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Abstract

We analyse data collected from the administrative datawarehouse of an Ital-
ian regional district (Lombardia) concerning patients affected by Chronic Heart
Failure. The longitudinal data gathering for each patient hospital readmis-
sions in time, as well as patient-specific covariates, is studied as a realization
of non homogeneous Poisson process. Since the aim behind this study is to
identify groups of patients behaving similarly in terms of disease progression
(and then healthcare consumption), we conjectured the time segments between
two consecutive hospitalizations to be Weibull distributed in each hidden clus-
ter. Therefore, the comprehensive distribution for each time to event variable is
modelled as a Weibull Mixture. We are then able to easily interpret the related
hidden groups as healthy, sick, and terminally ill subjects. Adding a frailty term
to take into account the unknown variability of each subject, the corresponding
patient-specific hazard functions are reconstructed.

1 Introduction

Heart Failure (HF) is a term conjectured to identify a physiological state in which
the result is a lack of blood flow to the body. Often clinicians refer to heart failure as
Chronic Heart Failure (CHF), as to identify patients symptomatic of a long duration
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disease. Chronic heart failure can be caused by multiple factors: rheumatic heart
disease, valve disorder, diastolic/systolic dysfunction, cardiomyopathy, hypertension;
moreover, heart failure is diagnosed through a variety of signs, like increased rate of
breathing, pulmonary edema, pleural effusion, nocturia, peripheral edema and more
[8].

HF is the leading cause of hospitalisation in people older than 65 years. A 2010
update from the American Heart Association (AHA) estimated that there were 5.8
million people with HF in the United States in 2006 (see [18] and [15], among others).
There are an estimated 23 million people with HF worldwide, often accounting for a
total medical expenditure that is much greater than any other disease. Despite dra-
matic improvement in outcomes with medical therapy, admission rates following HF
hospitalization remain high [22], with around 50% of patients readmitted to hospital
within 6 months of discharge [14, 13, 5]. A reduction in readmission rates might si-
multaneously reduce costs and improve quality of care. Anyway, whenever reduction
of admissions is not a proper target to aim for, accurate modelling and prediction
of the disease dynamics may enable a more efficient planning and management of
resources.

In the application of interest, we deal with data coming from the administrative
database of Northern Italy regional district (Regione Lombardia). In the Lombardia
district, the HF incidence over the last decade ranged between 25, 000 and 30, 000
cases per year in a population of 9.7 million inhabitants [12]. This unavoidably leads
to a huge number of hospitalizations, with consequent problems related to managing
and organizational issues and, last but not least, cosiderable costs. In fact, within
the Italian healthcare regulation system, every hospital admission is recorded in an
administrative datawarehouse called SDO (Scheda di Dimissione Ospedaliera, i.e.,
hospital discharge paper) database, in order to enable hospitals to be refunded for
the services they provide to the patients.

Statistically speaking, there are several methodological approaches to the mod-
elling of times to multiple events per subject. For example, the occurrence of subse-
quent events may be investigated by multi-state modelling approach (if the interest
lies in both the time to event and in the nature of the event, see, among others,
[1], [9] and references therein) or carrying out a hazard-based analysis, focusing the
modelling effort on the waiting/gap times between subsequent events (see [6] for an
appraisal of modelling approaches to counting processes).

For the problem of interest, both the approaches mentioned before can be con-
sidered. The choice depends on the final aim of the analysis. In [11] an example
of a multi-state modelling strategy for the joint analysis of outcomes and hospital
admissions in CHF patients is proposed. In that case the aim was to show a flex-
ible approach that was able to capture important features of admission-discharge
dynamics, such as multiple ordered events and the competing risks of death and
hospitalisation, in a novel application based on data arising from the administrative
database of Regione Lombardia. In the present case we still focus on patients hospi-
talizations, modelling them like trajectories of a non-homogeneous counting process.
The inter-times between hospitalizations are modelled as independent, parametric,
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not necessarily identically distributed random variables. This leads to the estima-
tion of hazard functions not coming from i.i.d. distributions of interval times. To
catch the heterogeneity of the observed population we assume the presence of K
latent groups of patients behaving differently in terms of disease progression. This
leads to a mixture model for each inter-hospitalization time. Moreover, the paper
proposes a simulation strategy to construct a sample of trajectories of the counting
process associated to each different group, together with the corresponding K haz-
ard function templates. Then hazard function trajectories of the cumulative process
underlying the observed hospitalizations counting process are computed using non
parametric techniques and accounting for overdisperion due to subject-specific frailty
and covariates. Finally, the modelling effort focuses on prediction. In fact, for a new
patient we can compute in an empirical-bayesian way the probability of belonging to
the k cluster and consequently we can estimate the subject-specific hazard function.

The paper is organized as follows: we describe the data extraction and inclusion
criteria in Section 2, and we explain the model details methods in Section 3. Key
results from applying these methods to the Lombardia HF admissions data are pre-
sented in Section 4. In Section 5 we end with a discussion of the main results and
of challenges of using administrative data. All the analyses are carried out using R

codes and environment [20]. Codes are available upon request to the authors.

2 Data and Extraction Criteria

Nowadays administrative health care databases play a central role in the evaluation
of healthcare systems, because of their widespread diffusion and real-time, low-cost
information they provide (see [2, 7], among others). There is an increasing agree-
ment among epidemiologists on the validity of diseases and intervention registries
based on administrative databases (see, for example, [3, 4, 10, 23] and references
therein). Therefore more and more frequently administrative data are used to ad-
dress epidemiological issues in observational studies. The most critical issue when
using administrative databases for observational studies is represented by the selec-
tion criteria of the statistical units. In fact several different criteria may be used,
and they will result in different images of prevalence or incidence of diseases. In the
case of interest, we focus on patients affected by Heart Failure (HF). Concerning this
pathology, since every hospital admission ends in a record collected in the admin-
istrative datawarehouse, the database of SDO (Scheda di Dimissione Ospedaliera,
i.e., hospital discharge paper) has been used in order to identify HF episodes and
related subsequent hospitalizations. In fact, the SDO database contains data for
each hospitalization that a patient experiences along time, providing information
both on patient features (in terms of sex, age) and on her/his hospitalization de-
tails (date of admission and discharge, diagnoses and procedures, type of admission,
type of discharge, vital status at discharge, hospital of admission/discharge). A de-
tailed list (in italian) of fields contained into the SDO is provided in [19]. The case
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study presented here concerns data arising from a project named “Exploitation, in-
tegration and study of current and future health databases in Lombardia for Acute
Myocardial Infarction”, funded by Ministry of Health and Regione Lombardia. The
main objective of this project is to give a global picture of data in epidemiologi-
cal and clinical treatment of Heart Diseases within the regional district of interest
using administrative data. We consider discharges from 2000 up to 2012. Possible
date of death for each patient was linked from death registry by the institution that
hosts the databases so that it is possible to estimate both in-hospital and long term
survival time for each patient. Survival times are right censored to the end of the
study (December, 31st 2012). The total number of patients included in the study is
251,451, corresponding to 482,701 events.
To conduct our analysis, we select a specific cohort according to several parameters.
Patients that, during the observation period, experienced any cardiogenic shock (a
life-threatening medical condition characterized by low blood pressure, rapid heart-
beat and poor end-organ perfusion) have been discarded since they are considered
by clinicians as a different subpopulation. Only patients older than 18 years at their
first admission and whose Length Of Stay (LOS) was not null were included. Fi-
nally we selected patients with a maximum of five hospitalisations and whose first
discharge happened either in 2006 or 2007, in order to have almost 5 years follow
up. As a result, the dataset reduces to 56,505 events, related to 34,298 patients.

2.1 Data Characteristics

Here, we give a brief description of the selected cohort, in order to understand and
later on interpret the results of our analyses.
Patients’ age covers the range from 18 to 104 years, with a mean of 77.25 years and
a standard deviation of 11.06. In this cohort there is a majority of women than men
(53.04% vs 46.96%), but women result to be older than men, having a mean age of
80.09 years in contrast with men’s mean age, equal to 74.04 years (Wilcoxon test,
alternative: true location shift not equal to 0, p-value < 2.2e− 16).
The percentage of dying patients throughout the study time period is equal to
60.61%, with a strong evidence of higher mortality rate for women than men (2-
sample test for equality of proportions, alternative: men’s less than women’s death,
p-value < 2.2e− 16).

3 Model specification

3.1 Patients clustering

Let Ti, i = 1, ..., H the random variables modelling the time between the i-th hospi-
talization and the following event, that could be the (i + 1)-th hospitalization, the
decease or the end of the study. We set H = 5. We model Ti, i = 1, ..., H as a
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Figure 1: Empirical densities of inter-event times Ti, i = 1, . . . , H.

Weibull mixture:

fTi
(t) =

K
∑

k=1

πkf(t; ηki, γki), (1)

where
f(t; ηki, γki) =

γki
ηγkiki

t(γki−1) exp{−(t/ηki)
γki} (2)

is the Weibull density, whose parameters change according to the number of the
considered hospitalization i and the hidden group k. Hence this model has 2(K ×
H)+K parameters. We set K = 3. This choice is reasonable, since in any cohort of
patients there are three macro-groups: we can consistently name them healthy, sick
and terminally ill, and we will later prove that this choice is correct. The diagnosis of
HF can be done at very early stages or at final ones, indeed. Moreover the choice of a
Weibull mixture model seemed reasonable, also looking at the empirical distributions
of inter-event times Ti (see Figure 1). In the first panel of Figure 1, also the presence
of censured patients can be easily detected.
The hazard function in each hidden group k and each hospitalization i, is of the
following form:

hi(t; ηki, γki) =
γki
ηγkiki

t(γki−1). (3)

When introducing the Proportional Hazards Model (PHM) into this framework, we
can set the scale parameter ηki to be equal to the exponential term in the PHM (see
[16, 17]), obtaining:

hi(t; γki, βki) = γki t
(γki−1) exp(βki). (4)
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From the hazard function (4) we are able to obtain the survivor function, hence the
resulting density of the Weibull proportional hazard model mixtures, recalling that
h(t|k, i) = f(t|k,i)

S(t|k,i) .

Using the EM algorithm proposed in [16] we can estimate parameters πk, βki
and γki for each hidden group k and each hospitalization i, getting K corresponding
baseline, hereafter λ0(t|k), k = 1, . . . ,K. Each patient j = 1, . . . , J is then assigned
to one of the K cluster according to the mechanism detailed in [17].

3.2 Patient-specific hazard reconstruction

Once the analysed cohort has been divided into three sub-groups, we can attempt a
reconstruction of patient-specific hazard functions. We set the hazard function for
patient j in cluster k as:

λj(t|k) = λ0(t|k)vj exp(β
′
kZj), (5)

vj
i.i.d.
∼ log −Normal(0, σ2

k). (6)

This is known as the shared frailty model, where vj is the frailty term for patient j
and is constant (shared) for all the events related to the j-th subject. Moreover, we
set the frailty term to have a log-Normal density law common to all patients in the
same group k. Every vj is then a realisation from the distribution in (6).
As mentioned before, the λ0(t|k) term in equation (5) is the baseline hazard func-
tion built upon the hi(t|k, i) of equation (4) for the k−th group. This is estimated
non-parametrically according to [21]. Finally we have introduced in the model some
covariates Zj : Age (measured in years) of patient j at the beginning of i-th hos-
pitalisation; Intensive Therapy a boolean variable indicating weather patient j was
recovered in the intensive therapy unit during the i-th hospitalisation; Procedures a
boolean variable indicating weather at least one procedure among ICD (Implantable
Cardioverter Defibrillator), CABG (Coronary Artery Bypass Grafting) and PTCA
(Percutaneous Transluminal Coronary Angioplasty) was performed on patient j dur-
ing the i-th hospitalisation; Comorbidities a boolean variable indicating weather pa-
tient j have at least two comorbidities among renal disorder, tumors, anemia, liver
disorder and others during the i-th hospitalisation. Note that all included covariates
are time-dependent. In particular, we standardised the age in order to avoid a com-
putational overflow (see also [21]). Corresponding coefficients βk are specific for the
considered group k.

Within this category of models we are especially interested in estimating the
frailty variances σ2

k, k = 1, . . . ,K, which represent the unknown variability that
exists among patients in the same group. This may bring important information,
together with patient-specific covariates, for predicting the evolution of patients’
disease in each group.
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3.3 Prediction of disease evolution

One of the most interesting aspect of the current work is the prediction of the
behaviour of a new patient (jnew), diagnosed with heart failure.

We implemented the same algorithm presented in above in order to assign the new
patient to one of the three already determined clusters. Based only on information
regarding the observed inter-event times of new patient jnew, we can compute the
probability of belonging to one of the three clusters. Indicating this probability as
ν(jnew|k), we evaluate it in a empirical-bayesian way:

ν(jnew|k) =
pkfjnew

(k)
∑K

k=1 pkfjnew
(k)

(7)

where pk is the empirical probability of belonging to the k-th cluster (pk = nk/N , nk

being the cardinality of k-th cluster, and N = n1 + n2 + n3), and where fjnew
(k) =

∏H
i=1 φi(jnew|k) is the full likelihood function for the new patient, supposing she/he

belongs to the k-th cluster.
The contribution of the i-th hospitalisation of patient jnew, within the k-th clus-

ter, to the full likelihood consists of the product between λjnew
(ti|k) and the corre-

sponding survival function Sjnew
(ti|k):

ϕi(tjnew,i|k) = λjnew
(tjnew,i|k)Sjnew

(tjnew,i|k) =
γki
ηγkiki

t
(γki−1)
jnew,i exp(−(

tjnew,i

ηki
)γki). (8)

To take into account for those hospitalisations i such that i > imax(jnew), where
imax(jnew) is the last one experienced by the considered patient, we use the model’s
parameter τi(k), i.e., the probability of having at least i hospitalisations when be-
longing to the k-th cluster. This way we can compute the probability of patient jnew
over every possible hospitalisations, for i = 1, . . . , H:

φi(jnew|k) =

{

ϕi(tjnew,i|k)τi(k) if jnew has at list i hospitalisations,

1− τi(k) if jnew has had less than i hospitalisations.
(9)

At this point it is easy to compute fjnew
(k), by multiplying φi(jnew|k) over i, hence

obtaining the posterior probability ν(jnew|k) of belonging to the k-th cluster (see
equation (7)).

To evaluate the full likelihood function, we use the parameters obtained from the
clustering of the original dataset, and estimated through the used EM algorithm:
the probability of having at list i hospitalisations, when patient j belongs to the k-th
cluster, and the parameters of the Weibull Mixture Model, ηki and γki.

4 Analysis of Results

The great majority of patients in our cohort die before the end of the study due
to very serious conditions. These patients, for the nature of their disease, have
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a relevant impact when analysing the entire cohort or when looking at groups of
patients obtained as described in Section 3.1. Indeed, when attempting a clustering
of patients, those with a higher mortality risk rate play a crucial role and in some
cases they force a certain type of resulting division. This is why we will firstly analyse
the obtained results when clustering the entire cohort. This will be the Step 1 of our
analysis. Then we will compute again the clustering and reconstructing algorithm
over subgroups of our cohort, every time removing those patients who died at i-th
hospitalisation (i.e., in Step 2 we remove patients who died at first hospitalisation,
in Step 3 we remove patients who died at their second one, and so on). In the final
step of the current analysis (Step 6), all patients are alive at the end of the study.
This enables us not only to recognise the impact of dying patients over the clustering
algorithm, but also to monitoring the group membership of each survived patient
over time.

4.1 Step 1

Let’s consider the selected cohort. We firstly divide it into three subgroups. This
partition is obtained through the algorithm implemented in PHM package [17] and
briefly explained in Section 3.1. Note that the clustering algorithm does not take into
account information concerning the type of event we are considering (no information
on death of patients are made available to the algorithm). Once obtained the three
groups, we can look back at information extracted from the SDO of every patient
and analyse the characteristics of each group.

In Table 1 we give some details of the characteristics of groups k, k = 1, . . . , 3.
The first and most interesting data available from this table is the mortality rate: it
seems that the algorithm is able to classify patients according to their mortality risk.
Patients in group 1 have the highest mortality rate, while patients in group 3 have
the lowest. We can label these groups as: terminally ill (group 1), sick (group 2)
and healthy (group 3). Notice that the choice of these names is to give an easy and
immediate description of the prototype patient in the group. Other characteristics
can be found in Table 1. Among these it is interesting to recognise the mean age
trend, which is equal to 81 for the terminally ill group (group 1), and it decreases
down to 73 for the healthy group (group 3). Once again it seems that the algorithm
is able to divide patients also according to age: elderly patients are exposed to more
serious heart conditions than younger patients.
Once obtained the division of patients into three groups, which are, as shown, rep-
resentative of three well distinguished categories, we are ready to evaluate patient-
specific hazard functions according to the model presented in Section 3.2 and imple-
mented in [21].
In Figure 2 are shown the baseline hazard functions for the three groups. They
perfectly represent the hazard’s functional trend expected in each group: terminally
ill group has the highest risk of a new event throughout the study time period (red
solid line), healthy group is nearly null compared to the other groups (blue solid
line), and the sick group is characterised by an in between trend (green solid line).
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Properties Group 1 Group 2 Group 3

Group Size 14,872 (43.36%) 7,820 (22.80%) 11,606 (33.84%)

Mortality Rate 93.19% 55.78% 22.09%

Mean (med) LOS 1st ev. [days] 352.5 (169) 482.4 (316.5) 2,075 (2,104)

Mean Age (sd) [years] 81 (9.76) 76 (10.50) 73 (11.34)

Intensive Therapy 3,300 (22.19%) 2,469 (31.57%) 2,956 (25.47%)

Procedures 2,306 (15.51%) 2,451 (31.34%) 2,720 (23.44%)

Comorbidities 12,802 (86.08%) 7,237 (92.54%) 8,755 (75.44%)

Table 1: Characteristics of groups: size (number and percentage), mortality rate
(percentage), mean and median of the length of stay (LOS) from the first admission
to next event (in days), mean and standard deviation of age (in years), intensive ther-
apy (number and percentage), procedures (number and percentage), comorbidities
(number and percentage).

The same functional shape can be found in patients hazard functions. This is because
the baseline gives the general trend to the hazard function of a patient. Through
frailty terms and covariates we are able to slightly modify this trend and discern
patients’ specific trends. In Figure 3 are shown the resulting patient-specific hazard
functions within each group. Each graphic is shown in its own scale, as otherwise
certain properties would be masked. As expected, frailty terms and covariates sig-
nificantly change the baseline hazard function values. In terminally ill group it is
evident an initial high risk that decreases towards the end of the study time period,
revealing what was shown in Table 1: the majority of patients in group 1 die before
the end of the study time period, and the LOS in the first state (from first admission
to next event) is for half patients in this group less than 169 days, equivalent to
5 months. The same analysis can be conducted to discuss patient-specific hazard
functions for the other two groups. It is mostly interesting to examine the results
of healthy group. A significant change of trend is observable after 1,000 days (2.7
years). Indeed, 99.78% of patients have a LOS in the first state longer than 1000
days, and, eventually, new events happen during the last four years of observation.
This way we are able to justify the great increment in the value of patient-specific
hazard functions shown in Figure 3. In Table 2 the estimates of the covariates
coefficients, as well as the variability of frailty terms are reported.

Estimate (SE) Group 1 - Terminal Group 2 - Sick Group 3 - Healthy

Age 0.1713 (0.0086) 0.2291 (0.0099) 1.0405 (0.0345)

Intensive Therapy 0.1826 (0.0206) 0.1988 (0.0242) -0.1404 (0.0704)

Procedures -0.3249 (0.0245) -0.4204 (0.0261) -0.1953 (0.0736)

Comorbidities 0.0059 (0.0209) -0.0607 (0.0256) 0.5848 (0.0644)

Frailty Variance 0.0889 0.0897 2.7956

Table 2: Estimates (SE) of the covariates coefficients and variance of frailty terms.
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Figure 2: Baseline hazard functions. Red line: terminally ill group, Green line: sick
group, Blue line: healthy group. Solid line: baseline hazard function, Dashed line:
95% confidence bands.

Observing the coefficient estimates in Table 2, we see that age increases the in-
stantaneous risk for all the groups, particulary the healthy one. Intensive therapy
does the same in sick and terminal groups, whereas represents a decreasing risk fac-
tor for healthy people. Procedures provide benefits whenever patient go through
them. Comorbidities are relevant for the healthy group, increasingly substantially
the instantaneous risk for a patient presenting them during her/his hospitalizations.
Finally, the variability of the frailty within the healthy group is definitively higher
than the other two.

4.2 Further Steps

Once analysed the results for the selected cohort, it is interesting to give an estimate
of the goodness of the model and of the obtained results. The idea is that dying
patients influence considerably the clustering process, hence the reconstruction of
patient-specific hazard functions. To overcome this problem, step by step we remove
from the initial cohort patients dying before the n-th event. This means that at Step
2 we remove patients whose event after the first admission is death. At Step 3 we
remove also patients whose event after their second admission is death. At Step 6,
we remove all dying patients from the initial cohort.

In Table 3 we show the characteristics of each group through subsequent steps.
From this table we are then able to evaluate whether the algorithm is able to produce
a good division of initial cohort.
Firstly it is interesting to look at the dimension of each group through subsequent
steps (see also Figure 4): for the terminally ill group, which is each time identified
through the mortality rate index, it decreases considerably from Step 1 to Step 2
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Figure 3: Patient-specific hazard functions.

(reduction of the percentage dimension equal to 14.85%), but it also decreases step
by step, reducing to the smallest group by Step 6. This is expected once we remove
dying patients, as we are in fact removing terminally ill patients. The opposite
result is found for the healthy group, where we observe in Table 3 an increase in
its percentage dimension, with a corresponding almost constant group size. Once
again this result confirms what expected when removing patients. The sick group is
mostly stable both in the size and percentage, except for an initial reduction when
removing those patients dying after the first or second admission.
Another interesting feature that can be deduced from Table 3 is that the majority of
dying patients are older than the surviving ones. We find that the mean age of dying
patients is 81.11 years, where the mean age of surviving patients is 71.31. Notice
that the range of ages in the two conditions are the quite similar: [19; 104] vs [18; 99].

From this initial analysis we can state that the clustering algorithm is able to
divide patients sufficiently well. It is now important to understand what differences
arise when reconstructing hazard functions. Of course the presence of dying patients
significantly influence the shape and trend of the estimated baseline hazard function
within each group. We can clearly observe this through Figure 5. The baseline hazard
function for the healthy group remains mostly constant throughout the considered
steps. In particular, as expected, its values are close to zero compared to those of
the other groups (range of values [7.2e− 23; 5.4e− 4]). There is, on the other hand,
an evident reduction in the risk of a new event, within the first year of observation,
for terminally ill and sick groups. This is due to the removal of dying patients, which
as expected considerably influence the baseline hazard functions. Towards the end
of the study time period, we can see instead an increase in the risk for terminally ill
and sick groups, due to correspondent increase in the percentage of censored patients
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Group Terminally ill

Step 2 3 4 5 6

Cluster Size 6,169 4,836 3,076 2,204 1,834

Cluster Size (%) 28.51% 28.39% 20.56% 15.74% 13.57%

Mortality Rate 86.03% 66.38% 45.68% 20% 0%

µ(Age) [y] 79.21 76.66 74.65 72.60 71.46

sd(Age) 9.89 10.23 10.65 10.91 10.96

Group Sick

Step 2 3 4 5 6

Cluster Size 5,000 2,953 2,889 2,796 2,548

Cluster Size (%) 23.11% 17.34% 19.31% 19.97% 18.86%

Mortality Rate 40.24% 8.30% 1.45% 1.79% 0%

µ(Age) [y] 74.82 72.28 71.83 71.88 71.69

sd(Age) 10.76 10.88 10.77 10.80 10.96

Group Healthy

Step 2 3 4 5 6

Cluster Size 10,470 9,244 8,994 9,003 9,130

Cluster Size (%) 48.38% 54.27% 60.12% 64.29% 67.57%

Mortality Rate 7.72% 0.71% 0% 0% 0%

µ(Age) [y] 71.87 71.22 71.15 71.15 71.17

sd(Age) 11.25 11.34 11.37 11.36 11.34

Table 3: Characteristics of groups in steps from 2 to 6: size (number and percentage),
mortality rate (percentage), mean and standard deviation of age (in years).

within the group (once dying patients are removed, the remaining ones are censored).
The corresponding reconstructed hazard functions are obtained applying the model
in Equation 5. We show only the result for Step 6 (see Figure 6), as for all other
steps the results are similar. Moreover, these are interesting results, being the only
ones computed over a completely surviving population. We promptly can observe
the difference from the results shown in Figure 3 for terminally ill and sick groups.
First, observing the terminally ill group, the range of values for the hazard functions
is sensibly reduced: in Figure 3 there is a high initial pick due to dying patients
whose mean LOS in the first state is less than 169 days; once these patients have
been removed, we are able to better observe the hazard trend of patients classified
as terminally ill. Second, the results for the sick group differ in the variability of the
obtained functions: at Step 1 sick group hazard reconstruction was characterised
by a great variability, which is significantly reduced at Step 6. Finally, for what
concerns the healthy group, also in the result at Step 6 we find the same significant
change of trend after 2.7 years, which appeared evident in Figure 3: due to the
regrouping after the removal of dying patients, we observe a new bump in the first
segment of these functions, which is the symptom of a reallocation of certain patients.
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Figure 4: Evolution of groups’ percentage from Step 1 to Step 6. Red bar: Terminally
ill group. Green bar: Sick group. Blue bar: Healthy group.

Figure 5: Baseline hazard functions of groups in steps 1 through 6. Red solid line:
Terminally ill group’s baselines. Green solid line: Sick group’s baselines. Blue solid
line: Healthy group’s baselines. Dashed lines: 95% confidence bands.
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Figure 6: Patient-specific hazard functions of groups obtained at Step 6, when all
dying patients in the initial cohort have been removed.

4.3 Model assessments

On the basis of the results obtained when dividing into three groups the selected
cohort, step by step, we are able to understand and give an estimate on what is the
movement of patients among groups from one step to the next. Removing dying
patients, surviving patients could be assigned to a different group of risk: they may
seem healthier than dying patients at Step 1, hence being assigned to the healthy
group, but at successive steps it may be that their condition is not perfectly aligned
with that of true healthy patients, hence being assigned to sick or terminally ill
groups. The same can happen with patients initially considered as terminally ill, or
sick, whose condition is then revalued once dying patients are discarded.
In Figure 7, we show the probabilities that a patient, who was at previous step as-
signed either to terminally ill, sick or healthy group, is now assigned to terminally
ill, sick or healthy group, or is now dead. From these plots it is evident that, once
removed the great majority of dying patients (after steps 1 and 2), the probability
of being reassigned to the same risk group increases. In particular for the healthy
group, at final steps the probability of being healthy once considered healthy is ap-
proximately equal to 1. If we observe terminally ill patients plot, once more we find
what was already clear from previous analyses: after Step 1, the majority of these
patients dies; then the trends of red and black lines, being one the new terminal
patients and the other that of dead patients, are specular, with a growing tendency
for the red line, meaning that step by step the algorithm is able to correctly classify
terminally ill patients. Sick patients have characteristics in between the extreme
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Figure 7: Probability plots of being assigned to one group, knowing which was
the one of provenance at previous step. First plot shows the probabilities of being
assigned to either the terminally ill, sick, healthy or dying patients group, given that
at previous step the patient was assigned to the terminally ill group. The same is
for the other two plots, one for patients previously assigned to sick group and one
for those who were before assigned to healthy group. Red line: Terminally ill group.
Green line: Sick group. Blue line: Healthy group. Black line: dead patients.

groups (terminally ill and healthy): for this reason these are the most difficult pa-
tients to identify as sick. In every step, the algorithm assign again to the sick group
the majority of previously considered sick patients; the remaining 10% is assigned
to other groups.

Finally, we can state that dying patients have a great influence at first steps of
our algorithm, although once removed it becomes clear to which group each patient
is related to. In spite of this evidence, the misclassification error at first steps is not
compromising the obtained results for the hazard reconstruction, as the number of
misclassified patients remains low compared to the comprehensive cohort dimension.

4.4 Prediction for a new patient

In order to evaluate the goodness of our prevision model, we perform a cross vali-
dation analysis over the same dataset through which we built the three clusters (see
Section 3.1). The obtained misclassification matrix, with known labels on the rows
and assigned labels on the columns is reported in Table 4.
The AER value obtained for this misclassification matrix is AER = 0.0975.

Now that we assigned the new patient jnew to one of the three clusters, we can
reconstruct her/his hazard function, based on the baselines of the three clusters,
obtained in Section 3.2. Using the parameters β of the regression term in Equation
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Group 1 - Terminal Group 2 - Sick Group 3 - Healthy

Terminal 11874 2752 246
Sick 97 7545 178

Healthy 0 72 11534

Table 4: Misclassification matrix: known labels on the rows and assigned labels on
the columns.

Figure 8: Examples of correct classification of patients in the three clusters. The
original hazard function is the solid red line, the new computed hazard function is
the black solid line.

(5) and the variance term for Equation (6), computed in Section 4.1, we can evaluate
the hazard function for patient jnew. In Figure 8, we show three examples, one for
each cluster, of correctly classified patients: in the plot are shown in red the original
hazard function, and in black the new computed hazard function. It is evident from
the plots that, there is a slight difference between the two curves, the original one
and the new one. This is due to the new value of the frailty term vj randomly
generated from (6). Of course the difference is mostly emphasized in the healthy
group, where the variance of the frailty term distribution is higher (see Table 2).
If we take a look at Figure 9, we can see some examples of misclassification, one
for each type of incorrect assignment of a patient. We can see that in each of the
shown cases, there is a considerable difference between the two lines (red: original
hazard function, black: new hazard function). In particular, it seems that when
misclassifying a sick patient, the reconstruction of the hazard function is more similar
in the case that the patient is now assigned to the terminally ill group then to the
healthy group. This is because, if we recall Figure 3, we can see that the behaviour of
the two functions is much more similar between the groups of sick and terminally ill
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Figure 9: Examples of wrong classification of patients in the three clusters. The
original hazard function is the solid red line, the new computed hazard function is
the black solid line.

patients, even though terminally ill patients seem to have a smaller group variance.
The same behaviour is found when looking at terminally ill patients who have been
misclassified. For healthy patients, who are misclassified only as sick patients, we
recover the opposite behaviour, where is even more evident the difference between
red and black lines, due to the deep difference in the two clusters.

5 Conclusions

In this work we analyse data on hospitalizations of patients affected by HF in Re-
gione Lombardia. We consider patient’s histories, in term of hospitalizations, as
trajectories of a non-homogeneous counting process, modelling the inter-times be-
tween hospitalizations as mixture of independent Weibull distributions. This allows
us to make inference on different latent groups of disease progression patients belong
to. Moreover, a method for carrying out predictions for a new patient is proposed.
In fact, the aims of the work are twofold: first, to identify latent pattern of disease
evolution starting from the hospitalization process, that is the only process admin-
istrative data allow to observe. Secondly, once the evolution patterns are identified,
the model becomes a tool for prediction of disease evolution and the corresponding
healthcare consumption.

One of the main novelty of the work is the use of administrative data for epi-
demiological purposes. Administrative database and routinely-collected data, infact,
have great potential for clinical research, since they are population based and com-
bine information from multiple centers. In so doing, they could capture complete
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health system use. Moreover, they are usually inexpensive.
Further developments concern the study of the changing points in the hospitali-

sation process of each patient, making use of the estimated hazard and the dynamic
clustering over interval times. In fact, it is likely that a change in disease status
is reflected by a different dynamic in the hospitalizations process. If we were able
to identify these changes, this would improve the diagnosis of the disease and the
ability of a clinician to predict its evolution. Moreover, a better understanding of
the disease trend from a general point of view, might allow hospitals to plan and
address in a more proper way the needs of future hospital admissions, improving the
efficiency of clinical facilities and, consequently, of the collective welfare.
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