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Abstract

In this paper we develop statistical methods to compare two indepen-
dent samples of multivariate functional data that differ in terms of covari-
ance operators. In particular we generalize the concept of depth measure to
this kind of data, exploiting the role of the covariance operators in weight-
ing the components that define the depth. Two simulation studies are car-
ried out to validate the robustness of the proposed methods. We present
an application to Electrocardiographic (ECG) signals aimed at comparing
physiological subjects and patients affected by Left Bundle Branch Block.
The proposed depth measures computed on data are then used to perform
a nonparametric comparison test among these two populations. They are
also introduced into a generalized regression model aimed at classifying the
ECG signals.

1 Introduction

In many real-life applications of statistics nowadays, data are becoming more
and more complex. This is particulary true in the biomedical and healthcare
context, where data produced by medical devices are signals, functions of vital
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parameters, images or even a combination of these. This drives statistical re-
search towards the identification of suitable models and inferential techniques
for handling the complexity of such data.
This paper is mainly focused on supervised learning from multivariate functional
data. By multivariate functional data we mean data where each observation is
a set of possibly correlated functions. These functions can be viewed as trajec-
tories of stochastic processes defined on a given infinite dimensional functional
space, as it has been proposed in [5] and as it will be detailed in Section 2. In
particular the motivating aim is the analysis of the 8-leads Electrocardiographic
(ECG) traces of patients whose pre-hospital ECG has been sent to 118 Dispatch
Center of Milan (the Italian free-toll number for emergencies) by life support
personnel of the basic rescue units. ECG signals can be inherently considered
as multivariate functional data with correlated components. In fact, each data
describes the same biological event, i.e., the representative heartbeat of a pa-
tient (see [7] for a deeper explanation of this). We aim at modeling the binary
outcome representing the presence of cardiovascular ischaemic event in order
to estimate the probability of each patient to be affected by Acute Myocardial
Infarction.
Beyond the application of interest we develop a general framework to model
a binary outcome by means of multivariate functional data as predictors, with
both classification and prediction purposes.
In [6] a similar problem has been faced, mainly performing a data dimensional-
ity reduction by a Multivariate Functional Principal Component Analysis, see
[14, 1]. It consists of summarizing the information carried out by the covariance
operators of the signals and their first derivatives by the corresponding scores.
Scores are obtained projecting data and derivatives on the related Karhunen-
Loève bases. On the other hand, in this work we summarize some relevant feature
of data through non parametric statistical objects, i.e., the depth measures. In
[5] the depth measure introduced in [11, 12] for univariate functional data was
extended to the multivariate functional setting. However, to compute the depth
measure proposed in that paper, it is necessary to make a choice of the weights
averaging the contribution of each component of the multivariate signal to the
depth itself. This choice is usually problem-driven, and in general no gold rules
have been given so far. In this paper we develop a general method for defin-
ing such weights. In particular, we propose to choose them taking into account
the distance between the estimated covariance operators of the two groups. In
fact, the covariance structure of the multivariate functional signals (and possibly
of the derivatives) contains information about the reciprocal role of the signal
(derivative) components with respect one to each other. This should be taken
into account in measuring the depth of a signal (derivative), and in general when
comparing signal (derivative) features with reference traces. In fact it may drive
the weights definition giving emphasis to data components according to the way
they are correlated one to each other. In the following, we consider many differ-
ent distances between covariance operators in the infinite dimensional setting,
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as discussed in Pigoli et al. (2012).
A different definition of depth for multivariate functional data could be find in
[3]. More specifically they construct their definition of depth measure starting
from the Tuckey’s halfspace depth [15] as building block. The definition proposed
in [3] averages a multivariate depth function over the time points, and includes
a weight function which accounts for information provided by the warping func-
tions used to register functional data. Since our motivating problem deals with
ECG data that are characterized by strongly localized features (peaks, oscilla-
tions,...) and the information catched by warping functions of the registration
procedure based on landmarks is poor for classification purposes, see [7], we
prefer to go on with the definition of depth proposed in [5].

The paper is structured as follows: in Section 2, the definition of multivari-
ate functional depth measure is presented and the choice of the weights is dis-
cussed. In Section 3, a simulation study to support the robustness of the pro-
posed method is detailed. Section 4 concerns the analysis of ECG data arising
from PROMETEO dataset. Finally, in Section 5, conclusions are drawn and
further developments are proposed. All the analyses are carried out using R sta-
tistical software [13] and the ad-hoc C++/MPI parallel library for computational
statistics HPCS1 [4].

2 Multivariate depth measures with covariance driven

weights

Let us start by recalling the definition of band depth for multivariate functional
data introduced in [5]. This definition has been introduced to generalize to the
multivariate framework the concept of band depth for functional data introduced
in [11, 12].
Let X be stochastic process taking values in the space C(I;Rh) of continuous
functions f = (f1, ..., fh) : I → R

h, where I is a compact interval of R. The
multivariate depth measure is defined as

MBDJ
n(f) =

h
∑

k=1

pkMBDJ
n,k(fk), pk > 0 ∀ k = 1, ..., h,

h
∑

k=1

pk = 1 (1)

where for each function fk ∈ F ⊂ C(I;R), k = 1, ..., h, the MBDJ
n,k(fk) mea-

sures the proportion of time interval I where the graph of fk belongs to the
envelopes of the j-tuples (fi1;k, ..., fij ;k), j = 1, . . . , J , extracted from F . In
other words, measuring that the curve fk is in the band determined by the j

1for further details see the website: https://github.com/ntarabelloni/HPCS Code is avail-
able upon request.

3



curves (fi1;k, ..., fij ;k), means computing

MBDJ
n,k(fk) =

J
∑

j=2

(

n

j

)−1
∑

1≤i1<i2<···<ij≤n

λ̃{E(fk; fi1;k, ..., fij ;k)},

where E(fk) := E(fk; fi1;k, ..., fij ;k) = {t ∈ I,minr=i1,...,ij fr;k(t) ≤ fk(t) ≤
maxr=i1,...,ij fr;k(t)} and λ̃(fk) = λ(E(fk))/λ(I) with λ the Lebesgue measure
on I. Statistical properties of the depth measure defined in (1) as well as infer-
ential tools based on this concept are detailed in Ieva et al. (2013a).
An open problem in (1) is how to choose the weights p1, ..., ph. In general this
choice is problem driven. Whenever the principal aim of the analysis is the com-
parison between two different populations it would be useful to take advantage
of the study of the differences between the variance-covariance structures of the
two samples. In fact, it is reasonable to expect that they carry out information
about possibly differences between the two populations.

In the following we consider the depth measure (1) with J = 2. This choice
is motivated by a robustness study conducted in [2], where the stability of the
order induced by different choices of J is verified, taking advantage of an efficient
implementation within the parallel library environment HPCS [4].

In order to define the pks, and to properly account for the information about
the correlation among components in the dataset, we make use of distances de-
fined on variance-covariance operators. We focus on a stochastic process X with
law PX taking values on the space L2(I;Rh) of square integrable functions. Let
µl(t) = E[Xl(t)], for each t ∈ I, denote the mean function of the l−component
Xl(t), for 1 ≤ l ≤ h, then

µX(t) := (µ1(t), . . . , µh(t))
T = E[X(t)]

is the mean function of X. The covariance operator VX of X is a linear compact
integral operator from L2(I;Rh) to L2(I;Rh) acting on a function g as follows:

(VXg)(s) =

∫

I
VX(s, t)g(t)dt, (2)

The kernel VX(s, t) is defined by

VX(s, t) = E[(X(s)− µX(s))⊗ (X(t) − µX(t))], s, t ∈ I

where ⊗ is an outer product in R
h. VX(s, t) is a h × h matrix, whose elements

will be denoted as V kq
X

(s, t), for k, q = 1, ..., h.
In what follows, we deal with two different stochastic processesX andY with

covariance operators VX and VY, respectively, possibly different in the cross
covariance structure among their components. As mentioned before, several
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distances can be used to measure the differences between the two covariance
operators. We consider the distances introduced in [8], generalizing them to the
case of non necessarily positive definite operators. In fact we are interested in
quantifying also the distance between V kq

X
(s, t) and V kq

Y
(s, t) with k 6= q.

Let d(V,W ) denote a distance between two operators. We compute for each

k = 1, . . . , h the quantity dk =
∑h

q=1 d(V
kq
X

(s, t), V kq
Y

(s, t)), considering the fol-
lowing distances:

• − L2 distance

dL(V,W ) =

√

∫

I

∫

I
(v(s, t) − w(s, t))2dsdt, (3)

where v(s, t) and w(s, t) are the kernels of the operators V and W respec-
tively, see (2).

•− Spectral distance
dS(V,W ) = |λ1|, (4)

where |λ1| is the maximum eigenvalue of the difference operator V −W .

•− Square root pseudo distance

dR(V,W ) = ‖ |V |
1
2 − |W |

1
2 ‖HS , (5)

where the Hibert-Schmidt norm of an Hilbert-Schmidt compact operator

T is ‖T‖HS =
√
traceT ∗T , T ∗ is the adjoint operator of T , |T |

1
2 is

such that |T |
1
2 vk = |λk|

1
2 vk, {vk}k is the orthonormal basis of L2 of the

eigenfunctions of T and {λk}k is the sequence of the related eigenvalues.

•− Frobenius distance

dF (V,W ) = ‖V −W‖HS =
√

trace(V −W )∗(V −W ). (6)

•− Procrustes pseudo distance

dP (V,W ) = dP (|V |, |W |) = infR∈O(L2(I))‖L1 − L2R‖HS , (7)

where O(L2(I)) is the space of all unitary operators on L2(I) and L1 and
L2 are such that V = L1L

∗
1 and W = L2L

∗
2.

Let us note that in the case of square root and Procrustes we deal with pseudo
distances since d(V,W ) = 0 if and only if |V | = |W |.
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Based on the previous definitions, we then propose the following choice for the
weights in the multivariate functional depth defined in (1):

pk =
dk

∑h
k=1 dk

, for k = 1, ..., h. (8)

With this choice we should take into account not only the distances between
intra-component variability, but also the inter-component ones. In fact, for
each k = 1, . . . , h, we compute the distance between the variance structures
of the marginal components Xk and Yk of the two stochastic processes, and
we then sum up the distances between the covariances with the remaining h −
1 components. The higher is this distance, the higher is the weight of the
corresponding component in calculating the depth measure of the multivariate
functional data.

We also want to generalize to this framework a non parametric rank test
where two samples of multivariate functions can be compared, based on depth
proposed in (1), with the weights choice stated in (8). We deal with a sample
characterized by more than one center since data come from a mixture of distri-
butions (physiological and pathological subjects in the application of interest). It
is well known in literature about depth measures that the right way of extending
the Wilcoxon rank sum test to the multivariate case is the following: consider
a sample f1, ..., fn generated according to a distribution PX and another sample
g1, ...,gm generated according to a distribution PY. We assume that there is a
third reference sample, say h1, ...,hN , from one of the two populations, say PX

without loss of generality. We then compute the MBD of each fi, i = 1, ..., n and
each gj , j = 1, ...,m with respect to the reference sample h1, ...,hN . In so do-
ing, it is possible to rank the functions f1, ..., fn,g1, ...,gm. Let R(PN , fi) be the
proportion of hk’s, k = 1, ..., N , with MBD less than or equal to the MBD of
fi, where the MBD is computed with respect to the reference sample h1, ...,hN .
An analogous definition is assumed for R(PN ,gi). Then we order these val-
ues, R(PN , fi) and R(PN ,gi), from the smallest to the highest giving them a
rank from 1 to n+m. This induces a rank on the functions f1, ..., fn,g1, ...,gm.
According to [10], we can apply the Wilcoxon test to the induced ranks. In par-
ticular, the lower the depth the lower the rank. The proposed test statistic R is
the sum of the ranks of the second sample R(PN ,g1), ..., R(PN ,gm). According
to the null hypothesis (H0) there are no differences between the distributions
generating the data. Hence R(PN ,g1), ..., R(PN ,gm) can be viewed as a random
sample of size m drawn without replacement from the set (1, ..., n+m), and we
reject H0 for values of R too small. For large values of n and m it is possible to
use a Normal approximation, see [9]. The presence of ties is treated as explained
in [10] and [12].

Our aim is not only to test the differences between the two stochastic pro-
cesses that generate the multivariate functional data, but also to predict the
membership of a new statistical unit entering the study. This means that we

6



aim both at comparing ECG traces (physiological and pathological subjects),
and at quantifying the probability of being affected by the disease for new pa-
tients who enter the study. So, once the MBDs of data are computed according
to the explained procedure, we consider a logistic regression model, where the
response variable is Yi ∼ Be(pi) for i ∈ 1, . . . , n and θi = log (pi/(1− pi)). Yi

is a general binary outcome that depends on the multivariate functional data.
θi can then be modelled as a linear transformation of the covariates related to
i−th statistical unit, that is,

θi = β0 + β1MBDi +

w
∑

h=1

dihγh. (9)

The vector di = (di1, ..., diw)
T , di ∈ R

w, i = 1, . . . , n, contains the traditional
covariates that are possibly available for the i-th statistical unit. The idea is to
exploit all the available information concerning the statistical unit (the patient
condition in the application) to predict her/his status (disease) at best. For the
multivariate functional covariate, this can be done adding to a classical regres-
sion model an effective summary of the multivariate functional data information
content.

3 Simulation results

In this Section we present two simulation studies, in order to support the method-
ology presented in the previous section. The first one is aimed at exploring the
weights behavior with respect to different (pseudo) distance notions and differ-
ent correlations between the components of the multivariate functional processes
generating the data. The second one provides a benchmark for classification via
logistic regression with depth measures used as predictors into the model.

3.1 Case A: weights behaviour with respect to the choice of the

distance and of the correlation between components

Without loss of generality we consider the case of bivariate functional data, i.e.,
h = 2. The time interval I is sampled over an evenly spaced grid of 50 points.
The data are generated according to the following stochastic processes

X (t) ∼ N (0, S1) Y (t) ∼ N (0, S2)

for the first and the second population respectively. The structure of Si, i = 1, 2,
is the following:

Si =

(

Ai Ci

CT
i Bi

)

(10)
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Ci = ρ(AiBi)
1/2, and ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

We generate 100 statistical units for each population and we repeat the
procedure 100 times. Simulated curves are represented in Figure 1.
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Figure 1: Sample of 100 curves generated according to models detailed in (11)
and (12), with ρ = 0.4.

Table 1 shows the mean and standard deviation of weights of each component
computed according to each choice of the distance between covariance operators.
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(Pseudo) distance ρ Mean weight Mean weight St. Dev. weights
Variable 1 Variable 2

0 0.8062 0.1938 0.0129
0.2 0.8037 0.1963 0.0137

L2 0.4 0.7949 0.2051 0.0152
0.6 0.7842 0.2158 0.0122
0.8 0.7718 0.2282 0.0099
1 0.7599 0.2401 2.3*10−5

0 0.8539 0.1461 0.0071
0.2 0.8368 0.1632 0.0080

Spectral 0.4 0.8194 0.1806 0.0086
0.6 0.7985 0.2015 0.0081
0.8 0.7785 0.2215 0.0054
1 0.7597 0.2403 1.1*10−5

0 0.6525 0.3475 0.0063
0.2 0.6522 0.3478 0.0039

Square root 0.4 0.6501 0.3499 0.0030
0.6 0.6472 0.3528 0.0022
0.8 0.6441 0.3559 0.0011
1 0.6400 0.3600 1.2*10−5

0 0.8064 0.1936 0.0032
0.2 0.8035 0.1965 0.0029

Frobenius 0.4 0.7958 0.2042 0.0027
0.6 0.7725 0.2275 0.0027
0.8 0.7725 0.2275 0.0018
1 0.7597 0.2403 2.7*10−6

0 0.6537 0.3463 0.0063
0.2 0.6533 0.3466 0.0039

Procrustes 0.4 0.6511 0.3489 0.0030
0.6 0.6479 0.3521 0.0022
0.8 0.6444 0.3556 0.0011
1 0.6400 0.3600 1.2*10−5

Table 1: Mean and standard deviation of the weights of the two components
of the simulated bivariate data for different values of ρ and different (pseudo)
distances.

It is worth noting that, for all the distances, the higher is the correlation ρ be-
tween components, the more balanced are the weights of the single components:
if two components are strongly correlated, then their weights tend to be more
balanced. For this reason taking into account not only the distances between
intra-component variability, but also the inter-component ones is relevant for
the weights choice, whichever distance we consider.
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3.2 Case B: classification via logistic regression with depth mea-

sures used as predictor

In this case we use the depth measures computed according to the procedure
detailed in Section 2 as predictor in a logistic regression model. The time interval
I is sampled over an evenly spaced grid of 50 points as in the first case. The
data are generated according the following stochastic processes

X (t) ∼ N (0, S1) Y (t) ∼ N (0, S2)

for the first and the second population respectively. The covariances Si, for
i = 1, 2 are as in (10) but with the following choices: A1 = 10∗150, B1 = 8∗150,
A2 = 5∗150, B2 = 4∗150, where 1n is the identity matrix (n×n) and ρ = 0.4. We
consider a reference sample of 125 units from the first population, and another
one of dimension 25 from the second population. For 20 different runs of the
simulation and different distance choices we randomly extract 25 units from the
first sample and we compute the depth measures of the 50 data (25 from the
first sample and 25 from the second one), with respect to the 100 remaining of
the reference sample. The p-value of the Wilcoxon tests carried out to compare
the distributions over all the 20 cases is always less or equal to 3.39 ∗ 10−5.

The results are very robust with respect to the pseudo-distance choice. Any-
way among all the Procrustes pseudo-distance provides a slightly better discrim-
ination power. For this reason we choose to report only the results concerning
the Procrustes pseudo-distance.

Table 2 presents the mean confusion matrix obtained comparing the true
and the estimated labels given by a logistic regression model like in (9), with
MBDs of the ECG signals as unique covariates. We set the threshold for the
classification carried out by the logistic model as equal to 0.5.

Units from sample 1 Units from sample 2

Classified as units from sample 1 20.05 4.2
Classified as units from sample 2 4.95 20.80

Table 2: Confusion matrix. 50 units (25 from the first sample and 25 from the
second one) are classified via logistic regression.

The following quantities have been computing from Table 2: sensitivity, speci-
ficity, the correct classification rate and the leave-one-out cross validation error
of the generalized linear model. The sensitivity is equal to 83.20 (±2.46)%, the
specificity is equal to 80.20 (±4.94)%, the correct classification rate is equal to
81.70 (±3.20)% and the leave-one-out cross validation error is equal to 15.02
(±1.96)%.

This second simulation study leads to a satisfactory correct classification rate
and acceptable values for sensitivity and specificity. It is worth noting that in
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general the choice of the distance is problem driven. Each kind of data requires
the distance which better distinguishes the differences between populations.

4 Application to ECG signals

In this Section we apply the methods presented in Section 2 to the ECGs data.
In this case, the basic statistical unit is the 8-variate function (the ECG) which
describes the heart dynamics of each patient on the eight leads I, II, V1, V2,
V3, V4, V5 and V6, together with the corresponding derivatives. Here, the
binary outcome we consider is the group label, indicating the presence of the
disease. It is modeled by a Bernoulli random variable Yi, which takes value 1 if
Left Bundle Branch Block is diagnosed, and 0 if the trace is physiological. We
analyse ECG traces from PROMETEO (PROgetto sull’area Milanese Elettro-
cardiogrammi Teletrasferiti dall’Extra Ospedaliero) database. PROMETEO has
been started with the aim of spreading the intensive use of ECGs as pre-hospital
diagnostic tool. The project was also a way of constructing a new database of
ECGs with features never recorded before in any other data collection on heart
diseases. Indeed, ECG recorders with GSM transmission have been installed on
all Basic Rescue Units of Milan urban area thanks to the partnerships of Azienda
Regionale Emergenza Urgenza (AREU), Abbott Vascular and Mortara Rangoni
Europe s.r.l..
Each file contained in PROMETEO can be associated to three sub-files. The
first is called Details and consists of technical information, useful for signal
processing and analysis. More precisely, it includes waves repolarisation and
depolarisation times, landmarks indicating onset and offset times of the main
ECG’s subintervals and an automatic diagnosis, established by the commercial

Mortara-Rangoni VERITAS
TM

algorithm. We used these automatic diagnoses
to label the ECG traces we analysed. The second sub-file is called Rhythm and
contains the output of an ECG recorder. Specifically, it registers 10 seconds
(10000 sampled points) of the ECG signal. The third file is called Median. It is
built from the Rhythm file, and depicts a reference beat lasting 1.2 seconds on
a grid of 1200 points. We carried out the analysis using the Median files, i.e.,
using 8 curves (one for each ECG lead) for each patient, representing patient’s
“Median” beat for that lead. This representative heartbeat is a trace of a single
cardiac cycle (heartbeat), i.e., of a P wave, a QRS complex, a T wave, and a U
wave, which are normally visible in 50% to 75% of ECGs.

The sample we analyse consists of the ECG signals of n = 149 subjects,
among which 101 are Normal and 48 are affected by Left Bundle Branch Block.
Figure 2 shows denoised and registered data we consider for our analysis (see [7]
for further details on wavelet denoising and landmarks registration adopted for
preprocessing data). The black solid lines represent the mean functions.
To compute the MBDs according to the procedure described in Section 2, we
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Figure 2: Denoised and registered data (8 leads) for the 149 patients with su-
perimposed the mean functions (black solid lines).

randomly chose 50 ECGs from the physiological traces for being the reference
group, and we computed the ranks of the remaining 51 physiological and 48
LBBB traces with repect to them. The procedure has been repeated 20 times
to avoid bias selection in the choice of the reference group.

We performed the analyses on our case study considering all the (pseudo)
distances introduced in Section 2. The results are very robust with respect to
the distances choice, so we will present in the following the results obtained with
the Procrustes pseudo-distances we did in the simulation study.

The weights to plug in the formula (1) are the following (leads are ordered
according to decreasing weight):
Figure 3 shows the multivariate functional boxplots (only the lead V2, the most
relevant according to the weights reported in Table 3) for the 101 physiological
(left panel) and the 48 LBBB (right panel) signals.
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Lead V2 V3 V1 V4 V5 V6 I II

Weights 0.1722 0.1607 0.1385 0.1357 0.1132 0.1104 0.0872 0.0821

Table 3: Weights induced by the Procrustes pseudo-distance, to be inserted in
the MDB formula given in (1).
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Figure 3: Functional boxplots (only lead V2 is depicted) of 101 physiological
traces (left panel) and of the 48 LBBB signals (right panel). The central bands
(grey area), the fences (solid lines) and outliers (dotted lines) are computed
according to the ranking induced by MBDJ

n(f) defined in (1), and all the leads
are weighted using Table 3.

The p-value of the Wilcoxon tests carried out to compare the distributions of
the depths is 5.352 ∗ 10−14 and over all the 20 cases is always less or equal
to 3.02 ∗ 10−12. Figure 4 shows the distributions of the MBDs, stratified by
the presence/absence of Left Bundle Branch Block in one of representative case
over the 20 explored. This picture further supports belief that evidence for the
difference among the two population exists and is significant.
Thus we fitted the logistic regression model (9) for i = 1, . . . , n. Considering
both signals and derivatives, only MDBs of the signals come out to be significant
for the generalized linear regression model so we dropped the MBDs of the
derivatives out. They are not significant, probably due to the high correlation
with the corresponding MBDs of signals. The term

∑w
h=1 dihγh in (9) is missing

because we do not have additional covariates in our dataset.
The model (9) reduces then to

θi = β0 + β1MBDi (13)

The estimates of parameters in model (13) are reported in Table 4.
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Figure 4: Distributions of MBDs, stratified by the presence of disease, for the
data.

Parameter Estimate Std. Error p-value

β0 (Intercept) 11.484 2.483 3.75*10−06

β1 (MBD) -46.268 9.619 1.51*10−06

Table 4: Estimates, standard errors and p-values for the parameters of the
logistic model.

The confusion matrix obtained comparing the true and the estimated labels of
the patients is reported in Table 5. We set the threshold for the classification
carried out by the logistic model in (13) equal to 0.5.

Normal LBBB

Classified as Normal 47 8
Classified as LBBB 4 40

Table 5: Confusion matrix.

Considering all the 20 different cases adopted for carrying out the Wilcoxon test,
we obtain the following summary results, in terms of mean (± std. dev.): sensi-
tivity equal to 84.48 (±2.29)%, specificity equal to 89.80 (±1.87)%; the correct
classification rate equal to 87.22 (±1.58)% and the leave-one-out cross validation
error equal to 9.61 (±1.18)%. These results refer to Procrustes distance, which
is the best performing one in term of correct classification rate.

As in the simulation study (case B), the results are satisfactory. We obtain
a good correct classification rate and high values of sensitivity and specificity.
We conclude that considering the distances between covariance operators is a
good prognostic factor for identifying group membership of patients via logistic
regression.
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5 Conclusions

In this paper, we focus on supervised learning from multivariate functional data,
that is data where each observation is a set of possibly correlated functions.
These functions can be viewed as trajectories of stochastic processes defined on
a given infinite dimensional functional space. In particular the motivating aim
is the analysis of the 8-leads Electrocardiographic traces of patients whose pre-
hospital ECG has been sent to 118 Dispatch Center of Milan (the Italian free-toll
number for emergencies) by life support personnel of the basic rescue units. We
focus on the binary outcome indicating the presence of cardiovascular ischaemic
event, in order to estimate the probability of each patient to be affected by Acute
Myocardial Infarction. This can be done summarizing some relevant features of
data through non parametric statistical objects, i.e., the depth measures. In
fact, computing the depth measure of multivariate functional data and averag-
ing the contribution of each component of the multivariate signal to the depth
itself revealed to be an effective way for defining powerful predictors of the dis-
ease presence. We showed how to choose the weights taking into account the
distance between the estimated covariance operators of the two groups. This
has been carried out considering many different distances between covariance
operators in the infinite dimensional setting, so that a robustness assessment
and a comprehensive performances evaluation can be provided.
The methodological framework proposed in this paper represents a new way for
handling complexity of multivariate functional data. In fact it is often complex
to summarize and quantify the information embedded in signals in order to make
inference and predictions, especially when they are proxies of complex disease
mechanisms. The results obtained in the paper show that we can rely on some
robust procedures in order to accomplish all these goals.
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