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Abstract

We introduce a two-level preconditioner for the efficient solution of large scale saddle-point linear systems
arising from the finite element (FE) discretization of parametrized Stokes equations. This preconditioner
extends the Multi Space Reduced Basis (MSRB) preconditioning method proposed in [1]; it combines
an approximated block (fine grid) preconditioner with a reduced basis (RB) solver which plays the role
of coarse component. A sequence of RB spaces, constructed either with an enriched velocity formulation
or a Petrov-Galerkin projection, is built. Each RB coarse component is defined to perform a single
iteration of the iterative method at hand. The flexible GMRES (FGMRES) algorithm is employed to
solve the resulting preconditioned system and targets small tolerances with a very small iteration count
and in a very short time. Numerical test cases for Stokes flows in three dimensional parameter-dependent
geometries are considered to assess the numerical properties of the proposed technique in different large
scale computational settings.

Keywords: Preconditioning techniques, reduced basis method, finite element method, parametrized
Stokes equations, computational fluid dynamics
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1. Introduction

This work is concerned with the efficient numerical solution of parametrized saddle-point systems
arising from the FE discretization of partial differential equations (PDEs). We meet this kind of problems
in several contexts, e.g., in the mixed formulations of elliptic PDEs, incompressible elasticity, optimal
control problems for elliptic PDEs and incompressible fluid flow problems. Here we focus on parametrized
incompressible Stokes equations, describing viscous incompressible stationary flows in the limit Re→ 0,
where Re is the the flow Reynolds number. Denote by D ⊂ Rl, l ∈ N the parameter space and by
µ ∈ D a vector of parameters encoding physical and/or geometrical properties. The apex µ means that
a variable depends on the parameter µ. Given a µ−dependent domain Ωµ ⊂ Rd, d = 2, 3, such that,
for any µ ∈ D, ∂Ωµ = Γµ

out ∪ Γµ
in ∪ Γµ

w and Γ̊µ
out ∩ Γ̊µ

in = Γ̊µ
w ∩ Γ̊µ

in = Γ̊µ
out ∩ Γ̊µ

w = ∅, the Stokes equations
read 

−νµ∆~uµ +∇pµ = ~fµ in Ωµ

∇ · ~uµ = 0 in Ωµ

~u = ~gµD on Γµ
in

~u = ~0 on Γµ
w

−pµ~nµ + νµ
∂~uµ

∂~nµ
= ~gµN on Γµ

out,

(1)
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where (~uµ, pµ) are the velocity and pressure fields describing a fluid with viscosity νµ, respectively, while
~fµ encodes distributed sources. Problem (1) can be written under mixed form, yielding a noncoercive
variational problem, whose well-posedness is ensured according to the general theory on saddle-point
problems [2, 3].

Numerical methods based on (Petrov-)Galerkin projection onto a finite dimensional subspace, as the
FE or spectral element methods, are viable strategies for the numerical solution of (1), see e.g. [4, 5].
However, when they are employed, an inf-sup condition must be satisfied at the finite dimensional level
to ensure the well-posedness of the numerical problem. Such a condition poses strict constraints on the
choice of the FE spaces where the approximate solution of problem (1) is sought. In this paper, we
use an inf-sup stable FE couple of spaces, for instance those based on P2 − P1 (Taylor-Hood) polyno-
mial subspaces for the discretization of the velocity and pressure fields, respectively. The resulting FE
approximation yields the solution of a parametrized saddle-point linear system[

Dµ
h (Bµ

h )T

Bµ
h 0

] [
uµ
h

pµ
h

]
=

[
fµh
0

]
, (2)

of (possibly very large) dimension Nh, which is given by the sum of the velocity and pressure degrees of
freedom, see e.g. [5, 6].

A linear system involving a matrix of the form (2) occurs in many different contexts; in addition to
the Stokes equations, we recall optimal control for elliptic and incompressible fluid flows problems and
incompressible elasticity. Consequently, the numerical solution of this kind of linear systems has been
largely addressed over the years, and several techniques involving domain decomposition and multilevel
methods have been proposed, [7, 5]. Among these techniques, algebraic multgrid (AMG) methods have
demonstrated to be very efficient when a large number of unknowns is considered for the Stokes equa-
tions, see e.g. [8, 9, 10]. For further references on the topic we refer to [11, 12, 13].
Another important class of preconditioners for the Stokes equations is then given by block-preconditioners,
which are designed to explicitly exploit the block structure in (2). Let us start from the following fac-
torization of the saddle-point matrix:[

Dµ
h (Bµ

h )T

Bµ
h 0

]
= LµhD

µ
hU

µ
h =

[
INu 0

Bµ
h (Dµ

h )−1 INp

] [
Dµ
h 0

0 Sµ
h

] [
INu (Dµ

h )−1(Bµ
h )T

0 INp

]
(3)

where

Sµ
h = −Bµ

h (Dµ
h )−1(Bµ

h )T

is the Schur complement matrix, which plays an essential role in designing an efficient preconditioner
for the Stokes problem. The cost of inverting the blocks in (3) would be equivalent to invert the
Stokes matrix, therefore the approximated factorization L̃µh D̃

µ
h Ũ

µ
h ≈ L

µ
hD

µ
hU

µ
h , is employed in practice,

where two surrogate operators D̃µ
h and S̃µ

h are used to replace Dµ
h and Sµ

h in (3), respectively. This
block-preconditioning strategy has been particularly exploited in the field of fluid dynamics and optimal
control problems. Relevant examples are the least-squares commutator (LSC) preconditioner [14, 15], the
pressure-convection-diffusion preconditioner [16, 17] and the pressure mass matrix (PMM) preconditioner
[18], recent works on this topic include [19, 20]. Finally, SIMPLE type preconditioners are obtained from
(3), where Dµ

h is substituted with its diagonal when building the Schur complement and for the update
of the velocity, see e.g. [21, 22, 23, 24]. As a matter of fact, SIMPLE preconditioners are particularly
effective when dealing with problems diagonally dominant, as in the case of unsteady problems with
relative small timesteps. Finally, we point to [25, 26, 27] for a broad review on numerical methods for
saddle-point systems.
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All the methods discussed are developed for a single instance of the parameter and do not take advan-
tage of any underlying µ-dependence of the PDE in case a parameter-dependent problem is considered.
In this paper, we are interested in the efficient solution of (2) for many (say, hundreds or thousands)
instances of µ. This may be an issue, for instance, when dealing with uncertainty quantification, sensitiv-
ity analysis or PDE-constrained optimization, to mention some remarkable scenarios. With this goal in
mind, in this paper we develop a two-level preconditioner which exploits the underlying parametrization
of the Stokes equations by means of a coarse component based on reduced order modeling (ROM) tech-
niques. This latter is aimed at speeding the iterative solution of the FE linear system and is combined
with a fine grid preconditioner which can be chosen as any preconditioner at disposal.

In the last decade, ROM techniques emerged as a convenient strategy when dealing with parametrized
problems; several methods to address the approximation of parametrized (Navier-)Stokes equations have
been designed, see e.g. [28, 29, 30, 31, 32]. In this work, we exploit a particular case of projection-based
ROM techniques, the RB method, to build a coarse correction in a two level preconditioner for the
efficient solution of large-scale parameter-dependent Stokes equations.

The RB method aims at computing an approximated (reduced) solution of the parameter dependent
PDE as a linear combination of few, global problem-dependent, basis functions. These latter are obtained
from a set of FE solutions (or snapshots) corresponding to different values of the parameters. Such a
method is built in two phases. In the offline phase, we construct a RB space of dimension N � Nh whose
basis is obtained by (properly orthonormalized) linear combinations of FE solutions of the parametrized
PDE. In the online phase, the RB problem is obtained by either Petrov-Galerkin, see [33, 34], or enriched
Galerkin projection, resulting in a small linear system which is solved at the place of the large FE
problem, usually with direct methods.A crucial assumption that allows to speed up the RB method is
made by requiring that the matrix and the right hand side in (2) depend affinely on the parameter,
allowing to assemble the RB problem independently on the FE dimension. Should this assumption not
be verified, the Empirical Interpolation Method (EIM) or Discrete EIM (DEIM) can be used to construct
an approximated affine decomposition, which however can lead to a critical overhead during both the
offline and online phases. For an extensive review of RB methods for parameter dependent PDEs see,
e.g., [35, 36].

The RB method for parametrized elliptic PDEs has been used to define the coarse correction in
the Multi Space Reduced Basis MSRB preconditioning strategy proposed in [1], and further analyzed
in [37]. Such a technique relies on the multiplicative combination of a fine grid, nonsingular operator
Pµ
h ∈ RNh×Nh with an iteration (k-)dependent coarse correction Qµ

Nk
∈ RNh×Nh built upon the RB

method. The preconditioner exploits the parameter dependence of the PDE by projecting the error
equation at step k onto a k-dependent RB space tailored to provide a very accurate approximation of the
k-th error equation. As a result, the number of iterations required by the iterative solver (in our case the
flexible GMRES [38]) to reach a desired accuracy is very small. The MSRB preconditioning technique has
demonstrated to be particularly helpful when dealing with strongly nonaffine problems, since it depends
in a milder way (if compared to standards RB methods) on the approximated affine decomposition
constructed with (D)EIM. Also in this work we provide numerical evidence of the advantages of using
the MSRB preconditioners instead of standard RB methods when the problem is strongly nonaffine.

The main contribution of our paper consists in extending the MSRB preconditioning framework to
saddle-point problems. To this aim, the structure of the preconditioner for the Stokes problem is as
the one for elliptic problems, that is a multiplicative combination of a fine component and an iteration-
dependent RB coarse component, where the latter is trained to accurately solve the error equation
appearing at iteration k of FGMRES to speed up the solution of the original linear system (2). The
saddle-point nature of the Stokes FE matrix prevents from using the RB coarse components developed
in [1] for the MSRB preconditioner. Hence, in this paper, different aspects are investigated to extend
the MSRB preconditioning framework to the Stokes equations, dealing with i) the construction of RB
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coarse components suited when facing a saddle-point system, ii) the well-posedness of the resulting
preconditioner and iii) the practical implementation algorithms to construct the preconditioner.
Finally, the MSRB preconditioner is employed on problem of practical interest. We assessed numerically
the performance by considering the 3-D Stokes equations defined in parameter-dependent domains, for
which a mapping from a reference domain is not necessarily known analytically. We employ the PMM
predconditioner as fine component Pµ

h for the construction of the MSRB preconditioner and we compare
the results obtained with the ones computed by using the PMM preconditioner alone. This allows us
to quantify the computational gain resulting by combining the RB coarse component with the PMM
preconditioner. We highlight that any known preconditioner can be employed as fine component; we
choose the PMM preconditioner since it is one of the most popular and credited preconditioners used
for solving the Stokes FE linear system, thanks to the spectral properties of the preconditioned FE
matrix. Secondly, we consider a patient-specific geometry of the carotid bifurcation and compare with
the standard RB method for the Stokes equations. The underlying complex computational domain and
parametrization don’t allow for an affine decomposition of the FE matrix and right hand side. On
the other hand, DEIM is used to build an approximated affine decomposition, which, however, strongly
affects the speed up gained with the RB method. On the other hand, the MSRB preconditioner is shown
to depend in a milder way on the approximated affine decomposition, providing a significantly improved
performance compared to the standard RB method.

The structure of the paper is as follows. In Section 2 we introduce the Stokes equations, their FE
approximation and the methods required to solve the saddle-point FE linear system (2) and in Section
3 we recall the RB method for the Stokes equations. In Section 4 we present in a general setting
the MSRB preconditioner and in Section 5 we build the MSRB preconditioner for the parametrized
Stokes equations, relying on either a PG-RB or an enriched G-RB coarse correction and highlighting
the assumptions required to guarantee the well-posedness of the resulting preconditioner operator. In
Section 6 we outline the algorithmic procedures employed to build the MSRB preconditioner and in
Section 7 we present numerical results obtained with the MSRB preconditioner. Finally, in Section 8 we
draw some conclusions and we report in AppendixA the details on how to construct a stable RB Stokes
problem, for those readers less familiar with this topic.

For the sake of notation, hereon we denote scalar field functions by lower case letters, as a(~x) ∈ R,
vector field functions with an arrow, as ~a(~x) ∈ Rd, for d > 1, algebraic vectors by bold lower case letters,
as a ∈ Rn, and matrices by bold capital letters, as A ∈ Rn×n. Moreover, given a symmetric and positive
definite matrix A ∈ Rn×n, we denote by ‖ · ‖A the norm and by (·, ·)A the scalar product defined as

‖a‖A =
√
aTAa ∀a ∈ Rn, (a,b)A = aTAb ∀a, b ∈ Rn.

2. Parametrized Stokes equations: settings and preliminaries

In this section we introduce the weak formulation of the Stokes equations (1), together with the
resulting FE approximation. We introduce a lifting function ~rµ~gD ∈

(
H1(Ωµ)

)d and the following µ-
dependent spaces

V µ =
{
~v ∈

(
H1(Ωµ)

)d
: ~v
∣∣
Γµ
w

= ~0, ~v
∣∣
Γµ
in

= ~0
}
, Qµ = L2(Ωµ),

equipped with scalar products (and the corresponding induced norms) (·, ·)V µ = (·, ·)H1
0 (Ωµ) and (·, ·)Qµ =

(·, ·)L2(Ωµ). For a given µ ∈ D, the weak formulation of problem (1) reads: find (~uµ, pµ) ∈ V µ × Qµ
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such that {
aµ(~uµ, ~v) + bµ(~v, pµ) = fµ(~v)− aµ(~rµ~gD , ~v) ∀~v ∈ V µ

bµ(~uµ, q) = −bµ(~rµ~gD , q) ∀q ∈ Qµ,
(4)

where for any ~u,~v ∈ V µ and q ∈ Qµ we define the forms in (4) as

aµ(~u,~v) =

∫
Ωµ

νµ∇~u : ∇~vdΩµ, bµ(~v, q) = −
∫

Ωµ

q∇ · ~vdΩµ,

fµ(~v) =

∫
Ωµ

~fµ · ~vdΩµ +

∫
Γµ
out

~gµN · ~vdΓµ
out.

2.1. Finite element approximation of the Stokes equations
After using a FE approximation method with a stable FE couple (e.g. P2 − P1 finite elements, for

velocity and pressure, respectively), an approximation to (~uµ, pµ) is obtained by solving a parametrized
saddle-point linear system under the form

Aµ
hz

µ
h = gµ

h , (5)

where

Aµ
h =

[
Dµ
h (Bµ

h )T

Bµ
h 0

]
∈ RNh×Nh , zµh =

[
uµ
h

pµ
h

]
∈ RNh and gµ

h =

[
fµh
rµh

]
∈ RNh , (6)

with Nh = Nu
h +Np

h and Nu
h , N

p
h the FE dimensions for the velocity and pressure fields, respectively. The

matrix Dµ
h ∈ RNu

h×N
u
h corresponds to the bilinear form aµ(·, ·) and is positive definite, while the matrix

Bµ
h ∈ RN

p
h×N

u
h corresponds to the bilinear form bµ(·, ·). The resulting block matrix Aµ

h is indefinite and
to guarantee its nonsingularity one must ensure that there exists β > 0 such that the following inf-sup
condition is fulfilled, uniformly across the parameter space,

βµh = inf
zh∈RNh

sup
wh∈RNh

wT
hA

µ
hzh

‖zh‖Xµ
h
‖wh‖Xµ

h

≥ β ∀µ ∈ D, (7)

where the symmetric and positive definite matrix Xµ
h ∈ RNh×Nh algebraically encodes the scalar product

(·, ·)V µ×Qµ and is built as a block diagonal matrix

Xµ
h =

[
Xµ
u 0

0 Xµ
p

]
; (8)

here Xµ
u ∈ RNu

h×N
u
h and Xµ

p ∈ RN
p
h×N

p
h encode the scalar products over the spaces V µ and Qµ at the FE

level, respectively. We highlight that one could alternatively ensure the well-posedness of (5) in terms
of the matrix Bh, by requiring the existence of βp > 0

βµhp = inf
qh∈R

N
p
h

sup
vh∈R

Nu
h

vThB
µ
hqh

‖vh‖Xµ
u
‖qh‖Xµ

p

≥ βp ∀µ ∈ D; (9)

notice that (9) together with the positive definiteness of Dµ
h is equivalent to (7).

Many effective preconditioning techniques have been proposed for solving the linear system (5),
among which we mention multilevel methods, domain decomposition preconditioners and block precon-
ditioners [21, 22, 14, 15, 18, 7, 5]. In this paper we take into account block-triangular preconditioners of
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the form Dµ
hU

µ
h which arise from the factorization (3), however everything can be devised also for LµhD

µ
h

and Lµh ,D
µ
hU

µ
h -type preconditioners. The product Dµ

hU
µ
h takes the following form

Pµ
t = Dµ

hU
µ
h =

[
Dµ
h (Bµ

h )T

0 Sµ
h

]
(10)

and if used as preconditioner within the preconditioned GMRES method, it allows to reach convergence
(in exact arithmetic) in 2 iterations. However, at each iteration of the chosen Krylov method the inverse
of Pµ

t needs to be applied to a Krylov basis function vk; this shall involve the inverse matrix of the Schur
complement Sµ

h and the inverse of Dµ
h , which are both extremely demanding to apply. Approximated

block-triangular preconditioners are developed by approximating the inverse matrices of Sµ
h and Dµ

h

with proper surrogates S̃µ
h and D̃µ

h , respectively, e.g. with two corresponding preconditioners or inner
iterations.

As iterative solver for (5), we employ the flexible GMRES method [39], see algorithm (1). This
method provides a variant of the GMRES method able to deal with an iteration-dependent precondi-
tioner, such as the one defined in (10) when inner iterations are employed (instead of computing exactly
the inverse matrices of Dµ

h and Sµ
h ). This also proves to be necessary in view of the application of the

proposed MSRB preconditioner, since this latter relies on an iteration dependent RB coarse correction.
In algorithm 1, vk represents the k−th Krylov basis and at line 4 the preconditioning step is reported.

Algorithm 1 Flexible GMRES [38]

1: procedure FGMRES(A,b,x0, {Mk}k)
2: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
3: for k = 1, . . . ,m do
4: Compute zk = M−1

k vk
5: Compute w = Azk
6: for j = 1, . . . , k do
7: hj,k = (w,vj)
8: w = w − hj,kvj
9: end for

10: Compute hk+1,k = ‖w‖ and vk+1 = w/hk+1,k

11: Define Zm = [z1, . . . , zm], H̃m = {hj,k}1≤j≤k+1; 1≤k≤m
12: end for
13: Compute ym = arg min

y∈Rm
‖βe1 − H̃my‖2 and xm = x0 + Zmym

14: If satisfied Stop, else set x0 ← xm and GoTo 2.
15: end procedure
Output: xm

Here Mk denotes the preconditioner operator, which possibly varies at each iteration k and is used in
algorithm (1) to approximate the solution of the system

Ack = vk. (11)

Should the linear system (11), which in our case is µ−dependent, be solved exactly, the FGMRES
converges to the exact solution at iteration k.
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3. RB methods for the parametrized Stokes equations

For the MSRB preconditioners we propose in this paper, a key ingredient is represented by the RB
method, which is exploited as a coarse component in a two-level preconditioner. In the following, we
will briefly recall the RB method for the parametrized Stokes equations. For a more extensive outlook
on the subject, we refer to [33] for RB techniques for the parametrized Stokes equations and to [35, 36]
for parametrized PDEs in general.

The RB method relies on the idea that the solution zµh of the parametrized system (5), for a cer-
tain value of the parameter µ, can be well approximated as a linear combination of N � Nh global,
problem-dependent basis functions {ξi}Ni=1 obtained by orthonormalizing FE solutions of the same prob-
lem computed for selected values of the parameter. The basis functions are collected in a matrix
V = [ξ1| . . . |ξN ] ∈ RNh×N . The RB space, which is formally obtained by the span of the columns
of V, is usually built during an offline phase with a greedy algorithm or employing proper orthogonal
decomposition (POD). Specifically, we use this latter approach. Once the RB space has been built,
during the online phase the solution of the PDE for a new parameter µ is computed by solving a RB
system, instead of (5). The RB problem is constructed by introducing a test space represented by a
matrix Wµ ∈ RNh×N , generally different from V and possibly µ-dependent. If Wµ 6= V we end up
with a more general PG-RB problem, otherwise, if Wµ = V, we come up with a G-RB problem. Here,
for the sake of generality, we consider the more general PG-RB problem, which leads to the following
RB problem

Aµ
Nz

µ
N = gµ

N . (12)

The latter is a linear system where the RB matrix Aµ
N ∈ RN×N and the RB right hand side gµ

N ∈ RN
are defined as

Aµ
N = (Wµ)TAµ

hV, gµ
N = (Wµ)Tgµ

h , (13)

respectively. Finally, the FE representation VzµN of the RB approximation is recovered as

VzµN = V(Aµ
N )−1gµ

N = V(Aµ
N )−1(Wµ)Tgµ

h . (14)

We highlight that problem (12) is obtained by enforcing the projection of the FE residual evaluated for
the RB solution VzµN onto Wµ to vanish, that is by requiring

(Wµ)T
(
gµ
h −Aµ

hVzµN

)
= 0. (15)

In the Stokes case, the matrix V is such that

V =

[
VNu 0
0 VNp

]
=

[
ϕu1 | . . . | ϕuNu | 0 | . . . | 0

0 | . . . | 0 | ϕp1 | . . . | ϕpNp

]
, (16)

where VNu =
[
ϕu1 | . . . |ϕuNu

]
∈ RNu

h×Nu and VNp =
[
ϕp1| . . . |ϕ

p
Np

]
∈ RN

p
h×Np are specifically used to

find an approximation for the velocity uµ
h and the pressure pµ

h . The RB spaces are built from a set of
snapshots

{
uµi
h

}ns
i=1

,
{
pµi
h

}ns
i=1

computed for different instances (properly sampled) of the parameters{
µi
}ns
i=1

, by performing POD on the two sets of snapshots separately

VNu = POD
({

uµi
h

}ns
i=1
,Xu, εPOD

)
, VNp = POD

({
pµi
h

}ns
i=1
,Xp, εPOD

)
.
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Indeed, the vector spaces spanned by the columns of VNu (resp. VNp) approximate up to a certain
tolerance εPOD > 0 the space spanned by the snapshots

{
uµi
h

}ns
i=1

(resp.
{
pµi
h

}ns
i=1

). The matrices
VNu and VNp are indeed constructed by selecting the largest Nu = Nu(εPOD) and Np = Np(εPOD)
eigenmodes respectively, see [35]; a priori, Nu 6= Np. The dimension N = Nu +Np of the RB system is
smaller than the dimension Nh of the FE linear system of several order of magnitudes; for this reason
the RB system (12) is usually solved by direct methods.

Remark 3.1. Instead of prescribing a tolerance to POD, one can provide as input the dimensions Nu

and Np. In this case, POD retrieves the first Nu (resp. Np) modes, approximating the snapshots subspace
up to a tolerance εuPOD = εuPOD(N) (resp. εpPOD = εpPOD(N)).

Remark 3.2. POD computes an approximation space by minimizing the distance with respect to a
prescribed norm. In our case we employ for velocity and pressure the norms induced by the matrices Xu

and Xp, respectively.

An important issue concerns the stability of the resulting RB approximation, since a stable couple
of reduced subspaces for velocity and pressure, fulfilling an equivalent inf-sup condition at the reduced
level, must be used to ensure that the RB Stokes problem (12) is well-posed. More precisely, there must
exist βminN > 0 such that

βµN = inf
zN∈RN

sup
wN∈RN

wT
NA

µ
NzN

‖VzN‖Xµ
h
‖WµwN‖Xµ

h

≥ βminN ∀µ ∈ D. (17)

This property is not automatically guaranteed if a G-RB method is used, that is, in the case where
the RB problem is constructed by Galerkin projection onto an RB space made of orthonormalized
solutions of (2) for different values of parameters. Therefore, different strategies have been designed to
ensure the stability of the RB problem by fulfilling (17). One possibility consists in augmenting the
velocity space by means of a set of "enriching" basis functions computed through the so-called pressure
supremizing operator, leading to a reduced problem with roughly as twice as many velocity degrees of
freedom compared to the pressure, see [40, 41] for the details. Another possibility to automatically build
a stable RB problem exploits PG-RB methods [33, 34, 35], such as the least-squares (LS) method. The
LS-RB method relies on a test space which is obtained as the image of the RB space through a global
supremizer operator which involves both velocity and pressure fields. These strategies are detailed in
AppendixA for the sake of completeness. In the following, the MSRB preconditioning method will be
built by relying on either one of these options.

4. MSRB preconditioners

The MSRB preconditioning method has been firstly presented in [1] for elliptic parametrized prob-
lems; a numerical investigation on parametrized advection-diffusion PDEs has been carried out in [37].
The goal of this technique is to build a preconditioner to efficiently solve parametrized linear systems
which arise from the FE discretization of parameter-dependent PDEs. Computational efficiency is pur-
sued by combining multiplicatively a nonsingular fine grid preconditioner Pµ

h ∈ RNh×Nh with an efficient
coarse correction built upon the RB method, leading to a two-level preconditioning method. Following
the strategy introduced in [1], we define the MSRB preconditioner as

Qµ
MSRB,k = (Pµ

h )−1 + Qµ
Nk

(
INh −Aµ

h (Pµ
h )−1

)
, k = 1, 2, . . . , (18)

where Qµ
Nk

is the iteration- (k-) dependent RB coarse component. The preconditioner Qµ
MSRB,k is used

at iteration k, and yields a coarse correction tailored for the error equation (11) and corresponding to
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the k−th iteration. In particular, Qµ
Nk

is an RB solver which is trained on the following equation

Aµ
hy

µ
k =

(
INh −Aµ

h (Pµ
h )−1

)
vµ
k , k = 1, 2, . . . , (19)

where vµ
k is the k-th Krylov basis; as a matter of fact, Qµ

Nk
provides an accurate approximation of

the solution of the parametrized linear system (19). By using an accurate RB coarse component, the
FGMRES algorithm converges in only few iterations. To ease the notation, in the following we denote

vµ

k+ 1
2

=
(
INh −Aµ

h (Pµ
h )−1

)
vµ
k .

As mentioned above, the core contribution of this work lies in extending the MSRB preconditioning
framework to saddle-point problems, and in particular the Stokes equations. To this aim, we keep the
structure of the preconditioner as in (18) and train the RB coarse components to accurately solve the
error equation (19). We remark that Aµ

h is the FE saddle-point matrix of the Stokes system, hence
the RB coarse components must comply with the saddle-point structure of equation (19) and cannot
be constructed as in [1]. In the next section, the following aspects are investigated to build the MSRB
preconditioner for the Stokes equations.

a) The costruction of the MSRB preconditioner: the RB coarse components employed in [1] are
obtained by relying on a RB solver for equation (19) obtained by Galerkin projection of the FE
arrays (matrix and right hand side) onto the RB spaces. This procedure cannot be employed when
dealing with a saddle-point system, because it would lead to a RB solver for the error equation
which includes a singular RB matrix. This problem is overcome by introducing a new RB coarse
component obtained by either enriched G-RB method (that is by enriching the velocity space with
supremizer functions and by employing a Galerkin projection) or a PG-RB method. This is done
in Subsections 5.1 and 5.2.

b) The well-posedness of the MSRB preconditioner constructed as explained at point a) is then studied.
If the enriched G-RB method is employed to construct the RB coarse components, then the results
in [1] hold, ensuring the nonsingularity of the MSRB preconditioner. On the other hand, if a
PG-RB method is employed the results in [1] do not hold. Consequently, in Subsection 5.3 this
latter case is investigated.

c) The practical implementation of the MSRB preconditioner for Stokes equations also needs to be
revised, since its construction requires either to compute the supremizer functions (if the enriched
Galerkin approach is employed) or to perform a projection using a PG-RB approach, in the case
this latter formulation is used.

Notice that, as in [1], we opt here for a multiplicative combination of fine and coarse components,
however different combinations of Pµ

h and Qµ
Nk

, e.g. additive or symmetric, are also possible.

5. MSRB preconditioners for the Stokes equations

This section is devoted to build a MSRB preconditioner when dealing with parametrized Stokes
equations (4) and analyze its well-posedness. To set up the MSRB preconditioner for the Stokes equations
in a fairly general way, we consider the PG-RB method to build the k-dependent coarse components
Qµ
Nk

. To this aim, we introduce the matrices Vk ∈ RNh×Nk , k = 1, 2, . . . such that

Vk =
[
ξk1 | . . . |ξkN

]
,

9



where the basis
{
ξki
}Nk
i

is tailored to provide a RB approximation yµ
Nk

to the solution yµ
k of problem (19);

here k = 1, 2, . . . is the iteration counter of the FGMRES method and Nk, k = 1, 2, . . . is the dimension
of the k-th RB space. We remark that the RB coarse component for the MSRB preconditioner is
obtained, similarly to (15), by enforcing the projection of the FE residual of (19) evaluated for the RB
coarse correction Vky

µ
Nk

onto Wµ
k to vanish, that is by requiring

(Wµ
k )T

(
vµ

k+ 1
2

−Aµ
hVyµ

Nk

)
= 0. (20)

Notice that Wµ
k depends on both k and µ. If Wµ

k 6= Vk, we build a PG-RB coarse correction; whereas,
by choosing Wµ

k = Vk, we employ a G-RB coarse correction. We then obtain the following RB problem,
to be solved at iteration k, for any µ

(Wµ
k )TAµ

hVky
µ
Nk

= (Wµ
k )T

(
INh −Aµ

h (Pµ
h )−1

)
vµ
k , k = 1, 2, . . . , (21)

whose solution yµ
Nk
∈ RNk is the RB approximation of the solution yµ

k ∈ RNh of (19). Accordingly with
the construction in Section 3, the RB matrices Aµ

Nk
∈ RNk×Nk , k = 1, 2, . . . are built as

Aµ
Nk

= (Wµ
k )TAµ

hVk. (22)

The FE representation Vky
µ
Nk

of the RB approximation is then recovered as in equation (14), that is

Vky
µ
Nk

= Vk(A
µ
Nk

)−1(Wµ
k )T

(
INh −Aµ

h (Pµ
h )−1

)
vµ
k ,

from which we set the coarse correction as Qµ
Nk

= Vk(A
µ
Nk

)−1(Wµ
k )T .

In the case of the parametrized Stokes equations, the solution of equation (19) is made of both
velocity and pressure components, that is, yµ

k = [(yµ
uk)

T , (yµ
pk)

T ]T , k = 1, . . . . Consequently, we build
the RB spaces for these two variables separately by setting

Vu
Nu
k

= POD
({

yµi
uk

}ns
i=1
,Xu, δRB,k

)
, Vp

Np
k

= POD
({

yµi
pk

}ns
i=1
,Xp, δRB,k

)
, (23)

where δRB,k > 0 is a prescribed tolerance (possibly dependeing on k). Here
{
yµi
uk

}ns
i=1

and
{
yµi
pk

}ns
i=1

are error snapshots for the velocity and the pressure, respectively, such that yµ
k = [yµ

uk, y
µ
pk]

T is the
solution of problem (19), for properly chosen instances of the parameters. Notice that POD on velocities{
yµi
uk

}ns
i=1
, k = 1, . . . is performed with respect to the scalar product induced by the norm matrix Xu.

On the other hand, POD on pressures
{
yµi
pk

}ns
i=1

is performed with respect to the scalar product induced
by the norm matrix Xp. Finally, the matrix Vk has the following form

Vk =

[
Vu
Nu
k

0

0 Vp
Np
k

]
. (24)

Remark 5.1. An inf-sup condition similar to (17) must hold in order to guarantee the nonsingularity
of the matrices Aµ

Nk
for k = 1, 2, . . . , that is, for any k = 1, 2, . . . there must exist βminNk

> 0 such that

βµNk = inf
zN∈RN

sup
wN∈RN

wT
NA

µ
Nk

zN

‖VzN‖Xµ
h
‖Wµ

kwN‖Xµ
h

≥ βminNk
∀µ ∈ D. (25)

Remark 5.2. Instead of providing the tolerances δRB,k, we could prescribe the dimensions Nu
k and Np

k

10



of the RB spaces for the velocity and the pressure, respectively, at each iteration.

In the following we devise two alternative techniques to build a well-posed RB coarse correction,
according to two different choices of Wµ

k , k = 1, 2 . . . . These two options reflect the choice between a
G-RB or an algebraic LS-RB method.

5.1. MSRB preconditioners with enriched G-RB coarse corrections
A G-RB approximation to build the k−th coarse correction is obtained by choosing Wµ

k = Vk, k =
1, 2, . . . . However, the resulting RB approximation is not guaranteed to fulfill (25). Consequently, we
consider an enriched velocity space formulation, where the velocity space spanned by the columns of
Vu
Nu
k
is augmented by a set of N s

k enriching basis functions. Given the pressure snapshots
{
yµi
pk

}ns
i=1

, we
build the pressure supremizing snapshots by solving the following problems

Xµ
uy

µi
sk = (Bµi

h )
T
yµi
pk i = 1, . . . , ns. (26)

Next, we run POD on the set of pressure supremized snapshots
{
yµi
sk

}ns
i=1

and obtain Vs
Ns
k
∈ RNh×Ns

k as

Vs
Ns
k

= POD
({

yµi
sk

}ns
i=1
,Xu, εPOD

)
.

The columns of Vs
Ns
k
form a N s

k−dimensional space employed to augment the velocity space. We
introduce

Ṽk =

[
Vu
Nu
k

Vs
Ns
k

0

0 0 Vp
Np
k

]
, k = 1, 2, . . . ,

and obtain a well-posed G-RB coarse correction by choosing Wµ
k = Vk = Ṽk, k = 1, . . . , in (22), leading

to the following definition

Aµ
Nk

= ṼT
kA

µ
h Ṽk, k = 1, . . . .

Notice that a velocity enrichment is required for every coarse correction, leading to solve ns additional
problems of the form of (26) for each coarse correction Qµ

Nk
, k = 1, 2, . . . which has to be built. The

velocity enrichment allows to obtain a couple of RB spaces which proves to be numerically stable, even
though a rigorous stability result cannot be proven, see e.g. [41, 33].

5.2. MSRB preconditioners with PG-RB coarse corrections
A purely algebraic PG-RB method, recently proposed in [33], yields a stable RB approximation to

problem (19). This method can be viewed as an algebraic least-squares RB (we call it aLS-RB) method
for parametrized noncoercive problems as (5). Compared to the approximate enrichment of the velocity
space described in Section 5.1, the aLS-RB method features a smaller dimension of the RB spaces (i.e.
the number of RB functions is lower), since in this case the velocity space is not augmented. This yields
a remarkable advantage when the RB coarse corrections and the inverse matrices of Aµ

Nk
, k = 1, 2, . . . ,

are constructed for a new parameter. Furthermore, the resulting RB formulation is automatically inf-sup
stable, i.e. (25) is fulfilled.

To build an aLSRB approximation, we introduce a symmetric and positive definite matrix PX ∈
RNh×Nh , and we assume the existence of two positive constants C ≥ c such that

c‖x‖PX ≤ ‖x‖Xµ
h
≤ C‖x‖PX ∀x ∈ RNh . (27)
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The aLS-RB coarse correction is constructed by selecting Wµ
k as Wµ

k = P−1
X Aµ

hVk in (22), leading to
the following definition

Aµ
Nk

= VT
k (Aµ

h )TP−1
X Aµ

hVk, k = 1, . . . . (28)

In our numerical experiments, PX is chosen as PX = X0
h, i.e. as the norm matrix in the reference

domain, or as a block diagonal preconditioner PX0
h
∈ RNh×Nh of X0

h, where the two blocks are generated
as symmetric and positive definite preconditioners PXu ∈ RNu

h×N
u
h of X0

u and PXp ∈ RN
p
h×N

p
h of X0

p,
respectively.

Remark 5.3. The standard LSRB method relies on formulation (28) where the matrix Xµ
h plays the role

of PX . However, when the computational domain depends on the parameter, and especially when the
mapping from Ω0 to Ωµ is not known a priori, the µ−dependence of Xµ

h could lead to huge assembling
costs for Aµ

Nk
. On the other hand, by choosing a µ−independent matrix PX , this overhead is no longer

there.

5.3. Nonsingularity of the preconditioner
When a G-RB approximation is employed to build the coarse corrections, as in the case where an

augmented velocity space is used, the MSRB preconditioner operator Qµ
MSRB,k has been shown to be

invertible, with proper assumptions on Pµ
h and the basis Vk, in [1]. In this section we extend these

results, showing that Qµ
MSRB,k is invertible when a more general PG-RB approach is used to build the

RB coarse correction, as in section 5.2.
Let W1 = span{w1

j}Mj=1 and W2 = span{w2
j}Mj=1 ⊂ RNh be two subspaces such that dim(W1) =

dim(W2) = M . We denote byW⊥1 andW⊥2 the orthogonal complement ofW1 andW2, respectively, and
by W1,W2 ∈ RNh×M the matrices of basis vectors such that W1 = [w1

1, . . . ,w
1
M ], W2 = [w2

1, . . . ,w
2
M ].

Moreover, given a subspace W ⊂ RNh and a nonsingular matrix B ∈ RNh×Nh , we define the following
spaces

BW =
{
x ∈ RNh : B−1x ∈W

}
=
{
x ∈ RNh : x = Bz, z ∈W

}
,

BW⊥ =
{
x ∈ RNh : B−1x ∈W⊥

}
=
{
x ∈ RNh : x = Bz, z ∈W⊥

}
.

We remark that RNh = BW ⊕BW⊥, because of the nonsingularity of B.

Lemma 5.1. Let W1 and W2 be two M -dimensional subspaces of RNh, {w1
j}Mj=1 and {w2

j}Mj=1 their basis
and W1 = [w1

1, . . . ,w
1
M ] ∈ RNh×M , W2 = [w2

1, . . . ,w
2
M ] ∈ RNh×M . Moreover, let B be a nonsingular

Nh ×Nh matrix and assume that WT
2 BW1 is nonsingular. Then the following implication holds:

x ∈ BW 1 and WT
2 x = 0 ⇒ x = 0.

Proof. We take x ∈ BW 1 such that WT
2 x = 0 and show that it must be x = 0. By definition of BW 1,

B−1x = W1zM for some zM ∈ RM . Thanks to the nonsingularity of B, we obtain

0 = WT
2 x = WT

2 BB−1x = WT
2 BW1zM ,

which implies zM = 0, due to the nonsingularity of WT
2 BW1 ∈ RM×M . Finally, we have

0 = W1zM = B−1x,

which, thanks to the nonsingularity of B, ends the proof.
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In the following we employ Lemma 5.1 by taking W1 = Vk, W2 = Wµ
k , B = Pµ

h in order to prove
that Qµ

MSRB,k is nonsingular. To this aim, we define

V
Ph//
Nk

=
{
x ∈ RNh : (Pµ

h )−1x ∈ VNk
}
, V Ph⊥

Nk
=
{
x ∈ RNh : (Pµ

h )−1x ∈ V ⊥Nk
}
.

Theorem 5.1. For any µ ∈ D, assume that Pµ
h ∈ RNh×Nh is a nonsingular matrix such that the matrix

(Wµ
k )TPµ

hVk is nonsingular. Then the matrix Qµ
MSRB,k is nonsingular.

Proof. The proof is similar to the one outlined in [1]. Given x = x//+x⊥, where x//∈ V
Ph//
Nk

, x⊥ ∈ V Ph⊥
Nk

,
such that Qµ

MSRB,kx = 0, then it must be x = 0. Then we have

Qµ
MSRB,kx//= (Pµ

h )−1x//+ Qµ
Nk

(
INh −Aµ

h (Pµ
h )−1

)
x//

= Vkz
µ
N + Qµ

Nk
x//−Qµ

Nk
Aµ
hVkz

µ
N = Qµ

Nk
x//,

where (Pµ
h )−1x//= Vkz

µ
N for some zµNk ∈ RNk . Then

0 = Qµ
MSRB,kx = Qµ

MSRB,kx//+ Qµ
MSRB,kx⊥

= Qµ
Nk

x//+ (Pµ
h )−1x⊥ + Qµ

Nk

(
INh −Aµ

h (Pµ
h )−1

)
x⊥

which leads to

Qµ
Nk

(
x//+ x⊥ + Aµ

h (Pµ
h )−1x⊥

)
= −(Pµ

h )−1x⊥. (29)

The left hand side is an element of VNk , the right hand side is an element of V ⊥Nk , therefore the only way
for them to be equal is when they are both zero. Being (Pµ

h )−1x⊥ = 0, implies x⊥ = 0 thanks to the
nonsingularity of Pµ

h , leading to

0 = Qµ
Nk

x//= Vk(A
µ
Nk

)−1(Wµ
k )Tx// (30)

which, thanks to linear independence of the columns of Vk and the non singularity of Aµ
Nk

yields

(Wµ
k )Tx//= 0.

Finally, by applying Lemma 5.1 with W1 = VNk , W1 = Vk, W2 = Wµ
k and B = Pµ

h , we obtain that
x//= 0.

Being the matrix Qµ
MSRB,k invertible, we can define the MSRB preconditioner as

Pµ
MSRB,k = (Qµ

MSRB,k)
−1.

6. Algorithmic procedure

In this section we detail the procedures required to build and use the MSRB preconditioner, by
splitting the computation in an offline (typically expensive) and an online phase, where the FE problem
(5) is solved for a new instance of µ.

6.1. Offline phase
During the offline phase, we build the structures required by (18) to handle any new possible instance

of the parameter online, namely the RB spacesVk, k = 1, 2, . . . and the corresponding coarse corrections.
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6.1.1. Building the RB spaces
In order to build the RB spaces as in (23), we first solve the FE problem (5) for ns instances of µ to

build the snapshots for velocity
{
uµi
h

}ns
i=1

and pressure
{
pµi
h

}ns
i=1

, and set

yµi
u0 = uµi

h , yµi
p0 = pµi

h , i = 1, . . . , ns.

The sets of snapshots
{
yµi
u0

}ns
i=1

and
{
yµi
p0

}ns
i=1

are used to build the spaces Vu
Nu

0
and Vp

Np
0
, respectively.

These are used to provide the initial guess to the FGMRES algorithm. For each new RB space Vk, k =
1, 2, . . . , the new snapshots

{
yµi
uk

}ns
i=1

and
{
yµi
pk

}ns
i=1

, k = 1, 2, . . . , solution of (19) for particular instances
of µ, need to be considered. An option to compute them is to solve problem (19), for any k and for
each snapshot; this is however impractical, especially when the dimension Nh of the FE problem largely
increases. On the other hand, one can alternatively take advantage of the following relations

γµ = ‖gµ
h −Aµ

hz
0
h‖2,

yµ
1 = 1

γµ

(
zµh − z0

h

)
− (Pµ

h )−1vµ
1 ,

zµk = Qµ
MSRB,kvk wµ = Azµk

hµj,k = (wµ,vµ
j ), wµ = wµ − hµj,kv

µ
j j = 1, . . . , k

hµk+1,k = ‖wµ‖

yµ
k = 1

hµk,k−1

[
zµk −

k−1∑
j=1

hµj,k−1

(
yµ
j + (Pµ

h )−1vµ
j

)]
− (Pµ

h )−1vµ
k , k ≥ 2,

(31)

which do not involve the solution of any other FE linear system and hold by construction when FGMRES
is employed and started with z0

h as the initial guess, see [1].

6.1.2. Assembling the RB coarse corrections
When building the RB coarse correction for the k-th iteration of FGMRES and for a new instance

of the parameter, the matrix Qµ
Nk

is not explicitly assembled; indeed, Wµ
k , (Aµ

Nk
)−1, which is computed

and stored as LU factorization of Aµ
Nk

and Vk are applied consecutively to the right hand side of (19).
Here, we specifically focus on the construction of the matrix Aµ

Nk
, a task which would normally

require to project the matrix Aµ
h as in (22). To avoid this operation, we require the FE matrix Aµ

h to
feature an affine parameter dependence, that is,

Aµ
h =

Qa∑
q=1

Θq
a(µ)Aq

h, (32)

where Θq
a : D → R, q = 1, . . . , Qa are µ-dependent functions, and the matrices Aq

h ∈ RNh×Nh are µ-
independent. If assumption (32) is verified, then the RB matrixAµ

Nk
in the G-RB case can be constructed

as

Aµ
Nk

=

Qa∑
q=1

Θq
a(µ)ṼT

kA
q
hṼk =

Qa∑
q=1

Θq
a(µ)Aq

Nk
. (33)

On the other hand, in the aLS-RB case, the RB matrix can be built as

Aµ
Nk

=

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)VT
k (Aq1

h )TP−1
X Aq2

h Vk =

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)Aq1,q2
Nk

. (34)
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The matrices Aq
Nk
, q = 1, . . . , Qa, Aq1,q2

Nk
∈ RN×N , q1, q2 = 1, . . . , Qa, depending on the chosen RB

approximation, can be precomputed and stored once the RB spaces Vk (and Ṽk in the G-RB case) are
constructed. Then, given a new value µ of parameter, only the sum in (34) or (33) must be carried out
to build Aµ

Nk
. Notice that an affine decomposition as (32) is hard to be found as a built-in property

of the original µ-dependent problem. For instance, in the numerical results shown in this work, the
computational domain depends nonaffinely on the parameter µ, because of the geometrical nature of
the parametrization. Therefore, we rely on EIM or its discrete variant suited for sparse matrices Matrix-
Discrete-EIM (MDEIM), see [42, 43]. To recover an approximate affine decomposition, such that the
relation (32) is satisfied up to a certain tolerance δmdeim provided to the MDEIM algorithm:

Aµ
h ≈

Qa∑
q=1

Θ̃q
a(µ)Aq

h, (35)

where Qa is the number of selected basis computed by MDEIM. Once a new value of µ is considered, the
coefficients Θ̃q

a : D → R, q = 1, . . . , Qa are computed by solving an interpolation problem. In practice,
we run separately MDEIM on the matrices Dµ

h and Bµ
h , meaning that the following relations hold

Dµ
h ≈

Qd∑
q=1

Θ̃q
d(µ)Dq

h, Bµ
h ≈

Qb∑
q=1

Θ̃q
b(µ)Bq

h, (36)

where the functions Θ̃q
d : D → R, q = 1, . . . , Qd and Θ̃q

b : D → R, q = 1, . . . , Qb are µ−dependent and
the matrices Dq

h ∈ RNu
h×N

u
h , q = 1, . . . , Qd and Bq

h ∈ RN
p
h×N

u
h , q = 1, . . . , Qb are µ-independent.

The standard RB method detailed in Section 3 also exploits the affine parameter dependence (32)
of the matrix Aµ

h , or an approximated one as in (36), to boost its efficiency. In addition, it similarly
employs the affine dependence property of the FE right hand side gµ

h , and if such an assumption is
not met, it can be recovered approximately with EIM or DEIM [42, 44]. The accuracy of the resulting
RB solution is significantly affected by the accuracy of the affine decomposition of Aµ

h and gµ
h , which

is known to be a bottleneck for the efficiency of the RB approximation. See AppendixA.3 for further
details.

Furthermore we remark that, when the MSRB preconditioning strategy is employed, an affine de-
composition of Aµ

h is not strictly required; however, in the case it is available, it proves to be useful
to cut the (possibly large) costs entailed by building the RB matrices by projection through (22). On
the other hand, the affine decomposition of gµ

h is not needed in any case: in opposition with the classic
RB method, with the MSRB preconditioning strategy we aim at solving the full FE problem exploiting
directly the FE right hand side and the FE residual, in other words, the FE problem is not substituted
online with a smaller problem as in the standard RB case.

6.1.3. Offline algorithms
The offline construction of the MSRB preconditioner is outlined in algorithm 2 for the G-RB case

and in algorithm 3 for the aLS-RB case. We provide a set of snapshots parameter
{
µi
}ns
i=1

, a final
tolerance εr and the tolerances to construct each RB space {δRB,k}k; then, at first we compute an affine
decomposition {Aq

h}
Qa
q=1 of the matrix Aµ

h with MDEIM algorithm [43] (step 2), and we construct the
snapshots required to build the first space (step 3). Then, we iteratively build the necessary RB spaces
through POD (steps 5-8) and the affine RB decomposition matrices {Aq1,q2

Nk
}Qaq1,q2=1 (step 9). The final

number of RB spaces constructed is L. In the G-RB case, the construction of the snapshots is more
demanding, since it requires to build also the supremizer snapshots and an additional POD for each
RB space, which also leads to RB coarse components of larger dimension due to the enrichment of the
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velocity space. However, the number of affine structures to be computed and stored is Qa in the G-RB
case, but increases to Q2

a in the aLS-RB case.

Algorithm 2 MSRB Preconditioner with G-RB coarse correction - Offline phase

1: procedure MSRB-PRECONDITIONER-G-RB-OFFLINE(
{
µi
}ns
i=1
, εr, {δRB,k}k, δMDEIM)

2: Compute an affine approximation {Aq
h}
Qa
q=1

3: Compute the FE solutions
{
zµih
}ns
i=1

and pressure supremizers
{
tµip (pµi

h )
}ns
i=1

4: Set S(0)
~u = [~uµ1

h , . . . , ~u
µns
h ], S(0)

p = [pµ1

h , . . . , p
µns
h ], S(0)

~t
= [tµ1

p , . . . , t
µns
p ] and k = 0

5: while
∏
k

δRB,k > εr do

6: Build Vu
Nu
k

= POD(S
(k)
~u , δRB,k), V

p
Np
k

= POD(S
(k)
p , δRB,k), Vs

Ns
k

= POD(S
(k)
~t
,
δRB,k

10 )

7: Build Aq
Nk

= VT
kA

q
hVk, q = 1, . . . , Qa

8: Compute new snapshots
{
yµi
uk

}ns
i=1

and
{
yµi
pk

}ns
i=1

with (31) and
{
yµi
sk

}ns
i=1

with (26)

9: Set S(k+1)
~u = [yµ1

uk , . . . ,y
µns
uk ], S(k+1)

p = [yµ1

pk , . . . ,y
µns
pk ], S(k+1)

~t
= [yµ1

sk , . . . ,y
µns
sk ] and k = k+1

10: end while
11: end procedure

Algorithm 3 MSRB Preconditioner with aLS-RB coarse correction - Offline phase

1: procedure MSRB-PRECONDITIONER-ALS-RB-OFFLINE(
{
µi
}ns
i=1
, εr, {δRB,k}k, δMDEIM)

2: Compute an affine approximation {Aq
h}
Qa
q=1

3: Compute the FE solutions
{
zµih
}ns
i=1

4: Set S(0)
~u = [~uµ1

h , . . . , ~u
µns
h ], S(0)

p = [pµ1

h , . . . , p
µns
h ] and k = 0

5: while
∏
k

δRB,k > εr do

6: Build the new basis Vu
Nu
k

= POD(S
(k)
~u , δRB,k), V

p
Np
k

= POD(S
(k)
p , δRB,k)

7: Build Aq1,q2
Nk

= VT
kA

q1
h P−1

X Aq2
h Vk, q1, q2 = 1, . . . , Qa

8: Compute new snapshots
{
yµi
k

}ns
i=1

with (31)
9: Set S(k+1)

~u = [yµ1

uk , . . . ,y
µns
uk ], S(k+1)

p = [yµ1

pk , . . . ,y
µns
pk ] and k = k + 1

10: end while
11: end procedure

Notice that instead of providing a set of tolerances {δRB,k}k, we can also provide a set of dimen-
sions {Nk}k. Indeed, we specifically devised two different strategies to build in practice the RB coarse
corrections:

• fixed accuracy : all the tolerances {δRB,k}k are chosen equal to the same value δRB, that is δRB,k =
δRB for any k. This choice leads to RB coarse corrections which provide a constant accuracy,
and let the norm of the error decrease at a fixed rate at each iteration. However, the dimension
of the RB spaces increases with k, leading to a larger computational time to assemble and solve
the resulting RB system. If a G-RB method approach is employed, then the tolerance provided
to POD for the construction of the enriching basis functions Vs

Ns
k
is δRB,k/10, which empirically

results in a well-posed RB approximation;

• fixed dimension: the dimensions {Nu
k }k and {Np

k}k (and {N s
k}k if G-RB is employed) of the RB

spaces are set to a fixed value N , that is Nu
k = Np

k = N(= N s
k) for any k. This choice is
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specifically more convenient when we are dealing with problems showing less regular dependence
on the parameter µ, since the number of RB functions in each space is fixed and cannot excessively
increase.

In the numerical experiments, we will show results for both these options.

6.1.4. Sequential RB coarse correction construction
The offline phase, and especially the computation of the set of snapshots

{
zµih
}ns
i=1

in step 3 of
Algorithms 2 and 3 can be particularly expensive. In order to speed up the process, we can alternatively
opt for a sequential construction of the RB coarse components.
With this aim, we introduce M subsets Zm, m = 1, . . . ,M , of

{
zµih
}ns
i=1

, of dimension nms , respectively,
and such that

{
zµih
}ns
i=1

=
M⋃
m=1

Zm, ns =
M∑
m=1

nms , Zm =
{
zµih
}im

1+im−1
,

where im =
m∑
l=1

nls. Then, the k-th RB matrix Vk is built using
⋃k
m=1Zm as snapshots set. Exploiting

only part of the snapshots allows to use the MSRB preconditioner developed up to iteration k for
the computation of the new snapshots Zj , j > k, which will be employed to construct the RB spaces
Vj , j > k. This technique yields a reduction of the overall time required by the snapshot computation,
since the speed up provided by the MSRB preconditioner is sequentially used to build part of the
snapshots. M and Zm, m = 1, . . . ,M are empirically chosen such that the accuracies obtained by the
RB coarse corrections is not significantly impacted if compared with the ones obtained with the RB
coarse corrections built with the complete set of snapshot. In the numerical experiments, we will employ
M = 3 stages.

6.2. Online phase
In the online phase, we aim at computing the solutions of (5) for new instances of the parameter

µ, which have not been considered during the offline phase. We thus need to compute the weights
{Θq

a(µ)}Qaq=1 of the affine decomposition of Aµ
h , and build the coarse corrections {Qµ

Nk
}k. Finally, we

apply the the FGMRES algorithm relying onMk = Qµ
MSRB,k in the preconditioning step. The operations

required by the matrix-vector multiplication Qµ
MSRB,kv

µ
k are detailed in algorithm 4; step 3 corresponds

to solving the RB problem

Aµ
Nk

yµ
Nk

= (Wµ
k )Tvk+ 1

2
(37)

and build wNk,k+ 1
2

= Vky
µ
Nk

. If the number of iterations required to reach a certain tolerance in the
FGMRES method exceeds the number of RB coarse corrections constructed, one can either continue to
use the last coarse correction in the remaining operations or drop steps 2-3 of Algorithm 4.

Algorithm 4 Computation of Qµ
MSRB,kvk

1: apply the inverse of the fine component Pµ
h : wk = (Pµ

h )−1vk;
2: build the residual vk+ 1

2
= vk −Aµ

hwk;
3: apply the RB coarse component wk+ 1

2
= Qµ

Nk
vk+ 1

2
;

4: build the preconditioned Kylov basis zk = wk + wk+ 1
2
.
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7. Numerical results

In this section we show numerical results where the proposed MSRB preconditioner, based on either
on a G-RB or an aLS-RB method, is employed to solve Stokes equations in parametrized geometries.
Parameter dependent domains are obtained by considering a map from a reference domain to the physical
domain which can be provided either analytically (test case I) or by computing the solution of an
additional FE problem (test case II), e.g. when a solid extension mesh moving technique is employed,
see [45]. Furthermore, we highlight that the proposed strategy is applicable also to the case where
physical parameters are considered. As fine component Pµ

h we use the PMM preconditioner defined as

Pµ
h = Pµ

M =

[
Dµ
h (Bµ

h )T

0 − 1
νµX

µ
p

]
, (38)

where the Schur complement Sµ
h is approximated with the rescaled pressure mass matrix, that is S̃µ

h =
1
νµX

µ
p (which is spectrally equivalent to Sµ

h at least for two-dimensional problems). The application
of (Pµ

M)−1 to the k−th Krylov basis function vk (at step k of the Krylov method) is summarized in
algorithm 5.

Algorithm 5 Computation of (Pµ
M)−1vk

1: solve the pressure problem − 1
νµX

µ
p zkp = vkp (solved inexactly by inner iterations);

2: update the velocity vku = vku − (Bµ
h )T zkp;

3: solve the velocity problem Dµ
hzku = vku (solved inexactly by inner iterations).

The PMM preconditioner (38) allows to obtain extremely satisfactory results both in terms of opti-
mality and scalability, see e.g. [18] and results therein. Specifically, the application of Pµ

M is detailed
in algorithm 5, where steps 1 and 3 are solved inexactly by inner iterations up to a tolerance of 10−5

on the Euclidean norm of the residual rescaled with the Euclidean norm of the right hand side. An al-
gebraic multigrid (AMG) preconditioner from the ML package of Trilinos [46] is employed for the inner
iterations.

We employ Taylor-Hood (P2−P1) finite element spaces for velocity and pressure, respectively, which
provide an inf-sup stable discretization. In the following, we compare the results obtained with the
MSRB preconditioner with the ones obtained by using only the PMM preconditioner Pµ

M. The lifting
function ~rµ~gD is computed as harmonic extension of the Dirichlet data ~gµD in (1), which is chosen as
a parabolic profile such that the flow rate at the inlet is equal to 1. An approximation of ~rµ~gD is
computed by employing the FE method, with second order polynomials basis functions. This leads to
a parametrized linear system whose solution rµh ∈ RNu

h is the approximated lifting functions computed
with the preconditioned conjugate gradient (PCG) method, exploiting an AMG preconditioner from the
ML package of Trilinos [46].

All the results have been obtained with the FE library LifeV [47]. Our tests have been run by
employing the Swiss National Supercomputing Center (CSCS) facilities on Cray XC40 compute nodes.

7.1. Test case I: parametrized cylinder
The first test case concerns a Stokes flow in a three-dimensional cylinder whose shape varies according

to a set of parameters. We introduce a reference domain

Ω0 = {~x ∈ R3 : x2
1 + x2

2 < 0.25, x3 ∈ (0, 5)},
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Figure 1: Deformation of the domain for test case I.

and obtain the computational domain Ωµ as

Ωµ = {~xµ ∈ R3 : ~xµ = ~x+ ~dµ},

where ~dµ is an analytical displacement

~dµ =

−x1µ1 exp{− (x3−2.5)2

µ2
}

−x2µ1 exp{− (x3−2.5)2

µ2
}

0

 .
Here the parameter µ = (µ1, µ2) ∈ D = (0, 0.3) × (0.5, 1). The cylinder is narrowed in the central
section by a factor µ1/2, whereas µ2 determines how the narrowing effect propagates towards the inlet
and outlet sections. An example of deformation is shown in Fig. 1.

7.1.1. Simulation setup
We show numerical results obtained for three different meshes, leading to a finite element problem

with dimension Nh = 52′152, 320′338, 1′568′223, respectively, computed with Ncpu = 36, 180, 900 pro-
cessors, thus distributing about 1800 dofs per CPU. The FE solution for different values of the parameter
µ is reported in Fig. 2.

(a) Velocity µ = (0.3, 1) (b) Velocity µ = (0.0, 0.5) (c) Velocity µ = (0.21, 0.85)

(d) Pressure µ = (0.3, 1) (e) Pressure µ = (0.0, 0.5) (f) Pressure µ = (0.21, 0.85)

Figure 2: Test case I, numerical solution for three values of µ obtained with the MSRB preconditioning technique.

As RB coarse component, we show results for both the fixed accuracy and fixed dimension approaches
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Table 1: Configurations employed for choosing the coarse corrections.

GRB G-RB coarse corrections
aLSRB-X0

h aLS-RB coarse corrections where PX = X0
h, i.e. the matrix norm (8) on the reference domain

aLS-RB coarse corrections where PX = PX0
h
, where PX0

h
is a symmetric and positive definite

aLSRB-PX0
h

preconditioner for X0
h with a block structure PX0

h
= diag(PX0

u
,PX0

p
), where PXu ∈ RN

u
h×Nu

h

(resp. PXp ∈ RN
p
h
×Np

h ) is a symmetric and positive definite AMG preconditioner of X0
u (resp. X0

p)

Table 2: Test case I, MDEIM offline results, δmdeim = 10−6.

Nh Qd Qb Dµ
h offline time (s) Bµ

h offline time (s)
52152 7 10 24.65 5.25
320338 6 10 37.29 8.11
1568223 6 10 54.37 11.71

in the configurations outlined in Tab. 1.
For the offline phase, we take ns = 100 snapshots for both the construction of the RB spaces

(state reduction) and the MDEIM algorithm (system approximation). Specifically, for MDEIM we set
δmdeim = 10−6 for the construction of the affine approximation of both Dµ

h and Bµ
h . Regarding the

construction of the RB spaces, we take as final tolerance εr = 10−9 for all the test cases. For the fixed
accuracy approach we construct L = 4 RB spaces, yielding δRB,k = δRB = 10−9/4 ≈ 5.6 · 10−3 for any
k. For the fixed dimension approach, we take Nk = 10 for any k.

During the online phase, we test the proposed MSRB preconditioners with the three different RB
coarse corrections (GRB, aLSRB-X0

h and aLSRB-PX0
h
) and solving the FE linear system with the

FGMRES method up to a tolerance, on the Euclidean norm of the residual, rescaled with the Euclidean
norm of the right hand side, of 10−6 on 150 online parameters different from the ones employed during
the offline phase to build the RB spaces.

7.1.2. Numerical results
The computational time required to compute the approximate affine decomposition of the matrices

Dµ
h and Bµ

h with the MDEIM algorithm and the number of basis functions Qa are reported in Tab. 2.
The number of required basis functions Qa mainly depends on the parameter dependence of the PDE,
consequently it does not vary with the FE dimension, and ranges from 6 to 10 to reach a tolerance
δmdeim = 10−6.

The results obtained with the MSRB preconditioner during the online phase, i.e. for new instances of
the parameter, for the fixed accuracy approach with GRB, aLSRB-X0

h and aLSRB-PX0
h
are reported

in Tab. 4, 5 and 6, respectively. For the fixed dimension approach, the results are reported in Tab. 7,
8 and 9, respectively. For each case, we report the number of RB coarse corrections L and the total
number of basis functions Nk for the space k, as the sum of the velocity, pressure and supremizer RB
functions, this latter only if GRB is employed. We underline that the number of basis functions is
larger in the GRB case, due to the velocity enrichment. Furthermore, the detailed results concerning
the time required to compute the solution by employing the PMM preconditioner tPMM and the MSRB
preconditioner tonl

MSRB, together with the corresponding iteration counts ItPMM and Itonl
MSRB, are reported.

A summary of the reported quantities is given in Tab. 3.
The number of iterations Itonl

MSRB required to reach convergence in the FGMRES algorithm is lower
than or equal to 6 for all the tests carried out with the MSRB preconditioner, it does not significantly
vary with the FE dimension and, depending of the simulation, it is between 5% and 15% of that obtained
by using the PMM preconditioner only, see Figure 3a. The computational times tonl

MSRB required to solve
the FE linear system by employing the MSRB preconditioner is reduced of about 85% with respect to
the one needed by employing only the PMM preconditioner tPMM for the GRB and aLSRB-PX0

h
cases,
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Table 3: Notations of the quantities reported in the numerical experiments.

Nh L Nk, k = 0, . . . , L− 1 BEP

FE dimension number of coarse components dimensions of RB coarse components break even point (39)

tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec)

online time MSRB online iteration count MSRB online time PMM online iteration count PMM offline time MSRB

and is reduced of about 70% in the aLSRB-X0
h, see Figure 3b. The additional time required by this

latter approach is caused by the application of the matrix (Xµ
h )−1 to the vector vk+ 1

2
at each iteration of

the FGMRES method (see step 3 in Alg. 4); this is practically performed by solving the corresponding
linear system where Xµ

h is at the left hand side and vk+ 1
2
is at the right hand side. The GRB and

aLSRB-PX0
h
approaches entail a cheaper computation of such a step since in the former we rely on a

G-RB method, while in the latter only the (fast) application of P−1
X is required.

The computational time toff required by the offline phase is reported for all tests, together with the
break even point (BEP), that is, the number of online evaluations required to repay the offline phase.
Our criterion is based on the wall time comparison:

BEP =
toff

tPMM − tonl
MSRB

, (39)

where we indicate by toff the wall time required by the offline computation, i.e. the construction of the
RB coarse components. We highlight that the GRB case requires an offline time which is larger than the
others due to the need of computing the pressure supremizer snapshots S~t and performing an additional
POD. On the other hand, the offline time in the case of aLSRB-X0

h is larger than the one obtained with
aLSRB-PX0

h
due to the construction of the RB affine matrices Aq1,q2

Nk
, q1, q2 = 1, . . . , Qa, because in the

former case a FE linear system needs to be solved for each combination of the Nk RB functions {ξi}Ni=1

and Qa affine terms {Aq
h}
Qa
q=1, leading to N ·Qa FE linear systems, while by employing PX = PX0

h
, only

N ·Qa applications of P−1
X0
h
need to be performed, boosting the computation of the affine RB structures.

By inspecting the BEP values, it emerges that the most convenient approach is obtained by adopting the
aLSRB-PX0

h
method. Indeed, it allows to solve the problem online in a computational time comparable

to the one obtained with the GRB approach, however entailing a cheaper offline phase, especially when
the FE dimension increases.

Table 4: Test case I, fixed accuracy with GRB, L = 4, δRB,k ≈ 5.6 · 10−3, ∀k.

Nh Nk tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP

52152 9 24 50 113 0.72 3 4.70 40 1514.78 374
320338 9 24 48 118 1.30 3 11.32 42 2951.76 291
1568223 9 23 48 116 5.10 3 30.65 42 9548.40 372

Table 5: Test case I, fixed accuracy with aLSRB-X0
h, L = 4, δRB,k ≈ 5.6 · 10−3, ∀k.

Nh Nk tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP

52152 5 13 24 54 1.97 4 4.70 40 1493.10 535
320338 5 13 23 56 4.82 6 11.32 42 3411.82 519
1568223 5 13 23 52 11.25 6 30.65 42 8542.47 437
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Table 6: Test case I, fixed accuracy with aLSRB-PX0
h
, L = 4, δRB,k ≈ 5.6 · 10−3, ∀k.

Nh Nk tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP

52152 5 13 24 53 1.29 4 4.70 40 1374.38 395
320338 5 13 23 55 2.57 6 11.32 42 2727.60 307
1568223 5 13 23 52 5.36 6 30.65 42 6975.20 274

Table 7: Test case I, fixed dimension with GRB, Nu
k = Np

k = Ns
k = 10, ∀k.

Nh L tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP

52152 9 0.51 2 4.70 40 2476.72 584
320338 7 1.24 3 11.32 42 4546.66 447
1568223 8 4.74 3 30.65 42 18369.68 707

Table 8: Test case I, fixed dimension with aLSRB-X0
h, N

u
k = Np

k = 10, ∀k.

Nh L tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP

52152 9 1.51 5 4.70 40 2507.38 776
320338 8 5.12 6 11.32 42 6770.73 1086
1568223 8 10.14 5 30.65 42 15121.68 735

Table 9: Test case I, fixed dimension with aLSRB-PX0
h
, Nu

k = Np
k = 10, ∀k.

Nh L tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP

52152 9 1.17 5 4.70 40 2886.91 810
320338 8 2.74 6 11.32 42 5475.75 633
1568223 8 4.75 5 30.65 42 11489.38 442

7.2. Test case II: parametrized carotid bifurcations
In the second test case, we consider parametrized Stokes flows in a carotid bifurcation, whose shape

varies according to a set of parameters. The computational domain Ωµ is obtained by deforming a
reference domain Ω0, shown in Fig. 4a, such that ∂Ω0 = Γw ∪ Γin ∪ Γout. More specifically, we set

Ωµ = {~xµ ∈ R3 : ~xµ = ~x+ ~dµ},

where the displacement ~dµ is computed as the solution of the following parametrized elliptic problem
−∆~dµ = ~0 in Ω0

~dµ = ~0 on Γin ∪ Γout

∂ ~dµ

∂~n
= ~hµ on Γw.

(40)

The parametrized datum ~hµ is a stress load entailing a deformation leading to the narrowing of one
of the branches of the bifurcation. We consider as parameter µ = (µ1, µ2) ∈ D = [4, 5] × [0, 0.5] and
introduce a µ−dependent region Aµ, such that

Aµ = {~x ∈ R3 : (x1 + 0.8)2 + (x2 − µ1)2 + (x3)2 < R2, R = 0.65},

which identifies the portion of volume where ~hµ is loaded as follows

~hµ = ~hµ(~x) = −µ2

(
1− r2(~x)

R2

)
~nµIAµ(~x), ~x ∈ R3,
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Figure 3: Test case I, iteration number and computational times vs Nh. The name dim or tol specifies that a fixed accuracy
or fixed dimension algorithm has been used for constructing the RB coarse components, respectively. We refer to Tab. 1
for how the RB method employed for the construction (GRB, aLSRB-X0

h or aLSRB-PX0
h
).

(a) Reference domain Ω0. (b) Displacement field for µ = (5.0, 0.5).

Figure 4: Test case II, reference domain Ω0 and displacement dµ
h for µ = (5.0, 0.5).

where r(~x) = rµ(~x) =
√

(x1 + 0.8)2 + (x2 − µ1)2 + (x3)2, R = 0.65 and IAµ(~x) is the indicator function
over the set Aµ. This parametrization entails a narrowing of the straight branch in different positions
along the coordinate x2 (according to the value of µ2) and simulates an occlusion. An example of
deformation computed for µ = (5.0, 0.5) is shown in Fig. 4b. Examples of solutions for different values
of the parameter µ are shown in Fig. 5a-5b and 5c-5d.

We remark that the solution ~dµ of problem (40) is not known analytically; consequently, its numerical
approximation ~dµh is computed employing the FE method on its corresponding variational formulation.
We denote by dµ

h ∈ RNd
h the solution of the corresponding FE linear system.

In the numerical results we show, Taylor-Hood FE (P2 − P1), with a mesh leading to Nh = Nu
h +

Np
h = 3′198′820 degrees of freedom, are employed for the FE discretization of the Stokes problem. The

computation is carried out by using 360 computing cores.
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(a) Slice of velocity field for µ = (5.0, 0.5). (b) Pressure field for µ = (5.0, 0.5).

(c) Slice of velocity field for µ = (4.0, 0.0). (d) Pressure field for µ = (4.0, 0.0).

Figure 5: Test case II, numerical solution for two values of µ obtained with the MSRB preconditioning technique.

7.2.1. Simulation setup
When considering a new instance of the parameter µ, we compute dµ

h by solving the corresponding
FE linear system with the PCG method, preconditioned with the AMG preconditioner. The system is
solved up to a tolerance 10−8 on the Euclidean norm of the residual rescaled with the Euclidean norm
of the right hand side. The computation of the deformation dµ

h requires on average 1.9 seconds and this
time is not included in the results reported, since it does not vary in the different scenarios presented.
Notice that we could accelerate the computation of dµ

h by employing the MSRB preconditioning strategy
or the standard RB method to deal with problem (40). Then, the solution of the Stokes problem (5)
is computed employing the MSRB preconditioner, we report in particular the results obtained with the
aLSRB-PX0

h
case and the fixed dimension approach only, however an analysis similar to the one carried

out to Test case I can be done. For the aim of RB spaces construction, we use ns = 350 snapshots,
which are computed incrementally as explained in Section 6.1.4, with M = 3 and n1

s = 100, n2
s = 100

and n3
s = 150. Then, we set εr = 10−7, by choosing Nu

k = Np
k = 50 for any k = 0, . . . , L−1, leading to L

coarse corrections with dimension Nk = 100 for any k = 0, . . . , L−1. We test the resulting preconditioner
on 100 online instances of the parameter randomly chosen, by solving the resulting FE problem up to
a tolerance 10−5. For the MSRB preconditioner, we employ MDEIM (with tolerance δmdeim = 10−4) to
compute an approximated affine decomposition of Aµ

h , allowing us to cheaply assemble online the coarse
corrections Aµ

Nk
, k = 0, . . . , L− 1.

We compare the results obtained with the MSRB precondtioner with the ones obtained by relying on
the standard RB method, where the aLSRB-PX0

h
approach detailed in AppendixA.2 is used as solver.

For this latter, we build the RB basis functions by using POD with a tolerance of 10−9 on ns = 350
snapshots; then we construct the RB approximation by affinely approximating the FE right hand sides
and matrices in (6) by using DEIM and MDEIM, respectively. Indeed, we remark that, as highlighted

24



Table 10: Test case 2, (M)DEIM number of affine basis functions.

δdeim = δmdeim MDEIM - Dµ
h MDEIM - Bµ

h DEIM - fµh DEIM - rµh taffine (sec)

1e-02 1 3 3 4 75.41
1e-03 1 6 6 13 184.68
1e-04 3 17 15 25 1165.29
1e-05 8 36 29 48 5013.85
1e-06 19 79 63 117 49129.40

Table 11: Test case 2, aLSRB-PX0
h
solver, δRB = 10−9, Nu = 327 and Np = 111.

δdeim = δmdeim rRB tonl
RB (sec) toff (sec)

1e-02 1.9e-02 5.75 41931.61
1e-03 4.0e-03 5.39 42040.87
1e-04 1.1e-03 5.33 43021.49
1e-05 2.8e-04 5.81 46870.05
1e-06 6.3e-05 8.66 90985.60

in Section 6.1.2, the standard RB method also relies on the affine dependence of the FE right hand side
gµ
h . Since in the considered test case this assumption is not satisfied, DEIM is performed on the right

hand side to compute an affine approximation of the vectors fµh and rµh . Furthermore, MDEIM is used to
compute an approximated affine decomposition of the FE stiffness matrix Aµ

h , which is used to cheaply
assemble the RB matrix Aµ

N online.

7.2.2. Numerical results: comparison with the standard RB method
We show the results obtained by using the aLSRB-PX0

h
method as solver on a set of 100 instances

of the parameter and varying the tolerances δmdeim and δdeim employed for the MDEIM and DEIM
algorithms, respectively. In Tab. 10, the number of affine components for the different FE arrays is
reported, together with the computational time (part of the offline phase of the standard RB method)
taffine to build and store the affine RB matrices Aq1,q2

N , q1, q2 = 1, . . . , Qa in (A.6) and the RB vectors
gq1,q2N , q1, . . . , Qa, q1, . . . , Qg in (A.7). Notice that the number of affine basis functions largely affects the
time taffine, leading overall to a more demanding offline phase.

By setting δRB = 10−9 to construct the RB space, we obtain Nu = 327 and Np = 111 basis functions
for velocity and pressure, respectively. In order to evaluate the accuracy of the RB solution, we compute
the relative residual of the FE problem evaluated on the RB solution

rµRB =

∥∥gµ
h −Aµ

hz
µ
N

∥∥
2∥∥gµ

h

∥∥
2

,

which we report in Tab. 11. As a matter of fact, in order to obtain an accurate RB solution, it is
mandatory to build an accurate approximate affine decomposition of the FE arrays, cf. Tab. 11, since
the accuracy of the RB solution is strongly related to the accuracy of the affine approximations. The
online time tonl to assemble and solve the RB problem is largely affected by the values δdeim and δmdeim

and reaches up to 8.66 seconds in the most demanding case. In particular, the time for assembling the
RB matrix Aµ

N and the time for assembling the RB right hand side gµ
N are the most affected ones by

the number of affine components. As regards the computational time toff required by the offline phase,
it largely increases according to the number of affine terms, since it takes into account the time taffine

reported in Tab. 10.
In Tab. 12, the results obtained with the FGMRES method preconditioned with MSRB precondi-

tioner (with aLSRB-PX0
h
coarse corrections) are presented. We employ MDEIM with δmdeim = 10−4

to build an approximated affine decomposition of the FE matrices Dµ
h and Bµ

h , leading to Qd = 3 and
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Table 12: Test case 2, fixed dimension with aLSRB-PX0
h
, RES = 10−5, Nu

k = Np
k = 50, ∀k, ∼ 8890 dofs per CPU.

Nh L tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP

3198820 4 6.45 5 80.69 87 46554.90 628

Qb = 17 affine basis functions, respectively. As a matter of fact, the value δmdeim = 10−4 does not
affect the accuracy of the RB approximation to the solution of the error equation constructed with the
RB functions obtained by setting Nu

k = Np
k = 50, ∀k. Furthermore, we notice that in this context there

is no need to employ DEIM to approximate fµh and rµh , as explained in Section 6.1.2.
L = 4 RB spaces are computed with a dimension Nu

k = Np
k = 50 for k = 0, 1, 2, 3 for both velocity

and pressure; as a matter of fact, the convergence up to a tolerance of 10−5 on rµRB is reached on average
in 5 iterations and about 6.45 seconds.

The smaller number of MDEIM affine terms used by the MSRB preconditioner yields a significantly
more accurate solution (with a residual rµRB lower than 10−5) in a shorter computational time, compared
to the one computed with the standard RB method. In addition, the obtained results show that a
cheaper offline phase is also achieved, thanks to a smaller number of RB affine arrays which need to be
constructed.

Finally, we compare the computational time employed by the FGMRES preconditioned with the
MSRB preconditioner, with the one needed to solve the same problem with the FGMRES method
preconditioned with the PMM preconditioner, reported in Tab. 12 as well. When this latter technique
is employed, the problem is solved in about 80.69 seconds and 87 iterations, on average. Therefore the
proposed MSRB technique allows to obtain the solution by reducing of more than 92% the time needed
by employing the PMM preconditioner.

8. Conclusions

In this work we have extended the MSRB preconditioner to the case of parametrized linear saddle-
point problems. This can be achieved by using a RB coarse correction which takes advantage of either
an augmented RB space G-RB approach or a PG-RB formulation. If the former approach is employed,
the well-posedness of the corresponding preconditioner is ensured by the results in [1]. In this work, we
have extended such results to the case where the latter option is used. Furthermore, we have introduced
a new sequential construction of the snapshots which mitigates the offline costs by using the MSRB
preconditioning technique to compute part of the snapshots.
We have tested the MSRB preconditioning method when dealing with the 3-D parametrized Stokes
equations of large dimension in parameter-dependent domains of variable shape. We compared the
obtained results with the ones obtained by using a PMM preconditioner. The proposed technique
enables to compute the solution for each new instance of the parameter much more rapidly than by
employing only the PMM preconditioner in the online phase, reducing dramatically the computational
time (up to about 92%) and the iteration count when a new instance of the parameter is considered. A
comparison with the standard RB method has been carried out, showing that the MSRB preconditioning
approach has a milder dependence on the affine approximation of the FE arrays than the RB method,
and allows to compute a more accurate solution in a shorter time during the online phase, and not
requiring a too expensive offline phase.

AppendixA. Building a well-posed RB Stokes problem

In the following we briefly recall how to build a stable Stokes RB problem either with an enriched-
velocity G-RB or an aLSRB formulation. These two techniques are employed in Section 4 to build the
RB coarse components of the MSRB preconditioner.
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AppendixA.1. G-RB method with velocity enrichment
A stable G-RB approximation (13) is built by considering the matrix

Ṽ =

[
VNu VNs 0

0 0 VNp

]
instead of V in (13), and choosing Wµ = Ṽ. The columns of the matrix VNs span the enriching velocity
space, and are computed by POD as

VNs = POD
(
S~t,Xu, εPOD

)
,

where the columns of the matrix S~t ∈ RNu
h×ns are the snapshots

{
tµip (pµi

h )
}ns
i=1

, obtained by solving ns
problems

Xµ
u t

µi
p = (Bµi

h )
T
pµi
h i = 1, . . . , ns, (A.1)

which involve the pressure snapshots
{
pµi
h

}ns
i=1

. Solving the FE system (A.1) corresponds to compute
the element of RNu

h which reaches the supremum in (9) for a fixed pressure pµi
h and a fixed parameter

value µi. Although it is not possible to state a stability result for the G-RB approximation obtained in
this way, numerically it provides very satisfying results; for a more detailed analysis see e.g. [41, 33].

AppendixA.2. Algebraic Least Squares RB methods
By considering the matrix PX introduced in Section 5.2, a well posed RB Stokes problem is obtained

when choosing a projection matrix of the following form

W = P−1
X Aµ

hV

is chosen, leading to the RB system

Aµ
Nz

µ
N = gµ

N . (A.2)

The RB matrix Aµ
N ∈ RN×N and the RB right hand side gµ

N ∈ RN are defined as

Aµ
N = VT (Aµ

h )TP−1
X Aµ

hV gµ
N = VT (Aµ

h )TP−1
X gµ

h ; (A.3)

the resulting aLS-RB problem automatically fulfills (17). This technique has provided satisfying results
especially when the domain Ωµ depends on the parameter through a map which is not known analytically.
See [33] for further details.

AppendixA.3. Assembling the RB problem
The standard RB method, together with the affine decomposition (32) of the matrix Aµ

h , strongly
relies also on the affine decomposition of the right hand side gµ

h , that is, it must hold

gµ
h =

Qg∑
q=1

Θq
g(µ)gqh, (A.4)

where Θq
g : D → R, q = 1, . . . , Qg are µ-dependent functions, while the vectors gqh ∈ RNh are µ-

independent. If assumptions (32) and (A.4) are verified, then the RB matrix Aµ
N and the RB vector gµ

N
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can be constructed in the G-RB case as

Aµ
N =

Qa∑
q=1

Θq
a(µ)ṼTAq

hṼ =

Qa∑
q=1

Θq
a(µ)Aq

N , gµ
N =

Qg∑
q=1

Θq
g(µ)ṼTgqh =

Qg∑
q=1

Θq
g(µ)gqN . (A.5)

and in the aLS-RB case as

Aµ
N =

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)VT (Aq1
h )TP−1

X Aq2
h V =

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)Aq1,q2
N , (A.6)

gµ
N =

Qa∑
q1=1

Qg∑
q2=1

Θq1
a (µ)Θq

g(µ)VT (Aq1
h )TP−1

X gq2h =

Qa∑
q1=1

Qg∑
q2=1

Θq1
a (µ)Θq2

g (µ)gq1,q2N . (A.7)

The matrices Aq
N ∈ RN×N , q = 1, . . . , Qa, A

q1,q2
N ∈ RN×N , q1, q2 = 1, . . . , Qa and the vectors gqN ∈

RN , q = 1, . . . , Qa, g
q1,q2
N ∈ RN , q1 = 1, . . . , Qa, q2 = 1, . . . , Qg, depending on the chosen RB approxi-

mation, can be precomputed and stored once the RB space V is constructed. Then, given a new value
µ of parameter, only the sums in (A.5) or (A.6)-(A.7) must be carried out, boosting the efficiency of the
RB appoximation computation.

If assumptions (32)-(A.4) can not be verified, one can rely on the EIM or its discrete variants DEIM
and MDEIM to compute an approximated affine decomposition, see [42, 44, 43]. These techniques allow
to build an approximate affine decomposition, such that relations (32) and (A.4) are satisfied up to a
certain tolerance

Aµ
h ≈

Qa∑
q=1

Θ̃q
a(µ)Aq

h, gµ
h ≈

Qg∑
q=1

Θ̃q
g(µ)gqh

where Qa and Qg are, in our case, the number of selected basis computed by MDEIM and DEIM,
respectively. As stated in Section 6.1.2, in our experiments MDEIM is run separately on Dµ

h and Bµ
h ,

while as the right hand side gµ
h concerns, DEIM is run separately on fµh and rµh , in order to obtain an

approximated affine decomposition

fµh ≈
Qf∑
q=1

Θ̃q
f (µ)f qh, rµh ≈

Qr∑
q=1

Θ̃q
r(µ)rqh,

where the functions Θ̃q
f : D → R, q = 1, . . . , Qf and Θ̃q

b : D → R, q = 1, . . . , Qr are µ−dependent and
the matrices Dq

h ∈ RNu
h×N

u
h , q = 1, . . . , Qf and Bq

h ∈ RN
p
h×N

u
h , q = 1, . . . , Qr are µ-independent.
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