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Abstract

The Purkinje network is responsible for the fast and coordinated distri-
bution of the electrical impulse in the ventricle that triggers its contrac-
tion. Therefore, it is necessary to model its presence to obtain an accurate
patient-specific model of the ventricular electrical activation. In this paper,
we present an efficient algorithm for the generation of a patient-specific
Purkinje network, driven by measures of the electrical activation acquired
on the endocardium. The proposed method provides a correction of an
initial network, generated by means of a fractal law, and it is based on
the solution of Eikonal problems both in the muscle and in the Purkinje
network. We present several numerical results both in an ideal geometry
with synthetic data and in a real geometry with patient-specific clinical
measures. These results highlight an improvement of the accuracy of the
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patient-specific Purkinje network with respect to the initial one, also in the
cases of a cross-validation test and of noisy data.

1 Introduction

The inclusion of the Purkinje system in the computational models of the elec-
trical activity of the ventricles is fundamental to obtain accurate and realistic
numerical results. Indeed, this system, composed by the Purkinje fibers (PF),
provides the electrical signal (the depolarization wave) to the ventricular mus-
cle. This allows, in normal conditions, the rapid and coordinate activation of the
ventricles [9], and then the correct pumping of the blood flow into the arteries.
PF are electrically connected to the ventricular muscle only at certain insertion
sites, called Purkinje muscle junctions (PMJ) [15]. From these sites the depo-
larization wave enters the heart muscle, allowing the ventricular excitation and
contraction [2].

Despite the essential function of PF in the coordinated activation of the ven-
tricles, they have been usually neglected in the computational models. This was
mainly due to the difficulty in obtaining in vivo images of PF from radiological
analyses, since they are excessively thin for the current clinical imaging resolu-
tion. For this reason, the inclusion of the PF in the computational models has
been often obtained by means of surrogate models such as the definition of space-
dependent conduction muscular properties [17]. There have been, however, some
attempts to incorporate PF in the computational models. In particular, three
alternatives have been proposed so far to generate a Purkinje network:

i) Segmentation from ex-vivo images [4];

ii) A manual procedure based on anatomical knowledge [21, 3];

iii) Computational algorithms based on a fractal law [1, 10, 16].

Among the three alternatives described above, only strategy i) allows to re-
cover patient-specific information on the network, provided that ex-vivo images
are available, which is not a common situation. The second and the third strate-
gies are driven only by general anatomical information and therefore do not allow
to generate patient-specific networks. Nevertheless, strategy iii) is very appeal-
ing from the computational point of view, since it can be easily incorporated in
an available code for the simulation of the electrical activity of the heart.

In this work, we adapt strategy iii) to make it patient-specific by using clinical
measurements of the electrical activation in the ventricle to locate accurately the
PMJ. In particular, in this work we consider the case of an electrical propagation
in the muscle originated from sources located on the endocardium. This is
a very common situation, occurring for example for a normal propagation or
for an ischemic case, where the sources are all identified with the PMJ. The
proposed method has been already considered in [22] for an application to three
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real cases characterized by a normal electrical activity and compared with other
strategies proposed so far, obtaining very promising results in terms of accuracy.
In this paper we aim at describing in details the proposed method and provide
an exhaustive computational study of its accuracy and robustness. To do this
we apply our method both to an ideal geometry with virtual data generated
by solving a forward problem, and to a real geometry with real patient-specific
clinical measures.

The numerical results show that our method is accurate and robust in both
the geometries, also when cross-validation tests are performed and when noisy
data are considered. In particular, our method always features better perfor-
mance with respect to the case of a non-patient-specific Purkinje network.

The outline of the work is as follows. In Section 2 we introduce the math-
ematical models considered for the computation of the activation times in the
ventricle and in the Purkinje network. In Section 3 we detail our method for
the generation of a patient-specific Purkinje network in the case of endocardial
sources. In Section 4 we show several numerical results in an idealized geometry
to highlight the accuracy and the robustness of our method. Finally, in Section
5 we show the application of our algorithm to a real case obtained by considering
patient specific geometry and measures, and we simulate an ischemic case.

1.1 A summary of variables and unknowns

We want here to summarize all the variables and unknowns introduced in the
text.

um(x), ue(x), up(x) Activation times in the myocardium, on the endocardium
and in the Purkinje network, respectively;

Ωm, Ωe, Ωp Computational domains representing the myocardium,
the endocardium and the Purkinje network, respectively;

Γm, Γe, Γp Part of the domain where the boundary conditions
representing the source terms are applied in the myocardium, endocardium and Purkinje

network, respectively;
Vm, Ve, Vp Conduction velocity along the muscular fibers in the myocardium,

on the endocardium and in the Purkinje network, respectively;
D Anisotropic tensor accounting for the muscular fibers;
x1, . . . ,xN Coordinates of the points where the measures were acquired;
T1, . . . , TN Measured activation times;
w1, . . . ,wM Coordinates of the bases of the leaves;
y1, . . . ,yM Coordinates of the PMJ;
τ1, . . . , τM Activation times computed at the PMJ by solving the

1D Eikonal problem in the network;
t1, . . . , tN Activation times computed at the measures’ points xi

by solving the Eikonal problem
on the endocardium or in the myocardium;
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2 Modeling the electrical activity

2.1 The electrical activation in the ventricular muscle

2.1.1 The anisotropic 3D Eikonal problem

The algorithm for the generation of a patient-specific Purkinje network we are
going to describe in Section 3 is based on the computation of the discrepancy be-
tween the measured and the computed activation times, defined as the instant at
which the potential W reaches the value (Wr +Wp)/2, where Wr is the minimum
value and Wp the value reached at the plateau (see Figure 1). The activation

Wp

Wr

W

t

Figure 1: Characteristic waveform representing the action potential of a heart
cell.

times could be obtained computationally by solving suitable mathematical mod-
els. Classical models for the mathematical description of the electrical activity
in the ventricles are the Bidomain and the Monodomain models [8, 12, 23, 5],
which consist in modeling the ventricular tissue as a functional syncytium of
electrically coupled cells and in deriving continuous models of reaction-diffusion
equations. Such models describe the electrical potential in each point of the
ventricle and at each time. As a byproduct, activation times can be computed.

In this work, we decided to consider a simplified model derived from the
Bidomain one, which is suitable when one needs to know only the activation
times, that is the anisotropic Eikonal equation [11, 6]. It describes the activation
time in any point of the computational domain, and it has been proved to be
a good approximation of the more complex Bidomain one [6]. Such a model
is far less expensive in term of computational time than the Bidomain or the
Monodomain ones, since it is a steady problem and it does not exhibit an internal
or boundary layer as happens when considering such models [6]. Recently, the
Eikonal model has been considered also for clinical applications [20].

Let Ωm be the three-dimensional computational domain related to the mus-
cular propagation and um = um(x) the unknown activation time. Then, the
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anisotropic Eikonal model reads

{
Vm

√
(∇um)T D∇um = 1 x ∈ Ωm,

um(x) = um,0(x) x ∈ Γm,
(1)

where Vm = Vm(x) is the conduction velocity along the muscular fibers in the
myocardium (possibly depending on space), D ∈ R

3×3 is the anisotropic tensor
which accounts for the orientation of the muscular fibers, Γm is the set of source
points generating the front and um,0(x) is the value of the activation time on
Γm. For the anisotropic tensor in this work we used the following expression

D(x) = k2I + (1 − k2)a(x)a(x)T , (2)

where k is the ratio between the conduction velocity orthogonal to the fibers
direction and that along the fibers, and a gives for each point x the unit vector
tangential to the fibers [6].

A more complex version of equation (1) includes also a diffusion term which
accounts for the diffusion process characterizing the front (anisotropic Eikonal-
Diffusion equation [6]). Such a term describes the relationship between the
velocity of propagation and the curvature of the wave-front. However, as a first
step in the direction of building patient-specific Purkinje networks, in this work
we neglected such a contribution. The validity of such an approximation is
supported by the results obtained in [22], where an excellent accuracy has been
found when testing our method with real clinical data.

2.1.2 An approximation of the 3D problem: The isotropic Eikonal

problem on the endocardium

As described later on, when the sources for the muscular activation are all located
on the endocardium, then in our method for the generation of a patient-specific
network it will be enough to solve a muscular problem only on the endocardium
(see hypothesis H1 in Section 3). Moreover, to simplify the proposed algorithm,
for the description of the electrical activity on such a surface, we considered
the isotropic Eikonal problem. This is of course an approximation, justified by
the observation that it is nowadays very hard to have information about the
muscular fibers. However, as shown by the numerical experiments reported in
Sections 4 and 5, this choice leads to an excellent accuracy. In particular, let Ωe

be the computational domain related to the endocardium and ue = ue(x) the
unknown activation time. Then, the isotropic 2D Eikonal model reads

{
Ve|∇ue| = 1 x ∈ Ωe,
ue(x) = ue,0(x) x ∈ Γe,

(3)

where Ve = Ve(x) is the muscular conduction velocity on the endocardium, Γe

is the set of source points generating the front and ue,0(x) is the value of the
activation time on Γe.
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We observe that the velocity Ve in problem (3) should be thought of as
a surrogate uniform value of the anisotropic non-uniform endocardial velocity
derived from Vm. In our numerical experiments Ve has been determined as the
value that best agrees with the measures.

We point out that in accordance with the observations done for the 3D
problem, we neglected also in this case the diffusion term.

2.2 The electrical activation in the Purkinje network

To solve problems (1) and (3) we need to provide the boundary conditions (1)2
and (3)2 on Γm and Γe, respectively, which represent the points where the elec-
trical activation starts. In a normal propagation, Γm and Γe coincide with the
PMJ since the signal traveling along the Purkinje network enters the muscle
through these junctions. We then need a mathematical model also to describe
the propagation in the Purkinje network. In this respect, it is possible to con-
sider a one-dimensional Bidomain model as proposed in [4]. However, since we
were interested in computing only the activation times in the network (in par-
ticular at the PMJ) and not the whole action potential, we considered again the
Eikonal equation.

Let Ωp be the one-dimensional computational domain given by the Purkinje
network and up = up(x) the unknown activation time in the network. Then, the
Eikonal model reads





Vp

∣∣∣∣
∂up

∂s

∣∣∣∣ = 1 x ∈ Ωp,

up(x) = up,0(x) x ∈ Γp,
(4)

where Vp = Vp(x) is the conduction velocity (5-10 times greater than the mus-
cular one [13]), s is the curvilinear coordinate, Γp is the set of points generating
the front (in a normal propagation Γp is the Atrioventricular node) and up,0(x)
is the value of the activation time on Γp.

We point out that for the modelization of the network, we have considered
again the isotropic Eikonal problem. This approximation is perfectly justified
due to the absence of muscular fibers (and then of anisotropy) in a 1D net-
work. Again, we neglected the diffusion term since the high advection term Vp

dominates any diffusion process.

2.3 Numerical solution of the Eikonal problem

For the solution of the Eikonal problems (1), (3) and (4) we used algorithms
belonging to the class of the Fast Marching Methods (FMM) [18]. Such methods
are based on the observation that the information propagates only from smaller
to larger values of the unknown. Based on this, FMM try to follow the front of
propagation and at each step three regions are recognized:
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1. The Accepted region, formed by the points of the domain where the solu-
tion has been already determined;

2. The Trial region, formed by the points of the domain “close” to the ac-
cepted ones and which are potentially new accepted points;

3. The Far region, formed by the points of the domain which are far from the
accepted ones.

In the classical FMM, at each step of the algorithm the solution is evaluated
in the trial points and a new accepted point is created. In particular, in the
isotropic case, the Trial region is formed only by the points which are neighbors
of the accepted ones and just a single evaluation for each trial point using an
upwind scheme is enough to create a new accepted point (single-pass method,
see [18]). In such a case, the FMM is very efficient, since it follows gradient
directions, which coincide with those of propagation (characteristic directions).
However, in the anisotropic case, the gradient and the characteristic directions
do not necessarily coincide and this scheme fails to produce an accurate solution.
A possible way to overcome this problem consists in enlarging the Trial region
including not only the neighbors but few layers of neighbors, thus allowing the
characteristic direction to remain within the neighborhood [19]. This strategy
is accurate and single-pass but, in our implementations, it featured a quite high
computational time. For this reason, we decided to consider in this work an
alternative procedure proposed in [14], where the Trial region is formed by the
neighbors solely and a recursive correction is introduced. Such a new step con-
sists in re-computing the value of the unknown in the neighbors of each newly
accepted point X, which are inside the Accepted region. This is done since when
the values of the unknown has been computed in such neighbors, the value in X
has not been used since it is not known. If the new evaluation in a neighbor of
X returns a lower value of the unknown with respect to the previous one, then
the solution in such a point is updated. This method is not anymore single-pass.
However, it uses only the neighbors to compute the value of the unknown in a
point, allowing for good performance from the computational point of view (see
[14] for further details).

3 Computational generation of a patient-specific Purk-

inje network: The case of endocardial sources

In this section we describe the method for the generation of a patient-specific
network. In particular, in this work we consider the case of sources for the
muscular propagation located only on the endocardium. This is the case for
example of a normal electrical propagation or of an ischemic case, where the
sources are all located in the PMJ. This means that Γm in the 3D Eikonal
problem and Γe in the 2D one coincide with the PMJ. In such conditions, we
can consider the following two simplifying hypotheses:
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H1. For the computation of the activation times on the endocardium it is
enough to solve an Eikonal problem only on the endocardium. Indeed,
if the sources are all located on such a surface, the propagation in the
myocardium does not have enough influence on the endocardium. Since
for the generation of a patient-specific Purkinje network we only need the
endocardial propagation, in our algorithm we solve only problem (3);

H2. The propagation in the PF is not influenced by the muscular propagation,
and we can assume that the information propagates uniquely from the
Purkinje network towards the muscle cells and that no feedbacks from the
muscle are allowed. Therefore, an explicit algorithm could be considered
for the numerical solution of the coupled problems (1)-(4) and (3)-(4).
In other words, we firstly solved the network solely, and then we used
this solution evaluated at the PMJ as sources for the computation of the
muscular activation.

We are now ready to describe the method for the generation of the patient-
specific Purkinje network. This is composed of two steps: in the first one we
generate a tentative network by using a fractal law (Section 3.1). In the second
step, we update such a network in order to reduce the discrepancy with the
clinical measures (Section 3.2).

We give here a description of the structure of a Purkinje network. This is
formed by several levels of generation, at each of them we can identify the active

branches and the leaves Sj . An active branch can generate other branches,
whereas leaves, starting from the points wj , terminate at their end points yj

which are identified with the PMJ Pj , see Figure 2.

3.1 Generation of the tentative network

The first tract of the Purkinje network is composed by the bundle of His, which
starts from the Atrio-ventricular node, and by the main bundle branches, which
are three branches generating from the bundle of His. The starting point of our
algorithm consists in manually design the bundle of His and the main bundle
branches, accordingly to anatomical a priori knowledge [1, 16]. Then, the tenta-
tive Purkinje network is generated as a fractal tree. The growing process follows
the ’Y’ production rule, similar to the one proposed in [1, 10, 16]. We allow
the leaves to be generated after a different number of levels. However, we fix
a maximum number of levels of the tree, Mlev, tuned in order to have a good
covering of all the reachable areas of the endocardium (see Figure 2).

To ensure a correct distribution of the PMJ on the endocardium, the process
of generation of a leaf is governed by a Bernoullian probability law, where the
probability to generate a leaf p is a function of the tree level. In particular, we
set p =

√
j/Mlev, where j is the current level, so that p is small for the first levels

and grows in the successive levels. To obtain a more realistic pattern of PF, the
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lengths of the left branch Ll and of the right branch Lr, and the branching angle
α of the new fibers are described by Gaussian variables.

This procedure allows to generate a tentative Purkinje network N (t), char-
acterized by M (t) leaves Sk whose bases are located in wk, k = 1, . . . , M (t),
and by the PMJ Pk, k = 1, . . . , M (t), located at the points with coordinates

{y
(t)
1 , . . . ,y

(t)

M(t)} =: P(t), see Figure 2

S1

S2 S3

P1, y1

P2, y2

P3, y3

w2 ≡ w3

w1

Figure 2: Structure of the Purkinje network. The grey points are the bases wk

of the leaves Sk, whereas the white points represents the PMJ Pk. In the picture
we have Mlev = 2 and M = 3.

Observe that we have not yet used the clinical data, so that this is not a
patient-specific network.

3.2 Generation of the patient-specific network

We describe here the steps to generate a patient-specific network starting from
the tentative one N (t), using clinical measures related to a propagation character-
ized by endocardial sources solely. Such data are measured on the endocardium,
for example before an ablation procedure to burn anomalous propagation sites.
This is possible thanks to suitable systems (such as Ensite NavX system, see,
e.g., [22]), commonly used nowadays in the clinical practice, which are capable
of accurately locating some electrode catheters in the ventricle, allowing for the
reconstruction of a map of the activation times [17, 20].

In what follows, let xi, i = 1, . . . , N, be the points where the measures have
been acquired and Ti the related measured activation times. We summarize the
steps related to the generation of the patient-specific network as follows.

Computation of the activation times at the PMJ of N (t). We solve
the 1D Eikonal problem (4) in the tentative network N (t), by choosing properly
the set Γp and the boundary condition up,0. For example, for a normal propa-
gation, Γp is identified with the Atrioventricular node. This allows to compute
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the activation times for all the points of N (t), and in particular to store the

activation times τ
(t)
k := up(y

(t)
k ), k = 1, . . . , M (t), computed at the PMJ.

Construction of the regions of influence. Ideally, the PMJ should be able
to describe exactly the observed activation times. In this respect, we say that a
set of M sources (zk, ζk) is compatible with the measurements if the following
holds:

ue(xi) = Ti ∀ i = 1, . . . , N, (5)

with 



Ve|∇ue(x)| = 1 x ∈ Ωe,

ue(zk) = ζk k = 1, . . . , M.

(6)

Notice that, in view of hypotheses H1, we considered the fronts propagating only
on the endocardium, thus satisfying the 2D Eikonal problem (3).

To identify such compatible sources, we consider the following backward

Eikonal problem in the unknown ũe:





Ve|∇ũe(x)| = 1 x ∈ Ωe,

ũe(xi) = −Ti i = 1, . . . , N.

(7)

The solution of such a problem divides the domain Ωe in N regions Ri, called re-

gions of influence, which associate to any point xi the points of the endocardium
which could activate xi at time Ti if used as source points for the muscular prop-
agation. In particular, the boundaries of the regions Ri are identified by the
points of collision of two or more fronts propagating from the measures’ points
xi. (see Figure 3 for the case N = 3).

Exploiting the function ũe, we are now able to build a set of M sources that
are compatible with the measures. Indeed, let Z = {ẑ1, . . . , ẑM} be a set of M
points such that at least one point falls in each region Ri or its boundary, and
Zi := {ẑi

1, . . . , ẑ
i
Mi

} be the subset of points falling in Ri. Moreover, set

ζ̂k := −ũe(ẑk), k = 1, . . . , M, ζ̂i
j := −ũe(ẑ

i
j), j = 1, . . . , Mi, ∀i. (8)

We have the following result.

Proposition 1 The M sources (ẑk, ζ̂k), k = 1, . . . , M, defined by (7)- (8) and
by Z, are compatible with the measures (xi, Ti), i = 1, . . . , N , i.e. they satisfy
(5)-(6).

Proof. Given some couples (zk, ζk), k = 1, . . . ,M , the solution in a point x of
problem (6) is given by

ue(x) = min
l=1,...,M

(
ζl +

d(x,zl)

Ve

)
, (9)
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R1

(x1, T1)

R2

(x2, T2)

R3

(x3, T3)

Figure 3: Regions of influence. Representation of the contour lines of a possible
solution of (7) with N = 3. The lines represent the points of collision among
two or more fronts, and they divide the domain in 3 regions Ri, called regions
of influence.

where with d(·,y) we have indicated the geodesic distance from y. Then, constraints
(5) could be written as follows

min
l=1,...,M

(
ζl +

d(xi,zl)

Ve

)
= Ti i = 1, . . . , N. (10)

Analogously, the solution of problem (7) in a point x is given by

ũe(x) = min
m=1,...,N

(
−Tm +

d(x,xm)

Ve

)
, (11)

and then (8) becomes

ζ̂k = − min
m=1,...,N

(
−Tm +

d(ẑk,xm)

Ve

)
, k = 1, . . . , M.

In particular, for x ∈ Ri, the expression of (11) is simplified as follows

ũe(x) = −Ti +
d(x,xi)

Ve

. (12)

Now, observing that ẑ
i
j ∈ Ri, we have from (12) and (8)

ζ̂i
j = −

(
−Ti +

d(ẑi
j ,xi)

Ve

)
, j = 1 . . . ,Mi. (13)
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Then, conditions (10) could be written as follows

min
m=1,...,N

(
min

p=1,...,Mm

(
ζm
p +

d(xi,z
m
p )

Ve

))
= Ti i = 1, . . . , N,

where ζm
j and zm

j refer to the reordering of ζk and zk following the regions of influence.
Then, substituting (13) in the left hand side of the previous expression, we obtain

min
m=1,...,N

(
min

p=1,...,Mm

(
ζ̂m
p +

d(xi, ẑ
m
p )

Ve

))
=

= min
m=1,...,N

(
min

p=1,...,Mm

(
Tm −

d(ẑm
p ,xm)

Ve

+
d(xi, ẑ

m
p )

Ve

))
=

= min
m=1,...,N

(
min

p=1,...,Mm

(
Tm −

d(ẑm
p ,xm)

Ve

+
d(xi, ẑ

m
p )

Ve

− Ti + Ti

))
=

= min
m=1,...,N

(
min

p=1,...,Mm

(
−Ti +

d(xi, ẑ
m
p )

Ve

−

(
−Tm +

d(ẑm
p ,xm)

Ve

)))
+Ti = Ti i = 1, . . . , N,

where the latter equality holds by noticing that the external minimum is attained for

m = i, since −Tm+
d(bz

m
p ,xm)

Ve
< −Ti+

d(xi,bz
m
p )

Ve
for m 6= i thanks to the analytical solution

(12) of the backward problem and to the definition of regions of influence. Therefore,

constraints (5) are satisified and the thesis holds. ¤

Improving the accuracy of the tentative network. Once we have de-
fined the regions of influence Ri, we can identify those of the tentative PMJ

belonging to Ri, see Figure 4. In particular, we introduce the subsets P
(t)
i :=

{y
(t)i
1 , . . . , y

(t)i

M
(t)
i

} ⊂ P(t) containing the PMJ P i
j , j = 1, . . . , M

(t)
i , belonging to

Ri. The idea is now to adapt the location of the PMJ of the tentative net-
work so as to improve the accordance with the measures, or possibly make them
compatible with the measures. The regions of influence could provide useful
indications on how to adapt the PMJ location to the measurements. In partic-
ular, an optimal choice would be provided by moving the PMJ in points that
satisfy the hypotheses of Proposition 1, that is identifying the coordinates of the
PMJ yk with ẑk, and the related activation times τk with ζ̂k. Indeed, thanks to
Proposition 1 this would lead to a set of compatible sources.

Observe however, that the activation time of the PMJ cannot be chosen
arbitrarily as it has to be a solution of the 1D Eikonal problem (4). Moreover,
we constraint the movement of the PMJ to stay within its region of influence
and to be relatively small so that the length of the modified branch is still
in the physiological range. Under these constraints there is no guarantee to
satisfy exactly the measures. We therefore aim at developing a strategy that
improves the tentative network, still fulfilling the above constraints, reducing
the discrepancy with the measures. In particular, we look for new positions
yk of the PMJ and for the related activation times τk = up(yk) in an iterative
framework, that is by generating a sequence of networks.

12



(y, τ)

R1

(x1, T1)

R2

(x2, T2)

R3

(x3, T3)

R1

(x1, T1)

R2

(x2, T2)

R3

(x3, T3)

(y1, τ1)

(y2, τ2)

R1

(x1, T1)

R2

(x2, T2)

R3

(x3, T3)

(y1, τ1)

(y2, τ2)

(y3, τ3)

R1

(x1, T1)

R2

(x2, T2)

R3

(x3, T3)

(y1, τ1)

(y2, τ2)

(y3, τ3)

(y4, τ4)

Figure 4: Examples of possible PMJ configurations. (a) Single PMJ located at
the common point of the three regions of influence; (b) Two PMJ, one on the
boundary between R2 e R3, the other one in R1; (c) Three PMJ each one located
in a different region; (d) Four PMJ, three of them, y1, y2, y3, which activate a
measure point (x1, x2, x3, respectively), and the fourth one, y4, which does not
activate any measure point.
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To this aim, we quantify the accuracy of a network by computing the per-
centage of satisfied points. A datum located at xi is said to be satisfied if

|ηi| ≤ ε, (14)

where ηi is given by

ηi :=
ti − Ti

|Ti|
, i = 1, . . . , N, (15)

ti := ue(xi), i = 1, . . . , N, being the activation times computed at the measures’
points by solving the 2D Eikonal problem (3) on the endocardium with the PMJ
as boundary points (that is Γe = {y1, . . . ,yM}) and by using the activation
times τk as boundary condition ue,0. Here, we have exploited hypothesis H2
which allows us to use an explicit method to solve the coupled problem given by
the interaction between the propagation in the network and in the muscle.

We observe, however, that to check conditions (14) one needs to solve a
forward 2D Eikonal problem for each new network generated by the algorithm.
To limit the number of 2D problem to solve, we decided instead to use the
discrepancy between the backward 2D Eikonal solution evaluated in a PMJ and
the related activation time computed by the 1D Eikonal problem on the tentative
network. This has the advantage to use the solution of the backward 2D Eikonal
problem, which has been already solved to identify the regions of influence.

To this aim, given a measure xi, we introduce the quantities

χi
j :=

τ i
j − (−ũe(y

i
j))

|Ti|
, j = 1, . . . , Mi, (16)

that is the discrepancy between the activation time in a PMJ P i
j ∈ Pi obtained

by solving the 1D Eikonal problem in the tentative network and the solution of
the backward Eikonal problem (7) evaluated in P i

j , normalized by the measure
|Ti|, and we check that conditions

|χi
j | ≤ ε (17)

hold for all i and j. Now, the question is whether the satisfaction of conditions
(17) imply the one of conditions (14). With this respect, we have the following
result, which links the behavior of the ηi with the one of the χi

j .

Proposition 2 Let the following conditions hold for all the PMJ in P:

(i) Pi 6= ∅, i = 1, . . . , N ;

(ii) |χi
j | ≤ ε j = 1, . . . , Mi, and i = 1, . . . , N ;

(iii) min
i=1,...,N

(
min

j=1,...,Mi

χi
j |Ti|

)
≥ −ε Tmin, where Tmin := min

i=1,...,N
|Ti|.

Then conditions (14) are all satisfied, that is |ηi| ≤ ε, i = 1, . . . , N .
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Proof. From the definition of χi
j (16), we can write

τ i
j = −ũe(y

i
j) + χi

j |Ti|. (18)

From (15), we have also that conditions (14) could be written as

Ti − ε|Ti| ≤ ti ≤ Ti + ε|Ti| i = 1, . . . , N. (19)

Analogously to (11), we can write the solution of





Ve|∇ue(x)| = 1 x ∈ Ωe,

ue(y
i
j) = τ i

j i = 1, . . . , N, j = 1, . . . ,Mi,

as follows

ue(x) = min
m=1,...,N

(
min

j=1,...,Mm

(
τm
j +

d(x,ym
j )

Ve

))
.

Then the activation time ti at the measurement point xi, can be written as

ti = ue(xi) = min
m=1,...,N

(
min

j=1,...,Mm

(
τm
j +

d(xi,y
m
j )

Ve

))
. (20)

We fix i and we define the following quantities

tkj := τk
j +

d(xi,y
k
j )

Ve

, k = 1, . . . , N, j = 1, . . . ,Mk. (21)

We now observe that a measure located in xi could be activated by a PMJ belonging
to Pi or by a PMJ not belonging to Pi, so that the external minimum in (20) is fulfilled
for m = i in the first case and for m 6= i in the second case. Then, from (20), in the
first case we have ti = tij for some j = 1, . . . ,Mi, so that conditions (19) become

Ti − ε|Ti| ≤ τ i
j +

d(xi,y
i
j)

Ve

≤ Ti + ε|Ti|, (22)

which, thanks to (18) and (11), could be written as

Ti − ε|Ti| ≤ − min
m=1,...,N

(
−Tm +

d(yi
j ,xm)

Ve

)
+ χi

j |Ti| +
d(xi,y

i
j)

Ve

≤ Ti + ε|Ti|.

Since yi
j ∈ Ri, then the minimum in the above inequalities is attained again for m = i,

so that conditions (19) (and then conditions (14)) become

−ε|Ti| ≤ −
d(yi

j ,xi)

Ve

+ χi
j |Ti| +

d(xi,y
i
j)

Ve

≤ ε|Ti|,

which are guaranteed if hypothesis (ii) holds.
Regarding the second case, the measure located in xi is activated by a PMJ not

belonging to Pi, let say yk
j , k 6= i. Therefore, by observing that inequalities (22) still

hold (even if in this case they are not equivalent to conditions (14)), we have

ti = tkj < min
l=1,...,Mi

til ≤ Ti + ε|Ti|. (23)
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Moreover, since yk
j ∈ Rk, we have from (11)

−ũe(y
k
j ) = Tk −

d(xk,yk
j )

Ve

≥ Ti −
d(xi,y

k
j )

Ve

,

so that, owing to (21) and (18) we obtain

ti = tkj = −ũe(y
k
j )+χk

j |Tk|+
d(xi,y

k
j )

Ve

≥ Ti−
d(xi,y

k
j )

Ve

+χk
j |Tk|+

d(xi,y
k
j )

Ve

= Ti+χk
j |Tk|.

Then, using hypothesis (iii), we obtain

ti ≥ Ti − ε Tmin ≥ Ti − ε|Ti|,

which, together with (23), guarantees again that conditions (19) (and then (14)) hold

true. ¤

Remark 1 The satisfaction of hypotheses (i) and (ii) in the previous Proposi-
tion provides a necessary but not sufficient condition for the fulfillment of con-
ditions (14). Observe, however, that if we considered the absolute quantities
ηi := ti − Ti and χi

j := τ i
j + ũe(y

i
j) instead of (15) and (16), then Proposition

2 holds true even if only hypotheses (i) and (ii) were satisfied. In this case,
one needs only to check that the Ri are not empty and that conditions (17) are
satisfied to guarantee that all conditions (14) hold true. However, the numeri-
cal results performed with this modification, lead to less accurate patient-specific
Purkinje network, so that we do not consider this case here.

We are now ready to describe our strategy, which is based on three steps:

1. Move the PMJ;

2. Delete some PMJ;

3. Create new PMJ,

which are described in what follows.

Move the PMJ. This step allows to obtain a new Purkinje network N (0)

obtained as a correction of the tentative one N (t) by moving some PMJ accord-
ing to the measures, so to improve the percentage of satisfied measurements. In

particular, for all j = 1, . . . , M
(t)
i such that |χ

(t)i
j | ≤ ε, we do nothing, that is

we do not move the corresponding PMJ P i
j . On the contrary, for all j such that

|χ
(t)i
j | > ε, we move the corresponding PMJ P i

j in order to improve the accor-
dance with the clinical measure, guaranteeing however that new locations are

compatible with the Purkinje network, i.e. the new couples (y
(0)i
j , τ

(0)i
j ) satisfy

the 1D Eikonal problem (4). The solution of this problem is not unique, so that
to fix a possible solution we considered the following criterion.
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R3 R1

R2

(x1, T1)

(x2, T2)

(x3, T3) PMJ (y, τ)

a)

(x1, T1)

(x2, T2)

(x3, T3)

R3 R1

R2

(y, τ)

b)

Figure 5: Moving procedure. We move the leaf and then the PMJ on the geodesic
line connecting the base of the leaf with the measurement so to maximize the
accordance with the measure.

Criterion 1 Given a non-satisfied measure xi, the PMJ P i
j is located on the

geodesic line joining the measure xi and the base of the leaf related to P i
j (see

Figure 5).

In particular, given a point Y = Y (l) on the leaf Si
j (that is the leaf correspond-

ing to the PMJ P i
j ), with l ∈ [lmin, lmax] a local (curvilinear) coordinate related

to the geodesic distance, and lmin and lmax so that the length of the branch is in
the physiological range, the solution of the 1D Eikonal problem (4) in Y could
be written as follows

up(Y ) = uij
p (l) := up(w

i
j) +

l

Vp

, (24)

where wi
j are the coordinates of the root of the leaf Si

j . On the other side, the
solution of the backward 2D Eikonal problem in Y could be written as follows

ũe(Y ) = ũij
e (l) := −Ti +

Li
j − l

Ve

, (25)

where Li
j := d(wi

j , xi) is the geodesic distance between the measure located in

xi and the base of the leaf Si
j . Therefore, by imposing

uij
p (l) = −ũij

e (l),

we find the distance from the base of the leaf Si
j which guarantees that the PMJ

P i
j activates the measure located in xi and at the same time belongs to the
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Purkinje network. This leads to the following optimal value

lij =
VpVe

Vp − Ve

(
up

(
wi

j

)
−

(
Ti −

Li
j

Ve

))
. (26)

We then move accordingly the related PMJ, that is we set Y = Y (lij), guar-

anteeing χ
(0)i
j = 0 if lij ∈ [lmin, lmax]. If lij /∈ [lmin, lmax], we look for a new

lij ∈ [lmin, lmax] which minimizes χi
j . Owing to (16), (24) and (25), the expres-

sion of χi
j could be written as follows

χi
j(l) =

uij
p (l) + ũij

e (l)

|Ti|
=

up(w
i
j) − Ti +

Li
j

Ve
+

l(Ve−Vp)
VeVp

|Ti|
, j = 1, . . . , Mi.

Since Ve < Vp, it is easy to check that (χi
j(l))

′ < 0, so that the minimum of

χi
j belongs to one of the two extrema lmin or lmax. Then, we conclude that if

lij < lmin, then we set lij = lmin, otherwise if lij > lmax, then we set lij = lmax. In

both the cases, we observe that we have χ
(0)i
j 6= 0

At the end of the moving procedure, we have obtained a new Purkinje net-
work N (0) characterized by M (0) PMJ. Observe that M (0) = M (t).

Delete damaging PMJ. After the moving procedure, we have the following
cases:

1. χ
(0)i
j = 0 for all j and i, that is all lij given by (26) lie in the interval

[lmin, lmax].

2. χ
(0)i
j 6= 0 for some j and i, that is lij given by (26) does not lie in the

interval [lmin, lmax].

In the first case, all the hypotheses of Proposition 2 are satisfied. This implies

that all conditions (14) hold true, in particular it is possible to prove that η
(0)
i = 0

for all i. Then, the algorithm ends and N (0) is the final patient-specific network.
Otherwise, in the second case Proposition 2 tells us that it could happen that

|η
(0)
s | ≥ ε for some s (in general we do not have necessarily s = i), even if 0 <

|χ
(0)i
j | ≤ ε, either because some region of influence Rs could be empty (hypothesis

(i) in Proposition 2 not satisfied), or because hypothesis (iii) in Proposition 2
is not satisfied. Then, we are not still guaranteeing that all conditions (14) are
satisfied and we have to modify the network N (0).

To this aim, we allow the algorithm to delete some PMJ and to create new
ones. We firstly delete the so called “damaging” PMJ, that is those which avoid
the satisfaction of the measures. In particular, we notice that |ηi| ≥ ε could be
given either because ηi ≤ −ε or because ηi ≥ ε. In the first case we do not have
any chance to create a new PMJ featuring a smaller error, without deleting the
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responsible of the activation in xi. Indeed, any new PMJ would be either i) in
late with respect to responsible of the activation and then it could not activate
xi, or ii) early, allowing then to activate xi but producing a bigger error.

In what follows we explain in the detail the delete procedure. Let Pq for
some q = 1, . . . , M (0), be the PMJ which activates xi. We have to distinguish
three situations:

1. ηi ≤ −ε, Pq ∈ Pi. In this case, the datum in xi is activated by a PMJ
belonging to Ri and the signal arrives early with respect to the measure.
Then, we have not any chance to satisfy this datum since whatever move-
ment of Pq would produce a bigger error (remember that Pq is in the
optimal site with respect to Criterion 1). Moreover, we do not have any
hope to satisfy the datum in xi by moving another PMJ or by creating
new leaves since to produce a smaller error, the signal should be in late
with respect to that produced by Pq and therefore it could not activate
the point xi. Then, it is impossible to satisfy the datum in xi so that we
delete PMJ Pq. This will allow if necessary to create a new PMJ which
could satisfy the datum (see below);

2. ηi ≤ −ε, Pq /∈ Pi. In this case, the datum in xi is activated by Pq lying
in another region of influence and the signal arrives early with respect
to the measure. We can in principle move Pq to reduce the error with
respect to the measure in xi since the location of Pq is not optimal with
respect to xi. However, we observe that Pq could be optimal with respect
to another datum xs for some s 6= i. Then, any movement of Pq lead to
the loss of optimality with respect to xs, so that again we do not consider
any movement of Pq. Moreover, as in the previous case, the movement of
another PMJ or the generation of a new PMJ are useless to satisfy the
datum xi, which is then impossible to be satisfied, and we need to delete
Pq, even if with this choice the datum xs will be not in principle satisfied.
However, this will allow to create new PMJ which could satisfy the two
data xi and xs (see below);

3. ηi ≥ ε. In this case, the signal is in late with respect to the measure. Then,
independently of the fact that Pq belongs or not to Pi, any movement of
Pq, according to Criterion 1, is useless, since Pq has been located in the
optimal site. However, in this case we do not need to delete Pq anymore,
since this does not avoid to create new PMJ activating xi. Indeed, a new
PMJ could produce a signal which is early with respect to that propagating
from Pq and this allows to decrease the error. Therefore, since the presence
of Pq does not avoid the generation of a new PMJ satisfying the datum,
we decide to leave Pq in its original position.

Thanks to this classification, we can now describe the delete procedure. In
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particular, we introduce iterations until the following criterion is satisfied

η
(l)
i ≥ −ε ∀i = 1, . . . , N. (27)

At each iteration l, we first compute the activation times τ
(l)
k in all the Pk.

These values could be obtained owing to (24), thus avoiding the solution of
the 1D Eikonal problem (4). We then solve the 2D Eikonal problem (3) on
the endocardium by using the PMJ of N (l) as boundary points (that is Γe =

{y
(l)
1 , . . . ,y

(l)

M(l)}) and by using the new activation times τ
(l)
k as boundary con-

dition u
(l)
e,0. This allows to obtain the new computed activation times t

(l)
i , i =

1, . . . , N, at the measures’ points, to compute the new values of the discrepan-

cies η
(l)
i owing to (15), and then to identify the points xi such that (27) is not

satisfied. For each of such points, we delete accordingly the PMJ responsible for
its activation, so that a new network N (l+1) is obtained.

We observe that this procedure terminates in a finite number of iterations,
let say K, allowing to produce the network N (K) with a positive number of PMJ.

Remark 2 Notice that in the delete procedure we have to solve a 2D Eikonal
problem at each iteration. Observe, however, that the number of iterations in
such a step is very small with respect to the one we would have in the moving
procedure if we checked conditions (14) instead of (17).

Create new PMJ. At the end of the delete procedure we are not guaranteeing

that all conditions (14) are satisfied. Indeed, for some xi we could have η
(K)
i ≥ ε.

In this case, we consider the part of N (K) belonging to Ri. We select a point
wi

M
(K)
i +1

on such a portion of the network and we create a new leaf Si

M
(K)
i +1

lying

on the geodesic line joining this point and xi. We then compute the optimal
location li

M
(K)
i +1

given by (26). If li
M

(K)
i +1

∈ [lmin, lmax], then we leave the new

PMJ in such a position which guarantees χ
(K+1)i

M
(K+1)
i

= 0. We observe that in this

case we can infer that η
(K+1)
i = 0, since the other PMJ, thanks to the delete

procedure, generate fronts which arrive in any case in late, so that they can not
influence the activation in xi. If li

M
(K)
i +1

/∈ [lmin, lmax], we then delete such a

leaf and we repeat this procedure by considering another point wi

M
(K)
i +1

. At the

end of such a procedure we will have obtained our final network N (K+1) which
allowed to obtain a better accuracy with respect to the tentative network.

The overall algorthm is presented in the following box.
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Algorithm 1 Generation of patient-speciic Pukinje network - Endocardial

sources.
Given the vector of the measures T in the points defined by the vector X, the
conduction velocities V_p and V_e, the extrema L_min and L_max, the tolerance
EPS, the tentative network NET and in particular the position of the PMJ Y,
perform the following steps

Solve the 1D Eikonal problem (4) in NET;

Solve the backward Eikonal problem (7);

Define the regions of influence R_i;

FOR i=1:N

FOR j=1:M_i

Compute the optimal location L with (20);

IF (L < L_min) THEN L = L_min;

ELSEIF (L > L_max) THEN L = L_max;

END IF

Move the PMJ: Y[i,j] -> Y[i,j] with (21);

NET -> NET;

END FOR

END FOR

Solve the Eikonal problem (3) with NET as sources;

Compute the errors ETA with (16);

Build the vector Z containing the PMJ activating X;

WHILE (MIN(ETA) < -EPS) DO

FOR i=1:N

IF (ETA[i] < -EPS) THEN Delete Z[i];

NET -> NET;

END IF

END FOR

Solve the Eikonal problem (3) with NET as sources;

Compute the errors ETA with (16);

Build the vector Z containing the PMJ activating X;

END WHILE

FOR i=1:N

IF (ETA[i] > EPS) THEN Create a new leaf owing to (20)-(21);

END FOR

Remark 3 We observe that in principle our algorithm is not able to produce a
network such that |ηi| ≤ ε, ∀i. Indeed, in the create procedure the part of N (K)

belonging to Ri could be empty for some i. In this case we do not have any
chance to satisfy the datum xi.
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4 Numerical results in an idealized geometry

In this section we present several numerical results performed to test the re-
liability and the robustness of the proposed method for the generation of a
patient-specific Purkinje network. To this aim we consider an idealized ven-
tricular geometry given by the ellipsoidal model described in [7], characterized
by a set of packed ellipsoidal surfaces, where the length of the semi-principal
axes of the inner and outer ellipsoid are ax = ay = 1.5 cm , az = 4.4 cm and
bx = by = 2.7 cm , bz = 5 cm, respectively (see Figure 6, up-left). To define
the anisotropic tensor D by (2), we used the unit vectors tangent to the fibers
proposed in [7], and we set k = 0.46. The resulting mesh is composed of about
4 · 106 tetraedra and 6.4 · 105 vertices, see Figure 6, up-right. The corresponding
endocardial triangular mesh is composed of about 1.45 ·105 elements and 7.3 ·104

vertices.
In all the cases we used synthetic data to drive the generation of the network,

obtained by solving the forward 3D problem (1) with a reference Purkinje net-
work, see Figure 6, bottom-left. The synthetic data S := {(x1, T1), . . . , (xN , TN )}
were then created by sampling N points on the endocardium of the ellipsoid (see
Figure 6, bottom-right). The reference network has been always built with the
same procedure used to generate a tentative network. Once the patient-specific
network has been generated, we assessed its accuracy by comparing the acti-
vation times obtained by solving the 3D problem (1) with the PMJ of such a
network as sources, with the values of the clinical measures and those obtained
by using the tentative network considered at the begin of the algorithm. In
particular, we computed the mean absolute error E := 1

N

∑N
i=1 |ti − Ti| and the

standard deviation σ :=
√

1
N

∑N
i=1 |ti − Ti|2 − E2.

Since the proposed method is valid only for endocardial sources (see hy-
potheses H1 and H2) we considered here only normal propagations where the
unique source for the network was the Atrioventricular node and the unique
sources for the muscle were the PMJ. In all the numerical tests of this sec-
tion, unless explicitly stated otherwise, we set Mlev = 30, Vp = 3.4 m/s, Vm =
0.65 m/s, ε = 10%, lmin = h, with h the space discretization parameter,
lmax = lij,max = min{0.525; Li

j}, Lr Ll ∼ G(0.35 cm, 0.01 cm), α ∼ G(60◦, 1.8◦),
where G(µ, σ) is a Gaussian distribution with mean µ and standard deviation σ.
Regarding the conduction velocity on the endorcardium Ve in problem (3), we
have chosen every time its value by hand so to maximize the accordance with
the measures.

4.1 Consistency test

This test has been proposed to prove the ability of our method to generate
an accurate Purkinje network. In particular, we considered a sample S com-
posed by N = 150 measurements well-distributed on the endocardium. We
notice that the starting point of our algorithm is the tentative network, which
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Figure 6: Procedure for the generation of the synthetic data. Up-left: Recon-
structed geometry and muscular fibers; Up-right: Mesh discretization. Bottom-
left: Purkinje network used in the generation of the synthetic data; Bottom-right:
Activation maps obtained by solving the 3D Eikonal problem (1). The sample
S is represented by grey dots.

is generated randomly according to the Gaussian variables describing the length
and the angle of the branches and to the Bernoullian variable describing the
probability to generate a PMJ, see Section 3.1. Therefore, a consistency test
should prove also the robustness of the method with respect to the tenta-
tive network and asses the variability of the results due to the randomness
in the generation of the tentative network. To do this, we ran 20 times our
algorithm using the same synthetic data but different (randomly generated)
tentative networks. Accordingly, to assess the accuracy of the method, we
have reported the average over the 20 simulations of the mean absolute er-
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rors Ej := 1
N

∑N
i=1 |t

j
i − Ti|, j = 1, . . . , 20, namely Ê := 1

20

∑20
j=1 Ej , where

tji is the computed activation time at point xi for the j−th numerical experi-
ment. Regarding the standard deviation, we have to separate the spatial vari-
ability from that produced by the repetition of the experiment. In particular,
the mean spatial standard deviation is defined by σsp := 1

20

∑20
j=1 σj , where

σj =
√

1
N

∑N
i=1 |t

j
i − Ti|2 − (Ej)2 is the spatial standard deviation related to the

j − th experiment, whereas the mean standard deviation over the experiments

is given by Σ := 1
N

∑N
i=1 Σi, where Σi :=

√
1
20

∑20
j=1 |t

j
i − Ti|2 − (Ei)2, Ei :=

1
20

∑20
j=1 |t

j
i −Ti|, is the standard deviation in the point xi over the 20 numerical

experiments. To quantify the total standard deviation, we also introduced the

quantity σ̂ :=
√

1
20

∑20
j=1

1
N

∑N
i=1 |t

j
i − Ti|2 − Ê2. For the experiments reported

in this Section we also reported the maximum absolute error averaged over the

20 simulations Emax := 1
20

∑20
j=1

(
maxi=1,...,N |tji − Ti|

)
and the corresponding

standard deviation σmax :=

√
1
20

∑20
j=1

(
maxi=1,...,N |tji − Ti|

)2
− E2

max.

The best value of the conduction velocity has been found to be Ve = 0.36 m/s.
The mean number of PMJ were M (t) = 134.4 ± 7.4 for the tentative networks,
and M (K+1) = 193.0 ± 11.0 for the patient-specific networks.

In Figure 7 we depicted a selected tentative network over the 20 and the
corresponding patient-specific Purkinje network obtained with our method (left)
and the absolute errors at the sample S (right). We observed a qualitative good
improvement in the accuracy obtained by using the patient-specific network with
respect to that obtained with the tentative one.

In Table 1 we compared quantitatively the accuracy of the results obtained by
using the patient-specific networks generated by our method with that obtained
by considering the tentative networks. In both cases, we reported the mean
absolute error Ê and the standard deviations. For the sake of completeness, in

Network Ê σsp Σ σ̂

Tentative 3.92 3.10 2.30 3.18
Patient-specific 1.76 2.26 1.47 2.30

Table 1: Mean absolute error and standard deviations (in ms) obtained by using
the tentative and the patient-specific Purkinje networks. The results have to
be intended as the average over the 20 simulations. Consistency test, idealized
geometry.

Table 2 we reported the spatial maximum absolute error Emax and the related
standard deviation σmax.

From these results, we noticed a significant improvement of the accuracy
obtained by using the patient-specific network with respect to the tentative one.
We also observed the small standard deviations for the case of the patient-specific
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Figure 7: Left: Purkinje networks (a selected case over the 20). The PMJ
are represented by the yellow spheres. Right: Absolute errors at the measures’
points. Up: Tentative network. Bottom: Related patient-specific network gen-
erated by our method. Consistency test, idealized geometry.

Network Emax σmax

Tentative 17.33 4.09
Patient-specific 12.67 3.15

Table 2: Maximum absolute error and standard deviation (in ms) obtained by
using the tentative and the patient-specific Purkinje networks. The results have
to be intended as the average over the 20 simulations. Consistency test, idealized
geometry.

network, even smaller than those related to the tentative network. Moreover,
both for the tentative and for the patient-specific network we obtained that the
mean spatial standard deviation σsp is greater than the mean standard deviation
over the experiments Σ. From the last two observations, we then conclude that
the proposed algorithm is robust with respect to the choice of the starting net-
work. For this reason, from now on we consider only one run of our algorithm to
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generate the patient-specific network, so that we report only the global standard
deviation σ.

Remark 4 As observed in Remark 3, our algorithm in principle does not guar-
antee that all the measures are satisfied in the sense of (14)-(15). However, we
expected that the number of satisfied points should increase with respect to the
tentative network. This is the case of all the numerical experiments reported in
this paper. Just to provide an example, we reported in Table 3 the percentage of
satisfied measures for the consistency test, showing a great improvement when
passing from the tentative to the patient-specific network.

Network Satisfied measures (%)

Tentative 31.1 ± 4.1
Patient-specific 70.2 ± 2.7

Table 3: Percentage of satisfied measures obtained by using the tentative and
the patient-specific Purkinje networks. The results have to be intended as the
average over the 20 simulations. Consistency test, idealized geometry.

4.2 Cross-validation test

In this section we considered a cross-validation test, that is we divided the mea-
sures in two sets, one used to generate the patient-specific Purkinje network (the
training set), and another one to validate the network (the testing set), given
by the remaining points. In particular, we considered a sample S of variable
size N ≥ 300 measures well distributed and we have used a training set always
composed by 300 points. The location of the measures in the training set was
randomly chosen according to a uniform probability function. The best value of
the conduction velocity has been found to be Ve = 0.36 m/s

In Table 4 we reported the mean absolute error and the standard deviation
obtained by using the patient-specific and the tentative networks for different
values of N .

N Tentative Patient Specific

300 3.74± 2.83 1.92± 2.00
600 3.38± 2.76 2.75± 2.64
3000 3.52± 2.74 2.89± 2.79
10000 3.63± 2.84 2.94± 2.82

Table 4: Mean absolute error and standard deviation (in ms) obtained with
respect to different testing sets. Cross-validation test, idealized geometry.

As expected, the numerical results proved that the accuracy obtained by
using the tentative network were almost the same for different values of N ,
whereas that obtained by using the patient-specific network deteriorated for
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decreasing values of measures used to generate the network. Nevertheless, the
performance of the patient-specific network, even in the case when only 3% of the
measures were used to drive the generation, were still superior to the tentative
one. This clearly showed the improvement in the accuracy of the network when
using clinical data, justifying the effort needed to generate a patient-specific
network.

In the following tests, we considered all the measures to generate the patient-
specific network.

4.3 Robustness test with respect to the samples’ distribution

In this section we analyzed the robustness of the proposed method with respect
to an unbalanced distributions of the synthetic data. This is the case when some
regions of the endocardium are difficultly reached by the catheters or when the
clinicians are interested on the activation times in a specific region. To this
aim, we considered three unbalanced distributions of the synthetic data, each
of them characterized by a greater density of the measures in a specific region
of the endocardium. In particular, we tested the algorithm with the following
samples’ configurations:
(i) Unbalanced distribution on the septum with N = 324 measures (see Figure
8a);
(ii) Unbalanced distribution on the opposite site of the septum with N = 366
measures (see Figure 8b);
(iii) Unbalanced distribution on the apex with N = 283 measures (see Figure
8c).

a) b) c)

Figure 8: Representation of the unbalanced samples’ distributions on the two
halves of the ventricle. (a) Unbalanced distribution on the septum; (b) Unbal-
anced distribution on the opposite site of the septum; (c) Unbalanced distribu-
tion on the apex. Unbalanced samples’ distribution, idealized geometry.

The best value of the conduction velocity has been found to be Ve = 0.35 m/s
for case (a) and Ve = 0.36 m/s for cases (b) and (c).
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In Table 5 we reported the mean absolute error and the standard deviation
obtained by the patient-specific Purkinje networks generated by using the three
different samples’ distributions, using the same tentative network as starting
point.

Region of unbalanced measures Tentative Patient specific

Septum 3.36 ± 3.12 1.71 ± 1.83
Opposite to the septum 3.48 ± 2.87 2.07 ± 1.95

Apex 4.03 ± 2.60 1.92 ± 1.86

Table 5: Mean absolute error and standard deviation (in ms) for the patient-
specific Purkinje networks generated with three different samples’ distribution
and for the related tentative networks. For each row, the name indicates the
region where the measures were localized. Unbalanced samples’ distribution,
idealized geometry.

From these results, we found for all the cases more or less the same accuracy
when using the patient-specific network. We highlight that in any case the
accuracy has been increased with respect to that obtained by using the tentative
network. This showed that our method should be reliable also in real cases, when
the measures are not acquired uniformly, independently of the region where they
are localized.

4.4 Accuracy in the case of noisy data

In order to mimic the measurement error introduced by the acquisition proce-
dure, in this section we considered synthetic data affected by noise to gener-
ate the patient-specific network. To this aim, we considered a sample of syn-
thetic data S composed by N = 150 measurements well-distributed on the en-
docardium and we added a random noise as follows:

T̃i = Ti + ω max
i=1,...,N

{|Ti|} Ui[−0.5,0.5] i = 1, . . . , N, (28)

where Ui[−0.5,0.5] is the uniform probability distribution in the interval [−0.5, 0.5],
and ω is the percentage of error. In this way, we obtained the ”noisy” sam-
ple S̃(ω) := {(x1, T̃1), . . . , (xN , T̃N )} which has been then used to generate the
patient-specific network. Of course, the accuracy of the generated network has
been then evaluated with respect to the original sample S.

In Table 6 we reported the mean absolute error and the standard deviation
obtained by using the tentative and the patient-specific Purkinje network.

As expected, we found a decreased accuracy of the patient-specific network
for increasing values of the noise. However, we still observed an excellent accu-
racy for ω = 0.05 and ω = 0.1. In any case, the mean absolute error was better
than those obtained with the tentative network, also in the case ω = 0.2, which
is probably greater to that expected by the clinical acquisition. These results
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Network ω E ± σ

Tentative — 4.33 ± 3.05

0.00 1.64 ± 1.99
Patient 0.05 1.87 ± 2.50
specific 0.10 1.81 ± 2.10

0.20 2.42 ± 2.35

Table 6: Mean absolute error and standard deviation (in ms) obtained for dif-
ferent values of ω. The generation of the network has been driven by the sample
S̃(ω), whilst their accuracy has been evaluated with respect to the sample S.
Noisy data, idealized geometry.

highlighted the robustness and accuracy of our method also in the presence of
noisy data, justifying the effort needed to generate a patient-specific network.

5 Application to a real case

In this section we present two applications of the proposed method to a real
geometry reconstructed starting from Magnetic Resonance Images (MRI): In
the first one we considered real clinical data related to a normal propagation,
while in the second one we generated synthetic data to simulate the presence of a
myocardial ischemia. The 3D geometry has been manually segmented from the
MRI data and it has been discretized in a tetrahedral mesh composed of about
2.85 · 105 vertices and 1.5 · 106 elements. Since we did not have any information
about the muscular fibers, we assumed in any case an isotropic propagation
through the myocardium, that is for the solution of (1) we set k = 1 in (2) and
then D = I. Then, in our algorithm we have set Ve = Vm and no optimization
on Ve was in this case needed.

5.1 Clinical data related to a normal propagation

In the first application we considered a case characterized by a normal prop-
agation. The related activation times on the endocardium were acquired with
the EnSite NavX system, see [22] for more details. In Figure 9 we represent the
patient-specific Purkinje network obtained by using all the clinical data to drive
the network generation.

The accuracy of the generated patient-specific network on the endocardium
has been already studied in [22], where a cross-validation test highlighted the
suitability of our method for real data, see [22] for more details. Here, we wanted
to study the accuracy of the solution, obtained by using the patient-specific
network, in the myocardium. The conduction velocities in the network and in
the myocardium have been set in order to maximize the agreement with the
clinical data. In particular, we used the following values: Vp = 3.9 m/s, Vm =
Ve = 0.6 m/s.
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Figure 9: Patient-specific Purkinje network generated from clinical data related
to a normal ventricular activation. The PMJ are represented by the red spheres.
Normal propagation, real geometry and data.

In Figure 10 we showed the contour lines of the activation maps obtained by
solving problem (1) with the patient-specific network generated by our algorithm.

Since we did not have at disposal clinical measures in the myocardium, but
only on the endocardium, we provided here only qualitative observations. In
particular, comparing our results with the activation maps reported in [9], we
noticed that, despite neglecting the muscular fibers architecture, there was a
good accordance in the overall pattern of activation. In particular, we noticed
that the signal originated at the septum and ended at the base of the ventri-
cle after about 60 ms, a value in accordance with the one reported in [9]. A
quantitative validation in the myocardium would require to acquire measures
also below the endocardium, a not common procedure nowadays in the clinical
practice.

5.2 Simulating an ischemic case

As observed, our method is not only valid in the case of a normal electrical
propagation. Indeed, the only requirement for its validity is that the sources
for the muscular activation are all located on the endocardium. Therefore, our
method is still valid for a case characterized by a normal propagation in the net-
work, with the presence of a myocardial ischemia in the muscle, that is a region
characterized by reduced blood supply, resulting in the death of the muscular
cells and thus in a progressive deterioration of the electrical activity (see [24] for
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Figure 10: Activation maps obtained by solving the 3D isotropic Eikonal prob-
lem in the patient-specific geometry with the patient-specific Purkinje network
generated from clinical data. Normal propagation, real geometry and data.

a computational study).
Since we did not have real clinical data for the patient at hand related to

a myocardial ischemia, we generated synthetic data by solving the 3D Eikonal
problem (1) with a reference Purkinje network. In the ischemic region, in what
follows denoted by I, we supposed that the myocardium is no longer excitable,
that is we set

Vm(x) =

{
0.65 m/s, if x /∈ I,

0.00 m/s, if x ∈ I,

whereas we assumed that the portion of the Purkinje network corresponding to
that region was characterized by a reduced conduction velocity, since also the
cells of the network are supposed to die under the reduced blood supply. In
particular, we set

Vp(x) =

{
3.90 m/s, if x /∈ I,

0.39 m/s, if x ∈ I.
(29)

Again, the reference network used to generate the synthetic data has been built
with the same procedure used to generate a tentative network. In this way,
the synthetic data SI := {(xI

1 , T I

1 ), . . . , (xI

N , T I

N )} were obtained by sampling
N = 150 points on the endocardium with the exception of I, since the ischemic
region was not excitable.

We then apply the proposed method for the generation of the patient-specific
network, supposing to know the location of the ischemic region. In Figure 11
we depicted the simulated activation maps obtained by solving problem (1) with
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the generated patient-specific network, and the absolute errors at the measures’
points.

0
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40

Activation time (ms)

Figure 11: Left: Activation maps on the endocardium using the patient-specific
Purkinje network generated by using the measures in SI ; Right: Absolute error
at the measures’ points. Case with ischemia, real geometry, synthetic data.

The numerical results showed that 88.6% of the measures were satisfied when
using the patient-specific network (34.0% for the tentative one), and that the
mean absolute error was 1.30 ms ± 1.51 ms (3.37 ms ± 2.61 ms for the tentative
network). This consistency test proved the reliability of the proposed method in
the case of the presence of an ischemic region. Of course, a validation performed
with real data of such a pathology will be mandatory. This is under study and
it will be the subject of future works.

6 Conclusions

In this work we proposed a new method for the generation of a patient-specific
Purkinje network driven by clinical measures of the activation times on the
endocardium. In particular, we considered the case of sources for the muscular
activation all located on the endocardium, as happens, for example, for a normal
electrical activity or for an ischemic case.

Our algorithm was based on the correction of a tentative network, generated
by using a fractal law as proposed in [1, 10, 16], improving the accordance with
the measures. Its implementation is very simple and its efficiency very high since
it requires the solution of 2D isotropic Eikonal problems on the endocardium,
thus avoiding the knowledge of the muscular fibers and the computation in all
the myocardium.

In the case of an ideal geometry and synthetic data, our numerical results
highlighted:
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1. The consistency of our method and the robustness with respect to the
(randomly generated) tentative network;

2. The accuracy of our method when a cross-validation test was performed;

3. The robustness of our method when unbalanced or noisy data were con-
sidered;

4. A better accuracy in all the cases with respect the one obtained with the
tentative network.

Moreover, the numerical experiments performed in a real geometry high-
lighted:

5. The qualitative accordance of the activation maps in the myocardium ob-
tained by using a patient-specific network generated with real data, when
compared with those reported in [9];

6. The accuracy of our method when an ischemic region characterized by a
vanishing conduction velocity was considered to generate synthetic data.

For all these reasons, we believe that the proposed method could be an
effective tool to improve the accuracy of the numerical results in computational
electrocardiology.

We point out that the accuracy of our method to real cases characterized
by a normal propagation has been already discussed in [22]. Other possible
perspectives will be:

– The application of our method to pathological cases with endocardial
sources (such as an ischemia) by using real clinical data;

– The extension and the application of our method to cases where the mus-
cular sources are not all located on the endocardium, such as in the Wolff-
Parkinson-White syndrome;

– The extension of our method to the case where more accurate models,
such as the Bidomain one, will be considered to compute the ventricular
electrical activity.
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