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Abstract

In this article we address the numerical simulation of fluid-structure
interaction (FSI) problems featuring large added-mass effect. We ana-
lyze different preconditioners for the coupled system matrix obtained after
space-time discretization and linearization of the FSI problem. The clas-
sical Dirichlet-Neumann preconditioner has the advantage of “modularity”
because it allows to reuse existing fluid and structure codes with minimum
effort (simple interface communication). Unfortunately, its performance is
very poor in case of large added-mass effects. Alternatively, we consider
two non-modular approaches. The first one consists in preconditioning the
coupled system with a suitable diagonal scaling combined with an ILUT
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preconditioner. The system is then solved by a Krylov method. The draw-
back of this procedure is that the combination of fluid and structure codes
to solve the coupled system is not straightforward. The second non-modular
approach we consider is a splitting technique based on an inexact block-LU
factorization of the linear FSI system. The resulting algorithm computes
the fluid velocity separately from the coupled pressure-structure system at
each iteration, reducing the computational cost. Independently of the pre-
conditioner, the efficiency of semi-implicit algorithms (i.e., those that treat
geometric and fluid nonlinearities in an explicit way) is highlighted and their
performance compared to the one of implicit algorithms. All the methods
are tested on three-dimensional blood-vessel systems. The algorithm com-
bining the non-modular ILUT preconditioner with Krylov methods proved
to be the fastest.

1 Introduction

In coupled fluid-structure systems, the fluid acts over the structure as an extra
mass (usually called added-mass) at the interface. The importance of the extra
inertia term appearing in the structure equation increases with the quotient
ρf/ρs, where ρf and ρs are the fluid and the structure density, respectively.
Therefore, when the structure density is much bigger than the fluid one, the
added-mass effect is almost negligible. However, some problems involve a fluid
and a structure whose densities are of the same order of magnitude. We focus
on those cases, in which the added-mass effect becomes important.

Fluid-structure interaction problems are usually solved via partitioned pro-
cedures, stemming from a domain decomposition viewpoint. These algorithms
consist in the evaluation of independent fluid and structure problems, coupled
via transmission conditions in an iterative fashion. The Dirichlet-Neumann (DN)
algorithm is one of the most popular partitioned procedures in FSI. A Dirich-
let boundary condition (continuity of velocities) is imposed at the interface for
the fluid sub-problem, whereas the structure sub-problem is supplemented with
Neumann boundary conditions (continuity of stresses). The DN algorithm it-
erates over these two problems until convergence. These are Richardson (also
called fixed point) iterations on the interface displacement and they are denoted
as coupling iterations.

Fluid-structure algorithms were initially developed for aeroelastic applica-
tions, where typically ρs >> ρf . In this case, the classical DN algorithm (that
we will denote by DN-Richardson) converges in a few iterations. Thus, it is
common practice in computational aeroelasticity to use an explicit treatment of
the coupling, that is only one coupling iteration is performed per time step (see,
e.g., [25, 12]). Unfortunately, the convergence properties of the DN-Richardson
algorithm depend heavily on the added-mass effect. In fact, when the density of
the structure is comparable to the fluid one, the method fails to converge (see,
e.g., [23, 28]). In order to enforce convergence, relaxation is needed [22]. The
relaxation parameter diminishes as the added-mass effect increases and it might
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become so small that convergence is reached extremely slowly [9].
Many interesting applications are located in the large added-mass effect

range, like most of FSI problems involving light and thin-walled structures (e. g.,
sail-wind systems or airbags). In particular, we are interested in the simulation
of the deformation of the arterial walls, whose density is almost identical to the
blood one, in the circulatory system.

Despite its inefficiency in case of a large added-mass effect, the DN-Richardson
algorithm has still been used. The reason relies on its modularity. A FSI algo-
rithm that only requires interface data transfer between the two codes, without
any modification of the sources, is called modular. A modular FSI algorithm
allows to reuse existing (and already optimized) fluid and structure codes.

Since the nineties, many works have been focused on the development of
FSI algorithms capable of improving the convergence velocity of modular algo-
rithms. Some of them suggested the use of dynamic evaluations of the relaxation
parameters based on line-search techniques, like steepest descent or Aitken ac-
celeration (see e.g. [22]). In this minimization approach, robust Krylov methods
have replaced Richardson iterations in [17, 14, 21]. Other works proposed to di-
minish the computational cost by reducing the coupled fluid-structure problem
to a pressure-structure problem, using the continuous projection method [13] or
algebraic block-LU factorizations [4]. A third approach consists in modifying
the boundary conditions at the interface. The Neumann-Dirichlet method has
even worse convergence properties than the DN one. The Neumann-Neumann
algorithm slightly reduces the number of iterations, but every iteration is more
expensive, making its efficiency similar to the one of the DN (see [11]). Re-
cently, two improved partitioned procedures have been designed: one sets Robin
boundary conditions on the interface [3], while the other enforces the continuity
of velocities in a weak way by applying Nitsche’s method [8].

In [15] a simplified monolithic FSI algorithm embedding the structure into
the fluid problem has been proposed. There, the (d−1)-dimensional (d being the
space dimension) structure is modeled as a membrane. The same idea of writing
the FSI problem only in terms of fluid unknowns is presented in [24], where
an algebraic law for approximating the structure problem is employed.1 In any
case, the use of non-modular preconditioners for the FSI system has received
much less attention. The first reason is the fact that they are not needed in
applications with a negligible added-mass effect because partitioned procedures
are very efficient. The second reason is the loss of modularity. Existing fluid
and structure codes can still be reused, but the coupling of the codes is more
involved than bare interface communication. In fact, fluid and structure matrices
must be stored in a unique FSI matrix, which has to be accessed to compute
the preconditioner. However, as we show in the present work, non-modular
algorithms should not be dismissed. We claim the efficiency of non-modular

1Herein, we generalize the situation to a d-dimensional structure governed by a partial
differential equation.
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preconditioners for problems affected by a large added-mass effect.
The basic aspects of our non-modular approach are the use of fluid and struc-

ture problems in terms of velocities, the use of a single finite element partition
for the whole domain and the use of the same velocity finite element space for
fluid and structure problems (that can easily be attained by using stabilization
techniques). In this frame, the continuity of velocities is straightforward and the
continuity of stresses is imposed weakly.

The solution of the monolithic system is preconditioned in two steps. Since
fluid and structure entries are not of the same order, we first apply a suitable
scaling of the FSI system. In a second step, the scaled system is preconditioned
by an incomplete LU factorization (the ILUT preconditioner). The precondi-
tioned FSI system is solved using a Krylov method, e.g. GMRES or BiCGStab.
We denote this combination by ILUT-GMRES and ILUT-BiCGStab, respec-
tively. Every iteration of the Krylov method requires to solve a linear system
with the preconditioner as system matrix. The solution of this systems is very
simple and cheap thanks to the ILU structure of the preconditioner. 2

The third method we consider is a non-modular FSI algorithm based on
the reduction of the FSI system to a coupled pressure-structure system. This
method, denoted by the name PIC (pressure-interface correction), originates
from an inexact block-LU factorization of the FSI system (see [4]). The approxi-
mation introduced by the inexact factors perturbs the system but does not spoil
the accuracy when using first order algorithms.

All the approaches listed above aim at reducing the computational cost
by abating coupling iterations. Another way to serve the same purpose is to
reduce the nonlinear iterations by adopting more efficient linearization tech-
niques. The use of a full Newton algorithm is suggested in [14]. Even though
the Newton method reduces the number of nonlinear iterations, every iteration
is more expensive because shape derivative evaluations are needed, making the
implementation complicated. Quasi-Newton algorithms have been suggested in
[16, 20, 17]. In this paper, we insist on the idea of considering the nonlinearity
in an explicit way, leading to semi-implicit algorithms. Semi-implicit procedures
do not endanger the stability whereas the computational cost is drastically re-
duced (no nonlinear iterations are performed). The accuracy of semi-implicit
algorithms has already been studied in [4].

Let us give the outline of the article. In Section 2, we state the mathematical
formulation of the FSI problem and detail the choices of our monolithic approach.
In Section 3, we recall the DN-Richardson and DN-GMRES algorithms. In
Section 4, we introduce the ILUT preconditioner for the monolithic system.
Section 5 is devoted to an inexact block-LU factorization of the FSI system.
Some comments about the modularity of the different algorithms are drawn in

2This is a main difference with respect to the DN preconditioner, where the solution of
the system with the preconditioner as system matrix involves expensive fluid and structure
evaluations. Thus, for an equal number of outer Krylov method iterations, the non-modular
approach is much faster.
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Section 6. In Sections 7 and 8, we carry out a set of numerical experiments.
Then, in Section 9, we draw some important conclusions on the optimal range
of applicability of the methods here proposed.

2 Problem setting

Consider an heterogeneous mechanical system which covers a bounded, polyhe-
dral and moving domain Ωt ⊂ R

d (d=2, 3, being the space dimension), where
time t spans the interval of analysis [0, T ]. This domain is divided into a domain

Ωs
t occupied by a solid structure and its complement Ωf

t occupied by the fluid.

The fluid-structure interface Σt is the common boundary between Ωf
t and Ωs

t ,

i.e. Σt = ∂Ωf
t ∩∂Ωs

t . Furthermore, nf is the outward normal of Ωf
t on Σt and ns

is its counterpart for the structure domain. The initial configuration Ω0 at t = 0
is considered as the reference one. In particular, we assume an incompressible
and Newtonian fluid and a hyper-elastic structure.

The fluid problem is governed by the incompressible Navier-Stokes equations

∂tu + u · ∇u −
1

ρf
∇ · σf = ff in Ωf

t × (0, T ),

∇ · u = 0 in Ωf
t × (0, T ),

where u is the fluid velocity, σf the Cauchy stress tensor and f f the body force.

For Newtonian fluids, σf has the following expression

σf (u, p) = −pI + 2µǫ(u),

where p is the pressure, µ is the fluid viscosity, and

ǫ(u) =
1

2
(∇u + (∇u)T )

is the strain rate tensor, with ∇ denoting the spatial gradient operator.
The structure is governed by the elastodynamics equation

∂2
t η −

1

ρs
∇ · σs = f s in Ωs

t × (0, T ),

where η is the structure displacement and f s the body force. This equation must
be supplemented with a constitutive law that relates the structural displacement
η and the Cauchy stress tensor σs. As a simple example, in our numerical
simulations we used the linear Saint-Venant Kirchhoff three-dimensional elastic
model, where the solid stress is defined as:

σs(η) = 2µℓǫ(η) + λℓ(∇ · η)I,

Here, ǫ(η) = (∇η + (∇η)T )/2, µℓ and λℓ are the Lamé constants. Of course,
other structure models can be chosen according to the specific problem under
consideration.
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These two problems are coupled on the interface by two transmission condi-
tions. Due to the fact that we are dealing with viscous fluids, the continuity of
velocities (normal and tangential)

u = ∂tη on Σt × (0, T )

must be satisfied. On the other hand, the continuity of stresses

σs · ns + σf · nf = 0 on Σt × (0, T )

must hold, due to the action-reaction principle.
In order to describe the evolution of the whole domain Ωt, we define two

families of mappings:

L : Ωs
0 × [0, T ] −→ Ωs

t , (x0, t) −→ x = L(x0, t) (1)

and
A : Ωf

0 × [0, T ] −→ Ωf
t , (x0, t) −→ x = A(x0, t). (2)

The map Lt = L(·, t) tracks the solid domain in time, At = A(·, t) the fluid
domain and they must agree on Σt:

Lt = At on Σt, (3)

in order to define an homeomorphism over Ωt.
We adopt a purely Lagrangian approach for the structure. Thus, if η̂ denotes

the displacement of the solid medium evaluated at the reference configuration,
then:

Lt(x0) = x0 + η̂(x0, t).

Apart from (3), the fluid domain mapping At is arbitrary. This mapping can be
defined as an appropriate extension operator of its value on the interface:

At(x0) = x0 + Ext(η̂(x0, t)|Σ0
).

A classical choice is to consider a harmonic extension in the reference domain.
At is called the Arbitrary Lagrangian-Eulerian (ALE) mapping, since in general
it does not track the fluid particles (in that case the formulation would be purely
Lagrangian).

We can now write the velocity ALE time derivative (for the fluid):

∂tu|x0
= ∂tu + w · ∇u,

which is the variation of the velocity for a particle that moves with the fluid
mapping At. The domain velocity w is calculated using the following expression:

w(x, t) = ∂tx|x0
= ∂tAt ◦ A

−1
t (x).

The fluid-structure problem (where the fluid problem is stated in the ALE
formulation) in its strong form reads as follows:
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1. Geometry problem: Find the fluid domain displacement:

At(x0) = x0 + Ext(η̂|Σ0
), w = ∂tAt ◦ A

−1
t , Ωf

t = At(Ω
f
0 ). (4)

2. Fluid-structure problem: Find velocity u, pressure p and displacement η

such that

∂tu|x0
+ (u − w) · ∇u −

1

ρf
∇ · σf = f f in Ωf

t × (0, T ), (5a)

∇ · u = 0 in Ωf
t × (0, T ), (5b)

∂2
t η −

1

ρs
∇ · σs = fs in Ωs

t × (0, T ), (5c)

u = ∂tη on Σt × (0, T ), (5d)

σs · ns + σf · nf = 0 on Σt × (0, T ). (5e)

2.1 Weak formulation

For the variational formulation of the fluid-structure problem (4)-(5), we indicate
with L2(Ω) the space of square integrable functions in a spatial domain Ω and
with H1(Ω) the space of functions in L2(Ω) with first derivatives in L2(Ω).
We use (·, ·)Ω and 〈·, ·〉Ω to denote the L2 product and a duality pair in Ω,
respectively.

Let us define the following spaces, for any given t ∈ [0, T ):

V f (t) :=
{
v : Ωf

t → R
d, v = v̂ ◦ (At)

−1, v̂ ∈ (H1(Ωf
0))d

}
,

V f
0 (t) :=

{
v ∈ V f (t), v|Σt = 0

}
,

Q(t) :=
{
q : Ωf

t → R, q = q̂ ◦ (At)
−1, q̂ ∈ L2(Ωf

0
)
}

,

V̂ s :=
{
v̂ : Ωs

0 → R
d, v̂ ∈ (H1(Ωs

0))
d
}

.

A−1
t is assumed Lipschitz continuous in order for V f (t) ⊂ (H1(Ωf

t ))d and Q(t) ⊂

L2(Ωf
t ). The variational formulation of the fluid-structure problem is: given

t ∈ (0, T ), find (u, p, η̂) ∈ V f (t) × Q(t) × V̂ s such that

ρf

(
∂tu|x0

,vf
0

)
Ω

f
t

+ N (u − w;u, p,vf
0 , q)

Ω
f
t

=
〈
f f ,vf

0

〉
Ω

f
t

,

ρs (∂ttη̂, v̂s)
Ωs

0
+ 〈σ̂s,∇v̂s〉

Ωs
0

=
〈
f̂ s, v̂

s
〉

Ωs
0

− 〈σf · nf ,vs〉Σt ,

(6a)

u = ∂tη̂ ◦ (At)
−1 on Σt, (6b)

for all (vf
0 , q, v̂s) ∈ V f

0 (t) × Q(t) × V̂ s, where

N (a;u, p,v, q)Ω =2µ (ǫ (u) , ǫ (v))Ω + ρf

∫

Ω

(a · ∇u) · v dΩ

− (p,∇ · v)
Ω

+ (∇ · u, q)
Ω

.
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The continuity of velocities has been enforced in a strong way by (6b). On
the contrary, the continuity of stresses on the interface is satisfied in a weak
way by choosing test functions vf ∈ V f (t) for the momentum conservation
equation of the fluid problem. In fact, the fluid interface load can be seen as the
variational residual of the weak form of the momentum conservation equation
for test functions that do not vanish on Σt:

〈σf · nf ,vf 〉Σt =ρf

(
∂tu|x0

,vf
)

Ω
f
t

+ N (u − w;u, p,vf , q)
Ω

f
t
−
〈
f f ,vf

〉
Ω

f
t

= −
〈
R (u, p) ,vf

〉
Ω

f
t

.

Therefore, for the last term in equation (6a) we have the following equality:

〈σf · nf ,vs〉Σt = −〈R (u, p) , Et(v
s|Σt)〉Ωf

t

for all vs ∈ V s(t) (where, abusing of notation, V s(t) = At(V̂
s)), Et being an

arbitrary extension operator from the trace finite element space associated to
V s(t) to V f (t) .

The weak transmission of the fluid loads at the interface is crucial when
carrying out stability and convergence analysis.

2.2 The fully discrete problem: space and time discretization

Let V̂ f
h ⊂ [H1(Ωf

0)]d, V̂ f
0,h ⊂ [H1

0 (Ωf
0)]d, Q̂f

h ⊂ L2(Ωf
0 ) and V̂ s

h ⊂ [H1(Ωs
0)]

d−1

be the finite element spaces approximating V f , V f
0 , Q and V̂ s at the reference

configuration, respectively. With an abuse of notation, we can define the finite
element spaces for a given time step tn using the domain maps (1)-(2), e.g.

V f
h (tn) = Atn(V̂ f

h ).
The standard Galerkin approximation of the incompressible Navier-Stokes

equations may fail for two different reasons. First, the method exhibits insta-
bilities when the convective term is dominant. On the other hand, pressure sta-
bility can only be obtained for velocity-pressure finite element spaces (Qf

h, V f
h )

that satisfy a discrete inf-sup condition (see [6]). The simplest combinations of
velocity-pressure pairs (e.g. equal order nodal interpolation) do not satisfy this
condition and are unstable.

Both pitfalls can be overcome by resorting to a stabilized formulation. In
this work, we consider the orthogonal subgrid scales (OSS) technique proposed
by Codina in [10]. It allows to use equal order velocity-pressure pairs (like
the P1 − P1 pair adopted in this work) and stabilizes the convective term for
high Reynolds numbers. We refer to [1] for the numerical analysis of the OSS
technique in the ALE framework. The stabilized version of the fluid problem is
obtained by using the form

Ns (ah;uh, ph,vh, qh)
Ω

:= N (ah;uh, ph,vh, qh)
Ω

+ S (ah;uh, ph,vh, qh)
Ω

,
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where the perturbation term introduced by OSS (in its quasi-static form) reads

S (ah;uh, ph,vh, qh)
Ω

=
(
τ1Π

⊥(ah · ∇uh + ∇ph),ah · ∇vh + ∇qh

)
Ω

+
(
τ2Π

⊥(∇ · uh),∇ · vh

)
Ω

. (7)

Here, Π⊥(·) is the L2 orthogonal projection onto the finite element space, i. e.:

Π⊥(·) = I(·) − Π(·)

where Π(·) is the L2 projection onto the finite element space and I(·) the identity
operator. We use the following expressions for the stabilization parameters

τ1 =

[
c1

µ

ρh2
+ c2

|ah|

h

]−1

, τ2 =
h2

c1τ1

,

where c1 and c2 are appropriate constants, justified in [10] through a Fourier
analysis. We refer to [10] for a thorough description of this stabilization tech-
nique.

With regard to time discretization, we have considered the backward Euler
scheme for the fluid equations and the mid-point rule for the structure [28] for
simplicity. In any case, the splitting methods suggested below can be easily
extended to other time integration schemes. By defining the backward Euler
operator δt as δtf

n+1 = (fn+1 − fn)/δt and denoting by Exth(·) a discretized
version of the extension operator Ext(·), at each time level tn+1, the fully dis-
cretized fluid-structure problem reads:

1. Geometry problem: Find the fluid domain displacement

Atn+1(x0) = x0 + Exth(η̂n+1

h |Σ0
),

wn+1
h = δtAtn+1 ◦ A−1

tn+1, Ωf
tn+1 = Atn+1(Ωf

0). (8)

2. Fluid-structure problem: Find (un+1
h , pn+1

h , η̂n+1
h ) ∈ V f

h × Qh × V̂ s
h such

that

ρf

(
δtu

n+1
h

∣∣
x0

,vf
h

)
Ω

f

tn+1

+ Ns

(
un+1

h − wn+1

h ;un+1

h , pn+1

h ,vf
h, qh

)
Ω

f

tn+1

=
〈
fn+1

f ,vf
h

〉
Ω

f

tn+1

(9a)

ρs

(
˙̂ηn+1

h − ˙̂ηn
h

δt
, v̂s

h

)

Ωs
0

+

〈
σs

(
η̂n+1

h + η̂n
h

2

)
,∇ · v̂s

h

〉

Ωs
0

=
〈
f̂

n+1

s , v̂s
h

〉
Ωs

0

−
〈
R
(
un+1

h , pn+1

h

)
, Eh(vs

h|Σt)
〉
Ω

f

tn+1

(9b)

(
˙̂ηn+1

h + ˙̂ηn
h

2
, v̂s

h

)

Ωs
0

=

(
η̂n+1

h − η̂n
h

δt
, v̂s

h

)

Ωs
0

(9c)

un+1
h = δt

˙̂ηn+1
h ◦ A−1

tn+1 on Σt (9d)
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for all (vf
h, qh, v̂s

h) ∈ V f
0,h × Qh × V̂ s

h .

The fluid domain Ωf
tn+1 defined by Atn+1 does depend on η̂n+1

h and the fluid

problem depends on Ωf
tn+1 in a nonlinear way. We consider a fixed point algo-

rithm to linearize both this dependence and the convective term in (9a). The
linearization of the fluid-structure problem (8)-(9) by the fixed point algorithm
consists of: given the predictions η̃n+1

h and ũn+1

h

• Step 1: Calculate the fluid domain displacement as in (8) but replacing
the first equation with

Atn+1(x0) = x0 + Exth(η̃n+1
h |Σ0

).

• Step 2: Solve the fluid-structure problem as in (9) replacing the momentum
equation (9a) by the linearized version:

ρf

(
δtu

n+1

h

∣∣
x0

,vf
h

)
Ω

f

tn+1

+ Ns

(
ũn+1

h − wn+1

h ;un+1

h , pn+1

h ,vf
h, qh

)
Ω

f

tn+1

=
〈
fn+1

f ,vf
h

〉
Ω

f

tn+1

(10)

• Step 3: Check the stopping criterion. If it is not satisfied, update η̃n+1
h =

η̂n+1

h , ũn+1

h = un+1

h and go to Step 1.

We have ended up with a fully discretized and linearized fluid-structure problem
that can be solved by a linear solver. Notice that the fluid and structure problems
are strongly coupled: the fluid solution depends on η̂n+1

h through (9d), whereas
to solve the structure problem in (9b) un+1

h and pn+1

h are needed.

A method that deals with the fluid-structure coupling in an explicit way
replaces (9d) by the condition un+1

h = δtη̃
n+1

h ◦ A−1

tn+1 . Otherwise, the coupling
is implicit (also called strong coupling).

There exist two ways for an algorithm to treat the nonlinearities given by the
convective term and by the fluid domain: explicitly and implicitly. In the first
case, only one fixed point iteration is performed per time step. In the other case,
nonlinear iterations are performed till convergence of the fixed point, Newton or
quasi-Newton algorithm.

The FSI algorithms treating nonlinearity explicitly are called semi-implicit.
In general, the treatment of the fluid domain in an explicit way does not affect
the unconditional stability of the coupled FSI problem, even when the added-
mass effect is critical.3 In particular, if the problem is discretized with a first
order method (in time) and the condition

ũn+1
h = wn+1

h , on Σt,

3This is not the case for the fluid-structure coupling. Explicit or weak coupling is unstable
when the added-mass effect is important.
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is satisfied (e.g. by taking ũn+1

h = un
h and η̃n+1

h = η̂n
h), the semi-implicit method

keeps the stability properties of the implicit procedure (see [23]). Examples of
semi-implicit algorithms can be found in [13, 4]. Semi-implicit methods treat
explicitly nonlinearity (reducing CPU cost) and implicitly the fluid-structure
coupling (keeping stability). The optimal convergence of the monolithic semi-
implicit method has been checked in [4].

2.3 The linear fluid-structure system

We aim at writing the fluid-structure system yielded by the linearized and fully
discretized FSI problem. We start by introducing the unknowns for the fluid
problem: Un+1

f , Un+1
σ and Pn+1 are the arrays of nodal values for the velocity

of the inner nodes, the velocity of the interface nodes, and the pressure. The
structural unknowns are Dn+1

s and Ḋn+1
s , the arrays of nodal values for η̂n+1

h

and ˙̂ηn+1

h . We also consider the structure velocity Un+1
s = δtD

n+1
s . Assuming

matching grids and equal interpolation spaces for the fluid velocity and structure
displacement, we can state the discrete continuity of velocities as follows:

Un+1
σ = δtD

n+1
σ .

More involved situations would require the use of mortar methods (see, e. g.,
[5]), for example.

In order to write the fully discretized coupled problem for a given time value
tn+1, we need to define a set of matrices. We denote by Kαβ the matrix that
includes viscous and convective terms, where the subindexes α and β indicate
the position of fluid nodes: the value σ is used for nodes on Σt, f otherwise.
Using the same notation, we also define the mass matrices Mαβ , the fluid matrix
Cαβ = 1

δtMαβ + Kαβ , the gradient matrix Gα and the divergence matrix Dα. In
these matrices we already include the corresponding stabilization terms. We also
indicate with Lτ

p the matrix associated to the pressure stabilization. Finally, let
us denote with Nαβ the matrix associated to the structure written in terms of
structure velocity, where the subindexes α and β take the values σ for interface
nodes and s for inner structure nodes.

At a given time value tn+1, equations (10)-(9b)-(9c)-(9d) can be written in
matrix form as:

AXn+1 = bn+1, (11)

where

A =




Cff Gf Cfσ 0
Df Lτ

p Dσ 0

Cσf Gσ Cσσ + Nσσ Nσs

0 0 Nsσ Nss


 ,Xn+1 =




Un+1
f

Pn+1

Un+1
σ

Un+1
s


 ,bn+1 =




bn+1

f

bn+1
p

bn+1
σ

bn+1
s


 ,

(12)
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The right-hand-side terms bn+1
f , bn+1

p , bn+1
σ and bn+1

s account for body forces,
time integration and stabilization terms, and the structure terms related to the
fact that the structure equation is stated in terms of velocities.

We refer to [4] for a more detailed exposition of the discrete FSI system.

Remark 2.1 It is also possible to linearize the fluid and structure problems
through Newton methods. Again, the block structure of matrix A is left unchanged
and our procedures can be applied.

Remark 2.2 The orthogonal projection in the stabilization term (7) complicates
the assembling of the fluid block. Therefore, for practical purposes, only the term
(
τ1(ũ

n+1

h · ∇un+1
h + ∇pn+1

h ), ũn+1

h · ∇v
f
h + ∇qh

)
Ω

f

tn+1

+
(
τ2(∇ · un+1

h ),∇ · vf
h

)
Ω

f

tn+1

is assembled in the matrix, whereas the missing term is treated explicitly and
sent to the right-hand side
(
τ1Π(ũn

h · ∇un
h + ∇pn

h), ũn+1

h · ∇v
f
h + ∇qh

)
Ω

f

tn+1

+
(
τ2Π(∇ · un

h),∇ · vf
h

)
Ω

f

tn+1

.

Alternatively, we could use the algebraic subgrid scales (ASGS) technique (see
[18]), which introduces the stabilization term

(
τ1(ρf δtu

n+1
h

∣∣
x0

+ ũn+1

h · ∇un+1
h + ∇pn+1

h ), ũn+1

h · ∇v
f
h + ∇qh

)
Ω

f

tn+1

+
(
τ2(∇ · un+1

h ),∇ · vf
h

)

Ω
f

tn+1

.

Remark 2.3 Lτ
p is a weighted Laplacian matrix that comes from the term(

τ1∇pn+1

h ,∇qh

)
Ω

f

tn+1

.

Remark 2.4 In case of considering non-matching grids and a mortar method
on the interface, the monolithic system has to be modified. Two different inter-
face arrays must be considered: the interface fluid velocity Un+1

σ,f and the interface

structure velocity Un+1
σ,s . For instance, considering the structure interface as the

master, and the fluid interface as the slave, we can easily define the rectangular
matrix Y that projects the structure interface velocity into the fluid interface
space. The continuity of velocities is imposed as

Un+1

σ,f = Y Un+1
σ,s .

Matrix Y involves an inverse mass matrix (better if lumped) on the fluid inter-
face. Then, we must multiply the blocks Cσf , Gσ and Cσσ by Y on the right
and solve the problem with Un+1

σ,s as interface unknown. The assembling of these
matrices is advised for the preconditioning of the system matrix by ILU-type
preconditioners.
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2.4 Features of the monolithic system

Let us stress the basic aspects of our non-modular approach. The majority of
the choices are justified by the fact that we are interested in solving the FSI
problem as a single (heterogeneous) system.

Firstly, we rely on a suitable finite element partition of the overall domain.
It implies matching grids on the fluid-structure interface. This approach is rea-
sonable when there is an interest in solving the problem with non-modular pre-
conditioners (one whole system).

On the other hand, we make use of the same finite element spaces for fluid
velocity and structure displacement (or velocity). This is extremely simple when
using stabilization techniques because the velocity-pressure pair can circumvent
the discrete inf-sup condition. In that case, the same finite element interpolation
spaces can be used for fluid velocity, pressure and structure unknowns. For
example, for the numerical experiments in Sections 7 and 8, we use P1/P1 finite
elements for the fluid and P1 finite elements for the structure.

Moreover, we reformulate the structure equations in terms of velocities. This
is attained by a simple modification of the right-hand side and does not affect
at all the generality of the formulation.

By virtue of the previous conditions, the velocity unknowns are defined over
the whole domain (fluid and structure), the problem is discretized using one
finite element partition and all the unknowns are interpolated with the same
finite element space.

In this frame, the transmission conditions are easily imposed. The continuity
of velocities on the interface is implicitly enforced by the finite element space
interpolation used over the whole domain.4 The continuity of stresses is imposed
weakly. The weak transmission of stresses simply arises from the fact that shape
functions on the interface nodes have support on fluid and structure sub-domains
(see [4]). In this way, the final system has the clear form reported in (12).

Another option would be to impose the transmission of stresses in a strong
form. Once the fluid problem is computed, the stresses are integrated on the
boundary elements by evaluating the fluid stress on the Gauss points, and passed

4When using continuous finite element spaces (as we do in this article), the continuity of
velocities at the interface is assured, because there is only one value on the interface nodes.
However, we could also think about discontinuous Galerkin methods. In that case, the continu-
ity of velocities between element edges or faces (in particular, those that define the interface) is
enforced weakly. Another approach, in the spirit of [8], is to consider continuous finite element
formulations everywhere except on the interface, where a discontinuous Galerkin approach is
used. It has been shown in [8] that a weak enforcement of transmission conditions improve the
properties of partitioned procedures.
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to the structure solver. The monolithic matrix in this case reads as

A =




Cff Gf Cfσ 0
Df Lτ

p Dσ 0

Jσf Jp Nσσ Nσs

0 0 Nsσ Nss


 ,

where Jσf comes from the term

〈νnf · ∇un+1

h ,vs
h〉Σt

and Jp from
〈−pn+1

h I · nf ,vs
h〉Σt .

This approach destroys the symmetry of the system (in case of using the Stokes
problem), affects the unconditional stability of (12) and spoils the order of ac-
curacy of the method (see [7]). For these reasons, we consider the weak trans-
mission of stresses.

Last but not least, an appropriate fluid formulation is important for the
efficiency of ILU type preconditioners applied to the FSI system. The use of
stabilized formulations instead of inf-sup stable elements improves a lot the ef-
ficiency of iterative solvers preconditioned with ILU type preconditioners. The
indefinite system arising from inf-sup stable formulations is replaced by a pos-
itive definite system and the pressure block is different from zero. This is very
important for the effectiveness of the ILU preconditioner.

In the next sections, we consider different preconditioners for the monolithic
FSI system.

3 The Dirichlet-Neumann preconditioner

The FSI system can be reformulated as an interface problem. This is achieved by
writing system (12) only in terms of Uσ thanks to the Schur complements of fluid
and structure sub-problems. Omitting the time step superscript for simplicity,
the interface problem is:

(C̃σ + Ñσ)Uσ = b̃σ,

with

C̃σ = Cσσ −
[

Cσf Gσ

] [ Cff Gf

Df Lτ
p

]−1 [
Cfσ

Dσ

]
,

Ñσ = Nσσ − NσsN
−1
ss Nsσ,

b̃σ = bs −
[

Cσf Gσ

] [ Cff Gf

Df Lτ
p

]−1 [
bf

bp

]
− NσsN

−1
ss bs.

14



The interface system preconditioned with the Dirichlet-Neumann precondi-
tioner Ñσ reads as follows:5

Ñ−1
σ (C̃σ + Ñσ)Uσ = Ñ−1

σ b̃σ. (13)

This Schur complement preconditioner can also be understood as an incomplete
block-LU factorization of the FSI system matrix A (see [26]). The preconditioned
system must be solved with a matrix-free iterative solver. In the next two
sections, we introduce two different choices.

3.1 Richardson algorithm for the preconditioned interface sys-

tem

The classical Dirichlet-Neumann algorithm can be understood as Richardson
iterations over system (13):

Uk+1
σ = Uk

σ + Ñ−1
σ (b̃σ − (Ñσ + C̃σ)Uk

σ).

We can easily infer that it is equivalent to the following iterative procedure:

1. Fluid problem (Dirichlet boundary condition)
[

Cff Gf

Df Lτ
p

] [
Uk+1

f

Pk+1

]
=

[
bf − CfσU

k
σ

bp − DσU
k
σ

]
(14a)

2. Structure problem (Neumann boundary condition)
[

Nσσ Nσs

Nsσ Nss

] [
Uk+1

σ

Uk+1
s

]
=

[
bk+1

σ − CσσU
k+1
σ − CσfU

k+1

f − GσP
k+1

bk+1
s

]
.

(14b)

This is the most appealing feature of the DN-Richardson method: every iteration
of the algorithm can be performed by separate fluid and structure solvers. We
only need to modify the boundary conditions.

The iterative process must be supplemented with an appropriate stopping
criterion. For instance, for the numerical experiments in Sections 7 and 8 we
use:

||Uk+1
σ − Uk

σ||

||U0
σ ||

≤ ǫ. (15)

Every iteration of the DN-Richardson algorithm is expensive, because it in-
volves to solve one fluid and one structure problem. A cheaper preconditioner
has been suggested in [29]. The fluid and structure problems are replaced by
ILU-type preconditioners of the respective system matrices. This preconditioner
is not modular and less effective than the original one, but the computational
cost of every iteration is reduced.

5The preconditioner C̃σ is known in FSI as Neumann-Dirichlet. However, its performance
is very poor (see [9]).
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3.2 GMRES algorithm for the preconditioned interface system

Instead of using Richardson iterations, we can apply the GMRES algorithm to
the preconditioned interface problem (13). The resulting method is denoted
by DN-GMRES. It is much faster and robust than DN-Richardson, because
it involves orthonormal iterations. Moreover, convergence is always assured, at
worst after as many iterations as degrees of freedom at the interface (not practical
for real applications). The GMRES methods requires to compute and store the
Krylov base associated to Q = Ñ−1

σ (C̃σ + Ñσ), starting from the preconditioned
residual r0 = Ñ−1

σ [b̃σ−(C̃σ +Ñσ)U0
σ], where U0

σ is the initial guess. The Krylov
space generated for the m-th iteration of the GMRES method is

Km := span{r0, Qr0, Q2r0, ..., Qmr0} = span{z0, z1, ..., zm}.

Given zk, in order to get zk+1 we must evaluate a matrix-vector product

Ñ−1
σ (Ñσ + C̃σ)zk = zk + Ñ−1

σ C̃σz
k

This algorithm can be rearranged in such a way that every matrix-vector product
is evaluated by the DN-Richardson code, simply setting to zero the body force:

1. Given U0
σ, solve one Richardson iteration of (14) to get U1

σ and compute
the initial residual as:

r0 = U1
σ − U0

σ.

2. Initialize the Krylov base with z0 = r0/||r0|| and at every GMRES iteration
(see [27, Section 6.5]) obtain the matrix vector product w = Qzk as follows:

(a) Fluid problem (Dirichlet boundary conditions and zero forcing term)

[
Cff Gf

Df Lτ
p

] [
vf

q

]
= −

[
Cfσz

k

Dσz
k

]
; (16a)

(b) Structure problem (Neumann boundary conditions and zero forcing
term)

[
Nσσ Nσs

Nsσ Nss

] [
vσ

vs

]
= −

[
Cσσz

k + Cσfvf + Gσq

0

]
. (16b)

(c) Evaluate w = zk − vσ.

Implementing the DN-GMRES method by reusing the DN-Richardson master
allows to use separate fluid and structure solvers. Unluckily, the performance of
the DN-GMRES algorithm is still negatively affected by the added-mass effect.
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Remark 3.1 At every GMRES iteration we get

Uk
σ = argmin

y∈Kk

||Ñ−1
σ [b̃σ − (C̃σ + Ñσ)y]||,

which can also be written as

||Ũk+1
σ − Uk

σ ||,

where Ũk+1
σ is obtained from Uk

σ by solving one iteration of the Richardson
algorithm (14). By taking ǫ||U0

σ || as tolerance, we impose the same stopping
criterion used for the DN-Richardson method. This is the choice adopted in the
numerical experiments.

Remark 3.2 The GMRES algorithm is performed over the interface unknowns.
Therefore, the Krylov base elements only have the dimensions of Uσ. The mem-
ory requirements are clearly reduced.

3.3 The reduction factor for the residual norm of the DN-GMRES

method for a model problem

The purpose of this subsection is to understand how the added-mass effect affects
the convergence of the DN-GMRES algorithm. To fulfill it, we consider the
simplified fluid-structure model proposed in [9].

We take a rectangular fluid domain Ωf ∈ R
2 of height R and length L (see

Figure 2 in [9]). The structure domain Ωs coincides with the interface, that
is Ωs = Σ. Under the hypothesis of dealing with a thin structure, having a
membrane behaviour and neglecting all the displacements but the normal one,
we derive the structure model:

ρsh ∂ttη + a η − b ∂xxη = fΣ(x, t) in Ωs × (0, T ).

Here, η = η(x, t) is the displacement in the direction of nf , h is the thickness of
the structure, a = Eh/R2(1−ν2), E being the Young modulus and ν the Poisson
coefficient, b = kGh, G being the shear stress modulus and k the Timoshenko
shear correction factor, and fΣ(x, t) the forcing term coming from the fluid.

The model for the fluid is linear, incompressible, and inviscid. The deforma-
tion of the structure is assumed to be so small that the fluid domain Ωf can be
considered fixed. Hence, the fluid model is the following:

ρf∂tu + ∇p = 0 in Ωf × (0, T ),

∇ · u = 0 in Ωf
t × (0, T ),

u = ∂tη on Σ × (0, T ),

with suitable boundary conditions on ∂Ωf\Σ and initial conditions.
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For the time discretization of the FSI system we choose the implicit Euler
scheme for the fluid problem and first order backward difference scheme for the
structure one. The time-discrete problem reads:

ρfδtu
n+1 + ∇pn+1 = 0 in Ωf × (0, T ),

∇ · un+1 = 0 in Ωf
t × (0, T ), (17)

u = δtη
n+1 on Σ × (0, T ),

and

ρsh
ηn+1 − 2ηn + ηn−1

δt2
+ a ηn+1 − b ∂xxη

n+1 = pn+1 in Ωs × (0, T ). (18)

It can be shown [9, 3] that problem (17)-(18) corresponds to the following discrete
added-mass problem for the structure:

(ρshI + ρfM)
ηn+1 − 2ηn + ηn−1

δt2
+ a ηn+1 + b Lηn+1 = p̂n+1 on Ωs × (0, T ),

(19)
where I denotes the identity operator, M : H−1/2(Σ) → H1/2(Σ) stands for the
added-mass operator and L = −∂xx is the Laplace operator. p̂n+1 takes into
account non-homogeneous boundary conditions on ∂Ωf\Σ.

Let us indicate with Q the linear, invertible, and continuous operator

Q =
(ρsh

δt2
+ a
)
I + bL +

ρf

δt2
M,

which can be split as Q = Qf + Qs, where Qf and Qs are the linear operators
associated to the fluid and structure subdomains:

Qf =
ρf

δt2
M, Qs =

(ρsh

δt2
+ a
)
I + bL.

Solving (19) with the DN-GMRES algorithm means to solve the problem Qηn+1 =
G (G accounting for ηn, ηn−1 and p̂n+1) with the GMRES method based on Qs

as preconditioner. To analyze the DN-GMRES algorithm we express η as

η =
∞∑

i=1

ηigi, with gi =

√
2

L
sin
(
iπ

x

L

)
.

The functions gi are eigenfunctions of both the added-mass and the Laplace
operators. Let µi (see [9]) and λi (see [3]) be the respective eigenvalues:

µi =
L

iπ tanh
(
iπ R

L

) , and λi =
( iπ

L

)2

,

for i = 1, ...,∞. The operator Qs is continuous and coercive. Also Qf is contin-
uous [9].
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The reduction factor ρ for the residual norm of the DN-GMRES method is
given by:

ρ =

√

1 −
σ2

min

σmax
, (20)

(see, e.g., [26]), where

σmin = inf
η 6=0

〈Qη, η〉

〈Qsη, η〉
, and σmax = sup

η 6=0

〈Qη,Q−1
s Qη〉

〈Qsη, η〉
.

We have:

σmin = inf
η 6=0

〈(Qf + Qs)η, η〉

〈Qsη, η〉
= 1 + inf

η 6=0

〈Qfη, η〉

〈Qsη, η〉
≥ 1, (21)

since the operators Qf and Qs are positive on L2(Σ). Moreover, let us define

the constants αs = ρsh
δt2 +a+ bλmin and βf =

ρf

δt2 µmax. Exploiting the symmetry
of Qs, we have

σmax = sup
η 6=0

〈(Qf + Qs)η,Q−1
s (Qf + Qs)η〉

〈Qsη, η〉

= 1 + sup
η 6=0

2〈Qfη, η〉 + 〈Qfη,Q−1
s Qfη〉

〈Qsη, η〉

≤ 1 + 2
βf

αs
+

β2
f

α2
s

=
(
1 +

βf

αs

)2

=
(
1 +

ρfµmax

ρsh + aδt2 + δt2bλmin

)2

.

In [3], it is proved that the DN-Richardson algorithm applied to the simplified
problem (19) converges to the monolithic solution only if the relaxation param-
eter ω ∈ (0, ωmax], with

ωmax =
2

1 +
ρf µmax

ρsh+aδt2+δt2bλmin

.

Thus, σmax ≤ 4

ω2
max

. Plugging this result and (21) into (20), we obtain

ρ ≤

√
1 −

ω2
max

4
.

Since 0 < (1 − ω2
max/4) < 1, the advantage of the DN-GMRES algorithm is

that convergence is always reached, whereas the DN-Richardson method has a
constraint on the relaxation parameter. However, as the added-mass effect gets
critical, ωmax → 0; so the reduction factor ρ → 1 and convergence slows down.
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4 ILU preconditioners

The first problem related to the monolithic FSI matrix is the discrepancy be-
tween the entries in the different blocks. In order to solve this issue, we consider
a diagonal scaling of the matrix (applied on the left). The diagonal scaling we
performed for the numerical simulations in Sec. 7 and 8 is the following. Let
D be the diagonal matrix whose element are the diagonal coefficients of A (12).
Instead of solving system (11), we solve:

ÂXn+1 = b̂n+1

where Â := D−1A and b̂n+1 := D−1bn+1.
The system matrix Â is preconditioned by an incomplete LU factorization P ,

the so-called ILUT preconditioner (see [27]). The ILUT preconditioner allows to
fix a threshold (entries smaller than the threshold are discarded) and the level of
fill-in (that defines the maximum number of non-zero entries per row). Again,
we make use of left-preconditioning:

P−1ÂXn+1 = P−1b̂n+1 (22)

This method is non-modular, in the sense that the whole monolithic matrix is
needed to compute the preconditioner.

In the non-modular approach, we aim at solving the FSI linear system
through standard iterative methods. The preconditioned system is solved by
a matrix-free Krylov method. Because of the non-symmetric nature of the sys-
tem, we consider the GMRES and BiCGStab algorithms. The GMRES method
gets the element in the Krylov space that minimizes the residual of the precon-
ditioned system (22). This algorithm requires to store the Krylov base, where
every element of the base is an array of size the number of unknowns. Due
to memory constraints, the maximum number of Krylov elements that can be
stored is limited. When this limit is reached, the GMRES method is re-started.
In general, a re-started GMRES does not perform well. The BiCGStab algorithm
is a quasi-minimization of the residual that does not require to store the Krylov
base, drastically reducing the memory usage. In general, when the GMRES
method needs to be re-started, the BiCGStab one performs better.

5 An inexact block-LU factorization

In [4] two semi-implicit algorithms have been derived from splitting techniques
designed for the FSI problem at the fully discrete level. In that work, inf-
sup stable finite element pairs were used for velocity and pressure, and the
methods (called PIC and FSY) were tested on a 2d benchmark involving a one-
dimensional structure. Now, the goal is to solve realistic 3d applications with
the PIC and FSY schemes in order to understand their efficiency and compare
it to that of the methods presented in Sec. 3 and 4.
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In this section, we briefly extend the semi-implicit algorithms based on in-
exact factorizations to stabilized finite element methods with equal velocity-
pressure interpolation and generalize them to the case of a d-dimensional struc-
ture. Letting the subscript S indicate both the inner structure and interface
nodes, the matrix and the vectors in (12) can be rewritten as

A =




Cff Gf CfS

Df Lτ
p DS

CSf GS NS


 ,Xn+1 =




Un+1

f

Pn+1

Un+1
S


 ,bn+1 =




bn+1
f

bn+1
p

bn+1
S


 . (23)

The PIC and FSY schemes derive from an inexact block-LU factorization, carried
out over the FSI system matrix in (23). The exact L and U factors read:

A =




Cff 0 0
Df Spp SpS

CSf SSp SSS






I C−1

ff Gf C−1

ff CfS

0 I 0
0 0 I


 = LU, (24)

where the S-matrices are Schur complements. Their formal definition is:

Spp = Lτ
p − DfC−1

ff Gf , SpS = DS − DfC−1

ff CfS ,

SSp = GS − CSfC−1

ff Gf , SSS = NSS − CSfC−1

ff CfS .

The presence of the inverse fluid matrix C−1

ff makes the exact LU factorization
unaffordable. Therefore, we resort to inexact factorizations in order to reduce
the computational complexity. The exact L and U factors in (24) are replaced
by inexact ones in which C−1

ff is substituted by the zero-th order term of its
Neumann expansion:

C−1

ff =

(
1

δt
Mff + Kff

)−1

= δtM−1

ff + O(δt2) ≃ δtM−1

ff . (25)

Remark 5.1 In order to reduce the computational cost, a lumped mass matrix
Mff is used.

Remark 5.2 When using the OSS technique, none of the stabilization terms
is multiplied by δt−1; the time derivative terms in the residual disappear with
the orthogonal projection. We can include all the stabilization terms in Kff

and use the previous expansion with a lumped mass matrix. However, for some
other techniques, like algebraic subgrid scales or Galerkin/least-squares, there
are stabilization terms that are multiplied by δt−1. Matrix Mff is not a standard
mass matrix anymore and cannot be lumped, making its inversion more involved.

We denote by Tαβ the approximated Schur complements, in which C−1
ff is re-

placed by δtM−1

ff . The subindexes α and β can take the values p for pressure
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and S for interface and inner structure nodes. Consequently, the lower block-
triangular matrix L is approximated by:

LPIC :=




Cff 0 0
Df Tpp TpS

CSf TSp TSS


 .

Using the same approximation (25) for the upper block-triangular matrix U , the
following inexact U factor is obtained:

UPIC :=




I δtM−1
ff Gf δtM−1

ff CfS

0 I 0
0 0 I


 .

The system matrix for the PIC scheme is obtained by replacing matrices L and U
with LPIC and UPIC (APIC = LPICUPIC), while the FSY algorithm substitutes
only the L factor (AFSY = LPICU).

An inexact factorization involves a perturbation error that can be reduced if
it is applied to the incremental system (instead of the non-incremental (11)):

A
(
Xn+1 − X∗

)
= bn+1 − AX∗, (26)

where X∗ is the vector made of U∗
f , P∗ and U∗

S which are predictions of Un+1

f ,

Pn+1 and Un+1
S . For instance, a first order prediction would be X∗ = Xn.

The algorithms based on the inexact factorizations applied to the incremental
FSI system can be rearranged into three-steps procedures. For the PIC scheme
that procedure is the following:

1. Computation of the intermediate velocity:

Cff Ũ
n+1

f = bn+1

f − GfP
∗ − CfSU∗

S ; (27a)

2. Solution of the coupled pressure-interface system:

[
Tpp TpS

TSp TSS

] [
Pn+1 − P∗

Un+1
S − U∗

S

]
=

[
−DfŨ

n+1
f

bn+1
S − CSfŨ

n+1
f

]
−

[
0 DS

GS NSS

] [
P∗

U∗
S

]
; (27b)

3. Computation of the end-of-step velocity:

1

δt
MffU

n+1

f =
1

δt
MffŨ

n+1

f − Gf (Pn+1 − P∗) − CfS(Un+1
S − U∗

S).

(27c)
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The incremental version of the FSY scheme shares the first two steps ((27a)
and (27b)) with the PIC method, whereas the third one becomes

• computation of the end-of-step velocity:

CffU
n+1
f = CffŨ

n+1
f − Gf

(
Pn+1 − P∗

)
− Cfσ

(
Un+1

σ − U∗
σ

)
.

The latter step differs from (27c) and is actually more expensive due to the
presence of the stiffness matrix Cff . Since we are interested in comparing the
efficiency of different methods, in the numerical simulations we will only consider
the PIC algorithm.

Clearly, the numerical complexity of the PIC scheme lies in Step 2, where
the pressure is coupled to the structure velocity. In the following, we will denote
by T the system matrix of the pressure-structure problem (27b). The added-
mass can only have an effect on matrix T , whose size is much smaller than that
of the original FSI system matrix (23). For the solution of system (27b) we
adopt a matrix-free method, which prevents us from assembling the matrix. In
particular, in Sec. 8 we consider the GMRES and the BiCGStab algorithms and
the corresponding PIC schemes are called PIC-GMRES and PIC-BiCGStab.

A key point in the solution of system (27b) is the choice of a good precon-
ditioner for T . The computation of the ILU preconditioner would require the
evaluation of the elements of T . Hence, it is too expensive and does not make
much sense, since we want to avoid the cost of assembling T by adopting a
matrix-free method. In the simulation of the carotid bifurcation (Sec. 8), we
employed two preconditioners: the point-diagonal and the block-diagonal one.
The former proves to be cheaper in terms of CPU time (see Fig. 9(a))).

Remark 5.3 Herein, the PIC algorithm has been considered as a solver, with
the corresponding perturbation. However, this inexact block-LU factorization can
also be used as preconditioner (see [4]).

6 Modularity

The DN-Richardson in its explicit version (weak coupling) was the first FSI al-
gorithm to be used. As we already pointed out in Section 3.1, its best feature
is modularity. A simple master code can perform the communication between
the fluid and the structure codes only by handling interface information. Fur-
thermore, Neumann and Dirichlet boundary conditions are input data for any
code and no changes have to be made over these two solvers. So, the DN-
Richardson method can be used in the case of having two separate fluid and
structure solvers without access to the source codes. However, it is well known
that the implicit DN-Richardson (with relaxation) shows slow convergence for
problems with critical added-mass.

The DN-GMRES method improves the performance of the DN-Richardson
algorithm for that kind of problems. The computation of the initial residual
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Fluid density: ρf = 1.0 gr/cm3 Fluid viscosity: µ = 0.035 poise

Structure density: ρs = 1.1 gr/cm3 Wall thickness: h = 0.1 cm

Young modulus: E = 7.5 · 105 dyne/cm2 Viscoelastic parameter: γ = 10−1 dyne · s

Shear modulus: G = 2.5 · 105 dyne/cm2 Poisson coefficient: ν = 0.5

Lamé constant: µℓ = 106 dyne/cm2 Lamé constant: λℓ = 1.73 · 106 dyne/cm2

Table 1: Fluid and structure physical properties for the numerical test

is nothing else but one iteration of the DN-Richardson algorithm. The rest of
the matrix-vector products can be computed using (16), with separate fluid and
structure evaluations. However, we must set to zero the right-hand side term
in both sub-problems. Assuming that this can be done without modifying the
source codes, the DN-GMRES would keep modularity. In any case, a modular
DN-GMRES algorithm is extremely inefficient. Fluid and structure matrices do
not change in the iterative process and could be assembled only once.

An efficient implementation of the DN-GMRES algorithm requires a mas-
ter with access to fluid and structure blocks to perform the iterative process
without reassembling matrices. Access to fluid and structure source codes is
needed. Thus, fluid and structure sub-problems are solved by using the pre-
existing codes, with some minor modifications, and modularity is not lost.

The PIC and ILUT-solver methods are non-modular in the sense that we
need to modify fluid and structure source codes and have simultaneous access
to the different fluid and structure blocks.

In the next section we show that the non-modular algorithms mentioned
above are robust and show a good behavior in the large added-mass effect range.

7 Numerical results for the straight cylindrical pipe

Through our numerical experimentation we aim at analyzing how the added-
mass effect affects the performance of the different FSI algorithms considered
above. Our goal is to simulate the propagation of a pressure pulse in a straight
pipe with deformable boundaries as the structure density varies. We consider
both the fully 3d problem, whose fluid domain is a cylinder of radius R0 = 0.5 cm
and length L = 6 cm, and its 2d approximation, obtained by intersecting the
pipe with a plane. The fluid and structure physical parameters used in the
simulations are listed in Table 1: a double line separates the common ones from
the ones of the 2d problem only (see [23]), which are separated also from the
parameters of the 3d problem (see [11]).

On the inflow section we impose the following Neumann boundary condition:

σ
f
in = −

Pin

2

[
1 − cos

( πt

2.5 · 10−3

)]
nf ,

while on the outflow section an homogeneous Neumann condition has been
imposed. The amplitude Pin of the pressure pulse has been taken equal to
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2 · 104 dyne/cm2 and the time duration of the pulse is 5 ms. We solve the
problem over the time interval [0, 0.012] s.

For both problems we choose a conforming space discretization between fluid
and structure: stabilized P1 − P1 finite elements for the fluid and P1 finite ele-
ments for the structure.

7.1 Comparison between the DN-Richardson and DN-GMRES

methods

We solve the 2d problem with the two DN-Richardson and DN-GMRES algo-
rithms (semi-implicit version) on a structured mesh of 61 × 21 fluid nodes and
61 × 4 structure nodes, with time step δt = 2·10−4. We consider different values
of the structure density ρs = 500, 100, 50, 10, 5, 1 g/cm3 . We choose to adopt the
explicit treatment of the nonlinearities in order to focus on the fluid-structure
coupling iterations.

Figure 1 shows the number of coupling iterations needed by the two al-
gorithms to satisfy the stopping criterion ((15) with tolerance 10−4) at each
time step, for the different densities. The number of subiterations for the DN-
Richardson algorithm increases dramatically as the structure density approaches
the fluid one. Notice in the legend the relaxation parameter ω taken in each case:
it corresponds to the highest value under which we have convergence of the cou-
pling iterations. The relaxation parameter can be interpreted as an index of
“stiffness” of the fluid-structure coupling. When using the DN-GMRES algo-
rithm the number of subiterations increases only slightly as the structure density
decreases. In fact, the two methods are almost equivalent in the case of high
structure densities, but the advantage of employing GMRES instead of Richard-
son iterations becomes clear in presence of a strong added-mass effect. Moreover,
no relaxation is needed for the convergence of the DN-GMRES algorithm.
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Figure 1: Number of coupling iterations needed to satisfy the convergence crite-
rion at each time step for (a) the DN-Richardson and (b) DN-GMRES methods.
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To better show the improvement of the DN-GMRES algorithm we report in
Figure 2 the average number of coupling iterations over the time interval for
the two methods as the structure density varies. The convergence of the DN-
GMRES method is also less sensitive to mesh and time step variations. The
coarser structured mesh used for the comparison has 41 × 16 fluid nodes and 41
× 3 structure nodes.
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Figure 2: Average number of coupling iterations for (a) the DN-Richardson
and (b) DN-GMRES methods as the structure density varies. Comparison for
different meshes and different time step values.

7.2 The DN-GMRES method: implicit and semi-implicit ver-

sions

In order to check the computational savings allowed by the explicit treatment
of the nonlinearities, we compare the implicit and semi-implicit versions of the
DN-GMRES algorithm for the 2d problem.

Figure 3(a) shows the average number of nonlinear iterations of a fixed point
algorithm (with tolerance 10−2) for two different time step values and for all
the structure densities specified in Section 7.1. For high ρs the nonlinearity is
mainly due to the convective term in the fluid equations, while as ρs decreases
the domain nonlinearities become more important. That explains the increase
in nonlinear iterations for low structure densities. For the values of ρs typical of
hemodynamics, the number of nonlinear iterations per time step (see Fig. 3(a))
is smaller than the number of fluid-structure coupling iterations needed for the
solution of the linearized FSI system, not only for the DN-Richardson method
(see Fig. 2(a)) but also for the DN-GMRES method (see Fig. 2(b)) .

The implicit DN-GMRES method uses two nested loops: an external one
dealing with the nonlinearity and an internal one solving every linearized sys-
tem. Thus, the implicit method is computationally intensive, with a high number
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Figure 3: (a) Average number of fixed point iterations for the implicit version
and (b) average number of total GMRES iterations per time step for the implicit
and semi-implicit versions, for different structure densities and time steps values.

of fluid structure evaluations (loosely speaking, number of nonlinear iterations
times number of average coupling iterations). We plot the accumulative number
of iterations, i.e. the sum of the number of GMRES iterations required by every
fixed point iteration, of the implicit DN-GMRES for the 2d test problem in Fig.
3(b). On the contrary, the DN-Richardson method allows to use only one loop
that deals with both nonlinear and coupling iterations (see [2]).6 Even though
the nonlinear iterations are not so ill-posed as coupling iterations, the number of
accumulative iterations increases a lot. In Figure 3(b), we compare the average
number of GMRES iterations per time step for the implicit and semi-implicit
versions of DN-GMRES, as ρs varies. In the case of a low density structure, an
explicit treatment of the nonlinearity reduces drastically the CPU cost because
no nonlinear iterations must be performed.7 Therefore, in hemodynamics ap-
plications it is very appealing to deal explicitly with the geometrical and fluid
nonlinearities, while keeping the fluid-structure system coupled.

6Although the use of one-loop algorithms can reduce the number of accumulative iterations,
the matrix and right-hand side have to be updated at every iteration. When using nested
loops, the matrix and right-hand side only need to be updated every nonlinear (external)
iteration. The use of one-loop algorithms with DN-GMRES is not straightforward because the
GMRES algorithm assumes the same system matrix during the iterative process. A way to get
a one-loop algorithm is the use of a FGMRES method, that allows perturbations of the system
matrix. FGMRES can only be used with right preconditioning, so the DN preconditioner must
be applied to the right in this situation.

7When using the ALE formulation, every nonlinear iteration of the shape domain involves
to compute a Laplacian problem.
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7.3 The ILUT-GMRES and ILUT-BiCGStab methods

We apply our non-modular approach to the 2d and 3d problems for the same
values of ρs reported in Section 7.1. We want to check the number of iterations
required by the preconditioned GMRES and BiCGStab method to converge
(with a tolerance of 10−4) as the structure density nears the fluid one. The
preconditioners adopted are the incomplete LU factors of the scaled monolithic
system with 20 non-zero entries per row and threshold 0.1. For the GMRES
method, two different values for the maximum dimension of the Krylov space
(20 and 50 for the 2d problem, 50 and 80 for the 3d one) are taken into account.
Again, we consider the semi-implicit versions.

For the 2d problem, the meshes are the same used for the tests in Section
7.1. For the 3d case we considered two unstructured meshes: the coarse one
with average element size h = 0.14 (4347 nodes and 21163 tetrahedra) and the
fine one with average element size h = 0.12 (6452 nodes and 32190 tetrahedra).

In Figure 4 and 5, we observe the number of GMRES iterations for the
bi-dimensional and three-dimensional problems, respectively, on two different
meshes and with two different time steps (δt = 2 · 10−4 and δt = 4 · 10−4).
Refining the mesh causes an increase in the iterations number, while the number
of iterations decreases with the time step. This can be explained by the fact that
the starting point for the GMRES method is the solution at the previous time
step. However, the difference in the number of iterations with respect to the
mesh size and the time step reduces as the Krylov space dimension gets bigger
and as the added-mass effect becomes important. For both problems increasing
the maximum dimension of the Krylov space ensures faster convergence of the
GMRES method, because it reduces the re-starting of the method.
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Figure 4: Average number of GMRES iterations to solve the monolithic system
for the 2d problem, for different ρs. Comparison for (a) different meshes and (b)
different time step values.

Unlike the DN algorithms, the convergence of the ILUT-GMRES method
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Figure 5: Average number of GMRES iterations to solve the monolithic system
for the 3d problem, for different ρs. Comparison for (a) different meshes and (b)
different time step values.
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Figure 6: Average number of BiCGStab iterations to solve the monolithic system
for the (a) 2d and (b) 3d problem, for different ρs, meshes and time step values.

improves as the added-mass effect becomes important. The ILUT-BiCGStab
shows the same behavior in the 2d problem (Fig. 6(a)), while the trend is more
irregular for the 3d test (Fig. 6(b)).

8 Numerical results for the carotid bifurcation

Our goal is now to simulate a pressure wave in the carotid bifurcation using the
same fluid and solid properties as in the straight pipe case. The geometry is a
realistic one first used in [19]. The fluid and the structure are initially at rest
and the same Neumann boundary conditions of the straight pipe are imposed at
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both the inlet and the outlet. The average inflow diameter is 0.67 cm, the time
step used is δt = 0.2 ms and the time interval is [0, 12] ms. Figure 7 shows the
fluid pressure together with the structural deformation amplified by a factor 10
at time t = 3, 6, 9, 12 ms.

(a) t = 3 ms (b) t = 6 ms (c) t = 9 ms (d) t = 12 ms

Figure 7: Propagation of the initial pressure pulse, moving from the inflow to
the outflow section. Solution at every 3 ms.

Again we choose a conforming space discretization between fluid and struc-
ture: stabilized P1 − P1 finite elements for the fluid and P1 finite elements for
the structure.

8.1 Comparison between the ILUT-solver, PIC-solver and DN-

GMRES methods

We first compare the ILUT-solver and the PIC methods.8 In particular, we
consider the ILUT-BiCGStab method, the ILUT-GMRES one with different fill-
ins for the preconditioners, the PIC-GMRES and PIC-BiCGStab algorithms.
The tolerance for the iterative method is 10−4 for all the schemes. When the
GMRES method is adopted the maximum dimension of the Krylov base is set
to 40.

The unstructured mesh we used has diameter h = 0.11 (8737 nodes and
40814 tetrahedra). All the simulations were performed on a 3.2 GHz Pentium 4
with 2 GB of RAM.

Fig. 8(a) shows the average number of solver iterations for the structure
densities ρs = 500, 100, 50, 10, 5, 1 g/cm3. As already noticed in Sec. 7.3, the
decreasing of the structure density improves the performances of the ILUT-
GMRES method. Moreover, increasing the fill-in of the preconditioners reduces
the number of GMRES iterations up to ρs = 100. This reduction in the number
of iterations does not correspond to a decrease in the CPU time for ρs > 1, as it
can be seen in Fig. 8(b). In fact, the more accurate ILU factorizations require
fewer iterations to converge but the cost to compute the incomplete factors (and
sometimes the overall CPU cost) increases. For low structure densities the ILUT-
BiCGStab behaves worse than the ILUT-GMRES. While the PIC-BiCGStab

8Numerical tests for the PIC method similar to those for the ILUT-GMRES in the previous
section can be found in [4] for inf-sup stable elements.
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method always converges in less iterations and faster than the restarted GMRES
one. For the structure densities typical of hemodynamics, the ILUT-GMRES
method proves to be the fastest.
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Figure 8: (a) Average number of solver iterations and (b) CPU time for the
ILUT-solver and the PIC methods as the structure density varies.

The PIC-solver methods whose results are reported in Fig. 8 employ the
point-diagonal preconditioner to solve system (27b). We also considered the
block-diagonal one. Obviously, this latter drastically reduces the number of
solver iterations (Fig. 9(a)) but it is much more time consuming than the point-
diagonal preconditioner (Fig. 9(b)).
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Figure 9: (a) Average number of GMRES iterations and (b) CPU time for
the PIC-GMRES method with different preconditioners as the structure density
varies.

The DN-GMRES algorithm is much more expensive in terms of CPU time
than the other two methods. That is the reason why the results are not reported
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in the same graph but in a separated one (Fig. 10). Even though it represents
an improvement with respect to the DN-Richardson algorithm, the DN-GMRES
one is not competitive for realistic hemodynamics problem.
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Figure 10: CPU time for the ILUT-GMRES and the DN-GMRES methods as
the structure density varies.

8.2 The ILUT-GMRES and the PIC-BiCGStab methods for

hemodynamics problems

Now we restrict our attention to the problem with the largest added-mass effect,
i.e. we set ρs = 1. Fig. 11(a) reports the average number of solver iterations
and Fig. 11(b) the CPU time required by the ILUT-GMRES and PIC-BiCGStab
methods to solve the bifurcation problem on four different meshes. From the
coarsest to the finest, the meshes we used have 6796, 8737, 13148 and 16402 nodes
(31138, 40418, 62879 and 79528 tetrahedra, respectively). The PIC-BiCGStab
method takes always more iterations to converge than the ILUT-GMRES one.
The gap between the iterations number seems to increase with the refinement of
the mesh. The CPU times needed by the two methods to complete the simulation
show the same tendency. Thus, the ILUT-GMRES algorithm remains the less
time-consuming also when the size of the problem increases.

9 Conclusions

In this work, we focused on the numerical simulation of FSI problems char-
acterized by a strong added-mass effect. We took into account two different
preconditioners for the coupled system obtained after linearization and full dis-
cretization of the FSI problem. The first one is the classical Dirichlet-Neumann
preconditioner. Two modular algorithms based on that preconditioner (the
DN-Richardson and the DN-GMRES ones) have been considered. The reduc-
tion factor for the DN-GMRES method has been obtained for a model prob-
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Figure 11: (a) Average number of solver iterations and (b) CPU time for the
ILUT-GMRES and the PIC-BiCGStab methods for different meshes.

lem. The theoretical impact of the added-mass effect on the reduction factor
agrees with the numerical experiments. The performances of DN-Richardson
and DN-GMRES have been compared to those of two methods (ILUT-GMRES
and ILUT-BiCGStab) yielded by the non-modular ILUT preconditioner for the
whole FSI system.

Another non-modular approach has been considered: the PIC scheme pre-
sented in [4], here extended to the case of d-dimensional structure and the use
of stabilized finite elements methods.

The advantages of the explicit treatment for the nonlinearities of the FSI
problem have been underlined. Thus, we dealt with the semi-implicit versions of
all the methods mentioned above. This allowed us to focus on the fluid-structure
coupling and on the effects of the added-mass.

A wide set of numerical simulations consented to show that the DN-GMRES
algorithm represents an improvement of the DN-Richardson one. However, they
both perform well in case of high structure densities but suffer in case of critical
added-mass effects. Unlike the DN-algorithms, the performance of the ILUT-
solver methods improves as the structure density approaches the fluid one. This
good behavior in the large added-mass effect range pays off for the loss of mod-
ularity, also in the case of the PIC methods.

The ILUT-GMRES method proved to be the less expensive in terms of CPU
time, also when the number of unknowns increases.
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