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Abstract We investigate the combination of Isogeometric Analysis (IGA) and proper or-

thogonal decomposition (POD) based on the Galerkin method for model order reduction of

linear parabolic partial differential equations. For the proposed fully discrete scheme, the

associated numerical error features three components due to spatial discretization by IGA,

time discertization with the θ -scheme, and eigenvalue truncation by POD. First, we prove

a priori error estimates of the spatial IGA semi-discrete scheme. Then, we show stability

and prove a priori error estimates of the space-time discrete scheme and the fully discrete

IGA-θ -POD Galerkin scheme. Numerical tests are provided to show efficiency and accu-

racy of NURBS-based IGA for model order reduction in comparison with standard finite

element-based POD techniques.

Mathematics Subject Classification (2000) 35K20 · 65M12 · 65M15 · 65M60

1 Introduction

Proper orthogonal decomposition (POD) is a powerful model order reduction technique

widely used nowadays in Computational Sciences and Engineering (see e.g. [5,21,36,37,

45]). The method is also used under different names and formulations in other fields ([21]),

e.g. principle component analysis in statistics and Karhunen-Loève expansion in stochastic
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analysis. In computational mechanics, POD techniques have been applied in various Engi-

neering fields, such as the simulation of turbulent flows [5], weather forecast [31], the solu-

tion of optimal control problems [26], and, recently, for reduced order modelling of physical

and geometry parameterized steady and unsteady partial differential equations (PDEs); see

e.g. [8,18,29,34,39,45]. POD-Galerkin methods for time-dependent PDEs usually perform

model order reduction of the solution manifolds depending on the time independent variable,

which can also be regarded as a one-dimensional parameter for parameterized PDEs. POD

techniques have been mainly applied to parabolic PDEs [19,24,27,40] and Navier-Stokes

equations [17,28,31].

POD-Galerkin methods were first analyzed by Kunisch and Volkwein under a unified

framework for evolution problems including heat and Burgers equations [27] and, later, the

Navier-Stokes equations [28]. The method of snapshots in POD-Galerkin methods chooses

discrete instances in the parameter domain and uses the corresponding field variables (i.e.

the snapshots) to obtain a low-dimensional basis [27,44]. The generation of snapshots is

the first crucial step in POD-Galerkin reduced modeling of PDEs. For error estimation and

generation of the POD basis proposed in [27,28], the snapshots are often assumed to be

“exact” regardless of the space discretization, i.e. given by the exact (weak) solutions at

discrete time instances. Therefore, the error between the POD-Galerkin solution and the

exact solution is composed by only two components due to the time discretization and POD

eigenvalue truncation, respectively.

Nevertheless, “exact” snapshots are usually not available in practice and instead “very

accurate”, but approximate snapshots are considered. These are generally obtained by spa-

tially approximating the PDEs by means of suitable numerical methods. Then, a question

arises: how much this approximation influences the POD-Galerkin solution in terms of ac-

curacy? Indeed, the available snapshot instances contain error due to spatial discretization,

which should be reliable or accurate enough in order to consider this error negligible. Most

of the existing methods of snapshots thus need to compute snapshots numerically by dis-

cretization techniques, such as the Finite Element method (FEM) (see e.g. [7,25,27,30,31,

41]) or Finite Volumes [32]. In [24,31], attempts were made to analyze the error associated

to the snapshots. As a popular model order reduction technique, POD is usually designed

to capture the information contained in the set of snapshots in the sense of least-squares.

This does not necessarily implies that the reduced order space spanned by the POD basis

performs well in approximating the solution space (or manifold) of the PDE. For example,

let us assume that u is an exact solution of a given PDE. Let us denote by us and ur a snap-

shot and a POD solution, respectively; then, we have in an arbitrary norm ‖ ·‖ the following

result [18]:

‖u−ur‖ ≤ ‖u−us‖+‖us −ur‖ (1)

by the triangle inequality. In this respect, POD model order reduction deals with the re-

duction of the error component ‖us − ur‖ by modal analysis and eigenmodes truncation.

Therefore, to make ‖u− us‖ and hence the total norm ‖u− ur‖ small, we need good “ap-

proximate” snapshots (also called “truth” approximations [44]) to begin with. Motivated

by this requirement, in this paper we choose Isogeometric Analysis (IGA) [9,22] to ob-

tain our snapshots in place of the standard FEM. The motivation stems from the fact that

the geometrical approximation of the computational domain may affect the accuracy of the

POD-Galerkin method, especially if only a “small” number of POD basis functions can be

practically used in the POD-Galerkin method.

Compared with standard FEM, IGA has shown many advantages especially in facil-

itating the exact representation of the computational domains described by Non-Uniform



Isogeometric analysis and proper orthogonal decomposition for parabolic problems 3

Rational B-spline (NURBS) in the analysis. Nowadays, IGA has been applied successful-

ly in various Engineering fields including structural mechanics, acoustics, computational

fluid dynamics, electromagnetism; see e.g. [2,3,6,9,12,14,38,42]. IGA represents a gen-

eralization of the isoparametric FEM for which NURBS basis functions, the standard in

Computer-Aided Design (CAD), are first used for the geometrical representation of the

computational domain and then as basis for the finite-dimensional trial spaces of the so-

lution approximating the PDEs. In particular, the global regularity km of the NURBS ba-

sis functions can be enhanced up to km = p− 1, with p denoting the polynomial degree,

conversely to the standard C0-continuous Lagrange basis functions of the FEM. Moreover,

besides h- and p- refinements, IGA enjoys a further refinement called k-refinement, which

allows km = p−1 continuity of the basis functions for p-degree NURBS. Therefore, besides

the geometric advantages, NURBS-based IGA possesses the advantage of yielding highly

accurate approximations when using Cp−1-continuous basis functions for smooth solutions

of the PDEs. Moreover, in eigenvalue problems the regular basis functions are significantly

better than their C0-continuous counterpart in the computation of the spectrum and modal

analysis [10,13,23]. This advantage may be significant in the context of the POD-Galerkin

method which is based on modal analysis and eigenvalue truncation. For this reason, to-

gether with the exactness of the geometrical representation, we believe that the use of IGA

with NURBS basis functions which are Cp−1-continuous may be significantly beneficial for

POD-Galerkin methods both in terms of accuracy and efficiency.

The aim of this paper is to use IGA for the POD-Galerkin method in model order re-

duction of linear parabolic PDEs. To the best of our knowledge, this is the first study of the

combined use of IGA and POD methods. In addition, we unify the analysis of the method

of snapshots based on forward Euler, backward Euler, and Crank-Nicolson schemes for the

time discretization (e.g. [24,27,28]) into the general framework of the θ -method, for which

we propose the IGA-θ -POD Galerkin method; the corresponding stability and convergence

properties are also presented. In Section 2, we first introduce the essential formulations of

IGA for the spatial discretization of PDEs. Then, the IGA semi-discrete and fully space-time

(with the θ -scheme) discrete methods are presented and stability and convergence analysis

of these schemes for parabolic PDEs are provided. In Section 3, we recall the POD methods

for model order reduction of PDEs with the time parameter. In Section 4, we present the

IGA-θ -POD Galerkin scheme and analyze its stability and convergence analysis by carry-

ing out a priori error estimates. We compare numerically the IGA-θ -POD Galerkin method

with FEM-θ -POD Galerkin method for reduced order modelling of linear parabolic PDEs.

We show that the method using IGA is more accurate and efficient than the one based on

FEM, which is used widely in the model reduction literature. Conclusions follow.

2 IGA for linear parabolic problems

In this section, we first introduce the unsteady advection-diffusion-reaction model problem.

We introduce B-splines and NURBS for the formulation of IGA. Then, we propose the

spatial discretization scheme by IGA and time discretization using the θ -scheme. For the

spatial semi-discretization scheme, we show a priori error estimates; then, we analyze the

stability and convergence properties of the full IGA-θ scheme.
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2.1 Problem formulations

Let Ω ⊂R
d (d ∈N) be an open and bounded domain with Lipschitz-continuous boundary

Γ := ∂Ω . We introduce a second order differential operator L given by

Lv :=−
d

∑
i, j=1

Di(ãi jD jv)+
d

∑
i=1

(

Di(biv)+ ciDiv
)

+a0v, (2)

where D j := ∂/∂x j is the spatial derivative operator and the coefficients ãi j,bi,ci,a0 ∈
L∞(Ω) for all i, j = 1, . . . ,d. We assume that L is elliptic, i.e. there exists a constant α̃ > 0

such that ∑
d
i, j=1 ãi j(x)ξiξ j ≥ α̃|ξ |2 for all ξ ∈ R

d and a.e. in Ω . We consider the following

linear initial-boundary value parabolic problem ([35])















∂u

∂ t
+Lu = f in ΩT := (0,T )×Ω

Bu = g on ΓT := (0,T )×Γ

u = u0 in {0}×Ω ,

(3)

where T > 0, f = f (t,x), g = g(t,x), and u0 = u0(x) are given data and Bu = g denotes any

of the admissible boundary conditions (Dirichlet, Neumann, or mixed types).

We indicate with L2(Ω) the Hilbert space of measurable functions v which are square

integrable. For any v,w ∈ L2(Ω), we denote the associated inner product and norm as

(w,v) :=
∫

Ω w(x)v(x)dx and ‖w‖L2(Ω) :=
√

(w,w), respectively. Let V be a closed subspace

of H1(Ω) such that H1
0 (Ω) ⊆ V ⊆ H1(Ω). Denote by (·, ·)H1(Ω) the inner product associ-

ated with H1(Ω), i.e. (w,v)H1(Ω) := (w,v)+ (∇w,∇v) for any w,v ∈ H1(Ω) and define the

norm ‖v‖H1(Ω) :=
√

(v,v)H1(Ω) on V for any v ∈ V . In addition, we will need the Hilbert

spaces Hk(Ω) := W k,2(Ω), for k a non-negative integer; accordingly, (·, ·)Hk(Ω), ‖ · ‖Hk(Ω)

and | · |Hk(Ω) will be used as their inner products, norms and seminorms, respectively (see e.g.

[35]). We point out that each of the boundary conditions yields a specific choice of V . Now,

let us consider boundary conditions of Dirichlet and mixed types. Thanks to the Poincaré

inequality, when Dirichlet or mixed type boundary conditions are considered, there exists a

constant CΩ ∈ (0,1) such that

‖v‖2
L2(Ω) ≤CΩ‖v‖2

H1(Ω) ∀v ∈V. (4)

We associate the operator L with a bilinear form

a(w,v) :=
∫

Ω

[

d

∑
i, j=1

ãi jD jwDiv−
d

∑
i=1

(biwDiv− civDiw)+a0wv

]

dx. (5)

We first assume that a: V ×V → R is a continuous and weakly coercive bilinear form, i.e.

there exist constants α > 0, β > 0 and λ ≥ 0 such that

|a(u,v)| ≤ β‖u‖H1(Ω)‖v‖H1(Ω) ∀u,v ∈V (6)

and

a(v,v)+λ‖v‖2
L2(Ω) ≥ α‖v‖2

H1(Ω) ∀v ∈V, (7)

respectively. The operator L of (2) is chosen in such a manner that the inequality (7) is

assumed to be satisfied provided that the coefficients of L belong to L∞(Ω). Without loss of
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generality, we can assume further that the bilinear form a(·, ·) satisfies (7) with λ = 0 by the

change of variable uλ (t,x) = e−λ tu(t,x), for which the corresponding error estimates for the

solution u(t,x) in the following sections show an extra multiplicative factor eλ t [35].

We denote with L2(0,T ;V ) the space of measurable functions φ : (0,T )→V which are

square integrable, i.e.
∫ T

0 ‖φ(t)‖2
V dt < ∞, where φ(t) := φ(t, ·) is considered as a function

of the space variable only for t fixed; we also define the Hilbert space W (0,T ;V ) := {φ ∈
L2(0,T ;V ) | φt ∈ L2(0,T ;V ′)}, where V ′ is the dual space of V . Finally, we denote the space

of continuous functions φ : (0,T )→ L2(Ω) by C0([0,T ];L2(Ω)).

Given f ∈C0([0,T ];L2(Ω)) and u0 ∈ L2(Ω), we consider, for our analysis, the follow-

ing weak formulation of problem (3) with homogeneous Dirichlet boundary conditions for

which V = H1
0 (Ω): find u ∈ L2(0,T ;V )∩C0([0,T ];L2(Ω)) such that

d

dt
(u(t),v)+a(u(t),v) = ( f (t),v) ∀v ∈V (8)

(u(0),χ) = (u0,χ) ∀χ ∈ L2(Ω), (9)

which admits a unique weak solution u ∈ W (0,T ;V ). In addition, if u0 ∈ V , we have u ∈
C0([0,T ];V ) and ut ∈C0([0,T ];L2(Ω)) (see e.g. [11]).

2.2 IGA space semi-discretization of PDE model

Let us introduce a spatial semi-discretization of (8) based on IGA [9]. We recall in the

following some basic definitions and properties of IGA.

2.3 B-splines and NURBS of IGA

We start by recalling univariate B-splines and NURBS [33]. For any α (1 ≤ α ≤ d) and

positive integer nα , we define the knot vector Ξα := {0 = ξ1,α ,ξ2,α , . . . ,ξnα+pα+1,α = 1}
consisting of nondecreasing knots, i.e. ξ1,α ≤ ξ2,α ≤ . . . ≤ ξnα+pα+1,α . Knots may be re-

peated with the number of repetitions called multiplicity. A knot vector is assumed to be

open if both of the first and the last pα + 1 knots are repeated, where pα is the polyno-

mial degree. Denote by Bi,α (i = 1,2, . . . ,nα ) the B-spline basis functions, which can be

generated by the recursive Cox-de Boor procedure [33]. Each B-spline basis function is ev-

erywhere pointwise C∞-continuous except at knots ξi,α , where it is Cpα−κi,α -continuous if

the multiplicity of the knot is κi,α with 1 ≤ κi,α < pα + 1. The B-spline basis function-

s are non-negative, locally supported in (ξi,α ,ξi+pα+1,α) (the knot span), and constitute

a partition of unity [22], i.e. ∑
nα
i=1 Bi,α = 1. We define the space of univariate B-splines

Bα ≡ B(Ξα ; pα) := span{Bi,α}i=1,...,nα . See e.g. Fig. 1 for a typical B-splines basis in the

univariate case.

Multivariate tensor product B-splines are defined based on d knot vectors Ξα , α =
1, . . . ,d. Let Ω̂ := (0,1)d ⊂ R

d be an open parametric domain. The knot vectors par-

tition Ω̂ into “mesh” elements, which constitute a mesh Qh ≡ Qh(Ξ1, . . . ,Ξd) := {Q =
⊗d

α=1(ξiα ,α ,ξiα+1,α) | pα +1 ≤ iα ≤ nα −1}. Let us denote ĥQ := diam(Q) for all Q ∈ Qh

and the global mesh size ĥ :=maxQ∈Qh
{ĥQ}. For notational convenience, we denote a multi-

index i := (i1, . . . , id) and a corresponding multi-index set I := {i = (i1, . . . , id) | 1 ≤ iα ≤
nα for 1 ≤ α ≤ d}. Then, for each multi-index i ∈ I, we define the tensor product B-spline
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Fig. 1: Univariate quadratic B-spline basis functions with n1 = 8 and p1 = 2 generated from

the knot vector Ξ1 = {0,0,0,0.2,0.4,0.6,0.6,0.8,1,1,1}. The multiplicity of each interior

knot is 1 except at ξi,1 = 0.6; thus, the basis functions are C1-continuous at the interior knots

and C0-continuous at the knots ξ6,1 = ξ7,1 = 0.6.

basis functions Bi : Ω̂ → R, Bi := Bi1,1 ⊗ . . .⊗Bid ,d and the corresponding tensor product

B-splines space

Bh ≡ Bh(Ξ1, . . . ,Ξd ; p1, . . . , pd) := span{Bi}i∈I . (10)

Notice that the functions in Bh are piecewise polynomials of degree pα along each coordi-

nate α = 1, . . . ,d.

We associate the basis functions Bi with positive weights ωi and define a weighting

function ω : Ω̂ → R, ω := ∑i∈I ωiBi. The NURBS basis functions in the parameter do-

main are defined by projection as

Ri : Ω̂ → R, Ri =
ωiBi

ω
(11)

and the corresponding NURBS space over Ω̂ reads: Sh ≡ Sh(Ξ1, . . . ,Ξd ; p1, . . . , pd ;ω) :=
span{Ri}i∈I .

In order to perform a parameterization of the physical domain, we introduce the control

points Ci ∈ R
d and define the geometric mapping F : Ω̂ → Ω with F := ∑i∈I CiRi. Let

us assume that F is invertible and possesses smooth inverse a.e. in Ω̂ , e.g. in each element

Q ∈Qh. We define ∇F : Ω̂ →R
d and JF : Ω̂ →R to be the Jacobian matrix and determinant

of map F, respectively. By using F, we define a physical mesh in the physical domain Ω ,

whose elements are obtained as the image of the elements in the parameteric domain, i.e.

Kh := {K =F(Q) | Q∈Qh}. The corresponding mesh size in the physical domain is defined

as h := maxK∈Kh
hK , where hK = ‖∇F‖L∞(Q)hQ.

Furthermore, we define the space spanned by NURBS basis functions in Ω as the push-

forward of the space Sh, which reads:

Vh ≡ Vh(p1, . . . , pα) := span{Ri ◦F−1}i∈I = span{Ri}i∈I , (12)

where {Ri}i∈I is the NURBS basis in the physical domain with Ri := Ri ◦F−1 for all i∈ I.

Let p be the minimum degree of B-splines and NURBS, defined as p := min1≤α≤d{pα}.

We recall the interpolation theory of NURBS proposed in [2] for obtaining interpolation

error estimates of IGA. Given a function v̂ ∈ L2(Ω̂), we define a projective operator over

the B-splines space Bh as: ΠBh
: L2(Ω̂) → Bh, ΠBh

v̂ := ∑i∈I ρi(v̂)Bi, where the linear
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functionals ρi(v̂) ∈ L2(Ω̂)′ determine the dual basis for the set of B-splines, i.e. they are

such that ρj(Bi) = δi,j for i,j ∈ I, with δ the Kronecker function. The corresponding

projective operator over the NURBS space Sh in Ω̂ is defined by means of the definition of

the NURBS basis functions in (11) through the weighting function ω:

ΠSh
: L2(Ω̂)→ Sh, ΠSh

v̂ :=
ΠSh

(ω v̂)

ω
, (13)

for all v̂ ∈ L2(Ω̂). In this manner, the projective operator over the NURBS space Vh, is

defined as the push-forward of the operator ΠSh

ΠVh
: L2(Ω)→ Vh, ΠVh

v := (ΠSh
(v̂)◦F−1. (14)

Henceforth, let {Qh}h and {Kh}h be regular and quasi-uniform families of meshes in

the parametric Ω̂ and physical Ω domains, respectively. The quasi-uniform property implies

that there exist positive constants C1 and C2 independent of h such that C1h ≤ hK ≤ C2h

∀K ∈ Kh. Now, we recall the global interpolation error estimate of NURBS for IGA, which

reads as follows ([42]).

Lemma 1 (Global interpolation error estimate) Given the integers ℓ and σ , with 0 ≤
ℓ ≤ p+ 1, ℓ ≤ σ , ℓ ≤ km + 1, and km ≥ 0 the minimum regularity of basis functions (i.e.

Ckm -continuous in Ω ), we have

|u−ΠVh
u|Hℓ(Ω) ≤C(Ω ,km)h

δ−ℓ‖u‖Hσ (Ω) ∀u ∈ Hσ (Ω), (15)

where δ = min{σ , p+ 1} and the positive constant C(Ω ,km) only depends on km and the

shape of Ω , but not on its size.

In addition, we have the following IGA global inverse inequalities:

Lemma 2 (Global inverse inequality) Let k and l be two integers such that 0 ≤ k ≤ l, then

we have

‖vh‖H l(Ω) ≤CI hk−l |vh|Hk(Ω) ∀vh ∈ Vh, (16)

with CI =CI (Ω ,‖∇F‖L∞(Ω̂),C1,km) for km ≥ 0.

Proof By using the local inverse inequalities (cf. Theorem 4.2 in [2]), there exists a positive

constant Cs,km
depending on the shape of Ω and km such that

‖vh‖H l(K) ≤Cs,km
hk−l

K

k

∑
i=0

‖∇F‖i−k

L∞(F−1(K))
|v|H i(K) ∀K ∈ Kh, ∀vh ∈ Vh. (17)

Then, for any vh ∈ Vh we obtain from (17):

‖vh‖2
H l(Ω)

= ∑
K∈Kh

‖vh‖2
H l(K)

≤ ∑
K∈Kh

C2
s,km

h
2(k−l)
K

(

k

∑
i=0

‖∇F‖i−k

L∞(F−1(K))
|vh|H i(K)

)2

≤C2
s,km

(C1h)2(k−l) ∑
K∈Kh

(

k

∑
i=0

‖∇F‖2(i−k)

L∞(F−1(K))

k

∑
i=0

|vh|2H i(K)

)

,

(18)
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where the quasi-uniform property of meshes and Cauchy-Schwarz inequality are used in the

last inequality. Finally, (18) implies that

‖vh‖2
H l(Ω)

≤C2
I (Ω ,‖∇F‖L∞(Ω̂),C1,km)h2(k−l) ∑

K∈Kh

k

∑
i=0

|vh|2H i(K)

=C2
I h2(k−l)|vh|2Hk(Ω)

. ⊓⊔

Remark 1 In several circumstances, IGA possesses a significant geometrical advantage with

respect to the FEM since most of the computational domains of practical interest can be ex-

actly represented by NURBS. The important case of conic sections is included in NURBS-

based IGA. In this case, the geometrical representation of Ω allowed by FEM introduce

numerical errors, which may lead to a loss of accuracy of the method, as it may be often

seen in terms of reduced convergence orders of the errors under h-refinement [2,9,10,22].

Moreover, NURBS-based IGA possesses the advantage of yielding highly accurate approx-

imations when using Cp−1-continuous basis functions with respect to C0-continuous basis

functions for smooth solutions of PDEs [4,10,15,23,42].

2.4 Spatial semi-discretization of IGA for parabolic problem

Let Vh be the finite-dimensional subspace of V such that Vh = V ∩Vh. A general spatial

semi-discrete Galerkin approximation of (8) reads: for any given t ∈ (0,T ], find uh(t) ∈ Vh

such that






d

dt
(uh(t),vh)+a(uh(t),vh) = ( f (t),vh) ∀vh ∈Vh

uh(0) = u0,h,
(19)

where u0,h is the L2-projection of u0 onto Vh.

Let us first define an elliptic “projection” operator P
p
1,h : V →Vh for each v ∈V :

a(P p
1,hv,vh) = a(v,vh) ∀vh ∈Vh, (20)

from which we obtain the Galerkin orthogonality

a(v−P
p
1,hv,vh) = 0 ∀vh ∈Vh. (21)

We derive the following result.

Lemma 3 Assume that (7) is satisfied with λ = 0 and that the solution ϕs of the adjoint

problem

f ind ϕs ∈V : a(v,ϕs) = (s,v) ∀v ∈V (22)

satisfies ϕs ∈H2(Ω) when s∈L2(Ω). Then, there exists a positive constant c= c(Ω ,α,β ,km)
such that

‖v−P
p
1,hv‖L2(Ω)+h‖v−P

p
1,hv‖H1(Ω) ≤ chp+1|v|H p+1(Ω) ∀v ∈ H p+1 ∩V. (23)
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Proof We proceed by estimating the two terms on the left-hand side of (23) separately.

Firstly, we estimate the second term. From the coercivity property, Eq. (21), and continuity

of a(·, ·), we obtain for any v ∈ H p+1(Ω)∩V

‖v−P
p
1,hv‖2

H1(Ω) ≤
1

α
a(v−P

p
1,hv,v−P

p
1,hv)

=
1

α
a(v−P

p
1,hv,v−wh)

≤ β

α
‖v−P

p
1,hv‖H1(Ω)‖v−wh‖H1(Ω) ∀wh ∈Vh,

(24)

which implies that

‖v−P
p
1,hv‖H1(Ω) ≤

β

α
inf

wh∈Vh

‖v−wh‖H1(Ω) ≤
β

α
‖v−ΠVh

v‖H1(Ω). (25)

By using Lemma 1 with σ = p+1, we have for (25) that there exists a constant c(Ω ,α,β ,km)>
0 such that

‖v−P
p
1,hv‖H1(Ω) ≤ c(Ω ,α,β ,km)hp|v|H p+1(Ω) ∀v ∈ H p+1(Ω), (26)

where c(Ω ,α,β ,km) = α−1βC(Ω ,km). To estimate ‖v−P
p
1,hv‖L2(Ω), we use the Aubin-

Nitsche duality argument. By the assumption on the adjoint problem (22), we show that

there exists a positive constant C(Ω ,α,β ,km) suth that

‖v−P
p
1,hv‖L2(Ω) ≤C(Ω ,α,β ,km)hp+1|v|H p+1(Ω) ∀v ∈ H p+1(Ω). (27)

In fact, by definition of L2-norm and by replacing v with v−P
p
1,hv in (22), we have

‖v−P
p
1,hv‖L2(Ω) = sup

06=s∈L2(Ω)

(s,v−P
p
1,hv)

‖s‖L2(Ω)

= sup
06=s∈L2(Ω)

a(v−P
p
1,hv,ϕs)

‖s‖L2(Ω)

. (28)

Then, it follows from Eq. (21) that for any vh ∈Vh,

‖v−P
p
1,hv‖L2(Ω) = sup

0 6=s∈L2(Ω)

a(v−P
p
1,hv,ϕs − vh)

‖s‖L2(Ω)

≤ β‖v−P
p
1,hv‖H1(Ω) sup

0 6=s∈L2(Ω)

‖ϕs − vh‖H1(Ω)

‖s‖L2(Ω)

.

(29)

By replacing vh with ΠVh
φs, we have from Eq. (15)

‖ϕs −ΠVh
ϕs‖H1(Ω) ≤C(Ω ,km)h‖φs‖H2(Ω), (30)

which implies that from Eq. (29)

‖v−P
p
1,hv‖L2(Ω) ≤C(Ω ,β ,km)h‖v−P

p
1,hv‖H1(Ω) (31)

after using the regularity assumption for the adjoint problem. A combination of (31) and

(26) yields (27) and therefore the result (23). ⊓⊔

Then, we have the error estimate between exact solution u(t) and spatial semi-discrete

approximation uh(t).
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Theorem 1 Let the hypotheses of Lemma 3 hold and assume that f ∈ C0([0,T ];L2(Ω)),
u0 ∈ H p+1(Ω), p ≥ 1, and the solution u of (8) is such that u ∈ C0([0,T ];H p+1(Ω)) and

∂u/∂ t ∈ L1(0,T ;H p+1(Ω)). Then, by using piecewise polynomials of degree less than or

equal to p in definition of NURBS space Vh, the solutions u and uh to (8) and (19) satisfy

respectively

‖u(t)−uh(t)‖L2(Ω)+h‖u(t)−uh(t)‖H1(Ω)

≤Chp+1

(

‖u0‖H p+1(Ω)+
∫ t

0

∥

∥

∥

∥

∂u

∂ t
(τ)

∥

∥

∥

∥

H p+1(Ω)

dτ

)

(32)

for each t ∈ [0,T ], where C =C(Ω ,α,β ,km) is a positive constant independent of h.

Proof For any fixed t ∈ (0,T ], let us write

eh(t) := u(t)−uh(t) = (u(t)−P
p
1,hu(t))+(P p

1,hu(t)−uh(t)),

≡ w1(t)+w2(t)
(33)

where w1(t) := u(t)−P
p
1,hu(t) and w2(t) := P

p
1,hu(t)− uh(t). We estimate w1(t) from

inequality (23) of Lemma 3 as

‖w1(t)‖L2(Ω)+h‖w1(t)‖H1(Ω) ≤ chp+1‖u(t)‖H p+1(Ω)

≤ chp+1

(

‖u0‖H p+1(Ω)+
∫ t

0

∥

∥

∥

∥

∂u

∂ t
(τ)

∥

∥

∥

∥

H p+1(Ω)

dτ

)

.
(34)

To estimate ‖w2(t)‖L2(Ω), we have from Eqs. (8), (19), and (21), for any vh ∈Vh

(

∂w2

∂ t
(t),vh

)

+a(w2(t),vh) =

(

∂

∂ t
[P p

1,hu(t)],vh

)

+a(P p
1,hu(t),vh)

−
(

∂uh

∂ t
(t),vh

)

−a(uh(t),vh)

=

(

∂

∂ t
[P p

1,hu(t)],vh

)

−
(

∂u

∂ t
,vh

)

=−
(

∂w1

∂ t
(t),vh

)

.

By replacing vh with w2(t) for fixed t ∈ (0,T ], it follows that

1

2

d

dt
‖w2(t)‖2

L2(Ω)+a(w2(t),w2(t)) =−
(

∂w1

∂ t
(t),w2(t)

)

. (35)

Then, we have by (7) and the Cauchy-Schwarz inequality

1

2

d

dt
‖w2(t)‖2

L2(Ω)+α‖w2(t)‖2
H1(Ω) ≤−

(

∂w1

∂ t
(t),w2(t)

)

≤
∥

∥

∥

∥

∂w1

∂ t
(t)

∥

∥

∥

∥

L2(Ω)

‖w2(t)‖L2(Ω).

(36)
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Therefore, by neglecting α‖w2(t)‖2
H1(Ω)

on the left-hand side, cancelling ‖w2(t)‖L2(Ω) on

both the sides and integrating over [0, t] gives

‖w2(t)‖L2(Ω) ≤ ‖w2(0)‖L2(Ω)+
∫ t

0

∥

∥

∥

∥

∂w1

∂ t
(τ)

∥

∥

∥

∥

L2(Ω)

dτ

≤ ‖P p
1,hu0 −u0‖L2(Ω)+‖u0 −u0,h‖L2(Ω)+

∫ t

0

∥

∥

∥

∥

∂w1

∂ t
(τ)

∥

∥

∥

∥

L2(Ω)

dτ

≤ (c+C(Ω ,km))h
p+1‖u0‖H p+1(Ω)+ chp+1

∫ t

0

∥

∥

∥

∥

∂u

∂ t
(τ)

∥

∥

∥

∥

H p+1(Ω)

dτ,

(37)

where we have used the inequalities (15) and (23) and the fact that the time derivative com-

mutes with P
p
1,h. Then, we use the triangle inequality ‖eh‖L2(Ω) ≤ ‖w1‖L2(Ω)+‖w2‖L2(Ω),

(37), and (34) to obtain the error estimate of ‖u(t)−uh(t)‖L2(Ω) in (32).

Now, we estimate ‖eh(t)‖H1(Ω) based on the bounds of ‖eh(t)‖L2(Ω) we have just ob-

tained. In fact, we have, for any vh ∈Vh

‖eh(t)‖H1(Ω) ≤ ‖u(t)− vh‖H1(Ω)+‖vh −uh(t)‖H1(Ω)

≤ ‖u(t)− vh‖H1(Ω)+CI h−1‖vh −uh(t)‖L2(Ω) (Lemma 2)

≤CI h−1(‖vh −u(t)‖L2(Ω)+h‖u(t)− vh‖H1(Ω))+CI h−1‖eh(t)‖L2(Ω)

≤CI h−1C(Ω ,km)h
p+1‖u(t)‖H p+1(Ω)

+CI h−1Chp+1

(

‖u0‖H p+1(Ω)+
∫ t

0

∥

∥

∥

∥

∂u

∂ t
(τ)

∥

∥

∥

∥

H p+1(Ω)

dτ

)

≤Chp

(

‖u0‖H p+1(Ω)+
∫ t

0

∥

∥

∥

∥

∂u

∂ t
(τ)

∥

∥

∥

∥

H p+1(Ω)

dτ

)

with C = C(Ω ,α,β ,km), where we have used Lemma 1 and the error estimator (32) for

‖eh(t)‖L2(Ω) in the last second inequality. ⊓⊔

The IGA spatial semi-discretized problem (19) is a system of ordinary differential e-

quations. Let us denote by Nx the number of degrees of freedom of the finite dimension-

al space Vh. Renumber each i ∈ I from 1 to Nx. By writting uh(t) = ∑
Nx
j=1 d j(t)R j and

u0,h = ∑
Nx
j=1 d0, jR j and taking vh = Ri (i = 1, . . . ,Nx), problem (19) then turns to

{

Mḋ(t)+Ad(t) = f (t), t ∈ (0,T ]

d(0) = d0,
(38)

where

A = [ai j] ∈ R
Nx×Nx , ai j = a(R j,Ri), M = [mi j] ∈ R

Nx×Nx , mi j =
∫

Ω
R jRidx,

d(t) = (d1(t), . . . ,dNx(t))
T ∈ R

Nx , d0 = (d0,1, . . . ,d0,Nx)
T ∈ R

Nx ,

f (t) = ( f1(t), . . . , fNx(t))
T ∈ R

Nx , fi(t) =
∫

Ω
f (t)Ridx,

with 1 ≤ i, j ≤ Nx.

We now introduce a weighted inner product in R
Nx for the IGA control variables to

replace the inner products in the finite-dimensional (Nx-dimensional) space Vh. The induced
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norms are also changed correspondingly. Let us consider two arbitrary vectors c,d ∈ R
Nx ,

with c= (ci)1≤i≤Nx and d= (di)1≤i≤Nx , then we define the weighted inner product 〈·, ·〉W in

R
Nx as

〈c,d〉W := cTWd=
Nx

∑
i=1

Nx

∑
j=1

ciWi jd j, (39)

where W = [wi j]1≤i, j≤Nx ∈ R
Nx×Nx denotes a symmetric positive definite weight matrix. We

then denote the induced norm | · |W := 〈·, ·〉1/2. Since uh(x) = ∑
Nx
i=1 diRi(x) and vh(x) =

∑
Nx
i=1 ciRi(x) are elements of the finite-dimensional subspace Vh ⊂R

Nx of V , we have (uh,vh)=
〈d,c〉W and ‖uh‖L2(Ω) = |d|W with W = M. Analogously, we obtain (uh,vh)V = 〈d,c〉W and

‖uh‖H1(Ω) = |d|W with W = M+A.

2.5 Full space-time discretization of PDE model

We now apply the θ -scheme with θ ∈ [0,1] for the time discretization of problem (19)

(see e.g. [35]). For Nt ∈ N, we introduce a time step ∆ t = T/Nt and uniform discrete time

instances tn = n∆ t for n = 0,1, . . . ,Nt . Three widely used special θ -schemes are: forward

Euler (θ = 0, explicit, error of order O(∆ t)); backward Euler (θ = 1, implicit, O(∆ t));
Crank-Nicolson (θ = 1/2, implicit, O(∆ t2)). Let us denote un = u(tn) and f n = f (tn), n =
0, . . . ,Nt . For notational simplification, the superscript “n+θ”of an arbitrary quantity, e.g.

ζ , means that

ζ n+θ := θζ n+1 +(1−θ)ζ n.

Instead, when ∂̄ is associated with an arbitrary quantity ζ n, we mean forward differences

∂̄ ζ n :=
1

∆ t
(ζ n+1 −ζ n).

Then, we have the following IGA-θ full space-time discretization scheme for problem

(38): find un
h ∈Vh such that

{
(

∂̄un
h,vh

)

+a(un+θ
h ,vh) = ( f n+θ ,vh) ∀vh ∈Vh, n = 0, . . . ,Nt −1

u0
h = u0,h.

(40)

Its algebraic counterpart reads: find {dn
h}

Nt
n=1 ⊂Vh such that

{

M∂̄dn
h +Adn+θ

h = fn+θ , n = 0, . . . ,Nt −1,

d0
h = d0,h,

(41)

where dn
h = (dn

h,1, . . . ,d
n
h,Nx

)T for n = 0,1, . . . ,Nt .

The θ -scheme is unconditionally stable for θ ∈ [1/2,1], whereas a restriction between

the time step and mesh size should be satisfied when θ ∈ [0,1/2). Moreover, we have the

following two results on L2-stability and convergence, respectively.

Lemma 4 (IGA-θ Stability) Assume the map t → ‖ f (t)‖L2(Ω) is bounded in [0,T ]. Let

θ ∈ [0,1]. Moreover, when θ ∈ [0,1/2) let the time step ∆ t satisfy the condition

∆ t(1+CI h−2)≤ 2α

(1−2θ)β 2
, (42)
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where α , β , and CI are defined in (6), (7), and (16), respectively. Then, the solution un
h of

fully discrete problem (40) satisfies

‖un
h‖L2(Ω) ≤C

(

‖u0,h‖L2(Ω)+ sup
t∈[0,T ]

‖ f (t)‖L2(Ω)

)

, n = 0,1, . . . ,Nt , (43)

where the constant C is a non-decreasing function of α−1, β and T , and is independent of

Nt , ∆ t, and h.

Proof The result holds by following a similar proof as Theorem 11.3.1 [35], which corre-

sponds to the FEM-θ discrete scheme. ⊓⊔

Lemma 5 (Convergence) Let the assumptions of Lemma 4 hold. Assume further that ∂uh(0)/∂ t ∈
L2(Ω), f ∈ L2(ΩT ) with ∂ f/∂ t ∈ L2(Ω). Then, the functions uh(t) and un

h defined in (19)

and (40), respectively, satisfy

‖uh(tn)−un
h‖L2(Ω) ≤Cθ ∆ t

(

∥

∥

∥

∥

∂uh

∂ t
(0)

∥

∥

∥

∥

L2(Ω)

+

∥

∥

∥

∥

∂ f

∂ t

∥

∥

∥

∥

L2(0,T ;L2(Ω))

)

(44)

for n = 0,1, . . . ,Nt . When θ = 1/2, under the additional assumptions ∂ 2 f/∂ t2 ∈ L2(ΩT )
and ∂ 2uh/∂ t2 ∈ L2(Ω), we have

‖uh(tn)−un
h‖L2(Ω) ≤C(∆ t)2

(

∥

∥

∥

∥

∂ 2uh

∂ t2
(0)

∥

∥

∥

∥

L2(Ω)

+

∥

∥

∥

∥

∂ 2 f

∂ t2

∥

∥

∥

∥

L2(0,T ;L2(Ω))

)

(45)

for n = 0,1, . . . ,Nt . The positive constants Cθ and C are non-decreasing functions of α−1,

β and T , and depend also on km, while are independent of ∆ t and h.

Proof The proof follows similarly to the proofs of Theorems 11.3.1 and 11.3.2 in [35] by

considering separately the cases 0 ≤ θ < 1/2 and 1/2 ≤ θ ≤ 1. The inverse inequality for

FEM discretization is replaced by that for the IGA discretization (i.e. Lemma 2). ⊓⊔

We provide the following a priori error estimates for the fully-discrete approximation.

Theorem 2 Let the assumptions in Theorem 1, Lemmas 4 and 5 be satisfied. Then, there

exist positive constants C̃θ and C̃ depending on α , β , km and T , and independent of ∆ t and

h such that

‖u(tn)−un
h‖L2(Ω) ≤C̃θ

[

hp+1

(

|u0|H p+1(Ω)+

∥

∥

∥

∥

∂u

∂ t

∥

∥

∥

∥

L1(0,T ;H p+1(Ω))

)

+∆ t

(

∥

∥

∥

∥

∂uh

∂ t
(0)

∥

∥

∥

∥

L2(Ω)

+

∥

∥

∥

∥

∂ f

∂ t

∥

∥

∥

∥

L2(0,T ;L2(Ω))

)]

,

(46)

and in the particular case θ = 1/2,

‖u(tn)−un
h‖L2(Ω) ≤C̃

[

hp+1

(

|u0|H p+1(Ω)+

∥

∥

∥

∥

∂u

∂ t

∥

∥

∥

∥

L1(0,T ;H p+1(Ω))

)

+(∆ t)2

(

∥

∥

∥

∥

∂ 2uh

∂ t2
(0)

∥

∥

∥

∥

L2(Ω)

+

∥

∥

∥

∥

∂ 2 f

∂ t2

∥

∥

∥

∥

L2(0,T ;L2(Ω))

)]

.

(47)

Proof The results follow by combining Theorem 1 and Lemma 5. ⊓⊔
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3 POD for parameterized PDEs

Model order reduction of parameterized PDEs aims at reducing the dimension of solu-

tion manifolds corresponding to sets of time, physical and geometric parameters for steady

and/or unsteady problems. In this paper, we limit to the case of a single parameter which is

the time variable. POD-Galerkin methods for numerical solutions of PDEs usually demand

to firstly obtain or train a POD basis in which the number of basis functions is expected to

be much smaller than that in the full order Galerkin approximation, e.g. FEM. There are

two types of POD basis generation approaches [44]: the continuous POD (C-POD) and dis-

crete POD (D-POD), the latter, also known as the method of snapshots, is the approach we

consider in this paper.

3.1 D-POD

A continuous and accurate set of snapshots {y(t) | t ∈ [0,T ]} is usually not available in prac-

tice and it needs to be realized by available discrete approximate snapshots (e.g. in our case

(8)):

{y j |y j = u
j−1
h , j = 1, . . . ,Nt +1} ⊂ Xh. (48)

Here, h is the mesh parameter related to a specific spatial discretization method, u
j
h ≃ u(t j)

with t j = j∆ t and Xh is a finite-dimensional subspace of X . We compute numerical ap-

proximations of y(t) by a full discretization method consisting of spatial IGA approxima-

tion and θ -method, dicussed in detail in Section 2. Denote Vℓd
:= span{y j |y j = u

j−1
h , j =

1, . . . ,Nt + 1} and ℓd := dimVd ≤ Nt + 1 < ∞ (in some instances ℓd < Nt + 1, since snap-

shots may be linearly dependent). For r ∈ {1, . . . , ℓd}, the D-POD requires to solve a finite-

dimensional optimization problem

min
{ϕk}r

k=1
⊂Xh

Ns

∑
j=1

α j

∥

∥

∥

∥

∥

y j −
r

∑
k=1

(y j,ϕk)X ϕk

∥

∥

∥

∥

∥

2

X

subject to (ϕi,ϕ j)X = δi j for 1 ≤ i, j ≤ r

(49)

to obtain an optimal orthonormal basis {ϕi}r
i=1, where the number of snapshots Ns = Nt +1

at this stage and {α j}Nt+1
j=1 denote nonnegative weights satisfying ∑

Nt+1
j=1 α j = T . Specifically,

we choose trapezoidal weights as in [44], i.e.

α1 = αNt+1 =
∆ t

2
and αi = ∆ t, for i = 2, . . . ,Nt , (50)

which ensures that (49) is an approximation of a time integral when ∆ t is small.

3.2 Time derivatives (TD) and time difference quotients (TDQ)

Recently, TD/TDQ were suggested to be included in the set of snapshots in analysis of the

C/D-POD truncation errors [27,20,41]. For D-POD with TDQ included, the set of snapshots

{y j}Ns
j=1 with Ns = 2Nt +1 consists of numerical solutions

y j = u
j−1
h , j = 1, . . . ,Nt +1
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plus their TDQ counterpart

y j = ∂̄u
j−Nt−2
h , j = Nt +2, . . . ,Ns. (51)

It is well-known that these TDQ can be regarded as second-order central difference approxi-

mations at ti−1/2 := (i−1/2)∆ t for i = 1, . . . ,Nt . Then, the additional weights {α j}Ns
j=Nt+2 in

problem (49) arising with TDQ, are α j =∆ t for j =Nt +2, . . . ,Ns. We set Vℓd
≡ span{ ¯̄y j}ℓd

j=1,

where { ¯̄y j}ℓd
j=1 denote the linearly independent basis obtained from span{y j}Ns

j=1 and refer

to Vℓd
as the set consisting of the snapshots {y j}Ns

j=1. Notice that the inclusion of TDQ ap-

proximately doubles the cardinality of snapshot set but does not change the dimension of

the space, which is spanned by snapshots without TDQ. Kunisch and Volkwein [27] showed

that it is necessary to include TDQ for convergence analysis of POD-Galerkin schemes (see

the Remark 1 in [27]). Iliescu and Wang [25] numerically showed that including TDQ in the

construction of POD basis can lead to a higher convergence rate with respect to the POD

rank than that in the standard case without TDQ.

We introduce the so-called correlation matrix

K = [ki j] ∈ R
Ns×Ns with ki j =

1

Ns

(y j,yi)X , (52)

where K is symmetric positive semi-definite and has rank ℓd since dimVℓd
= ℓd . Let λ1 ≥

. . . ≥ λℓd
> 0 denote the eigenvalues of K and λℓd+1 = . . . = λNs = 0 the null ones, then,

v1, . . . ,vℓd
∈R

Ns are the associated eigenvectors. Then, a POD basis of rank r with 1≤ r ≤ ℓd

(i.e. the solution of problem (49) with/without TDQ) is given by

ψk =
1

√

Nsλk

Ns

∑
j=1

(vk) jy j, k = 1, . . . ,r. (53)

Moreover, we have the following error formula for the general D-POD from snapshots with

or without TDQ:

1

Ns

Ns

∑
j=1

∥

∥

∥

∥

y j −
r

∑
k=1

(y j,ψk)X ψk

∥

∥

∥

∥

2

X

=
ℓd

∑
k=r+1

λk. (54)

Specifically, for the TDQ-based D-POD, we have different versions of Eq. (54) for different

choices of X . Let λ̂k and λ̃k, k = 1, . . . , ℓd denote the eigenvalues of the correlation matrix K

with X = L2(Ω) and X = H1(Ω), respectively. For X = L2(Ω), we denote by {ψ̂k}ℓd

k=1 the

POD basis and (54) implies that

1

2Nt +1

Nt

∑
n=0

∥

∥

∥

∥

∥

un
h −

r

∑
k=1

(un
h, ψ̂k)ψ̂k

∥

∥

∥

∥

∥

2

L2(Ω)

+
1

2Nt +1

Nt−1

∑
n=0

∥

∥

∥

∥

∥

∂̄un
h −

r

∑
k=1

(∂̄un
h, ψ̂k)ψ̂k

∥

∥

∥

∥

∥

2

L2(Ω)

=
ℓd

∑
k=r+1

λ̂k.

(55)

For X = H1(Ω), we denote by {ψ̃k}ℓd

k=1 the POD basis and (54) leads to

1

2Nt +1

Nt

∑
n=0

∥

∥

∥

∥

∥

un
h −

r

∑
k=1

(un
h, ψ̃k)H1(Ω)ψ̃k

∥

∥

∥

∥

∥

2

H1(Ω)

+
1

2Nt +1

Nt−1

∑
n=0

∥

∥

∥

∥

∥

∂̄un
h −

r

∑
k=1

(∂̄un
h, ψ̃k)H1(Ω)ψ̃k

∥

∥

∥

∥

∥

2

H1(Ω)

=
ℓd

∑
k=r+1

λ̃k.

(56)
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It is obvious that the POD basis and eigenvalues above for both cases X = L2(Ω) and X =
H1(Ω) depend on the discretization parameters h and ∆ t. In the following, if we do not

distinguish between the two bases in L2(Ω) and H1(Ω), we will generally write {ψi}r
i=1

and denote by Vr := span{ψ1,ψ2, . . . ,ψr} the POD space of dimension r with Vr ⊂ Vℓd
for

r < ℓd and Vr ≡Vℓd
for r = ℓd . We call Vr the POD space for simplicity. So far, let us point

out that we have introduced the following Hilbert spaces with inclusion relations as:

Vr ⊆ Vℓd
⊂Vh ⊂V ⊆ H1(Ω)⊂ L2(Ω). (57)

Remark 2 The POD modes (53) and eigenvalue truncation error (54) computed from s-

napshots, which are obtained from space and time discretizations, are different both from

those based on snapshots obtained only from time semi-discretization, but without space

discretization, as e.g. done in [19,21,27]. By using IGA, the snapshots are also different

from other spatial discretizaton techniques as e.g. FEM [24,31] and Finite Volumes [32].

4 IGA-θ -POD Galerkin scheme

The POD basis can be generated by successively using the fully discrete IGA-θ method for

computing the snapshots and then singular value decomposition of the correlation matrix

K for obtaining the POD modes. We then use this basis to derive the POD semi-discrete

scheme and IGA-θ -POD fully discrete scheme.

Given t ∈ (0,T ], the POD-Galerkin semi-discrete scheme consists in finding ur(t) ∈ Vr

such that






d

dt
(ur(t),vr)+a(ur(t),vr) = ( f (t),vr) ∀vr ∈Vr

ur(0) = u0,r,
(58)

where u0,r is the L2-projection of u0,h from Vh onto Vr, the POD space of dimension r. We

can define a matrix-vector form for the Galerkin POD semi-discretization:
{

Mrḋr(t)+Ardr(t) = fr(t), t ∈ (0,T ],

dr(0) = dr,0
(59)

where

Ar = [ar,i j] ∈ R
r×r,ar,i j := a(ψ j,ψi), Mr = [mr,i j] ∈ R

r×r,mr,i j :=
∫

Ω
ψ jψidx,

dr(t) = (dr,1(t), . . . ,dr,r(t))
T ∈ R

r, dr,0 = (d0r,1, . . . ,d0r,r)
T ∈ R

r,

fr(t) = ( fr,1(t), . . . , fr,r(t))
T ∈ R

r, fr,i(t) :=
∫

Ω
f (t)ψidx

with 1 ≤ i, j ≤ r.

We present now the IGA-θ -POD Galerkin fully discrete scheme for 0 ≤ θ ≤ 1: find

un
r ∈Vr, n = 1, . . . ,Nt such that

{

(∂̄un
r ,vr)+a(un+θ

r ,vr) = ( f n+θ ,vr) ∀vr ∈Vr n = 0, . . . ,Nt −1

u0
r = u0,r.

(60)

The matrix-vector form for IGA-θ -POD Galerkin scheme reads:
{

Mr∂̄d
n
r +Ard

n+θ
r = fn+θ

r , n = 0, . . . ,Nt −1

d0
r = dr,0.

(61)
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By solving this system, we obtain {dn
r}Nt

n=0 which leads to the POD Galkerin solution

{un
r}Nt

n=0 with un
r = ∑

r
j=1 dn

r, jψ j. The POD mass matrix Mr, POD-stiffness matrix Ar, the

inverse matrices M−1
r and A−1

r are positive definite [27,24]. Let µ1 ≥ µ2 ≥ . . .≥ µr > 0 and

ν1 ≥ ν2 ≥ . . . ≥ νr > 0 be the eigenvalues of Mr and singular values of Ar, respectively; in

addition, ‖ ·‖2 denotes the spectral norm of a matrix. Then we have the following properties

in the POD space:

Lemma 6 (Inequalities in POD space) For all vr ∈Vr, we have

‖vr‖L2(Ω) ≤
√

ν−1
r µ1 ‖vr‖H1(Ω) and ‖vr‖H1(Ω) ≤

√

µ−1
r ν1 ‖vr‖L2(Ω) (62)

with ν1 > µr. In particular,

‖vr‖L2(Ω) ≤
√

ν−1
r ‖vr‖H1(Ω) and ‖vr‖H1(Ω) ≤

√
ν1‖vr‖L2(Ω) (63)

with ν1 > 1 for POD basis in X = L2(Ω) and

‖vr‖L2(Ω) ≤
√

µ1‖vr‖H1(Ω) and ‖vr‖H1(Ω) ≤
√

µ−1
r ‖vr‖L2(Ω) (64)

with µr < 1 for POD basis in X = H1(Ω).

Proof By definition of matrix 2-norm and positive definite properties of Mr, M−1
r , Ar, and

A−1
r , we easily have

‖Mr‖2 = µ1, ‖M−1
r ‖2 = µ−1

r , ‖Ar‖2 = ν1, and ‖A−1
r ‖2 = ν−1

r . (65)

By means of (65) and Lemma 2 of [27], the inequalities (62), (63), and (64) hold.

By the second inequality of (62) and the fact that ‖vr‖L2(Ω) ≤
√

CΩ‖vr‖H1(Ω) for any

vr ∈Vr from (4), we obtain CΩ ν1 ≥ µr and thus ν1 > µr since CΩ ∈ (0,1). In particular, for

POD basis in L2(Ω) or H1(Ω), the mass matrix or stiffness matrix turn out to be the identity

matrix and so that ν1 > 1 or µr < 1 follows. ⊓⊔

Remark 3 The second inequality of (63) (resp. (64)) is an inverse inequality in the POD

space which is similar (as in Lemma 2) for both the NURBS spaces of IGA and piecewise

Lagrange polynomial spaces of FEM (in Lemma 3.1 [24]). However, the values of ν1, νr,

µ1 and µr can significantly differ depending on whether we use IGA or FEM methods.

We now show the following stability property.

Theorem 3 (IGA-θ -POD Stability) Assume that the map t → ‖ f (t)‖L2(Ω) is bounded in

[0,T ] and θ ∈ [0,1]. Moreover, when 0 ≤ θ < 1/2 let the time step ∆ t satisfy the condition

∆ t(1+ ς)≤ 2α

(1−2θ)β 2
(66)

with ς = µ−1
r or ν1 in case of the POD basis in X = H1(Ω) or L2(Ω), respectively. Then,

there exists a unique solution {un
r}m

n=0 ⊂Vr of problem (60). The solution un
h ∈Vh of the fully

discrete problem (40) satisfies

‖un
r‖L2(Ω) ≤Cθ ,α,β ,T

(

‖u0,r‖L2(Ω)+ sup
t∈[0,T ]

‖ f (t)‖L2(Ω)

)

, n = 0,1, . . . ,Nt , (67)

where the constant Cθ ,α,β ,T depends on θ , α , β , and T , but is independent of h and ∆ t.
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Proof By taking vr = un+θ
r in (60) with 0 ≤ θ ≤ 1, we can easily verify that

1

2
‖un+1

r ‖2
L2(Ω)−

1

2
‖un

r‖2
L2(Ω)+

(

θ − 1

2

)

‖un+1
r −un

r‖2
L2(Ω)

+∆ t a(un+θ
r ,un+θ

r ) = ∆ t ( f n+θ ,un+θ
r ).

For any function φ ∈ L2(Ω), let us define

‖φ‖−1,r := sup
0 6=vr∈Vr

(φ ,vr)

‖vr‖H1(Ω)

, (68)

which is a norm in Vr and ‖φ‖−1,r ≤ ‖φ‖L2(Ω) for each φ ∈ L2(Ω). By the coercivity of

a(·, ·), we have for each ι ∈ (0,1] that

‖un+1
r ‖2

L2(Ω)−‖un
r‖2

L2(Ω)+(2θ −1)‖un+1
r −un

r‖2
L2(Ω)

+2(1− ι)α∆ t‖un+θ
r ‖2

H1(Ω) ≤
∆ t

2ια
‖ f n+θ‖2

−1,r,
(69)

where a Young type inequality has been used. When θ ∈ [1/2,1], i.e. 2θ −1 ≥ 0, we can set

ι = 1 and then

‖un+1
r ‖2

L2(Ω)−‖un
r‖2

L2(Ω) ≤
∆ t

2α
‖ f n+θ‖2

−1,r. (70)

When θ ∈ [0,1/2), we choose vr = un+1
r −un

r in (60) and obtain

‖un+1
r −un

r‖2
L2(Ω) =−∆ t a(un+θ

r ,un+1
r −un

r )+∆ t( f n+θ ,un+1
r −un

r )

≤ β∆ t‖un+θ
r ‖H1(Ω)‖un+1

r −un
r‖H1(Ω)

+∆ t‖ f n+θ‖−1,r‖un+1
r −un

r‖H1(Ω).

In virtue of the POD inverse inequalities (63) and (64), we have

‖un+1
r −un

r‖L2(Ω) ≤ ∆ t(1+ ς)1/2(β‖un+θ
r ‖H1(Ω)+‖ f n+θ‖−1,r), (71)

where ς = µ−1
r or ν1 for the POD basis associated with X = H1(Ω) or L2(Ω), respectively.

For each γ > 0, we define κγ := 2(1− ι)α − (1− 2θ)β (β + γ)∆ t(1+ ς). It follows from

(69) and (71) that there exists a positive constant Cι ,γ dependent on ι and γ such that

‖un+1
r ‖2

L2(Ω)−‖un
r‖2

L2(Ω)+∆ tκγ‖un+θ
r ‖2

H1(Ω) ≤Cι ,γ ∆ t(1+∆ tς)‖ f n+θ‖2
−1,r. (72)

Specifically, we choose ι and γ sufficiently small such that we have κγ > 0 due to (66).

From (66), we also have 1+∆ t ς ≤Cθ ,α,β with the constant Cθ ,α,β depending on θ , α and

β . Therefore, we obtain from (72)

‖un+1
r ‖2

L2(Ω)−‖un
r‖2

L2(Ω) ≤Cι ,γCθ ,α,β ∆ t‖ f n+θ‖2
−1,r. (73)

For a fixed integer index m, 1 ≤ m ≤ Nt , we consider both the cases θ ∈ [0,1/2) and [1/2,1].
We sum up for both (70) and (73) from n = 0, . . . ,m−1 and then we find

‖um
r ‖2

L2(Ω) ≤ ‖u0,r‖2
L2(Ω)+Cι ,γCθ ,α,β ∆ t

Nt−1

∑
n=0

‖ f n+θ‖2
−1,r, (74)

from which we easily obtain (67). ⊓⊔
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4.1 A priori error estimates of IGA-θ -POD Galerkin scheme

Before studying the convergence property of the IGA-θ -POD Galerkin scheme, we first

define an elliptic “projection” operator Ph,r : Vh →Vr for any uh ∈Vh as

a(Ph,ruh,vr) = a(uh,vr) ∀vr ∈Vr. (75)

The problem (75) is well posed in virtue of the Lax-Milgram theorem due to properties (6)

and (7). Moreover,

‖Ph,ruh‖H1(Ω) ≤
β

α
‖uh‖H1(Ω) ∀vh ∈Vh. (76)

Then, we obtain the following error estimates for the projection errors.

Lemma 7 For every r ∈ {1, . . . , ℓd}, the projection operators Ph,r yields the following

bounds on the projection errors for X = L2(Ω):

1

Nt

Nt

∑
n=1

‖un
h −Ph,ru

n
h‖2

H1(Ω) ≤
3β 2ν1

α2

ℓd

∑
k=r+1

λ̂k, (77)

1

Nt

Nt−1

∑
n=0

‖∂̄un
h −Ph,r(∂̄un

h)‖2
H1(Ω) ≤

3β 2ν1

α2

ℓd

∑
k=r+1

λ̂k, (78)

and for X = H1(Ω):

1

Nt

Nt

∑
n=1

‖un
h −Ph,ru

n
h‖2

H1(Ω) ≤
3β 2

α2

ℓd

∑
k=r+1

λ̃k, (79)

1

Nt

Nt−1

∑
n=0

‖∂̄un
h −Ph,r(∂̄un

h)‖2
H1(Ω) ≤

3β 2

α2

ℓd

∑
k=r+1

λ̃k. (80)

Proof For any uh ∈ Vℓd
, we have from (75) that

α‖uh −Ph,ruh‖2
H1(Ω) ≤ a(uh −Ph,ruh,uh −Ph,ruh)

= a(uh −Ph,ruh,uh − vr)

≤ β‖uh −Ph,ruh‖H1(Ω)‖uh − vr‖H1(Ω) ∀vr ∈Vr,

which implies that

‖uh −Ph,ruh‖H1(Ω) ≤
β

α
‖uh − vr‖H1(Ω) ∀vr ∈Vr. (81)

The results then follow similarly to Lemma 3 and Corollary 4 in [27] by using a combination

of (55), (56), Lemma 6, and (81). ⊓⊔

Remark 4 We remark that the above results have been obtained by using the projection

operator Ph,r : Vh →Vr, which is different from the one typically used in the POD literature

and is defined from V to Vr [24,27]. Our choice is motivated by the fact that the projector

Ph,r serves for the analysis of the error un
h −un

r .

We remark that the error bounds of the IGA-θ -POD Galerkin scheme include three

components arising from IGA space discretization, time discretization and POD eigenvalue

truncation.
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Theorem 4 Let the assumptions in Theorem 1, Lemmas 4 and 5 hold. Moreover, we assume

that (66) in Theorem 3 holds when θ ∈ [0,1/2). Then, for the IGA-θ -POD Galerkin scheme

with θ ∈ [0,1], we have

1

Nt

Nt

∑
n=1

‖un −un
r‖2

L2(Ω) ≤C

(

‖u0
r −Ph,ru

0
h‖2

L2(Ω)+∆ t2ϑ(θ)+h2(p+1)+
ℓd

∑
k=r+1

λk

)

(82)

with ϑ(θ) = 2 for θ = 1/2, and ϑ(θ) = 1 for θ 6= 1/2, the constant C =C(α,β ,θ ,Ω ,CΩ ,

‖∇F‖L∞(Ω̂),km,ν1) > 0 independent of ∆ t, h, p, and λk = λ̂k for X = L2(Ω), while C =

C(α,β ,θ ,Ω ,CΩ ,‖∇F‖L∞(Ω̂),km) with λk = λ̃k for X = H1(Ω).

Proof Since un −un
r = (un −un

h)+(un
h −un

r ), we have by the triangle inequality

‖un −un
r‖L2(Ω) ≤ ‖un −un

h‖L2(Ω)+‖un
h −un

r‖L2(Ω). (83)

The first term on the right hand side of (83) is bounded via the IGA fully-discrete error

estimation in Theorem 2. We write (46) and (47) as a unified error estimator for simplicity,

for which:

‖un −un
h‖L2(Ω) ≤ C̄∗(hp+1 +∆ tϑ(θ)), θ ∈ [0,1] (84)

for a positive constant C̄∗ = C̄∗(Ω ,α,β ,θ ,T,km) independent of ∆ t and h. To estimate the

second term of (83), we write

un
h −un

r = (un
h −Ph,ru

n
h)+(Ph,ru

n
h −un

r )

≡ ηn +ρn
r ,

where ηn := un
h −Ph,ru

n
h and ρn

r := Ph,ru
n
h −un

r . From (79) and (77) of Lemma 7, we have

for ηn the average square error

1

Nt

Nt

∑
n=1

‖ηn‖2
L2(Ω) ≤

CΩ

Nt

Nt

∑
n=1

‖ηn‖2
H1(Ω)

≤ 3β 2CΩ ν1

α2

ℓd

∑
i=r+1

λ̂i for X = L2(Ω)

or
3β 2CΩ

α2

ℓd

∑
i=r+1

λ̃i for X = H1(Ω).

(85)

By (75), (40), and the fact that the linear operator ∂̄ commutes with Ph,r, we can write

(∂̄ ρn
r ,vr)+a(ρn+θ

r ,vr) = (∂̄ (Ph,ru
n
h),vr)+a(Ph,r(u

n+θ
h ),vr)− (∂̄un

r ,vr)−a(un+θ
r ,vr)

= (Ph,r(∂̄un
h),vr)+a(un+θ

h ,vr)− ( f n+θ ,vr)

= (Ph,r(∂̄un
h),vr)− (∂̄un

h,vr)≡ (zn
r ,vr) ∀vr ∈Vr, (86)

where zn
r := Ph,r(∂̄un

h)− ∂̄un
h.

We now bound ‖ρn‖L2(Ω) by ‖zn‖L2(Ω). By taking vr = ρn+θ
r in the last equality of (86),

we can easily verify that

1

2
‖ρn+1

r ‖2
L2(Ω)−

1

2
‖ρn

r ‖2
L2(Ω)+

(

θ − 1

2

)

‖ρn+1
r −ρn

r ‖2
L2(Ω)

+∆ t a(ρn+θ
r ,ρn+θ

r ) = ∆ t(zn
r ,ρ

n+θ
r ).
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Then, we consider separately the cases θ ∈ [0,1/2) and θ ∈ [1/2,1] and use a similar proof

for the stability as in Theorem 3, yielding

‖ρm
r ‖2

L2(Ω) ≤ ‖ρ0
r ‖2

L2(Ω)+C∗∆ t
m−1

∑
n=0

‖zn
r‖2

L2(Ω), m = 1, . . . ,Nt (87)

with C∗ =C∗(α,β ,θ ,T ). Hence, we sum up from m = 1 to Nt for (87) and we obtain

1

Nt

Nt

∑
m=1

‖ρm
r ‖2

L2(Ω) ≤ ‖ρ0
r ‖2

L2(Ω)+C∗ ∆ t

Nt

Nt

∑
m=1

m−1

∑
n=0

‖zn
r‖2

L2(Ω)

≤ ‖ρ0
r ‖2

L2(Ω)+C∗ ∆ t

Nt

Nt

Nt−1

∑
n=0

‖zn
r‖2

L2(Ω).

= ‖ρ0
r ‖2

L2(Ω)+
C∗T

Nt

Nt−1

∑
n=0

‖zn
r‖2

L2(Ω).

(88)

By means of (80) and (78) of Lemma 7, we have

1

Nt

Nt−1

∑
n=0

‖zn
r‖2

L2(Ω) =
1

Nt

Nt−1

∑
n=0

‖Ph,r∂̄un
h − ∂̄un

h‖2
L2(Ω)

≤ 3β 2CΩ ν1

α2

ℓd

∑
k=r+1

λ̂k for X = L2(Ω)

or
3β 2CΩ

α2

ℓd

∑
k=r+1

λ̃k for X = H1(Ω).

(89)

Therefore, we have from (88) and (89)

1

Nt

Nt

∑
n=1

‖ρn
r ‖2

L2(Ω) ≤ ‖ρ0
r ‖2

L2(Ω)+C∗∗ν1

ℓd

∑
k=r+1

λ̂k for X = L2(Ω)

or ‖ρ0
r ‖2

L2(Ω)+C∗∗
ℓd

∑
k=r+1

λ̃k for X = H1(Ω).

(90)

with C∗∗ =C∗∗(α,β ,θ ,T,CΩ ). A combination of (90) with (85) and (84) implies that (82).

⊓⊔
Remark 5 We can estimate ‖u0

r −Ph,ru
0
h‖L2(Ω) since the initial data is included in the set

of snapshots, i.e. u0
h ∈Vr. From (4), (81) and (56) (resp. (55)), we have

‖u0
h −Ph,ru

0
h‖2

L2(Ω) ≤
CΩ β 2

α2

∥

∥

∥

∥

u0
r −

r

∑
k=1

(u0
h,ψk)X ψk

∥

∥

∥

∥

2

H1(Ω)

≤ Ns

CΩ β 2ν1

α2

ℓd

∑
k=r+1

λ̂k for X = L2(Ω)

or Ns

CΩ β 2

α2

ℓd

∑
k=r+1

λ̃k for X = H1(Ω)

Therefore, if we choose r = ℓd , (82) reduces to

1

Nt

Nt

∑
n=1

‖un −un
r‖2

L2(Ω) ≤C
(

∆ t2ϑ(θ)+h2(p+1)
)

.
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4.2 Numerical aspects

We present the full IGA-θ -POD Galerkin method for model order reduction in Algorithm 1

which contains three modules: the snapshot computation by IGA, the POD basis generation

and the POD-θ Galerkin approach. Let us denote a diagonal matrix Θ = diag(α1, . . . ,αNs).
In Algorithm 1, we consider three approaches to generate POD basis as suggested in [44].

They are mathematically equivalent for modal analysis, although their computational costs

are generally different. The correlation matrix (52) and POD basis (54 ) correspond to Case

3.

The choice of the POD rank r is crucial since it influences the accuracy of the POD re-

duced order modeling in approximating the original problem. In our IGA-θ -POD-Galerkin

method, we can determine r also based on a heuristic rule [44]. More precisely, given an

error tolerance ε (0 < ε ≪ 1), we determine r such that the computed energy ratio

E(r) :=
∑

r
i=1 λi

∑
ℓd
i=1 λi

> 1− ε, (91)

or equivalently,

1−E(r) =
∑
ℓd
i=r+1 λi

trace(DTD)
< ε (92)

The time and spatial discretizations have direct effects on the correlation matrix and thus

on the eigenvalues. More precisely, the parameters θ , ∆ t, p, km and h influence the accuracy

of {λi}d
i=1. Moreover, the choice of the weight matrix W (i.e. W = M or W = M+A for X =

L2(Ω) or H1(Ω), respectively) and the inclusion of TDQ (i.e. Ns = 2Nt +1 or Ns = Nt +1)

can additionally affect the eigenvalue analysis. Once the eigenvalues have been computed

however, we find from (92) that a POD rank r only directly depends on ε . The smaller is ε ,

the larger is r, which leads to more accurate approximations of the POD Galerkin solutions

to snapshots.

Once the POD rank and POD basis have been determined, we set

Ψ = [ψ1| . . . |ψr] ∈ R
Nx×r.

Then, we obtain for (61):

Mr =Ψ TMΨ , Ar =Ψ TAΨ , fn
r =Ψ Tfn for n = 1, . . . ,Nt .

Given θ , we compute dn
r by solving (61) and obtain un

r =Ψdn
r .

5 Numerical tests

In this section, we show numerical comparisons between the IGA-θ -POD Galerkin method

and the FEM-θ -POD Galerkin method and highlight the advantages of the former approach

both in terms of efficiency and accuracy. Specifically, for the two POD-Galerkin methods,

we compare IGA with FEM spatial discretization and study the influence of this choice on

POD eigenpairs and the accuracy of POD solutions. Clearly, there is no obvious difference

between the two methods for the time discretization error when the same θ -scheme and ∆ t

are used. In order to focus on comparing the two methods on space discretization and POD

truncation, we use in the following the same Crank-Nicolson scheme (θ = 1/2) and assume

that the error due to time discretization is relatively “small” compared with the two error
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Algorithm 1 IGA-θ -POD Galerkin method for model order reduction of parabolic PDEs

1: procedure SNAPSHOTS(Method of snapshots based on IGA-θ -scheme)

2: Require: Set θ , ∆ t, Ns = 2[T/∆ t]+1 (or [T/∆ t]+1) if TDQ are included (or not), p, km, Nx, and ε;

3: Solve PDE by the full discrete IGA-θ Galerkin scheme to obtain snapshots {dn
h}

Ns
n=0 ⊂ R

Nx ;

4: return D =
[

d1
h| . . . |d

Ns
h

]

∈ R
Nx×Ns ;

5: procedure POD(POD basis of rank r)

6: Require: Weight matrix W , diagonal matrix Θ for temporal quadrature weights;

7: Case 1: if Nx = Ns

8: Compute D̄ =W 1/2DΘ 1/2;

9: Perform singular value decomposition: D̄ = Ψ̄ΣΦ̄T;

10: Determine POD rank r;

11: Compute ψi =W−1/2Ψ̄i ∈ R
Nx and set λi = Σ 2

ii for i = 1, . . . ,r;

12: Case 2: if Nx < Ns

13: Compute D̄ =W 1/2DΘ 1/2;

14: Compute R = D̄D̄T ∈ R
Nx×Nx ;

15: Perform eigenvalue decomposition: R = Ψ̄ΛΨ̄ T;

16: Determine POD rank r;

17: Compute ψi =W−1/2Ψ̄i ∈ R
Nx and set λi = Λii for i = 1, . . . ,r;

18: Case 3: if Nx > Ns

19: Compute K =Θ 1/2DTWDΘ 1/2 ∈ R
Ns×Ns ;

20: Perform eigenvalue decomposition: K = Φ̄ΛΦ̄T;

21: Determine POD rank r;

22: Compute ψi = DΘ 1/2Φ̄i/
√

λi ∈ R
Nx and set λi = Λii, i = 1, . . . ,r;

23: return IGA-POD basis {ψi}r
i=1 and eigenvalues {λ h

i }r
i=1.

24: procedure POD GALERKIN SCHEME(Model Order Reduction)

25: Require:

26: Solve PDE by the full discrete POD-θ -scheme (61) to obtain POD basis coefficients {dn
r}Nt

n=0 ⊂ R
r;

27: Compute un
r = ∑

r
j=1(d

n
r ) jψ j for n = 0, . . . ,Nt ;

28: return POD Galerkin solutions {un
r}Nt

n=0.

components due to space discretization and POD projection, i.e. ∆ t2 ≪ hp+1 (or hp) for L2-

norm (or H1-norm) and ∆ t2 ≪
√

ε . For the error due to space discretization, however, IGA is

expected to be more accurate than FEM at least when approximating smooth solutions. More

precisely, NURBS of IGA can have regularity up to Cp−1, higher than the C0-continuity of

piecewise Lagrange polynomials used in FEM. Moreover, IGA can improve accuracy of

numerical solutions by performing h-p-k refinements, while h-p refinement can only be

used in FEM. Finally, IGA facilitates the exact geometrical representation of computational

domains, as conic sections, in the analysis conversely to FEM. The spatial discretization is

carried out by means of NURBS-based IGA with piecewise B-splines of degree p = 2 and

the smoothness parameter km = 0,1. The k-refinement is performed by order elevation from

p = 1 and knot insertion. For the comparison, we use FEM with p = 2, the degree of C0-

continuous piecewise Lagrange polynomials. For the generation of POD basis, we consider

the choices of X = H1(Ω) or L2(Ω), eventually including TDQ.

Let us first introduce some notations about numerical errors we use for performing the

comparison. The discrete average error norm for the IGA/FEM-θ -POD model order reduc-

tion is assessed by

Er,Z :=
1

Nt +1

Nt

∑
n=0

‖un −un
r‖Z , (93)

where Z denotes L2(Ω) or H1(Ω) and un
r denotes the POD-Galerkin solution at tn associated

with IGA or FEM discretizations. Let us denote by EZ and E
s,r

Z the two error parts splitting
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Er,Z as in (1), respectively:

EZ :=
1

Nt +1

Nt

∑
n=0

‖un −un
h‖Z and E

s,r
Z :=

1

Nt +1

Nt

∑
n=0

‖un
h −un

r‖Z , (94)

We then have

Er,Z ≤ EZ +E
s,r
Z . (95)

This type of norm Er,Z , also adopted in [24,30] associated with FEM, can actually be sharply

bounded by the discrete average norm [24]:

Er,Z ≤
(

1

Nt +1

Nt

∑
n=0

‖un −un
r‖2

Z

)1/2

. (96)

By using (96), Theorem 4 and (91), the expected error bound Er,L2 (resp. Er,H1 ) should be

O(∆ t2 +h3 +
√

ε) (resp. O(∆ t2 +h2 +
√

ε)).

Example 5.1

We consider the heat equation in an annulus Ω = {(ρ,θ)|1 < ρ < 2,0 < θ < π/2} as

example. We set T = 4 and ∆ t = 2×10−3, for which O(∆ t2) = O(10−6). Choose the exact

solution

u(x1,x2, t) = e−
t
4 sin

( π

10
(2x2

1 + x2
2)(t +2)

)

and compute the corresponding source function f , boundary conditions, and initial condition

according with Eq. (3) by setting in Eq. (2) a0 = 0, ãi j = δi j, bi = 0 and ci = 0 for i, j = 1,2.

Specifically, we impose Neumann boundary conditions on ΓN =ΓN0
∪ΓN1

∪ΓN2
and Dirichlet

boundary conditions on ΓD = ∂Ω \ΓN as shown in Fig. 2(a), where a rather coarse tensor-

product NURBS mesh is reported. In Fig. 2(b), we plot for FEM a triangular mesh, which

induces a geometrical approximation error. We show visually agreement between the exact

solution in Fig. 2(c) and the IGA-θ -POD Galerkin solution in Fig. 2(d) at the final time.

We now compare the convergence rate and accuracy of IGA and FEM spatial dis-

cretizations. First, we check the convergence rates for errors of snapshots with respect to

mesh parameters. For meshes used in IGA, we initialize the number of mesh elements as

8×8= 64. We remark that NURBS allows an exact representation of Ω already at the coars-

est level of discretization. We then use h-refinement three times up to an element number

64× 64 = 4,096. The mesh sizes are h = 0.207, 0.105, 0.053, and 0.026. Figs. 3(a)-3(b)

show that the convergence rates for errors of snapshots by IGA p = 2 NURBS basis func-

tions with km = 0 or 1 in both of EL2 and EH1 norms, i.e. they are optimal with respect to

NURBS-based spatial discretization (i.e. cubic and quadratic convergence rates for L2- and

H1-norm, respectively). Conversely, Fig. 3(c) shows that the convergence rate of the error

EL2 is sub-optimal for FEM, although it appears to be optimal for that of error in H1-norm.

This is due to the fact that the approximate representation of the annular geometry causes

a geometric approximation error of order 2 in h. Then, we compare IGA with FEM on the

accuracy of truth approximation due to spatial discretization. We use three different levels

of number of degrees of freedom (ndofs) for comparison. Table 1 shows that the truth ap-

proximations by IGA are more accurate than those by FEM, even if nearly the same or less

ndofs are used. Besides, the numerical solutions for the case km = 1 are more accurate than
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Fig. 2 Comparison between IGA and FEM on geometric representation (first row) and comparison be-

tween exact solution and POD-Galerkin solution (second row) for Example 5.1: (a) A NURBS mesh of

Ω for IGA, (b) A triangular mesh of Ω for FEM, (c) Exact solution in Ω at final time, and (d) IGA-based

POD Galerkin solution at final time (km = 1, 32×32 elements, ε = 10−8, TDQ included and X =H1(Ω)).
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Fig. 3 Comparisons between IGA and FEM on converge rates for errors of snapshots EL2 and EH1 of

Example 5.1.

those for km = 0 though slightly less ndofs are used. Moreover, the accuracy of truth approx-

imation leads to different decay behaviors for POD eigenvalues as shown in Figs. 4-5. More

precisely, with nearly the same ndofs, both the figures show that IGA-based POD eigen-

values decay faster than FEM-based ones and the POD eigenvalues of IGA with km = 1

NURBS basis decay faster than those associated to IGA with km = 0. Roughly speaking,
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Fig. 4 Comparisons of λi vs. i for the IGA-θ -POD Galerkin method and FEM-θ -POD Galerkin method

applied to Example 5.1: Nx = 1,173, 1,144 and 1,233 for IGA-km = 0, IGA-km = 1, and FEM, respec-

tively.

these phenomenons illustrate that the POD rank r of either the two IGA cases is nearly the

same as that of the FEM case, when a relatively “large” truncation error tolerance ε is used

in inequality (91). Moreover, if ε is “small”, the POD ranks of the two IGA cases are smaller

than that of FEM and the value r of IGA km = 1 is smaller than that of IGA km = 0. Since

smaller r means more efficient in POD-Galerkin methods for reduced order model, the IGA

case with km = 1 appears to be the most efficient, while the FEM case is the slowest among

the three candidates for model reduction. We also see from these figures that the difference

for eigenvalues appears earlier in the eigenvalue index i for the case including TDQ than

that without it, as well as for the case with X = H1(Ω) than that with X = L2(Ω). Fig. 6

clearly shows what we have drawn from Figs. 4-5. We see that r increases monotonically

as ε decreases. More importantly, we see that the values of r for the IGA cases are small-

er than that for FEM if the same value of ε is used, which implies more efficiency for the

POD-Galerkin method for the reduced order model.

With nearly the same ndofs, Table 2 shows that, whether including TDQ or not, the

average discrete L2 errors E
s,r

L2 between POD-Galerkin solutions and IGA-based snapshots

are much smaller than those between POD-Galerkin solutions and FEM-based ones, which

exhibits the advantages of using IGA in model order reduction. We compute and compare

POD truncation error bounds ∑
ℓd
i=r+1 λi in Table 3 for X = L2(Ω) or H1(Ω) and with or

without TDQ. As ε decreases, these bounds decrease since r increases correspondingly. In
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Fig. 5 Comparisons of λi vs. i for the IGA-θ -POD Galerkin method and FEM-θ -POD Galerkin method

applied to Example 5.1: Nx = 4,141, 4,116 and 4,801 for IGA km = 0, IGA km = 1 and FEM, respectively.

Table 1 Comparisons on errors of truth approximations EL2 and EH1 for Example 5.1.

FEM IGA km = 0 IGA km = 1

Nx EL2 EH1 Nx EL2 EH1 Nx EL2 EH1

325 1.92e-2 2.73e-1 325 5.08e-3 2.39e-1 324 1.57e-3 9.82e-2

1,233 4.48e-3 7.16e-2 1,173 8.52e-4 7.58e-2 1,144 1.58e-4 2.29e-2

4,801 1.09e-3 1.82e-2 4,141 1.43e-4 2.22e-2 4,116 1.84e-5 5.61e-3

most cases, the bounds of two IGA cases are smaller than those of FEM and the ones of the

IGA km = 1 case are smaller than those of the IGA km = 0 case.

Example 5.2

We consider an unsteady advection-diffusion-reaction equation in a unit square Ω = (0,1)2

([24]) as our second test example. In this case, we aim at addressing the use of smooth

NURBS (B-splines) basis functions rather than the geometric representation of Ω . We set

T = 1 and ∆ t = 10−3. We choose the exact solution

u(x1,x2, t) = 0.5sin(πx1)sin(πx2)[tanh(25(x1 + x2 − t −0.5))+1]
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Fig. 6 Comparisons on POD rank v.s. ε obtained in X = L2(Ω)/H1(Ω) and with/without TDQ for

Example 5.1.

(a) (b)
Fig. 7 Comparison on exact solution at final time (a) and a IGA-θ -POD Galerkin solution (b) for Exam-

ple 5.2 (ε = 10−6, TDQ included and X = H1(Ω)).

satisfying homogeneous Dirichlet boundary condition. We set a0 = 1, ãi j = εδi j, bi = 0 for

i, j = 1,2, c1 = cos(π/3) and c2 = sin(π/3). We compute the corresponding f and initial

condition via Eq. (3). For IGA, we use p = 2 with km = 1.
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Fig. 8 Comparisons of IGA-θ -POD and FEM-θ -POD Galerkin methods with km = 1, X = H1(Ω) and

Nx = 16,641 for Example 5.2: (a) decay of first eigenvalues of correlation matrix obtained with/without

TDQ and (b) POD rank r vs. ε .

Table 2 Comparisons on errors E
s,r

L2 of POD-Galerkin solutions with respect to snapshots for Example

5.1: X = H1(Ω).

ε
FEM IGA km = 0 IGA km = 1 FEM IGA km = 0 IGA km = 1

Nx 1,233 Nx 1,173 Nx 1,144 Nx 4,801 Nx 4,141 Nx 4,116

No TDQ

10−6 1.32e-4 1.28e-4 1.27e-4 1.28e-4 1.27e-4 1.27e-4

10−8 1.61e-5 6.58e-6 6.72e-6 8.78e-6 6.70e-6 6.71e-6

10−10 1.10e-5 3.94e-7 2.77e-7 9.14e-6 2.71e-7 2.69e-7

10−12 8.90e-6 1.56e-7 2.55e-8 7.72e-6 2.56e-8 9.05e-9

TDQ

10−6 2.95e-5 1.02e-5 1.00e-5 1.91e-5 9.98e-6 9.97e-6

10−8 1.27e-5 1.16e-6 4.70e-7 1.02e-5 4.91e-7 4.05e-7

10−10 9.08e-6 2.43e-7 2.37e-7 7.88e-6 8.96e-8 1.93e-8

10−12 8.87e-6 1.73e-8 3.30e-8 7.76e-6 2.77e-8 1.53e-8

In the geometrical representation of Ω , both B-splines for IGA and uniform triangular

elements for FEM allow an exact representation. In Fig. 7, we see that the IGA-θ -POD

Galerkin solution is visually in agreement with the exact solution. In Table 4, with the same

ndofs, snapshots obtained by IGA are more accurate than those obtained by FEM in L2- and

H1- norms due to the smoothness of the B-splines basis functions used. Moreover, IGA is

still more accurate than FEM even if much less ndofs are used. For both the cases with and

without TDQ, we find from Fig. 8 (a) that POD eigenvalues of IGA cases decay nearly at

the same rate as thoses of FEM cases as the eigenvalue index i increases. Therefore, POD

ranks of the two methods are nearly the same for a prescribed threshold value of ε as shown

in Fig. 8 (b). In Table 5, we see that the accuracy of POD-Galerkin solutions increases as

ε decreases for both of FEM and IGA cases. Furthermore, IGA-θ -POD Galerkin solutions

are more accurate than FEM-θ -POD Galerkin solutions when the same values of ε are used.

The above comparisons show that although the spectral analysis for the generation of the

POD basis associated to FEM and IGA are qualitatively and quantitatively very similar, the

accuracy of the IGA-θ -POD solution is significantly higher than the one of the FEM-θ -POD

solution. This advantage is mainly related to the use of high order continuous basis functions

for the approximation of smooth solutions.
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Table 3 Comparisons on effects of ε on POD truncation errors for Example 5.1: ndofs 4,801, 4,141 and

4,116 for FEM, IGA km = 0, and IGA km = 1, respectively.

ε
No TDQ TDQ

FEM IGA km = 0 IGA km = 1 FEM IGA km = 0 IGA km = 1

∑
ℓd
i=r+1 λ̃i (X = H1)

10−6 1.03e-07 1.03e-07 1.03e-07 7.85e-08 6.96e-08 7.18e-08

10−8 3.83e-10 3.19e-10 3.08e-10 5.84e-10 5.40e-10 2.60e-10

10−10 8.83e-12 7.48e-13 7.99e-13 8.91e-12 4.61e-12 1.47e-12

10−12 6.64e-14 1.82e-14 1.52e-15 4.16e-14 7.94e-14 5.99e-14

ν1 ∑
ℓd
i=r+1 λ̂i (X = L2)

10−6 1.28e-07 1.26e-07 1.27e-07 2.04e-06 1.83e-06 1.66e-06

10−8 8.86e-10 7.13e-10 7.05e-10 5.93e-07 3.09e-07 1.55e-08

10−10 1.63e-10 7.13e-10 7.05e-10 1.24e-08 5.29e-09 1.72e-09

10−12 2.15e-11 5.19e-12 2.04e-12 3.22e-10 3.99e-11 2.79e-11

Table 4 Comparisons between IGA and FEM on errors of truth approximations for Example 2.

EZ
Nx = 4,225 Nx = 16,641

FEM IGA FEM IGA

EL2 7.93e-4 5.18e-5 1.21e-4 8.91e-6

EH1 2.35e-1 2.03e-2 6.67e-2 4.54e-3

Table 5 Comparisons on errors Er,Z of POD-Galerkin solutions for Example 5.2: Nx = 16,641.

ε
X = H1 X = L2

No TDQ TDQ No TDQ TDQ

FEM IGA FEM IGA FEM IGA FEM IGA

Er,L2

10−3 6.99e-4 6.87e-4 1.87e-3 1.71e-3 9.63e-3 9.63e-3 1.59e-3 1.57e-3

10−4 1.99e-4 1.53e-4 1.26e-4 4.74e-5 3.09e-3 3.09e-3 2.11e-4 1.77e-4

10−5 1.29e-4 4.15e-5 1.21e-4 1.00e-5 1.01e-3 1.00e-3 1.25e-4 3.42e-5

10−6 1.21e-4 1.46e-5 1.21e-4 9.10e-6 3.48e-4 3.26e-4 1.21e-4 1.23e-5

10−7 1.21e-4 8.99e-6 1.21e-4 8.91e-6 1.26e-4 3.00e-5 1.21e-4 8.93e-6

Er,H1

10−3 1.04e-1 8.12e-2 3.11e-1 2.61e-1 6.01e-1 6.00e-1 1.86e-1 1.76e-1

10−4 7.08e-2 2.35e-2 6.71e-2 9.59e-3 2.73e-1 2.67e-1 7.16e-2 2.62e-2

10−5 6.71e-2 7.41e-3 6.67e-2 4.66e-3 1.28e-1 1.11e-1 6.70e-2 7.62e-3

10−6 6.68e-2 5.15e-3 6.67e-2 4.70e-3 7.95e-2 4.42e-2 6.67e-2 4.89e-3

10−7 6.67e-2 4.61e-3 6.67e-2 4.54e-3 6.87e-2 1.75e-2 6.67e-2 4.58e-3

6 Conclusions

We have used IGA for the spatial approximation of snapshots for POD in model order reduc-

tion of linear parabolic PDEs, which may be thought as the simpliest model of parameterized

PDEs. We split the error of the POD Galerkin solution into two parts and propose a fully

IGA-θ -POD Galerkin scheme. We analyze the stability and convergence of the scheme by a

priori error estimates. Numerical experiments are performed by comparing the IGA-θ -POD

Galerkin scheme with the FEM-θ -POD Galerkin method. The comparisons have shown

promising advantages of IGA when used as spatial truth approximation both with respect
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to the “exact” geometrical representation of computational domains of practical interest and

the use of smooth basis functions allowed by B-splines and NURBS.
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13. L. Dedè, C. Jäggli, A. Quarteroni, Isogeometric numerical dispersion analysis for elastic wave propaga-

tion, Comput. Methods Appl. Mech. Engrg. 284 (2015) 320-348.
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