(28) and Basilar artery 2 (58) are shown in Figure 3.2, from which we can observe that both quantities
display some uncertainty effect due to the prescribed random flow rate and it has a relatively larger
impact on the pressure than on the flow rate at both locations. Figure 3.3 depicts the dependence
of pressure at all the locations and flow rate at two representative locations (magnitude is different
at different locations), from which we can tell that the pressure and flow rate increase linearly with
respect to the random variable X, which implies that in order to obtain accurate first (expectation)
and second (variance) moments of the output, we only need a small level of interpolation by the
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Figure 3.5: The dependence of flow rate with respect to different random variables X accounting for
the uncertainties of the parameters area A0 (left), resistance R (middle) and Young modulus E (right)

stochastic collocation method, which is verified from the relative error in Table 3.1, i.e. the error of
the second level of interpolation is just slightly smaller than that of the first level of interpolation. 3

parameter flow rate Q area A0 resistance R Young modulus E
level l 1 2 1 2 1 2 3 1 2 3

error(El[Q]) 0.012 0.008 0.078 0.048 0.013 0.011 0.007 11.687 3.186 0.422
error(Sl[Q]) 0.317 0.236 3.218 2.356 1.469 0.226 0.165 92.540 39.088 8.959
error(El[P ]) 0.003 0.002 0.011 0.007 0.003 0.003 0.002 1.677 0.492 0.075
error(Sl[P ]) 0.068 0.051 0.656 0.438 0.082 0.025 0.020 42.766 15.812 2.565

Table 3.1: A posteriori error of the statistics (3.1) for different parameters in different levels (×10−3)

As for the geometrical parameter A0, terminal resistance R and Young modulus E, we use
(µe = 0.01, σv = 0.1, 1/SNR ≈ 10%), (µe = 0.0625, σv = 0.25, 1/SNR ≈ 25.4%), (µe = 0.25, σv =
0.5, 1/SNR ≈ 53.3%), respectively, to distinguish the different degrees of uncertainties in (2.13). The
dependence of pressure at all the locations and flow rate at some representative locations with respect
to different uncertainties are shown in Figure 3.4 and 3.5. It is quite evident that all these quantities
display nonlinear dependence on the uncertainties with high stochastic regularity. In particular, the
pressure decreases as the area of the lumen increases and becomes more flat when the area becomes
large enough, which is in accordance with physiological flow. On the other hand, the pressure increases
as both the resistance and Young modulus increase, and start to slightly decrease when the Young
modulus becomes large enough. Different from the pressure, the flow rate depends on the uncertainty

3From numerical perspective, we can see that it is sufficient for the first level of interpolation to compute the statistics
of both the flow rate Q and the area A0 with uncertainty in a small range (1/SNR ≈ 10%) since the error in the second
level is not quite different from that in the first level for all the four statistics E[Q], S[Q],E[P ], S[P ]. In contrast, for
a relatively large range of uncertainty for resistance (1/SNR ≈ 25.4%), the first level of interpolation is still sufficient
for the first moment (expectation E[Q],E[P ]) while the second level of interpolation is needed to have apparently more
accurate second moment (standard deviation S[Q], S[P ]). When the range of uncertainty is very large, as for Young
modulus (1/SNR ≈ 53.3%) with high non-linearity, we need high level of interpolation to evaluate accurately both the
expectation and standard deviation as can be seen in Table 3.1 that the error between different levels of interpolation
is far from each other for all the statistics.
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in a distinct manner in different locations of the arterial tree for all the parameters as can be observed
in Figure 3.5. This is verified from the value of the error (×10−3) in Table 3.1, where the error of
expectation and standard deviation of the flow rate Q is larger than that of the pressure P with the
same level of interpolation for all the parameters.
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Figure 3.6: Expectation E and expectation biased by standard deviation E− S and E+ S of flow rate
Q and pressure P at 10 representative locations in the main systemic arterial tree

3.3 Moderate dimensional parametric uncertainty

There are many different uncertainties from various sources entering into the coupled hyperbolic
system (2.6), (2.9) and (2.10). For a systematic study of their importance, we parametrize them at
first and conduct the global sensitivity analysis via (2.23). More specifically, we consider the following
uncertainties:

1. Geometrical parameters: in our one dimensional model, we keep the length of each segment as a
deterministic value to retain the geometry of the arterial tree and only consider the reference area
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Figure 3.7: Expectation E and expectation biased by standard deviation E− S and E+ S of flow rate
Q and pressure P at 8 representative locations in the cerebral arterial tree

A0 of the lumen as the uncertain parameter; we incorporate the uncertainty of wall thickness h
into the elastic and viscoelastic term;

2. Mathematical and physical parameters: we randomize the blood density ρ and viscosity µ to
account for the convection acceleration and wall friction effects, as well as Young modulus E
and characteristic time T to account for the elastic and viscoelastic effects of the arterial wall
(Poisson coefficient ν, wall thickness h and the characteristic angle φ in (2.5) are incorporated
via E and T in each term);

3. Parameters from boundary conditions: the uncertainties arising from the prescribed flow rate Q
at the proximal boundary of Ascending aorta 1 (1), the resistance R and the capacitance C in
the lumped parameter model for the outflow boundary condition are taken into account;

4. External source or force term: we also consider the external pressure Pext and the venous
pressure Pv as the sources of uncertainties.

In order to distinguish the importance or impact of these uncertainties to the solution of the
stochastic system (2.12), we parametrize them with the same signal-to-noise ratio via (2.13). 4

4For the sake of computational effort, we take µe = 0.01, σv = 0.1 to obtain more accurate evaluation of the second
statistical moment (e.g. variance, main effect in (2.23)) with small level of interpolation. Moreover, a small perturbation
of these parameters will retain the mathematical property of the hyperbolic system. The Galerkin-Hermite quadrature

14



location/parameter ρ µ Pv Pext Q R C T E A0

Right coronary RCA 0.014 0.023 6.160 0.008 66.106 21.027 0.008 0.000 1.153 3.882
Ascending aorta 2 0.000 0.000 0.003 0.000 99.029 0.003 0.000 0.000 0.001 0.001
Left common carotid 1.478 0.037 1.524 1.564 83.080 0.378 0.002 0.003 0.375 10.889
Left radial 0.798 0.023 4.901 0.006 81.959 8.073 0.010 0.001 0.992 0.762
Abdominal aorta A 0.001 0.020 2.424 0.004 88.786 7.160 0.004 0.000 0.364 0.742
Left external iliac 0.532 0.472 1.319 0.032 88.541 0.026 0.003 0.001 0.070 8.199
Right anterior tibial 5.800 0.017 6.678 0.004 48.924 0.263 0.006 0.002 0.890 32.780
Right femoral 4.034 0.033 4.218 0.002 63.342 0.568 0.004 0.001 0.225 24.624
Thoracic aorta A 0.012 0.007 1.431 0.001 92.374 4.845 0.002 0.000 0.214 0.958
Right subclavian B 0.326 0.023 0.371 0.001 98.266 0.097 0.001 0.000 0.186 0.600

Middle cerebral M1 5.127 0.037 7.668 0.037 48.197 0.441 0.005 0.002 0.994 32.178
Right ant. cerebral A2 0.373 0.037 8.081 0.017 69.693 17.358 0.008 0.002 1.041 0.051
Right ant. choroidal 0.918 0.033 7.996 0.011 71.901 12.751 0.008 0.002 1.063 1.447
Right post. cerebral 2 1.012 0.032 7.994 0.013 71.763 12.424 0.008 0.002 1.070 1.746
Basilar artery 2 0.078 0.106 19.926 1.014 42.325 28.395 0.002 0.022 0.232 0.216
Right vertebral 0.017 0.122 21.231 1.050 39.545 30.231 0.000 0.088 0.035 0.061
Left internal carotid 2.535 0.178 2.383 3.642 73.195 1.230 0.010 0.013 1.595 13.718
Left ophthalmic 4.938 0.021 8.601 0.014 51.741 1.123 0.006 0.010 1.180 26.415

Table 3.2: Sensitivity analysis: main effect of different parameters to flow rate Q at 18 locations (%)

location/parameter ρ µ Pv Pext Q R C T E A0

Right coronary RCA 0.051 0.049 6.576 0.071 62.169 22.661 0.007 0.000 1.236 5.541
Ascending aorta 2 0.086 0.046 6.496 0.070 62.034 21.776 0.007 0.001 1.296 6.661
Left common carotid 0.083 0.046 6.845 0.068 62.171 21.443 0.007 0.000 1.232 6.479
Left radial 0.048 0.072 5.649 0.087 61.563 28.581 0.008 0.000 0.964 1.124
Abdominal aorta A 0.063 0.044 6.817 0.071 62.062 22.567 0.007 0.000 1.180 5.544
Left external iliac 0.030 0.052 6.935 0.073 62.488 22.883 0.007 0.000 1.071 4.690
Right anterior tibial 0.892 0.111 4.641 0.125 52.807 36.620 0.006 0.001 0.838 1.484
Right femoral 0.002 0.059 6.542 0.079 62.634 24.732 0.007 0.000 1.016 3.067
Thoracic aorta A 0.082 0.046 6.763 0.069 62.152 21.556 0.007 0.000 1.240 6.481
Right subclavian B 0.063 0.047 7.385 0.069 62.502 21.195 0.007 0.000 1.104 5.820

Middle cerebral M1 0.010 0.043 7.444 0.217 62.326 23.554 0.007 0.001 1.011 3.365
Right ant. cerebral A2 0.103 0.058 7.140 0.135 60.341 28.427 0.007 0.001 0.911 0.333
Right ant. choroidal 0.074 0.061 7.161 0.100 60.791 27.859 0.007 0.001 0.919 0.547
Right post. cerebral 2 0.146 0.066 7.104 0.110 59.873 28.980 0.007 0.001 0.907 0.181
Basilar artery 2 0.001 0.057 6.483 0.101 62.221 25.149 0.007 0.001 1.083 3.080
Right vertebral 0.041 0.048 7.000 0.078 62.399 22.382 0.007 0.000 1.140 5.158
Left internal carotid 0.046 0.051 6.909 0.058 62.405 22.319 0.007 0.000 1.142 5.339
Left ophthalmic 0.116 0.076 8.085 0.055 60.976 26.420 0.006 0.001 0.905 0.420

Table 3.3: Sensitivity analysis: main effect of different parameters to pressure P at 18 locations (%)

Expectation (E[·]) and expectation biased by standard deviation (E[·] − S[·] and E[·] + S[·]) of
the blood flow rate and pressure is shown at the 18 representative locations in Figure 3.6 for the
systemic main arterial tree and Figure 3.7 for the cerebral arterial tree. From both these two figures,
we observe a good overall agreement in both wave shape and amplitude of the blood flow rate and
pressure between the expectation of our simulation and the model prediction in [35], which is validated
in high accordance with clinical averaged measurements. In particular, all the primary and secondary

abscissas are used as the collocation nodes for the stochastic collocation method with Smolyak sparse grid interpolation
formula (2.17), where K = 10 and we use the first (q −K = 1) and second (q −K = 2) levels of interpolation with 21
and 241 collocation nodes respectively to compute the statistics (2.20) (2.22) and sensitivity (2.23).

The relative error as defined in (3.1) between the two levels of interpolation for the statistics of E[Q], S[Q],E[P ], S[P ]
are 2.29%, 8.69%, 0.38%, 1.59%, respectively, which are small enough even for the second moment of standard deviation.
The small relative error implies that the first level of interpolation is sufficient to evaluate the statistics and also the
second moment of main effect (2.23). We note that all the results we discuss below are evaluated from the second level
of interpolation.
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wave shape features of the blood flow from averaged measurement are well captured by our simulations.
Beside the significant similarity between the measurement and the simulation, as both observed

in [35] and our work, another important observation from our stochastic simulation is that large
variation of the blood flow occurs near the peak of flow wave during the systolic period (see, e.g.,
Ascending aorta 2 (95), Thoracic aorta A (18), Abdominal aorta A (28)), while the variation of
pressure is not that different during the whole heart beat at most of the locations (e.g. Left radial
(22), Left common carotid (15)). This observation is well verified from the measurements with also
similar amplitude of variation (see Fig. 4 and 5 in [35] for the corresponding specific locations) and
implies that the difference of blood flow and pressure wave propagation among different people arises
probably from the kind of uncertainties we are investigating.

We compute the main effect of each parameter to the blood flow rate and pressure averaged over
one heart beat at the 18 representative locations via the global sensitivity index in formula (2.23),
with the results (value in percent (%)) shown in Table 3.2 for flow rate and 3.3 for pressure, from
which we have the following observations:
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Figure 3.8: Time dependent main effect (global sensitivity index defined in (2.23)) over one heart beat
at 10 representative locations in the main systemic arterial tree
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Figure 3.9: Time dependent main effect (global sensitivity index defined in (2.23)) over one heart beat
at 8 representative locations in the cerebral arterial tree

1. From the main effect for both flow rate and pressure, we can see that the uncertainty arising from
the imposed flow rate Q at the inflow boundary (prescribed heart flow rate) dominates all the
other uncertainties as for the overall impact to the simulation results. In particular, it accounts
for almost all the effect (around 99.0%, 98.3% and 92.4%) to the uncertainty of flow rate at the
Ascending aorta 2 (95), Right subclavian B (7) and Thoracic aorta A (18), respectively, being
the locations very near to the heart;

2. Moreover, the effect of uncertainty arising from the imposed heart flow rate is more evident to
the systemic main arterial tree compared to the cerebral arterial tree, which can be observed
from the value 39.5% location of the branching Right vertebral (6), although it is also very near
the heart. It plays also a relatively small role in the most distal arterial segment after many
branching, Right anterior tibial (55), taking around 48.9% effect;

3. However, this uncertainty does not have so evident and different effects on the pressure (staying
around 60% for both the systemic main arterial tree and the cerebral arterial tree, with an
exception 52.8% from the most distal arterial segment Right anterior tibial) as that on the flow
rate. In fact, all the uncertainties display a relatively larger variation at different locations for
the flow rate than for the pressure, as can be observed quite evidently from Table 3.2 and 3.3;

4. The next most important source of uncertainty for the flow rate are different at different lo-
cations, for instance, the reference area A0 for the distal and relatively long arterial segments
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including Right anterior tibial (55), Right femoral (52), Middle cerebral M1 (73) and Left oph-
thalmic (82); resistance R for the distal arterial segment directly coupled with lumped parameter
model such as Right coronary RCA (96), or coupled indirectly but with many lumped parameter
models, such as Right vertebral (6) and Basilar artery 2 (56);

5. The next most important source of uncertainty for the pressure, in both the systemic main
arterial tree and the cerebral arterial tree is resistance R, followed by venous pressure Pv and
then reference area A0. All the other sources of uncertainty play very small role in the influence
of pressure, with general decreasing order: Young modulus E > density ρ > external pressure
Pext > viscosity µ > capacitance C > characteristic time T ;

6. As for the uncertainty arising from physical parameters ρ, µ,E, T , they are not so important as
the parameters analyzed above for both flow rate and pressure. Relatively speaking, uncertainty
of density for the convective acceleration effect at the distal and long arterial segments is evident;
Young modulus for the elastic term is also evident at these places and is more important than
characteristic time accounting for the viscoelastic term.

In order to have a closer look at the sensitivity of flow rate with respect to all of the uncertainties
at different time of one heart beat, we compute the variation in time of the sensitivity (time dependent
main effect) of different sources of uncertainties at different locations. We pick the most important
source of uncertainty in general according to Table 3.2, e.g. imposed heart flow rate Q, at the most
evident location, e.g. Ascending aorta 2 (95), and then the second most important source at the
second most evident location and so on. Following this order we plot the Figure 3.8 and 3.9 for the
time dependent main effect, which delivers more information about the uncertainty impact at different
time. More specifically, we can draw the following conclusions:

1. The main effect (global sensitivity in time) of most of the parametric uncertainties varies in a
large range within one heart beat. The variation of the main effect of some uncertainties is quite
different or even opposite for flow rate and pressure, e.g. resistance R at Right coronary RCA
(96) or reference area A0 at Middle cerebral M1 (73), and changes in a similar way for some
other uncertainties, e.g. Young modulus E at Right post.cerebral 2 (64) or venous pressure Pv

at Left radial (22);

2. The large variation of the main effect occurs at some common time, especially at the beginning
of systolic period and end of the diastolic period, e.g. flow rate Q at Ascending aorta 2 (95) or
characteristic time T at Thoracic aorta A (18), or at the time of maximum or minimum flow
rate during the systolic and diastolic periods, e.g. fluid density ρ at Left ophthalmic (82) or
fluid viscosity µ at Right ant. cerebral A2 (76);

3. The evident main effect of most of the uncertainties span in a relatively large time range over
one heart beat, e.g. flow rate Q at Ascending aorta 2 (95) or Young modulus E at Left common
carotid (15), while for some other few uncertainties, it restricts at a small local time with peaks,
e.g. characteristic time T at Thoracic aorta A (18) or fluid viscosity µ at Right ant. cerebral
A2 (76).

4. In general, even though some uncertainties dominate the others, as observed from the main
effect with averaged time in Table 3.2 and 3.3, from the variation of the main effect in time we
can see that quite a few uncertainties play a near important role in an oscillating way. This
suggests that when considering impact of uncertainty at local time, it would be misleading to
overemphasize some uncertainties and neglect some others.

3.4 High dimensional parametric uncertainty

For systematic quantification of the impact of different uncertainties, it is reasonable to use the same
probability distribution for one uncertainty in the global arterial network. However, in order to
quantify some uncertainty arising from the same source but at different locations, it is more realistic
to employ independent random variables to characterize the uncertainty at each of the location. In
this section, we take two of the influential uncertainties for the blood pressure wave propagation (see
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Table 3.3), resistance R at the 47 different distal boundaries and cross section reference area A0 in the
103 different arterial segments of the schematic representation of the human arterial tree in Figure
3.1, and assign independent random variables to each of them at different locations to study locally
the impact of uncertainties.

location/order 1st 2nd 3rd 4th 5th 1-5
Right coronary RCA 98.010 (96) 0.579 (34) 0.385 (36) 0.383 (38) 0.288 (26) 99.645
Ascending aorta 2 33.864 (99) 22.409 (98) 20.864 (96) 6.975 (34) 4.649 (36) 88.762
Left common carotid 16.781 (34) 11.166 (36) 11.142 (38) 9.760 (78) 8.225 (26) 57.074
Left radial 96.782 (22) 0.923 (34) 0.613 (36) 0.612 (38) 0.459 (26) 99.389
Abdominal aorta A 35.757 (34) 23.834 (36) 23.802 (38) 6.727 (26) 2.027 (33) 92.147
Left external iliac 64.780 (47) 14.886 (48) 4.873 (34) 4.369 (49) 3.291 (38) 92.198
Right anterior tibial 92.143 (55) 2.066 (34) 1.403 (38) 1.395 (36) 1.044 (54) 98.051
Right femoral 65.185 (54) 19.086 (55) 4.749 (34) 3.213 (38) 3.200 (36) 95.434
Thoracic aorta A 28.948 (34) 19.304 (36) 19.281 (38) 13.910 (26) 4.030 (33) 85.472
Right subclavian B 47.514 (8) 38.477 (11) 4.160 (34) 2.767 (36) 2.761 (38) 95.680

Middle cerebral M1 45.862 (75) 44.636 (74) 2.839 (34) 1.886 (36) 1.881 (38) 97.103
Right ant. cerebral A2 98.004 (76) 0.569 (34) 0.378 (36) 0.377 (38) 0.283 (26) 99.610
Right ant. choroidal 97.686 (100) 0.670 (34) 0.445 (36) 0.443 (38) 0.334 (26) 99.577
Right post. cerebral 2 97.666 (64) 0.670 (34) 0.445 (36) 0.444 (38) 0.334 (26) 99.560
Basilar artery 2 34.116 (65) 34.053 (64) 12.039 (58) 12.039 (57) 1.273 (34) 93.520
Right vertebral 34.364 (65) 34.298 (64) 12.124 (58) 12.124 (57) 1.166 (78) 94.075
Left internal carotid 23.796 (78) 10.593 (102) 10.019 (34) 8.436 (75) 8.303 (76) 61.147
Left ophthalmic 95.852 (82) 1.232 (34) 0.819 (36) 0.817 (38) 0.615 (26) 99.336

Table 3.4: The largest five values and their summation of main effect (value in percent (%)) of flow
rate with respect to resistance from their corresponding boundaries in bracket (·) at 18 locations

location/order 1st 2nd 3rd 4th 5th 1-5
Right coronary RCA 29.782 (34) 19.783 (36) 19.725 (38) 14.823 (26) 4.135 (33) 88.248
Ascending aorta 2 30.395 (34) 20.190 (36) 20.131 (38) 15.127 (26) 4.219 (33) 90.063
Left common carotid 30.390 (34) 20.186 (36) 20.127 (38) 15.129 (26) 4.219 (33) 90.051
Left radial 24.430 (22) 22.267 (34) 14.790 (36) 14.747 (38) 11.115 (26) 87.350
Abdominal aorta A 30.959 (34) 20.557 (36) 20.491 (38) 14.091 (26) 4.251 (33) 90.350
Left external iliac 30.371 (34) 20.597 (38) 20.478 (36) 13.650 (26) 4.133 (33) 89.229
Right anterior tibial 53.200 (55) 12.236 (34) 8.317 (38) 8.264 (36) 6.540 (54) 88.556
Right femoral 29.180 (34) 19.806 (38) 19.688 (36) 13.052 (26) 3.972 (33) 85.698
Thoracic aorta A 30.403 (34) 20.194 (36) 20.134 (38) 15.138 (26) 4.221 (33) 90.091
Right subclavian B 30.117 (34) 20.007 (36) 19.952 (38) 14.996 (26) 4.179 (33) 89.252

Middle cerebral M1 29.744 (34) 19.757 (36) 19.699 (38) 14.814 (26) 4.129 (33) 88.143
Right ant. cerebral A2 24.067 (76) 22.659 (34) 15.050 (36) 15.005 (38) 11.286 (26) 88.067
Right ant. choroidal 23.451 (34) 21.853 (100) 15.578 (36) 15.532 (38) 11.681 (26) 88.094
Right post. cerebral 2 27.227 (64) 21.695 (34) 14.411 (36) 14.369 (38) 10.805 (26) 88.506
Basilar artery 2 29.461 (34) 19.569 (36) 19.512 (38) 14.668 (26) 4.090 (33) 87.300
Right vertebral 30.179 (34) 20.047 (36) 19.989 (38) 15.023 (26) 4.190 (33) 89.429
Left internal carotid 30.228 (34) 20.079 (36) 20.020 (38) 15.053 (26) 4.197 (33) 89.576
Left ophthalmic 24.635 (34) 17.590 (82) 16.356 (36) 16.308 (38) 12.280 (26) 87.168

Table 3.5: The largest five values and their summation of main effect (value in percent (%)) of pressure
with respect to resistance from their corresponding boundaries in bracket (·) at 18 locations

We assume that the resistance at the mth distal boundary is randomized by (2.13) as

Rm(ω) = exp(µe + σvYm(ω))Rm, 1 ≤ m ≤M, (3.2)

where Ym, 1 ≤ m ≤M are independent random variables obeying standard distribution.
The largest five values of the main effect 5 and their total weight (in percent (%)) is shown in

5We choose µe = 0.01, σv = 0.1 for the sake of computational effort and accurate evaluation of the statistics and
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Table 3.4 and 3.5, from which we can observe that the largest impact of the uncertainty comes from
the nearest distal boundary for the flow rate, e.g. the impact to Right anterior tibial (55) comes from
its distal boundary, while it comes mostly from the distal boundaries in the middle of the arterial tree
(34, 36, 38, 33) for the pressure. In particular, the uncertainty of resistance at the distal boundaries
of the coronary arterial tree (99, 98, 96) has a big impact for the Ascending aorta 2 (95) for flow
rate while it still comes from (34, 36, 38, 33) for pressure, which indicates that we need to model
this region with more detailed geometry and precise measurement in order to study the pressure wave
propagation.

location/order 1st 2nd 3rd 4th 5th 1-5
Right coronary RCA 45.498 (96) 13.333 (27) 9.516 (95) 4.743 (18) 4.091 (21) 77.181
Ascending aorta 2 77.616 (95) 7.039 (1) 5.138 (98) 1.907 (27) 1.225 (46) 92.925
Left common carotid 58.289 (16) 10.457 (12) 7.408 (15) 3.479 (69) 3.311 (68) 82.943
Left radial 89.126 (22) 2.912 (21) 2.443 (27) 1.362 (95) 0.994 (7) 96.837
Abdominal aorta A 15.811 (95) 10.886 (7) 10.786 (21) 8.570 (52) 8.570 (46) 54.623
Left external iliac 46.320 (46) 22.054 (49) 19.212 (48) 4.457 (44) 1.769 (47) 93.811
Right anterior tibial 92.292 (55) 6.218 (52) 0.329 (54) 0.318 (95) 0.181 (7) 99.338
Right femoral 33.939 (55) 32.890 (52) 29.903 (54) 0.629 (7) 0.566 (95) 97.927
Thoracic aorta A 25.131 (95) 13.627 (21) 12.261 (7) 8.885 (14) 4.138 (15) 64.042
Right subclavian B 32.805 (11) 29.928 (7) 26.728 (8) 2.912 (21) 1.692 (27) 94.065

Middle cerebral M1 48.828 (74) 48.447 (75) 0.820 (16) 0.479 (27) 0.325 (95) 98.898
Right ant. cerebral A2 75.245 (76) 4.403 (27) 3.530 (12) 3.005 (95) 2.095 (68) 88.277
Right ant. choroidal 91.213 (100) 2.504 (12) 1.562 (27) 1.069 (95) 0.604 (9) 96.953
Right post. cerebral 2 91.862 (64) 1.878 (27) 1.287 (95) 0.743 (21) 0.670 (18) 96.441
Basilar artery 2 27.970 (9) 18.040 (20) 15.745 (16) 15.338 (6) 15.088 (12) 92.181
Right vertebral 63.532 (6) 19.705 (20) 6.048 (9) 3.454 (16) 3.319 (12) 96.058
Left internal carotid 62.295 (16) 11.773 (12) 4.017 (69) 3.794 (68) 3.604 (74) 85.483
Left ophthalmic 98.458 (82) 0.491 (16) 0.267 (27) 0.180 (95) 0.096 (9) 99.492

Table 3.6: The largest five values and their summation of main effect (value in percent (%)) of flow
rate with respect to reference area from their corresponding boundaries in bracket (·) at 18 locations

location/order 1st 2nd 3rd 4th 5th 1-5
Right coronary RCA 22.474 (27) 16.051 (95) 8.012 (18) 7.522 (96) 7.005 (21) 61.064
Ascending aorta 2 24.309 (27) 16.979 (95) 8.655 (18) 7.586 (21) 7.217 (7) 64.745
Left common carotid 24.982 (27) 16.981 (95) 8.859 (18) 7.841 (21) 7.411 (7) 66.074
Left radial 44.965 (22) 13.821 (21) 12.215 (27) 7.231 (95) 3.974 (7) 82.208
Abdominal aorta A 22.207 (95) 10.407 (21) 9.691 (7) 8.295 (18) 8.071 (9) 58.672
Left external iliac 23.361 (95) 12.058 (21) 11.785 (7) 9.017 (18) 7.659 (14) 63.880
Right anterior tibial 50.087 (55) 40.073 (52) 2.088 (95) 2.007 (54) 1.093 (7) 95.347
Right femoral 27.526 (52) 15.743 (95) 8.293 (7) 8.136 (21) 6.052 (18) 65.751
Thoracic aorta A 25.402 (27) 17.153 (95) 8.025 (21) 7.539 (7) 7.500 (18) 65.618
Right subclavian B 26.990 (27) 17.276 (95) 9.161 (18) 8.645 (21) 6.995 (9) 69.067

Middle cerebral M1 28.971 (16) 16.817 (27) 11.438 (95) 6.024 (18) 5.665 (9) 68.915
Right ant. cerebral A2 46.297 (76) 9.406 (27) 7.563 (12) 6.424 (95) 4.490 (68) 74.180
Right ant. choroidal 59.741 (100) 11.213 (12) 6.968 (27) 4.773 (95) 2.701 (9) 85.396
Right post. cerebral 2 63.271 (64) 8.232 (27) 5.648 (95) 3.260 (21) 2.936 (18) 83.346
Basilar artery 2 21.416 (27) 14.728 (95) 8.760 (21) 7.740 (7) 7.629 (18) 60.272
Right vertebral 23.829 (27) 16.475 (95) 10.724 (7) 8.473 (18) 8.384 (21) 67.885
Left internal carotid 24.066 (27) 16.355 (95) 8.579 (18) 7.691 (21) 7.295 (7) 63.987
Left ophthalmic 62.446 (82) 11.727 (16) 6.309 (27) 4.281 (95) 2.287 (9) 87.050

Table 3.7: The largest five values and their summation of main effect (value in percent (%)) of pressure
with respect to reference area from their corresponding boundaries in bracket (·) at 18 locations

sensitivity with small level of interpolation. By the main effect formula (2.23) and Smolyak sparse grid collocation
method (2.17) with the first level of interpolation q − K = 1, we compute main sensitivity at the 18 representative
locations with respect to each random resistance at the 47 distal boundaries.
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As for the uncertainty quantification with respect to reference area A0, we take the same numerical
design as for the resistance, leading to 103 independent random variables and 207 collocation nodes for
the first level of interpolation. Similar data are shown in Table 3.6 for flow rate and 3.7 for pressure,
from which we can see that the most important uncertainty for the flow rate at the representative
locations comes from the nearest arterial segment, e.g. the main effect with the largest value 98.5%
at Left ophthalmic (82) in the cerebral arterial tree is due to the uncertainty of the reference area of
the arterial segment itself. An interesting observation is that the five largest values of main effect of
the flow rate at the Abdominal aorta A (28) comes from the uncertainty of the reference area near
the heart (Ascending aorta 2 (95)) as well as at the four longest peripheral arterial segments - the
arms (7, 21) and legs (52, 46). At Left common carotid (15), the most important uncertainties lie
symmetrically at the near Internal carotid (16, 12) and far Ant. cerebral 1 (69, 68) in the cerebral
arterial tree as well as itself (15). The largest values of the main effect for the pressure concentrate
again at the few locations (27, 95, 18) close to the heart, i.e. a small change of the cross section area
of the large arteries near the heart leads to relatively large variation of pressure wave propagation in
the global arterial network.

4 Concluding remarks

In this work we presented a general framework for uncertainty quantification in the human arterial
network. We identified the main uncertainties arising from various sources and characterized them
by random variables following certain specific probability distributions. Based on a one dimensional
deterministic fluid structure interaction model (a system of nonlinear hyperbolic equation), we intro-
duced the stochastic model by incorporating many different kinds of uncertainties into blood flow in
arteries and its interaction with arterial walls in a human arterial network. One of the most efficient
stochastic computational methods - the stochastic collocation method with Smolyak sparse grid - was
applied to discretize the coupled stochastic hyperbolic system in stochastic space. In order to study
the impact of these uncertainties on the blood flow and pressure wave propagation, we provided sta-
tistical and sensitivity analysis by evaluating and interpreting the expectation, standard deviation as
well as the main effect accounting for global sensitivity.

Our method has been applied to analyze three different kinds of experiments: 1, one dimensional
parametric uncertainty to examine the stochastic regularity and nonlinearity of the solution with
respect to different uncertainties as well as the convergence analysis of the sparse grid stochastic col-
location method; 2, moderate dimensional parametric uncertainty to make a systematic study of the
impact of different uncertainties on the blood flow and pressure in some representative locations; 3,
high dimensional parametric uncertainty to highlight the correlation of different local arterial segments
for the impact of some uncertainty in the blood flow and pressure wave propagation. These exper-
iments, especially the second one, provide the first systematic uncertainty quantification in human
arterial network, with uncertainties arising from various sources and can be applied for more precise
experimental design and measurement.

There are several limitations in our work that we would like to point out: 1, the probability
distribution we used was assumed to be log-normal type independent of time and space, yet for
more physiological uncertainty quantification, we need to calibrate realistic probability distribution
according to more specific medical data; 2, the degree of uncertainty is restricted to be small with
noise-to-signal around 10% in order to have more accurate evaluation of statistics with the first level
of interpolation for high dimensional problems constrained by computational effort; 3, there are still
many other facts that we didn’t consider in our model, the arterial network being not as complete as
possible, large arteries with strong local flow field not being suitably described (the use of a fully 3D
model would be more appropriate in this case), etc. More research effort is needed to address these
limitations, for instance, how to apply the optimal control or optimization strategy to calibrate the
probability distribution for different uncertainties [14], how to reduce the stochastic computational
effort and increase the accuracy of the numerical solutions by taking full advantage of a small sample
of solutions and the structure of the stochastic manifold with reduced basis method [13].
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