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Abstract

We propose a reduced ODE model for the mechanical activation of car-
diac myofilaments, which is based on explicit spatial representation of nearest-
neighbour interactions. Our model is derived from the cooperative Markov Chain
model of Washio et al. 2012, under the assumption of conditional independence
of specific sets of events. This physically motivated assumption allows to dras-
tically reduce the number of degrees of freedom, thus resulting in a significantly
large computational saving. Indeed, the original Markov Chain model involves a
huge number of degrees of freedom (order of 1021) and is solved by means of the
Monte Carlo method, which notoriously reaches statistical convergence in a slow
fashion. With our reduced model, instead, numerical simulations can be carried
out by solving a system of ODEs, reducing the computational time by more
than 10 000 times. Moreover, the reduced model is accurate with respect to the
original Markov Chain model. We show that the reduced model is capable of re-
producing physiological steady-state force-calcium and force-length relationships
with the observed asymmetry in apparent cooperativity near the calcium level
producing half activation. Finally, we also report good qualitative and quanti-
tative agreement with experimental measurements under dynamic conditions.

1 Introduction

A distinctive feature of living matter is that the stress is not uniquely determined
by the strain since muscle tissues are intrinsically able to generate force (Bers 2001).
Modelling the process behind the active contraction of cardiomyocytes is crucial for
understanding heart functionality, since it represents the natural bridge between elec-
trophysiology and mechanics.

Cardiomyocytes, the cardiac muscle cells, are composed by myofibrils, long bundles
of sarcomeres, the cell contractile units, surrounded by sarcoplasmic reticulum and
delimited by Z disks (see Figure 1). Each sarcomere contains thick filaments (myosin
filaments, MFs) and thin filaments (actin filaments, AFs), which are anchored to Z
disks. Myosin molecules are composed of a head, which is capable of binding to actin,
a neck and a tail. Myosin heads (MHs) are distributed along the thick filament, but for
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Figure 1: Inner structure of cardiomyocytes.

a narrow region, named H-zone and located at the centre of the filament. During cell
depolarization, the increment of calcium ions concentration inside the cells induces
the release of the calcium stored in the sarcoplasmic reticulum, thus triggering the
binding between troponin C and Ca2+. This chemical reaction causes a configuration
change of the protein tropomyosin, thus exposing the binding sites for myosin heads;
the latter bind to actin, forming the so called crossbridges (XBs), thus leading to the
sliding between the two filaments. At the macroscale, the consequence of such so-
called crossbridge mechanism is the muscle contraction (Bers 2001; Keener and Sneyd
2009; Quarteroni et al. 2017).

1.1 Unregulated models

The earliest attempts to model the tension development in muscle tissues are based
on the experimental work of Hill on quick release from isometric condition of tetanized
skeletal frog muscle (Hill 1938). This model incorporates a phenomenological descrip-
tion of the force-velocity relationship. However, it is not suited for the cardiac muscle,
since tetanized contractions are not common in the heart. Moreover, Hill’s model
does not incorporate the coupling with electrophysiological quantities such as calcium
concentration. The model can therefore be regarded as an empirical law neglecting
biophysical phenomena (Fung 2013; Sachse 2004).

Most of current models of tension development are based on the sliding filaments
theory, proposed independently in 1954 by two research teams (Huxely and Niederg-
erke 1954; Huxely and Hanson 1954). The original model (Huxely 1957) contains only
two states for XBs, attached and detached, with transition rates dependent on the rel-
ative position of the actin-binding site to the equilibrium position of the nearest MH.
The force is represented as a linear function of distortion of attached XBs, which act
as linear springs. The first numerical simulations based on this theory were performed
with the model proposed in Wong 1971, which has been improved in later works to
match thermodynamical self-consistency (Eisenberg and Hill 1985; Hill et al. 1975;
Pate and Cooke 1986).

1.2 Regulated mean-field models

The models previously mentioned do not incorporate the calcium-based regulation of
activation, and are thus limited to the condition of full activation. More recent models
incorporate the description of troponin-tropomyosin regulatory units (RU) to account
for the effect of calcium ions concentration on cross bridge formation (Landesberg and
Sideman 1994; Razumova, Bukatina, and Campbell 1999; Rice, Winslow, and Hunter
1999; Sachse, Glänzel, and Seemann 2003).

By adopting a mean-field approach, a single representative RU or XB (or a couple
RU/XB) is described by a Continuous-Time Markov Chain (CTMC) or Markov Jump
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process (see Norris 1998), with a finite number of states. The states included in the
CTMC depend on the level of complexity of the model and on which components are
either comprised or neglected in the description (the most popular choices are the
calcium-binding state of troponin C, the permissivity of tropomyosin, and the binding
state of XBs) and their number range from 3 (see for instance Hussan, Tombe, and
Rice 2006) to more than 10 (see Sachse, Glänzel, and Seemann 2003). The calcium-
based regulatory system is incorporated by making the transition rates of the states
describing the RUs dependent on intracellular calcium ions concentration.

Thanks to the small number of states of the Markov Chain, the solution of such
models can be obtained by solving the associated Forward Kolmogorov Equation
(FKE). The FKE, also known as Master Equation in natural sciences, describes the
time evolution of the probabilities associated with the states in the phase space of
a random process (Bailey 1990). When the underlying random process is a CTMC,
the associated FKE is a system of ODEs, with as many variables as the number of
states of the CTMC. This provides an expression for the probability of the tension
generating states, which in turns gives the generated force. To account for the effect
of sarcomere length (SL), the expression of the force is typically multiplied by the
so-called sarcomere overlap function, which quantifies the fraction of MHs recruitable
for tension generation, as the fraction of MHs facing a single AF (Landesberg and
Sideman 1994; Rice, Winslow, and Hunter 1999; Sachse 2004; Trayanova and Rice
2011).

1.3 Cooperative interactions

A prominent feature of the cardiac tissue is the anomalously high (with respect to
the skeletal muscle) sensitivity of the developed force to calcium concentration. The
steeply nonlinear response to activator calcium ions can be explained by the cooper-
ative interactions inside sarcomeres, even if a debate about the exact cooperativity
mechanism is still ongoing (see e.g. Dupuis et al. 2016). Three theories have been
proposed, not mutually exclusive: the first one (named XB-RU) assumes that the
attachment of a XB increases the affinity of troponin C to calcium ions; the second
one (XB-XB) is that attached XBs increase the rate of formation of nearby XBs; the
third one (RU-RU) is that the transition of a tropomyosin molecule to the permissive
state facilitates the same transition for neighbouring molecules by means of end-to-end
interactions (Brandt et al. 1987).

To account for cooperative mechanisms in mean-fields models, different strategies
have been employed (Rice, Winslow, and Hunter 1999; Sachse 2004). While the XB-
RU cooperativity hypothesis can be easily modelled by increasing the calcium-binding
rate when the RU is involved in a XB, the XB-XB and RU-RU interactions are difficult
to be rigorously incorporated in a mean-field framework. Nevertheless, numerical
comparisons of the effect of the three putative cooperative mechanisms highlighted
that RU-RU interactions are crucial to reproduce most of the experimentally observed
behaviours, such as steady-state force-calcium relationship and twitch contractions
(Rice, Winslow, and Hunter 1999).

As an attempt to incorporate end-to-end interactions into mean-field models, the
transition rate of RUs from the non-permissive state to the permissive one was as-
sumed to be an increasing function of the concentration of permissive RUs (i.e. of
the probability associated with the permissive states); on the other hand, the reverse
transition rate was assumed to be a decreasing function of the same quantity (Lan-
desberg and Sideman 1994; Rice, Winslow, and Hunter 1999; Sachse 2004). However,
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the numerical results for the latter model did not show good agreement with ex-
perimental measurements (Rice and Tombe 2004). The missing ingredient to model
end-to-end interactions, as highlighted in the seminal work by Rice and De Tombe, is
the spatially-explicit description of RUs and/or XBs along the filaments, which cannot
be captured by mean-field models. Indeed, in the mean-field framework, the state of
all units affects the transition rates of all units, since a spatially-detailed description
is missing (Chabiniok et al. 2016).

To avoid an explicit representation of end-to-end interactions, Rice et al. 2008
proposed a mean-field model whose transition rates were phenomenologically modified
to reproduce the steeply nonlinear response of the tissue to calcium concentration.
This approach is similar to the one employed in Hunter, McCulloch, and Ter Keurs
1998 and in Niederer, Hunter, and Smith 2006, where the rate of activation is set
as a nonlinear function of calcium concentration, such that the steady state solution
coincides with the Hill’s function (see Eq. (18)). A similar phenomenological model,
based on measurements on human cardiomyocytes, is proposed in Land et al. 2017.

1.4 Regulated spatially-explicit models

In Rice et al. 2003 the authors proposed a spatially-explicit model, consisting in a
filament of N = 26 RUs, each one described by a 4-states CTMC. To account for
end-to-end interactions, the transition rates between the permissive and the non-
permissive states was assumed to depend on the state of nearest-neighbouring RUs.
The numerical simulations of the model showed a great improvement, with respect
to mean-field models, in the agreement with experimental observed behaviours, both
under steady and dynamic conditions. Moreover, the spatial description of the filament
allowed to incorporate the SL-dependence in a more rigorous way than in mean-field
models, since the overlap of MFs and AFs can be explicitly incorporated (see Washio
et al. 2012).

The drawback of spatially-explicit models is their overwhelming computational
complexity: a model comprising N units, each one modelled by a Markov Chain with
s states, has sN total degrees of freedom. This hinders the possibility of numerically
solving the FKE associated with such models and thus dictates the use of the time-
consuming Monte Carlo (MC) method (Hussan, Tombe, and Rice 2006; Rice and
Tombe 2004; Washio et al. 2013, 2015).

Different attempts were pursued to overcome this inconvenient. In Rice et al. 2003
periodic boundary conditions are considered, so that the model reduces to the Ising
problem, whose analytical solution is known (Cipra 1987). However, this approach is
restricted only to the steady state, and the ring simplification neglects the so-called
border-effect in the filament (see Washio et al. 2012). In Campbell et al. 2010 the
authors assume periodic boundary conditions for the filament, so that a large number
of states can be identified, being defined but for a translation of the filament. This
reduces by an order of magnitude the number of states; however, besides the drawback
of the ring simplification, this approach can still be applied to a limited number of
units, due to its high computational cost.

In Washio et al. 2012 the authors developed a novel method to derive an approxi-
mate ODE model starting from the model of Rice et al. 2003, comprising N Markov
Chains with 4 states each. They considered the FKE associated with each one of the
N units, amounting to a total of 4N ODEs. Since the units are mutually coupled,
at right-hand side they came across the joint probabilities of triplets of consecutive
units, which have to be modelled for model closure. The joint probabilities of triplets

4



AF Actin filament ODE Ordinary differential equation
MF Myosin filament CTMC Continuous-time Markov Chain
MH Myosin head MC Monte Carlo
XB Crossbridge FKE Forward Kolmogorov Equation
RU Regulatory unit

Table 1: Glossary of abbreviations.

was approximated with a function of the probabilities of single units assumed in the
past times, ending up with an integro-differential system with memory. This model
requires the determination of a number of coefficients, which were estimated with a
least square fitting on the results of a collection of MC simulations, obtained with
different calcium transients. In spite of the remarkable reduction of complexity, this
approach features some drawbacks. It requires a long off-line phase for the estimation
of coefficients, to be repeated any time the parameters of the underlying Markov Chain
model are modified. Moreover, since the coefficients are fitted for some specific calcium
transients, they are not guaranteed to be meaningful under different conditions.

In Land and Niederer 2015, a spatially detailed model incorporating both thin fil-
aments kinetics and XB dynamics is proposed. The model includes n = 26 RUs, with
allowed “unblocked” and “blocked” states, and m = 69 XBs, with allowed “unbound”
and “bound” states. To reduce the complexity of the model, the authors identified
the state of the model by the number of unblocked RUs and of bound XBs, lowering
the number of states down to (n + 1)(m + 1) in place of the original 2n+m. To com-
pute the free energy associated with a given state they had to sum over all possible
configurations belonging to that state, for which they combined two reduction tech-
niques. First, they grouped the 2n thin filament states into 3 010 classes, according to
the number and length of adjacent stretches of unblocked RUs, and they considered a
single representative state for each class. Then, they computed the sum over all XBs
configurations by using a MC approximation by random sampling.

1.5 Our contribution and paper outline

In this work we consider the spatially-explicit CTMC model of sarcomere dynamics
presented in Rice et al. 2003, with the modification proposed in Washio et al. 2012.
Starting from this model, we consider the FKE associated with the full Markov Chain
with N = 36 units. This system of ODEs is computationally useless, due to the
gigantic number of its degrees of freedom: indeed the unknowns are approximately
5 · 1021, which would require tens of billions of terabytes of memory just to store
the current state. To overcome this difficulty, we consider a smaller set of events (of
cardinality smaller then 2 200) and, under a conditional independence hypothesis, we
derive an ODE model for the time evolution of the associated probabilities. Then, we
compare the results of our reduced model with those of the original model of Washio
et al. 2012 and we validate them, also by comparing our results with experimental
data in conditions not explored in Washio et al. 2012. This comparison shows that
our model, albeit simplified, is still able to reproduce many experimentally observed
features, both in the steady and dynamic regimes.

The paper is organized as follows. In Section 2 we recall the Markov Chain model
presented in Washio et al. 2012 and the derivation of the associated FKE. In Section 3
we derive and analyse the reduced ODE model. Then we investigate the accuracy
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Figure 2: Scheme of the model described in Section 2.1. The thick filament (MF)
is represented in red and two thin filaments (AF) are represented in blue (mid). A
reference system is placed with the origin at the right-hand side of the H-zone (HZ).
The functions χLA and χRA, indicating respectively the region at the right of the left
AF, and the region covered by the right AF, are represented (top). The length of
the H-zone (LH), of the thick filament (LM), of a thin filament (LA), and of the
sarcomere (SL) are also depicted (bottom).

of the model and we compare the numerical results with those obtained by means
of the MC method. We discuss the possibility of coupling the proposed model with
existing models for cardiac electrophysiology on one side and for cardiac mechanics
on the other. Section 4 provides the results of some numerical simulations of the
model, under both steady and dynamic conditions. Section 5 provides final remarks
and outlines for future research.

For reader’s convenience, we report in Table 1 a glossary of the abbreviations used
in this paper.

2 Sarcomere dynamics: the full model

In this section we illustrate the model of sarcomere dynamics firstly proposed in Rice
et al. 2003 and later modified in Washio et al. 2012 to account for the dependence of
the dynamics on the elongation of the sarcomere.

2.1 Model description

The sarcomere representation is depicted in Figure 2. The model considers a single
thick filament (MF) and two thin filaments (AFs). Thanks to the symmetry of the
model, we consider just half sarcomere. The current sarcomere length (SL), which is
an input parameter of our model, determines the mutual superimposition between the
AFs and the MF. Along the MF, at each side of the H-zone, N myosin heads (MHs)
are placed at regular intervals. Depending on SL, each MH can face either no AFs, or
a single AF (which is the most favourable condition for XBs to formate), or two AFs.

The state of each MH is determined by the calcium binding state (0 stands for
not bound, while 1 for bound) and XB permissivity (N stands for non-permissive, P
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Figure 3: The cooperative four states Markov model. The terms depending on the
intra-cellular calcium concentration c are highlighted in red; terms depending on the
state of neighbouring MHs (i.e. depending on n) are highlighted in blue; terms depend-
ing on the position of the MH and the current sarcomere elongation are highlighted
in green.

for permissive). The transition rates between the 4 possible states, whose set will be
denoted by S = {0N , 1N , 0P, 1P}, are summarized in Figure 3 and depend on the free
calcium concentration (high concentrations favour the transition 0→ 1), the number
of opposite AFs (through the MH index i and the variable SL), and n ∈ {0, 1, 2},
namely the number of adjacent heads in permissive state. The last dependence is
responsible for the cooperative mechanism: a large value of n favours the transition
N → P and hinders the opposite transition.

Henceforth we will denote by c the free calcium concentration, and by n(ξ, η) the
number of permissive states among ξ ∈ S and η ∈ S. The transition rate of the i-th
MH from a generic state β ∈ S to the state α ∈ S\{β}, knowing that the two adjacent
heads are in the states ξ ∈ S and η ∈ S respectively, is represented by:

Aαβ (c, SL, i, n(ξ, η)) . (1)

By identifying the states 0N , 1N , 1P, 0P with the indexes 1,2,3 and 4 respectively,
the transition rates Aαβ , illustrated in Figure 3, are given as the entries of the matrix
A = (Aαβ), 1 ≤ α, β ≤ 4:

A (c, SL, i, n) =


0 Koff 0 γ−nKpn0

K̄on(SL, i)c 0 γ−nKpn1 0
0 γnK̄np1(SL, i) 0 K̄ ′on(SL, i)c

γnK̄np0(SL, i) 0 K ′off 0

 .
In the following, we provide formulae for the involved quantities. The values of the
constants are reported in Table 2.

K̄np0(SL, i) = χLA(SL, i)χRA(SL, i)Knp0,

K̄on(SL, i) = χRA(SL, i)Kon,
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Parameter Value Units Parameter Value Units

Sarcomere geometry Transition rates permissivity
LA (length of AF) 1.2 µm Q0 3 −
LM (length of MF) 1.65 µm SLQ 1.2 µm
LH (length of H-zone) 0.1 µm αQ 1.4 µm−1

N (number of MHs) 36 − Kbasic 10 s−1

Transition rates Ca binding µ 10 −
Kon 80 µM−1s−1 γ 40 −
Koff 80 s−1 SL dependence
K ′on 80 µM−1s−1 aR 0.1 µm
K ′off 8 s−1 aL 0.1 µm

Table 2: Model parameters; values taken from Washio et al. 2012.

K̄np1(SL, i) = χLA(SL, i)χRA(SL, i)Knp1,

K̄ ′on(SL, i) = χRA(SL, i)K ′on;

xAZ = (SL− LH)/2, xLA = LA− xAZ − LH,

xRA = xAZ − LA, xi =
(LM − LH)

2N
i;

χRA(SL, i) =


exp

(
− (xRA−xi)2

a2R

)
xi ≤ xRA

1 xRA < xi < xAZ

exp
(
− (xi−xAZ)2

a2R

)
xi ≥ xAZ ,

χLA(SL, i) =

{
exp

(
− (xLA−xi)2

a2R

)
xi ≤ xLA

1 xi > xLA,

Q(SL) =

{
Q0 SL ≥ SLQ
Q0 − αQ(SLQ − SL) SL < SLQ;

Knp0 = QKbasic/µ, Knp1 = QKbasic,

Kpn0 = Kbasicγ
2, Kpn1 = Kbasicγ

2,

K ′on = Kon, K ′off = Koff/µ .

Following Rice et al. 2003 we assume that, when the fraction of MHs in permissive
state is equal to 1, all XBs can cycle, leading to the maximum amount of generated
force (the normalized force equals 1). On the other hand, when none of the MHs is in
a permissive state (i.e. all MHs are in state N ), the active force cannot be generated,
since XBs cannot cycle. For the intermediate levels of permissivity the amount of
generated force is assumed to be proportional to the fraction of permissive heads,
since each cycling XB is assumed to produce a fixed amount of force. Therefore,
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denoting by P (t) the permissivity (i.e. fraction of MHs in permissive state) at time t
and by FA(t) the active force, we have a law of the following type:

FA(t) = αP (t) , (2)

where α is the maximum exerted force.

2.2 Model discussion

We point out that in the model of Washio et al. 2012 the calcium-driven regulatory
mechanism is associated with the MHs, rather than with the RUs, the latter being
actually responsible for such mechanism (Bers 2001). In the original paper Washio
et al. 2012 this association is motivated by the fact that the spacing between two
consecutive MHs is similar to the one between two consecutive RUs (about 43 nm
and 38 nm respectively, see e.g. Bers 2001; Keener and Sneyd 2009). Moreover, the
model does not encode the description of the states of both filaments, but just of a
single one; therefore, there is no need to track which unit on the one filament faces
which unit on the other. The unique effect of filaments sliding which directly affects
the model is the modification of the overlap region. Nevertheless, when the filaments
mutually slide, the length of the overlap region is the same either if viewed from one
filament or from the other.

The above considerations suggest that the modelling choice made in Washio et al.
2012 should yield just a small modelling error. Nevertheless, this modelling choice is
not formally correct, thus a careful validation of the experimental results is needed.
However, an extensive validation of the original model, because of the large computa-
tional cost of the MC method (more than three days to simulate a single heart beat
a single core Intel i7-65000U laptop), would be unaffordable, and would be out of the
scope of the present paper. Therefore, by exploiting the large reduction of compu-
tational cost of our reduced model, which allows to reduce the computational time
by more than 10 000 times, we compare experimental data with the results of our
model by repeating the tests made in Washio et al. 2012 and by exploring additional
experimental settings.

2.3 Forward Kolmogorov Equation

From a mathematical viewpoint, the model described in Section 2.1 consists in a
continuous-time Markov Chain (CTMC), or Markov Jump process, on the state space
SN , being N the number of MHs. This model is not time-homogeneous since the
transition rates may depend on time (indeed both c(t) and SL(t) are functions of
time). Let Xi

t ∈ S be the random process associated with the i-th head. In the rest
of the paper, we will use the following compact notation to denote events at time t:

(α1, α2, . . . , αN )t := {X1
t = α1, . . . , X

N
t = αN} ,

(α,
i

β, δ)t := {Xi−1
t = α,Xi

t = β,Xi+1
t = δ} ,

(α,
i

β)t := {Xi−1
t = α,Xi

t = β} ,

(α, β,
i

δ, η)t := {Xi−2
t = α,Xi−1

t = β,Xi
t = δ,Xi+1

t = η}
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and so on. We notice that in the first definition the MH index superscript i is not
necessary since the states of all the N heads are assigned.

The transition rates of Eq. (1) should be interpreted as follows: by multiplying the
rates by an infinitesimal time step we get a first order approximation of the probability
af a single MH to change state in the time interval [t, t + ∆t]. In symbols, for each
η 6= αi, we have:

P
(
(α1, . . . , αi−1, η, αi+1, . . . , αN )t+∆t|(α1, . . . , αN )t

)
= ∆t Aηαi (c(t), SL(t), i, n(αi−1, αi+1)) +O

(
∆t2

)
,

(3)

where P (Z|W ) = P (Z ∩W ) /P (W ) denotes the conditional probability of the event Z
given W . On the other hand, transitions of two or more heads in any interval [t, t+∆t]
are quantities of second order in ∆t. For instance, for any η 6= αi and ξ 6= αj :

P
(
(α1, . . . , η, . . . , ξ, . . . , αN )t+∆t |(α1, . . . , αi, . . . , αj , . . . , αN )t

)
= O

(
∆t2

)
. (4)

Equations (3) and (4) allow to derive the FKE for the CTMC. We have: Moreover,
we have:

P
(
(α1, . . . , αN )t+∆t|(α1, . . . , αN )t

)
= 1−

N∑
i=1

∑
ξ∈S\{αi}

P
(
(α1, . . . , αi−1, ξ, αi+1, . . . , αN )t+∆t|(α1, . . . , αN )t

)
+O

(
∆t2

)
.

Therefore, by assembling the probabilities associated with the Nfull = 4N possible
states in a vector p(t) ∈ [0, 1]Nfull , one can write the evolution of the probability
distribution according to the law:

p(t+ ∆t) = p(t) + ∆tAp(t) +O
(
∆t2

)
,

where A is a Nfull ×Nfull matrix, as Eq. (??) is linear in each entry of p. By taking
the limit for ∆t→ 0, one gets the following linear system of ODEs (FKE):

ṗ(t) = Ap(t) . (5)

3 A reduced ODE model for sarcomere dynamics

Equation (5) provides a way to compute the exact evolution of the probability of each
of the 4N states. However, the practical resolution of this equation is infeasible because
of the huge number of degrees of freedom: for N = 36 MHs we have 4N ' 5 · 1021

degrees of freedom, therefore, to represent each entry of the vector p(t) with 8-bytes
precision, more than 37 billions of terabytes would be required just to store the vector.

However, we are not interested in the joint probability of the states of the N
heads, but rather in the expected value of the number of MHs in permissive states
(see Eq. (2)). Therefore, instead of studying the evolution of the probabilities of each
elementary event in the state space, we look for a smaller set of events, still capable
of providing an expression for the permissivity P (t). Then, we look for an equation
for the evolution of the probabilities associated with such events.
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3.1 Assumptions and derivation

Since the transition rates of the i-th head are fully determined by the states of the
triplet centred in i, it is reasonable to assume that the set of all the joint probabilities
of triplets of consecutive MHs provides an effective portrait of the state of the whole
system. Therefore, we consider events of the kind:

(α,
i

β, δ)t with i = 2, . . . , N − 1 and α, β, δ ∈ S. (6)

We notice that this set of events allows to compute the permissivity (i.e. the fraction
of MHs in permissive state) as follows:

P (t) =
1

N

N∑
i=1

P
(
Xi
t ∈ {0P, 1P}

)
=

1

N

∑
α,δ∈S, β∈{0P,1P}

[
P((β,

2
α, δ)t) +

N−1∑
i=2

P((α,
i

β, δ)t) + P((α,
N−1

δ , β)t)

]
.

(7)

The time evolution of the probability of such events is given by the following relation,
holding for all i = 2, . . . , N − 1:

P((α,
i

β, δ)t+∆t) = P((α,
i

β, δ)t+∆t|(α,
i

β, δ)t)P((α,
i

β, δ)t)

+
∑

η∈S\{α}

P((α,
i

β, δ)t+∆t|(η,
i

β, δ)t)P((η,
i

β, δ)t)

+
∑

η∈S\{β}

P((α,
i

β, δ)t+∆t|(α, iη, δ)t)P((α,
i
η, δ)t)

+
∑

η∈S\{δ}

P((α,
i

β, δ)t+∆t|(α,
i

β, η)t)P((α,
i

β, η)t)

+O
(
∆t2

)
.

(8)

Remark 1. If the condition W has null probability, then the conditional probability
P (Z|W ) is not even defined. Nevertheless, in Eq. (8), the conditional probabilities
are always multiplied by the probability of the conditions; therefore, if the event
W has null probability, then the contribution of the term P (Z|W )P (W ) should be
interpreted as zero. We will extensively adopt this convention in the following.

We now show how the conditional probabilities in Eq. (8) can be evaluated. The
probability of transition of the central MH of the triplet is given, by definition of
transition rate, by the following formula, where i = 2, . . . , N − 1 and η 6= β:

P((α,
i

β, δ)t+∆t|(α, iη, δ)t) = ∆tAβη (c(t), SL(t), i, n(α, δ)) +O
(
∆t2

)
.

On the other hand, the probability of transition of the outer MHs of the triplet cannot
be computed as a function of probabilities of events in the form of (6). However, this
can be computed as follows (i = 3, . . . , N − 1 and η 6= α):

P((α,
i

β, δ)t+∆t|(η,
i

β, δ)t)
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=
P((α,

i

β, δ)t+∆t ∩ (η,
i

β, δ)t)

P((η,
i

β, δ)t)

=

∑
ξ∈S P((ξ, α,

i

β, δ)t+∆t ∩ (ξ, η,
i

β, δ)t)

P((η,
i

β, δ)t)

+O
(
∆t2

)

=

∑
ξ∈S P((ξ, α,

i

β, δ)t+∆t|(ξ, η,
i

β, δ)t)P((ξ, η,
i

β, δ)t)

P((η,
i

β, δ)t)

+O
(
∆t2

)

=

∑
ξ∈S P((ξ, α,

i

β)t+∆t|(ξ, η,
i

β)t)P((
i+1

δ )t|(ξ, η,
i

β)t)P((ξ, η,
i

β)t)

P((η,
i

β, δ)t)

+O
(
∆t2

)
.

At this stage, we make the following assumption:

P((
i

δ)t|(ξ, η,
i−1

β )t) ' P((
i

δ)t|(η,
i−1

β )t) . (9)

This is equivalent to assume that the knowledge of the (i−3)-th MH does not provide
any additional information about the probability distribution of the i-th head beyond
the knowledge of the state of the (i − 1)-th and the (i − 2)-th head. We will return
again to this concept later in Section 3.3

Using assumption (9), the calculation leads to the following result:

P((α,
i

β, δ)t+∆t|(η,
i

β, δ)t)

'
∑
ξ∈S P((ξ, α,

i

β)t+∆t|(ξ, η,
i

β)t)P((
i+1

δ )t|(η,
i

β)t)P((ξ, η,
i

β)t)

P((η,
i

β, δ)t)

+O
(
∆t2

)

=

∑
ξ∈S P((ξ, α,

i

β)t+∆t|(ξ, η,
i

β)t)P((ξ, η,
i

β)t)

P((η,
i

β)t)

+O
(
∆t2

)

=

∑
ξ∈S Aαη (c(t), SL(t), i− 1, n(ξ, β)) P((ξ,

i−1
η , β)t)∑

ξ∈S P((ξ,
i−1
η , β)t)

∆t+O
(
∆t2

)
.

(10)

Remark 2. The same result (10) can be equivalently obtained by proceeding as fol-
lows:

P((α,
i

β, δ)t+∆t|(η,
i

β, δ)t)

= P((α,
i

β)t+∆t|(η,
i

β, δ)t) +O
(
∆t2

)
' P((α,

i

β)t+∆t|(η,
i

β)t) +O
(
∆t2

)
=

P((α,
i

β)t+∆t ∩ (η,
i

β)t)

P((η,
i

β)t)

+O
(
∆t2

)

=

∑
ξ∈S P((ξ, α,

i

β)t+∆t ∩ (ξ, η,
i

β)t)∑
ξ∈S P((ξ, η,

i

β)t)

+O
(
∆t2

)
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=

∑
ξ∈S P((ξ,

i−1
α , β)t+∆t|(ξ, i−1

η , β)t)P((ξ,
i−1
η , β)t)∑

ξ∈S P((ξ,
i−1
η , β)t)

+O
(
∆t2

)
.

Here we made the approximation that the transition rate of the (i− 1)-th head does
not depend on the state of the (i + 1)-th one. However, we are neglecting the fact
that the knowledge of the (i+ 1)-th head may provide information about the state of
the (i − 2)-th head, and in turn on the transition rate of the (i − 1)-th head. This
approximation is coherent with assumption (9).

With similar arguments, the following formula for the transition probability of the
right MH of the triplet is recovered for i = 2, . . . , N − 2 and η 6= δ:

P((α,
i

β, δ)t+∆t|(α,
i

β, η)t) '
∑
ξ∈S Aδη (c(t), SL(t), i+ 1, n(β, ξ))P((β,

i+1
η , ξ)t)∑

ξ∈S P((β,
i+1
η , ξ)t)

∆t

+O
(
∆t2

)
.

The probabilities of transition of the outer MHs of the first and last triplets, on the
other hand, are exactly determined as:

P((
1
α, β, δ)t+∆t|(1

η, β, δ)t) = ∆t Aαη (c(t), SL(t), 1, n(0N , β)) +O
(
∆t2

)
,

P((α, β,
N

δ )t+∆t|(α, β,Nη )t) = ∆t Aδη (c(t), SL(t), N, n(β, 0N )) +O
(
∆t2

)
.

Finally, we calculate the probability that a triplet does not change state in the time
interval (t, t+ ∆t). We have for i = 2, . . . , N − 1:

P((α,
i

β, δ)t+∆t|(α,
i

β, δ)t) = 1−
∑

η∈S\{α}

P((η,
i

β, δ)t+∆t|(α,
i

β, δ)t)

−
∑

η∈S\{β}

P((α,
i
η, δ)t+∆t|(α,

i

β, δ)t)

−
∑

η∈S\{δ}

P((α,
i

β, η)t+∆t|(α,
i

β, δ)t) +O
(
∆t2

)
,

where each term have been previously calculated.
To sum up, we obtain the following nonlinear system of ODEs, for i = 2, . . . , N−1

(notice that i = 1 and i = N are not comprised since no triplet is centred in the outer
MHs):

d

dt
P((α,

i

β, δ)t) =
∑

η∈S\{α}

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]
+

∑
η∈S\{β}

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
+

∑
η∈S\{δ}

[
ΦiR(α, β, η; δ; t)− ΦiR(α, β, δ; η; t)

]
,

(11)

endowed with initial conditions, where we defined the probability fluxes:

ΦiC(α, β, δ; η; t) = Aηβ (c(t), SL(t), i, n(α, δ))P((α,
i

β, δ)t) i = 2, . . . , N − 1 , (12)
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ΦiL(α, β, δ; η; t) =


(
∑
ξ∈S Φi−1

C (ξ,α,β;η;t)) P((α,
i

β,δ)t)∑
ξ∈S P((ξ,

i−1
α ,β)t)

i = 3, . . . , N − 1

Aαη (c(t), SL(t), 1, n(0N , β))P((α,
i

β, δ)t) i = 2 ,

(13)

ΦiR(α, β, δ; η; t) =


(
∑
ξ∈S Φi+1

C (β,δ,ξ;η;t)) P((α,
i

β,δ)t)∑
ξ∈S P((β,

i+1

δ ,ξ)t)

i = 2, . . . , N − 2

Aδη (c(t), SL(t), N, n(β, 0N ))P((α,
i

β, δ)t) i = N − 1 .

(14)

We notice that when the rates in the definitions of ΦL and ΦR turn out to be 0
0 , these

are set by convention equal to 0, according to Remark 1.
We notice that Eq. (11), henceforth referred to as reduced ODE model, is a non-

linear system of ODEs while Eq. (5) is linear. However the pay-off is that the size of
the system is dramatically reduced, as we switch from the 4N ' 5 · 1021 dofs of the
full model (5) to the (N − 2) · 43 = 2176 dofs of the reduced model (11).

3.2 Analysis of the continuous model

It easily follows that the right-hand side of Eq. (11) is globally Lipschitz continuous

with respect to its argument P((α,
i

β, δ)t). Therefore, if c(t) and SL(t) are uniformly
bounded in the time interval [0, T ], then Eq. (11) admits a unique solution in the
interval [0, T ] (see e.g. Amann 1990).

Since the unknowns of Eq. (11) are probabilities of events which are mutually
related, we expect that some self-consistency conditions should hold. That is to say,
we expect that the dynamics of the system is restricted to a subset of the space
[0, 1](N−2)·43

, as it is clarified by the following definition.

Definition 1. Let us consider a time instant t ∈ [0, T ]. The associated collection of
probabilities

Π(t) =

{
P((α,

i

β, δ)t)

}α,β,δ∈S
i=2,...,N−1

is said to be self-consistent if it fulfils the following conditions:

(a)
∑

α,β,δ∈S

P((α,
i

β, δ)t) = 1 for all i = 2, . . . , N − 1

(b)
∑
β,δ∈S

P((α,
i

β, δ)t) =
∑
ξ,β∈S

P((ξ,
i−1
α , β)t) for all i = 3, . . . , N − 1, α ∈ S

(c)
∑
α,β∈S

P((α,
i

β, δ)t) =
∑
β,ξ∈S

P((β,
i+1

δ , ξ)t) for all i = 2, . . . , N − 2, δ ∈ S

(d)
∑
δ∈S

P((α,
i

β, δ)t) =
∑
ξ∈S

P((ξ,
i−1
α , β)t) for all i = 3, . . . , N−1, α, β ∈ S

Condition (a) states conservation of probability; conditions (b)–(c) state that the
marginal probabilities of single MHs, when computed in different ways by means of the
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joint probabilities of triplets, should lead to the same result; finally condition (d) states
the same property about the joint probability of couples of adjacent MHs. Therefore,
we expect that, provided that conditions (a)–(d) are satisfied at the initial time, self-
consistency is maintained as time goes by. As a matter of fact, it is possible to prove
the following Proposition (we report its proof in Appendix A).

Proposition 1. Suppose that the initial state Π(0) is self-consistent. Then the solu-
tion Π(t) of Eq. (11) is self-consistent for any t > 0.

By arguments similar to these used for the proof of Proposition 1, it is easy to
show that the discretization of Eq. (11) based on the Forward Euler (FE) method
preserves self-consistency as well:

Proposition 2. Consider the Forward-Euler numerical approximation of Eq. (11).
Suppose that the initial state Πh(0) is self-consistent. Then the approximate solution
Πh(tn) is self-consistent for any n ≥ 1.

3.3 Accuracy of the model

In the derivation of Eq. (11), the following assumptions were made:

P((
i

δ)t|(α, β, i−1
γ )t) ' P((

i

δ)t|(β, i−1
γ )t) ,

P((
i
α)t|(

i+1

β , γ, δ)t) ' P((
i
α)t|(

i+1

β , γ)t) .

(15)

As we already mentioned, hypotheses (15) can be interpreted as follows: if one is
interested in the probability distribution of a single MH, the knowledge of the state
of a MH at distance of three heads does not provide any information beyond that
provided by the knowledge of the two intermediate MHs. A compact way to express
this notion is to say that, at each time instant t, the states of MHs at distance of three
heads are conditionally independent given the states of the two intermediate MHs,
which reads in symbols (see Dawid 1979):

Xi
t ⊥⊥ Xi+3

t |(Xi+1
t , Xi+2

t ) , (16)

for any t > 0, for i = 1, . . . , N − 3.
We notice that the assumption of conditional independence is different than pure

independence: MHs at distance of three heads are not independent in fact; on the
contrary these are strongly correlated (by observing MC simulations it is evident that
the typical correlation length is much larger than 3). The assumption we are making
is that the i-th head is correlated to the i + 3-th head because these are correlated
with the (i+ 1)-th and to the (i+ 2)-th respectively, which are correlated each other.
In other words, we are supposing that the correlation of distant MHs is mediated by
the states of the MHs located in-between. This is reasonable, since in this model we
are assuming that the transition rates of MHs are affected only by adjacent units.

In order to assess the accuracy of the approximation, we consider a short filament
(with N = 6 heads instead of 36), so that the solution of the full ODE model (5) can
be computed. We impose the following c and SL transients:

c(t) =

c0 t < tc0

c0 + cmax−c0
β

[
e
− t−t

c
0

τc1 − e−
t−tc0
τc2

]
t ≥ tc0 ,

SL(t) = SL0

[
1 + γmaxf

(
max

(
0, 1− e

− t−t
SL
0

τSL0

)
−max

(
0, 1− e

− t−t
SL
1

τSL1

))]
,

(17)
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Variable Value Units Variable Value Units

Dynamics of c Dynamics of SL
c0 0.1 µM SL0 2.2 µm
cmax 1.1 µM γmaxf −0.07 −
tc0 0.1 s tSL0 0.15 s
τ c1 0.02 s tSL1 0.55 s
τ c2 0.11 s τSL0 0.05 s

τSL1 0.02 s

Table 3: Constants associated with the dynamics of c and SL; values of the constants
for c taken from Washio et al. 2012; values for SL set to reproduce a realistic SL
transient.

Figure 4: Comparison of the solutions for N = 6 of the full ODE model (5), the
reduced ODE model (11), and MC simulations with different values of ∆t (expressed
in s). For the MC simulations the mean (solid line) and the 95% confidence intervals
for the mean (dotted line) are shown. Bottom: full time interval. Top: zoom of the
activation-peak.

where

β =

(
τ1
τ2

)−( τ1τ2−1
)−1

−
(
τ1
τ2

)−(1− τ2τ1
)−1

.

Physiological values for the constants involved in the dynamics of c and SL are re-
ported in Table 3. Here we employ such values for the constants, with the modification
cmax = 5.1µM , otherwise the “border-effect” enhanced by the shortening of the fila-
ment would lead to insignificant levels of activation.

The numerical solutions of the full ODEs system (5) and the reduced ODEs sys-
tem (11) are obtained by means of the Forward Euler method, and we run a very large
set of MC simulations (104 for each value of ∆t), according to the algorithm presented
in Washio et al. 2012. As suggested in the same reference, the transition rates (1) are
updated at 0.25ms intervals.

Figure 4 reports a comparison of the results. For the reduced ODE model a time
step of 2.5 ·10−5 s is employed, since with larger time steps the numerical scheme may
become unstable, while smaller time steps do not provide sensible improvements in
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Figure 5: Relative errors in euclidean norm with respect to the results obtained
through the full ODE model with N = 6. Right: zoom on the values of NMC for
which the errors obtained through MC method and the reduced ODE model are com-
parable.

accuracy. On the other hand, MC simulations require a much smaller time step, since
the numerical solution changes significantly reducing the value of ∆t.

Figure 5 compares the relative error obtained with the two methods, defined as
follows. We consider a collection of time instants {t1, . . . , tNT }, common to any time
discretization of the simulations under comparison (here we consider an uniform par-
tition of the interval 0–1 s with time step 2.5ms). We denote by Pn∗ (where ∗ stands
either for ODE or MC) the numerical approximation of the exact permissivity P (tn)
(which we assume to be equal to that obtained with the full ODE model (5) with
∆t = 1 · 10−6s). The relative error in euclidean norm is defined as:

εr =

√∑NT
n=1 (Pn∗ − P (tn))

2√∑NT
n=1 P (tn)2

.

For the MC simulations, we consider NMC random realizations of the Markov Chain,
and we denote by PnMC,j the random variables associated with the j-th realization.
The random variables are independent and identically distributed (i.i.d.), so we can
write their expected values as the sum of the exact solution and an error due to the
time discretization:

E
[
PnMC,j

]
= P (tn) + εn(∆t), Var

[
PnMC,j

]
= σn(∆t)2 .

The expected value and the variance of the MC average PnMC = 1
NMC

∑NMC
j=1 PnMC,j is

given by:

E [PnMC ] = P (tn) + εn(∆t), Var [PnMC ] =
σn(∆t)2

NMC
.

Therefore, the expected value of the mean square of the errors is given by:

E

[
NT∑
n=1

(PnMC − P (tn))
2

]
=

NT∑
n=1

εn(∆t)2 +

∑NT
n=1 σ

n(∆t)2

NMC
.

Thus, for relatively small values of NMC , the error εr associated with the MC ap-

proximation is dominated by the second term and scales as εr = O(N
−1/2
MC ), while for
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high NMC the error is dominated by the term associated with the time discretization
(εr = O(1) as NMC → +∞).

Since the reduced ODE model (11) is an approximated model, we split the error as
εr = εmodr + ε∆t

r , where the first term accounts for the error introduced by the model
(the model error) while the second term is the contribution of the time discretization
(the discretization error). For sufficiently small ∆t the first term dominates over the
second.

Numerical simulations were performed in Matlab and run by means of a single core
Intel i7-65000U (2.50 GHz, RAM 12 GB) laptop. We notice that, in order to reach
an accuracy comparable to that of the reduced ODE model, which takes 4.5 seconds
for one second of physical time, at least 104 MC samples with ∆t = 2.5 · 10−7 s are
required, which takes more than 11 hours to simulate the same range of physical time.
We notice that with the physiological value of MHs (i.e. N = 36) the gap is even more
pronounced, as we switch from 15.9 seconds required by the reduced ODE model to
more than 72 hours for the MC method.

3.4 Coupling with electrophysiology and mechanics

The proposed model has two input data, namely the intracellular calcium concentra-
tion c(t) and the current sarcomere length SL(t). The calcium concentration is an
output of most current ionic models for electrophysiology (Colli Franzone, Pavarino,
and Scacchi 2014; Fink et al. 2011), while the current sarcomere length can be esti-
mated by using the rest sarcomere length SL0 and the local deformation in the fibres
direction:

SL(t) = SL0

√
I4,f (t) ,

where I4,f = Ff0 · Ff0. Here and in the following we denote by (f0, s0,n0) a triplet
of orthogonal vectors representing the local direction of fibres and sheets.

On the other hand, the proposed model provides as an output the fraction of
permissive MHs, which in turn allows to compute the generated force in the fibres
direction through Eq. (2). This allows to embed the model in either an active stress
or an active strain formulation.

To provide an example, consider the active strain model proposed in Rossi et al.
2014; Ruiz-Baier et al. 2014 for contraction of the cardiac tissue. The model is based
on a multiplicative decomposition of the deformation gradient (F = FEFA), where
the active component is given by

FA = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0 .

In order to ensure that det(FA) = 1 we set γs = γn = (1 +γf )−1/2− 1. By thermody-
namical considerations, the following evolution law for the scalar activation function
γf is devised, where µA is a viscosity parameter to be determined:

µAγ̇f (t) = FA(t) +
2I4,f (t)

(1 + γf (t))3
− 2I4,f

(1 + γf )3

∣∣∣∣
c=c0

.

By assuming that γf = 0 for c = c0, the model reduces to the following (endowed with
initial conditions):

µAγ̇f (t) = FA(t) +
2I4,f (t)

(1 + γf (t))3
− 2 I4,f |c=c0 ,

where FA(t) is given by Eq. (2).
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4 Numerical results

In this section, we show some numerical results obtained by the solution of the reduced
ODE model (11). For the time discretization a Forward Euler scheme with a time step
of 2.5 · 10−5s is employed. For computational convenience, we update the transition
rates (1) at 0.25ms intervals, since they depend on quantities (SL and c) that change
slowly in time. At time t = 0 the sarcomere is assumed to be fully deactivated, namely
all MHs are in state 0N . In other words the following initial condition is applied:

P((α,
i

β, δ)0) =

{
1 if α = β = δ = 0N
0 else.

In some cases, we perform the same numerical tests also with the original model of
Washio et al. 2012 by means of the MC method, and we compare the results with
those of our reduced model. For all the simulations we show the results obtained with
NMC = 104 samples, since as shown Section 3.3 this amount of samples is required
to keep fluctuations below a reasonable level. In the dynamic case, we employ a time
step of ∆t = 2.5 · 10−7s (required to keep the discretization error under control, see
Section 3.3); for the steady-state simulations instead, since we are interested just in
the equilibrium configuration, we employ a time of ∆t = 2.5 · 10−5s.

We validate the numerical results against the experimental data. With this aim,
since we assume that the developed force is proportional to the level of permissiv-
ity (see Eq. (2)), we compare the experimentally measured force with the numerical
permissivity, obtained by evaluating Eq. (7) on the numerical solution of the reduced
ODE model (11). Since we do not have a closure law between force and permissivity,
and these are assumed to be just mutually proportional, we remark that one should
always compare their normalized values.

The goal of the numerical tests is twofold. First, we validate our model against
the original one (Washio et al. 2012) to assess the validity of the reduction procedure
shown in Section 3. Then, thanks to the large complexity reduction and negligible
computational cost allowed by our model, we use it to explore additional experimental
settings. The aim it to verify that the modelling choice introduced in Washio et al. 2012
and discussed in Section 2.2 does not compromise the validity of the model. Whenever
experimental measurements are available, we compare our numerical results against
these ones.

4.1 Steady-state

By fixing the calcium level c and the sarcomere length SL, letting the system reach
the steady-state and considering the level of activation at the equilibrium, one gets the
steady-state relationships between calcium and force and between length and force.
The capability of reproducing the physiological steady-state curves is a distinguishing
feature of activation models (see Rice and Tombe 2004 for their role).

In this section, we consider the steady-state curves obtained by solving the reduced
ODE model (11) and the full model of Washio et al. 2012 and we compare them with
the experimental measurements of Kentish et al. 1986 and Dobesh, Konhilas, and
Tombe 2002. Both data sets refer to skinned rat cardiac trabeculae.
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increasing SL

increasing c

(a) Permissivity versus c: full model (dashed lines) and
reduced ODE model (solid lines)

(b) Force versus c: experimental data from
Kentish et al. 1986

(c) Force versus c: experimental data
from Dobesh, Konhilas, and Tombe
2002

Figure 6: Steady-state force-calcium relationship for different SL: comparison of the
results of the reduced ODE model (a) with the results of the full model of Washio et al.
2012 (a) and with experimental curves ((b) and (c)). Notice that, since we assume
that force is proportional to permissivity (see Eq. (2)), normalized permissivity can
be compared with normalized force.
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(b) Normalized c50 versus SL

Figure 7: Dependence of the Hill coefficient NH (a) and the calcium level correspond-
ing to half activation c50 (b) on the sarcomere length SL, compared with experimental
data. The Hill coefficients obtained with the proposed model and the full model of
Washio et al. 2012 are comprised between the two experimental sets, and have a
similar trend to those on Kentish et al. 1986. Also c50 report a similar trend to ex-
perimental measurements. Notice that, since the skinning procedure employed in the
experiments alters significantly the calcium level which triggers activation, the values
of c50 are normalized to the value assumed at SL = 2.0µm.
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Figure 8: Steady-state force-calcium relationship in the plane log c versus
log(FA/(Fmax−FA)), for different SL: comparison of the results of the reduced ODE
model (a) with the results of the full model of Washio et al. 2012 (a) and with exper-
imental curves (b). We notice that the quantities on the y-axis of the two plots are
coincident, since log(P/(Pmax − PA)) = log(FA/(Fmax − FA)) = log(Frel/(1− Frel)),
where Frel = FA/Fmax. We remark that, in (b), taken from Dobesh, Konhilas, and
Tombe 2002, the triangle and circle bullets are incorrectly indicated and should be
switched.

4.1.1 Force-calcium relationship

Figure 6 shows the steady-state force-calcium relationship for different values of SL
obtained with the proposed model, and compares them with the experimental mea-
surements. Experimental data show that the steady-state force-calcium relationship,
for a prescribed value of SL, is approximated by the sigmoidal Hill’s function (see
Dobesh, Konhilas, and Tombe 2002; Kentish et al. 1986):

FA(c) =
Fmax

1 +
(
c50
c

)NH , (18)

where Fmax is the plateau force at high calcium concentrations, c50 is the calcium level
at 50% of maximum developed force, and NH ≥ 1 is the so–called Hill coefficient. The
Hill coefficient measures the level of cooperativity: NH = 1 means no cooperativity
at all; the highest the value of NH , the steepest the force-calcium curve at c50.

According to experimental observations, the effect of SL on the force-calcium re-
lationship is threefold:

• As SL increases, in the physiological range (approximately 1.7 − 2.3µm), the
sarcomere becomes more sensitive to c. This translates into a leftward shift of the
curve, or equivalently in a reduction of c50. In Figure 7b the dependence of c50

on SL obtained by solving the reduced ODE model is compared to experimental
data. Since there is evidence that the skinning procedure (i.e. the removal of
the cell membrane), employed in both sets of measurement, lower the sarcomere
sensisivity to calcium (Gao et al. 1994; Kentish et al. 1986; Rice, Winslow, and
Hunter 1999), it is not meaningful to compare the absolute values of c50; for this
reason calcium concentrations are normalized.

• The dependence of the Hill coefficient NH on SL is still under debate. Experi-
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Figure 9: Steady-state force-length relationship for different calcium concentrations:
comparison of the results of the reduced ODE model (a) with the results of the full
model of Washio et al. 2012 (a) and with experimental curves (b), available only in
the physiological range (1.6µm ≤ SL ≤ 2.2µm). Notice that the curves report the
observed change in convexity (see text for details).

mental data of Dobesh show a limited dependence of cooperativity on SL, while
the measurements of Kentish show a clear increase in cooperativity as the sar-
comere gets longer. Our model shows a trend similar to the latter experimental
observations (see Figure 7a). The level of cooperativity is intermediate between
the two sets of data. Notice that also the level of cooperativity NH may be
affected by the skinning procedure (Dobrunz, Backx, and Yue 1995; Gao et al.
1994).

• The maximal force Fmax increases as SL grows. The results obtained with the
reduced ODE model exhibit this behaviour. This dependence is discussed in
more details in Section 4.1.2.

We notice that it is possible to reformulate (18) into:

log

(
FA(c)

Fmax − FA(c)

)
= NH (log c− log c50) .

Therefore, for an exact Hill’s function, the force-calcium relationship is a line in the
plane log(FA/(Fmax−FA)) versus log c. However, it is well known (see Rice and Tombe
2004) that in real muscles the curve can be better fitted by two distinct lines, thus
showing a higher cooperativity at lower calcium levels (see Figure 8b). In Figure 8a
the corresponding curves obtained with the proposed model are shown, with the best-
fit lines in the least-squares sense, in comparison with experimental measurements.
We notice that our model is capable of reproducing physiological features such as: (i)
force-calcium relationship, which is fitted by two distinct lines, with decreasing slope
as c increases; (ii) the intersection between these lines, which lies above the level of half
activation (i.e. log(FA/(Fmax − FA)) = 0, which corresponds to FA = Fmax/2); (iii)
the slopes of both lines, which are nearly independent of SL; (iv) the normalized force
corresponding to the intersection between these lines, which is nearly independent
of SL; (v) the calcium level corresponding to half activation, which decreases as SL
increases.
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In Figures 6–8 we compare the results of our reduced model with those obtained
by simulating the full model of Washio et al. 2012 by means of the MC method. This
comparison shows a very good qualitative and quantitative agreement between the
two, and thus supports the validity of assumption (15).

4.1.2 Force-Length relationship

In Figure 9a the force-length curves of the proposed model for different calcium levels
are reported. Because of the overlapping between the AFs near the H-zone, which
lower the number of interacting actin and myosin units, the force exerted by a short-
ened sarcomere is smaller than the force of a relaxed sarcomere (corresponding to
SL ' 2.2µm). In the range 2.2µm ≤ SL ≤ 2.6µm the whole MF faces a single AF,
which is the most favourable condition for muscle activation, and the permissivity is
constant. For SL > 2.6µm the central region of the MF faces no AF, and the width
of the region increase as SL increases, making the permissivity reduce.

We notice that the curves of Figure 9a resemble the sarcomere overlap function
employed in mean field models to account for the effect of SL (Sachse 2004; Trayanova
and Rice 2011); however, whereas in those models the force-length dependency is
assumed to be invariant with respect to c, our model is capable of capturing the calcium
dependency of the force-length relationship. Indeed, force-length curves obtained with
our model exhibit the change in curvature observed experimentally (see Kentish et al.
1986): in the physiological range (1.6µm ≤ SL ≤ 2.2µm), the curves are convex at low
calcium levels, concave at intermediate calcium levels, while at maximally activating
c the relation is approximately linear (see Figure 9b). We notice that also in this case
the reduced ODE model accurately reproduces the results of the full model of Washio
et al. 2012 obtained by means of the MC method.

4.2 Isosarcometric versus shortening twitches

We showed in Section 3.3 that with N = 6 MHs our reduced model reproduces with
a good qualitative and quantitative correspondence the results with the full model of
Washio et al. 2012. In this Section we investigate whether this is still valid when we
consider the physiological number of MHs (i.e. N = 36). Since the numerical solution
of the full ODEs system (5) cannot be achieved because of the gigantic number of dofs
(4N ' 5 · 1021), we compare the results of our reduced model with those obtained by
means of the MC method.

With this aim, we perform the following test, also reported in Washio et al.
2012. The calcium concentration and the sarcomere length time transients taken
from Janssen and Tombe 1997 are applied, and the resulting force obtained with the
reduced ODE model and with the full model of Washio et al. 2012 are compared
with the experimental observations, both under isosarcometric conditions and during
a shortening twitch (see Figure 10).

As mentioned before, since the generated force is taken proportional to permis-
sivity (see section 2.1), we compare the experimentally observed force, normalized
with respect to its peak during isosarcometric contraction, with the permissivity P
normalized with respect to its peak under the same conditions.

Figure 10 shows a very good qualitative and quantitative agreement between the
results fo the reduced ODE model and those obtained with the MC method, thus
supporting the validity of our reduced model with respect to the full model.
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Figure 11: Force transients in isosarcometric twitch contractions, without (first line)
and with (second line) normalization. First column: reduced ODE model results for
cmax = 1.45µM and different values of SL. Second column: reduced ODE model
results for SL = 2.2µm and different values of cmax. Third column: experimental
measurements with fixed maximum calcium level and different SL, expressed in µm
(data from Janssen and Hunter 1995). In the first two columns, solid lines refer to
permissivity (axis on the left), while dashed lines refer to calcium concentration (axis
on the right). In both experimental and numerical cases activation started at 0.05 s.

4.3 Isosarcometric twitch contractions

In Section 4.1 we have considered the stationary solutions of the proposed model. In
order to test the capability of the reduced ODE model of reproducing the dynamics
of the sarcomere, we simulate twitches by imposing the calcium transient of Eq. (17),
while keeping the value of SL constant. We run several simulations, by changing
the sarcomere length SL and the calcium concentration peak cmax. In Figure 11 the
obtained results are compared with the experimental observations on rat trabeculae
reported in Janssen and Hunter 1995.

Changes in either the sarcomere length or in the calcium peak have three distinct
effects on the force transient. The same effects can be recorded either with fixed SL
and increasing cmax (see Janssen and Hunter 1995), or by keeping cmax constant and
increasing SL (see Dobrunz, Backx, and Yue 1995). The three effects, all exhibited by
the numerical solutions of the reduced ODE model (see Figure 11), are the following:

• Increment of peak force;

• Increment of rate of force development. More specifically, the force development
rate is approximately proportional to peak force, or, in other terms, the time of
force development is nearly constant as SL or cmax vary. This observation is
more evident in the normalized curves in the right column of Figure 11;

• Increment of relaxation time.

It has been experimentally observed (see Janssen and Hunter 1995; Rice et al.
2008) that the third effect, namely the slowing down of the relaxation phase, is more
influenced by changes in SL than by changes in cmax. This feature too can be ob-
served on the results of the proposed model. Indeed, in Figure 12 two force transients
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Figure 12: Comparison of force transients of twitches with similar peak force and
different SL and cmax: simulations results (a) and experimental measurements (b).
In both cases, the larger SL the longer the relaxation phase.
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associated with two different couples (SL, cmax), but exhibiting a similar peak force,
are compared: the relaxation time is slower in the curve associated with the larger
SL.

In Figure 13 isosarcometric twitches are plotted as phase loops and compared with
experimental measurements on intact rat cardiac trabeculae (Backx et al. 1995). The
figure highlights the delayed response of force with respect to calcium: in the early
stages of the twitches, loops are placed below the steady-state curve (dashed line),
meaning that calcium has peaked while force is still low; then the trajectories cross
the steady-state curve with nearly null derivative (this corresponds to the force peak),
and eventually they return to their initial configuration staying above the steady-state
curve.

4.4 Rate of tension development

When a sarcomere undergoes a sudden length change, the shock causes the detach-
ment of nearly all XBs, making the tension abruptly fall to zero, and then recover the
pre-existing level with an exponential-like recovery. A common experimental char-
acterization of the muscle is through the parameter ktr, namely the rate of tension
redevelopment after the sudden length change (see Araujo and Walker 1994; Ford,
Huxley, and Simmons 1977; Tombe and Stienen 1997).

In order to reproduce this experimental setting with the proposed model, we keep
the calcium level c fixed until the steady state is reached; then, to simulate XBs de-
tachment we force the transition from the permissive state P to the non-permissive
state N for all MHs. The results, for different calcium levels, are reported in Fig-
ure 14a. The rates of tension redevelopment ktr are estimated through a least-square
fitting of the curves with a single exponential, and are reported in Figure 14c. In
Figure 14b the tension redevelopment transients, measured in rat skinned ventricular
cardiomyocytes and reported in Wolff, McDonald, and Moss 1995, are shown with
their exponential fit.

The relationships between the maximal force and the rate of tension redevelop-
ment obtained experimentally and numerically are compared in Figure 14c. The
experimentally-estimated rates show good match with those obtained with the pro-
posed model, and exhibit the same increasing trend as maximal force increases.

4.5 Coupled electromechanical model of the sarcomere

A simple zero-dimensional version of the active strain formulation described in Sec-
tion 3.4 can be derived by assuming that FE = I, which entails I4,f = (1 + γf )2.
Under this hypothesis the model reduces to:

µAγ̇f (t) = αP (t) + 2

[
1

1 + γf (t)
− 1

]
, (19)

and the current sarcomere length is computed as

SL(t) = SL0(1 + γf (t)) .

By applying the calcium transient of Eq. (17) and by coupling the reduced ODE model
(11) with Eq. (19), we obtain a zero-dimensional active-passive mechanical model of
cardiac contraction. We show in Figures 15 and 16 the results of numerical simulations
of this simple model, with different values of µA and α.
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Figure 15: Time transients of calcium concentration c (top), sarcomere length SL
(middle) and permissivity P (bottom) for different values of µA, displayed in the
legend, and α = 0.2. The applied c transient is given by Eq. (17), while SL and P are
obtained by coupling the reduced ODE model (11) with (19).
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Figure 16: Time transients of calcium concentration c (top), sarcomere length SL
(middle) and permissivity P (bottom) for different values of α, displayed in the legend,
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obtained by coupling the reduced ODE model (11) with (19).
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5 Conclusions

We have developed a mathematical model based on an ODEs system suitable to
approximate the Forward Kolmogorov Equation associated with the Continuous Time
Markov Chain model for sarcomere contraction presented in Washio et al. 2012. The
proposed model condensates the 5 · 1021 variables of the original system into less than
2 200 variables. Moreover, the proposed model produces very accurate results with a
much lower computational effort than the original model, whose complexity dictates
the use of the MC method: the simulation of one second of physical time takes about
15.9 seconds with the reduced ODE model, against more than 72 hours required on
the same computer platform by the original model.

We showed through numerical tests that the model is able to reproduce physio-
logical behaviours observed under various experimental settings, including the steady-
state relationships between calcium, length and force, isosarcometric and shortening
twitches, and force redevelopment after a sudden active force drop. This supports
the hypotheses on which also the original model of Washio et al. 2012 is based, as
discussed in Section 2.2.

Compared with previously proposed reduction strategies, the concept proposed
in this work presents significant advantages. First, it does not require the so-called
“ring” approximation employed both in Rice et al. 2003 and in Campbell et al. 2010,
making the model able to capture the border-effect at filament end-points. Moreover,
as highlighted in Section 1, the strategy proposed in Rice et al. 2003 is limited to
steady conditions, while the complexity of the reduced model of Campbell et al. 2010
is still too high to allow that more than 9 RUs are simulated. The approach proposed
in Washio et al. 2012 produces a larger complexity reduction, compared to the present
work, since it ends up with a system of 144 ODEs, but it still requires a time con-
suming off-line phase to tune the model by fitting the registered data. Moreover, the
error introduced by the approximation is larger than in the present work and the va-
lidity of the parameters is not guaranteed beyond the settings used to tune them. The
technique proposed in Land and Niederer 2015 yields a system of 750 ODEs, but still
requiring a long off-line phase to compute transition rates. Finally, having character-
ized each state by the number of unblocked RUs and bound XBs, the explicit spatial
description is lost during the reduction procedure. Therefore, length-dependent ef-
fects an tension are neglected and their inclusion would require modifications to the
employed strategy.

We remark that our approach to complexity reduction is not limited to the current
model, but it can be applied to any spatially explicit Markov Chain model with end-
to-end cooperative interactions. In general, given a model comprising N units, each
described by a CTMC with S states, assumption (15) yields to an ODEs system with
(N − 2) · S3 variables, in place of the SN dofs of the original model.

As previously mentioned, unlike most previously proposed techniques, our ap-
proach does not require an off-line phase to calibrate model parameters, given sub-
cellular properties. The advantage is that this property speeds up the investigation of
the influence of those microscopic properties, such as changes in individual channels
or proteins, on the tissue contractile properties. Moreover, it opens to the possibility
of investigating dynamic changes of sub-cellular properties.

We envision, among the others, the following possible developments. The model
presented in this paper can be coupled with some existing models of cardiac electro-
physiology and passive mechanics, as outlined in Section 3.4 (see Gerbi, Dedè, and
Quarteroni 2017). Moreover, since the original model of Washio et al. 2012 is restricted
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to thin filament dynamics, it does not incorporate velocity-dependent effects, which
are linked to XB dynamics (see e.g. Keener and Sneyd 2009). Therefore, we plan to
enrich the present model with a more accurate description of XB cycling. This would
also allow to account for the dynamics of metabolite concentrations (ATP, ADP and
Pi), and thus to investigate the energy consumption of the heart as well as the effects
of hypoxia on the heart beat.

Appendix A Proof of Proposition 1

In view of the proof of Proposition 1 we state the following Lemma.

Lemma 1. Consider a function Φ : RN × [0, T ]→ RN , globally Lipschitz continuous
in its first argument, uniformly w.r.t. the second. Let W be an M -by-N matrix,
satisfying:

Φ(x, t) ∈ Ker(W ) ∀x ∈ Ker(W ), t ∈ [0, T ] . (20)

Let x(t) be the solution of:{
ẋ(t) = Φ(x(t), t) t ∈ [0, T ]

x(0) = x0 ∈ Ker(W ) .
(21)

Then, x(t) ∈ Ker(W ) for any t ∈ [0, T ].

Proof. Let {x1, . . . ,xn} be an orthonormal basis of the space Ker(W ). We define the
matrix X =

[
x1 · · · xn

]
, whose column vectors are the xk’s. Let y∗(t) ∈ Rn

be the solution of the following system:{
ẏ(t) = XTΦ(Xy(t), t) t ∈ (0, T ]

y(0) = XTx0 .
(22)

Existence and uniqueness of y∗(t) is ensured by the fact that the map y 7→ XTΦ(Xy, t)
is globally Lipschitz continuous, uniformly w.r.t. t. Define x∗(t) = Xy∗(t) ∈ Ker(W ).
We now show that x∗(t) is solution of Eq. (21). Indeed, we have:

ẋ∗(t) = Xẏ∗(t) = PKer(W )Φ(x∗(t), t) = Φ(x∗(t), t) ,

where PKer(W ) = XXT denotes the projection matrix on the subspace Ker(W ). The
last equality is due to the fact that, thanks to (20), Φ(x∗(t), t) ∈ Ker(W ). As to the
initial datum, we have x∗(0) = PKer(W )x(0) = x(0). The thesis follows thanks to the
uniqueness of the solution of (21).

We can now prove the result of Proposition 1.

Proof of Proposition 1. It is easily shown that:

d

dt

∑
α,β,δ∈S

P((α,
i

β, δ)t) = 0 for all i = 2, . . . , N − 1.

Therefore, if condition (a) of Definition 1 holds for t = 0, then it holds also for each
t > 0.

To prove conditions (b)–(d) of Definition 1 for t > 0, we apply Lemma 1 (notice
that conditions (b)–(d) can be written in the form Wx = 0, where x denotes the state
Π(t)). In order to apply Lemma 1, we are left to show that (20) holds.

32



For this purpose, the following result will be used several times. Let us assume
that the state Π(t) satisfies condition (d). Then, for i = 3, . . . , N − 1:∑

δ∈S

∑
η∈S\{α}

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]

=
∑
δ∈S

∑
η∈S\{α}


(∑

ξ∈S Φi−1
C (ξ, η, β;α; t)

)
P((η,

i

β, δ)t)∑
ξ∈S P((ξ,

i−1
η , β)t)

−

(∑
ξ∈S Φi−1

C (ξ, α, β; η; t)
)
P((α,

i

β, δ)t)∑
ξ∈S P((ξ,

i−1
α , β)t)



=
∑

η∈S\{α}


∑
ξ∈S

Φi−1
C (ξ, η, β;α; t)

 ∑
δ∈S P((η,

i

β, δ)t)∑
ξ∈S P((ξ,

i−1
η , β)t)︸ ︷︷ ︸

=1

−

∑
ξ∈S

Φi−1
C (ξ, α, β; η; t)

 ∑
δ∈S P((α,

i

β, δ)t)∑
ξ∈S P((ξ,

i−1
α , β)t)︸ ︷︷ ︸

=1


=

∑
η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]
.

Similarly, we have for i = 2, . . . , N − 2:∑
α∈S

∑
η∈S\{δ}

[
ΦiR(α, β, η; δ; t)− ΦiR(α, β, δ; η; t)

]
=

∑
η∈S\{δ}

∑
ξ∈S

[
Φi+1
C (β, η, ξ; δ; t)− Φi+1

C (β, δ, ξ; η; t)
]
.

Thus, under the hypothesis that the state Π(t) satisfies condition (d), the computation
of the time derivative of both sides of (b) leads to the same result, i.e.:

d

dt

∑
ξ,β∈S

P((ξ,
i−1
α , β)t) =

∑
η∈S\{α}

∑
ξ,β∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]
,

d

dt

∑
β,δ∈S

P((α,
i

β, δ)t) =
∑

η∈S\{α}

∑
β,δ∈S

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]
=

∑
η∈S\{α}

∑
ξ,β∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]
.

Using the same argument, a similar result can be shown for (c). Finally, if condition (d)
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hold for Π(t), the time derivatives of both sides of (d) coincide. Indeed,

d

dt

∑
δ∈S

P((α,
i

β, δ)t) =
∑

η∈S\{α}

∑
δ∈S

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]
+

∑
η∈S\{β}

∑
δ∈S

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
=

∑
η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]

+
∑

η∈S\{β}

∑
δ∈S

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
,

d

dt

∑
ξ∈S

P((ξ,
i−1
α , β)t) =

∑
η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]

+
∑

η∈S\{β}

∑
ξ∈S

[
Φi−1
R (ξ, η, α;β; t)− Φi−1

R (ξ, α, β; η; t)
]

=
∑

η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]

+
∑

η∈S\{β}

∑
δ∈S

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
.

So we have proved that, provided that Π(t) satisfies condition (d), the time derivatives
of the left-hand sides of conditions (b)–(d) vanish, which implies hypothesis (20).
Therefore we can apply Lemma 1 and conclude that conditions (b)–(d) hold for any
t > 0.
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