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Abstract

In this work we propose a novel model for dealing with hierarchical time-to-event data, which
is a common structure in healthcare research field (i.e., healthcare providers, seen as groups
of patients). The most common statistical model for dealing with this kind of data is the Cox
proportional hazard model with shared frailty term, whose distribution has to be specified a
priori.

The main objective of this work consists in overcoming this limit by avoiding any a
priori hypothesis on the frailty distribution. In order to do it, we introduce a nonparametric
discrete frailty, through which we are not just guaranteeing a very good level of flexibility, but
we are also building a probabilistic clustering technique, which allows to detect a clustering
structure of groups, where each cluster is named latent population.

A tailored Expectation-Maximization algorithm, combined with model selection tech-
niques, is proposed for estimating model’s parameters.

Beyond the new methodological contribution, we propose a useful tool for exploring big
hierarchical time-to-event data, where it is very difficult to explain all the phenomenon
variability through explanatory covariates. We show the power of this model by applying it
to a clinical administrative database, where several information of patients suffering from
Heart Failure is collected, like age, comorbidities, procedures etc. In this way, we are able to
detect a latent clustering structure among healthcare providers.

1 Introduction

Time-to-event methods are used extensively in medical statistics with the Cox proportional
hazards model providing both flexibility and tractability, and requiring only that the proportional
hazards assumption is valid (Cox, 1972). Extensions to this model to allow for the common
situation of clustering of individuals (or shared frailty), for example due to repeated assessments
of patients within the same healthcare provider, have been developed (Hougaard, 1984, 1986a,b).
Published examples include survival of children grouped as siblings (Guo and Rodriguez, 1992),
survival of patients grouped in hospitals (Austin, 2017) and time to udder infection in cows,
with the four mammary glands making up the udder grouped as individuals (Duchateau and
Janssen, 2007). These examples rely on a parametric form for the frailty distribution such as
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the Gamma or Log-Normal. However, a nonparametric alternative is desirable, due to potential
misspecification of the parametric form and as a method for detecting clusters of groups with
similar frailties, which is the goal of this work. In particular, we propose an extension of the
shared frailty Cox model for hierarchical time-to-event data, in which a nonparametric frailty is
included. We describe an EM algorithm to fit the model and investigate the properties of the
model.

The underlying clinical motivation of this work is the analysis of times to admission to health-
care provider (such as hospital, research center or nursing home) in Heart Failure (HF) patients
in the Lombardia region of Italy. Specifically, we analyzed a dataset extracted from a clinical
administrative database, which included dates of admission and discharge and corresponding
patient age, gender, comorbidities and survival. As the healthcare path of patients may depend on
the structure, we included healthcare providers as a frailty or random effect. We aimed to detect
clusters of healthcare providers with similar outcomes, without choosing the number of clusters
in advance, and without specifying a parametric form for the baseline survival distribution. Thus,
we investigate hierarchical semi-parametric time-to-event models, in which groups of healthcare
providers are clustered into an unknown number of sets, each with the same frailty. To the
best of our knowledge, there is no literature regarding healthcare providers profiling through the
analysis of time-to-event data. Statistical profiling of healthcare providers is typically based on
multilevel logistic regression of binary outcomes on patient-level and structure-level covariates,
for example Grieco et al. (2011) in a frequentist framework or Ohlssen et al. (2007) and Guglielmi
et al. (2014) in a Bayesian framework. Graphical approaches, such as funnel plots, have been
used for healthcare provider performance classification and outlier detection (Spiegelhalter, 2005;
Ieva and Paganoni, 2015).

Austin (2017) reviews models for multilevel time-to-event data and available software for
implementing them. In particular, Cox models with Gamma and Log-Normal frailty distributions
are discussed. Methods and software for these distributions are well-established (e.g. Therneau
and Grambsch, 2013; Therneau, 2014, 2015). Positive stable and power variance distributions are
also feasible (Duchateau and Janssen, 2007; Wienke, 2010; Hougaard, 2012).

However, only a few publications have dealt with discrete frailties, mostly applying the frailty
at the individual level (univariate) and using a parametric baseline. A Weibull baseline was used
both by dos Santos et al. (1995) and Caroni et al. (2010), while a piecewise constant baseline
was used by Guo and Rodriguez (1992). Both Guo and Rodriguez (1992) and dos Santos et al.
(1995) included a nonparametric frailty, while Caroni et al. (2010) investigated Geometric, Poisson
and Negative Binomial distributed frailties. However, only Guo and Rodriguez (1992) dealt
with a shared frailty, dos Santos et al. (1995) and Caroni et al. (2010) used individual-specific
(as opposed to group-specific) frailties. Li et al. (1998) used a Cox proportional hazard model
with a Bernoulli distributed frailty, which can be viewed as a nonparametric frailty model with
the number of clusters set equal to two. Sy and Taylor (2000) proposed an extension of cure
models, originally proposed by Farewell (1982), to include a Cox proportional hazards model for
non-cured individuals. In this case, there is a mixture of susceptible and nonsusceptible (cured)
individuals, so, the frailty is not shared but is individual-specific. Nonparametric frailty models
can be seen as a finite mixture of parametric survival models, as was suggested by Laird (1978)
and Heckman and Singer (1982, 1984b). The models by Guo and Rodriguez (1992) and by Li
et al. (1998) can be viewed as a mixture of populations, where each population is composed
of groups (e.g. hospitals), while dos Santos et al. (1995) and Sy and Taylor (2000) describe
a mixture of populations of individuals (e.g. patients). Mixtures of survival models have also
been investigated in a Bayesian framework, though mostly with parametric survival and frailty
distributions (Ibrahim et al., 2005). Manda (2011) used a Dirichlet process prior for the frailty
term, which automatically detects clusters among groups, but with a parametric baseline hazard.
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The limited use of nonparametric frailty terms is linked to two major issues: the identifiability
of model parameters and the lack of available software. Elbers and Ridder (1982) gave an
overview of the well-known identifiability problem in the case of a univariate frailty term and
provided conditions to guarantee model identifiability (i.e., finite mean distribution of the frailty
and presence of one covariate which assumes at least two values). Heckman and Singer (1984a)
extended some of the previous results, relaxing the condition on the existence of the mean and
adding constraints on the cumulative baseline hazard. Indeed, according to Elbers and Ridder
(1982), the classical approach in the case of a Gamma or Log-Normal frailty distribution constrains
the mean of the frailty distribution to be equal to 1. The same constraint was required by Guo and
Rodriguez (1992) in their model, while Sy and Taylor (2000) put a constraint on the cumulative
baseline hazard (known as zero-tail constraint).

The Gamma and Log-Normal are often preferred among parametric frailty distributions, due
to their analytical tractability and the availability of the related software, for example the package
coxph (Therneau and Grambsch, 2013; Therneau, 2014) for the Gamma and coxme (Therneau,
2015) for the Log-Normal in R software (R Development Core Team, 2016). Recently Positive
Stable and Power Variance distributions have also become accessible in R through the package
frailtyEM (Balan and Putter, 2017). Almost all this software is based on the Expectation-
Maximization algorithm, EM (Dempster et al., 1977; Klein, 1992), which is used extensively for
parameter estimation in the frequentist framework, since Cox proportional hazards models with
a frailty term can be seen as an incomplete data problem, where the observable data are the
times-to-event or the censoring times, and the frailty values are the unobservable data. It can
be difficult to compute the observed information matrix (Efron and Hinkley, 1978) from the
observable log-likelihood. Louis (1982) proposed an approximation of this matrix that can be
computed within the EM steps from the complete log-likelihood, as well as an accelerated version
of the EM algorithm. Louis’s method was fully exploited by Guo and Rodriguez (1992), and was
used just for computing the observed information by both Li et al. (1998) and Sy and Taylor
(2000). In this work we take advantage of Louis’s method for computing the observed information
matrix.

Through the EM algorithm, we are able to estimate the baseline hazard function, the regression
coefficients and the frailty values. Separate methods are needed to estimate the number of latent
populations in the data. Akaike’s information criterion (AIC) and Bayesian information criterion
(BIC) are both widely used for model selection in mixture models (McLachlan and Peel, 2004).
Guo and Rodriguez (1992) tackled this problem by initially applying the EM assuming two
populations and increasing the number until they found a group with no members, following
Laird (1978), who proposed to choose the number of clusters to be the maximum, if the number
of clusters increases in the algorithm (or minimum, if the number of clusters decreases in the
algorithm) for which each population is estimated to have one member, which favours more
complex models than AIC and BIC.

In this work, we extend the shared frailty Cox model to take into account a nonparametric
frailty term in the context of grouped time-to-event data. This means that the frailty does not
have a continuous distribution, but a discrete distribution with an unknown number of elements in
its support. This choice leads not only to a very flexible model (no strong parametric assumptions
are required for the frailty and the baseline hazard) but also to a probabilistic clustering technique,
which can be useful for exploring heterogeneity in survival between groups. This is particularly
useful in large routinely-collected datasets where the emphasis is on large numbers of individuals,
rather than detailed and accurate records for large numbers of covariates. As such the methods
can identify groups (of healthcare providers, say) that have similar results for further detailed
study of the reasons for the observed similarity.
To ensure the frailties are identifiable, we focus on estimating the ratio of frailties between groups.
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For selection of the number of clusters, we compare AIC, BIC and the approach of Laird (1978).
Our novel EM algorithm for parameter estimation and automatic model selection is available as
R code upon request.

Finally, the paper is organized as follows: in Section 2 we present the mathematical model,
the proposed Expectation Maximization algorithm is described in Section 3; a simulation study
provides insights into the scope and limitations of the model in Section 4; while in Section 5 the
model is applied to the regional clinical administrative database. Section 6 provides discussion of
the results and the future perspectives.

2 Semiparametric Cox Model with a Nonparametric Frailty

Consider a random sample with a hierarchical structure, i.e, where each statistical unit belongs to
one group. Define T ∗ij as the survival time and Cij as the censoring time of subject i, i = 1, ..., nj ,

in the j-th group, j = 1, ..., J . Let Xij = (Xij1, ..., Xijp)
T be the vector of covariates, assumed

constant over time, for subject i in group j. Then, we define Tij = min(T ∗ij , Cij), tij its realization
and δij = 1(T∗

ij≤Cij). Let w̃ be the vector of shared random effects, and w, w = exp{w̃}, be

the vector of shared frailties (Rabe-Hesketh and Skrondal, 2008). In this work, we introduce
a nonparametric frailty term, which can be modeled through a random variable with discrete
distribution, with an unknown number of points in the support. In particular, we assume that
each group j can belong to one latent population k, k = 1, ...,K, with probability πk. In this case,
w1, ..., wK are the points in the support of w, K is the support’s cardinality and P{w = wk} = πk.
In order to build the model, we introduce an auxiliary indicator random variable zjk which is

equal to 1 if the j-th group belongs to the k-th population, so zjk
i.i.d∼ Bern(πk). The requirement∑K

k=1 zjk = 1, for each j, is equivalent to the assumption that each group belongs to only one
population. The vector zj is distributed as a multinomial (Guo and Rodriguez, 1992). Note that
there are two levels of clustering: the first one is known (i.e., healthcare providers as clusters of
patients) and we refer to these clusters as groups, while the second level is the unknown clustering
of healthcare providers that we want to detect and we refer to these clusters as latent populations.

The hazard function for individual i in group j is:

λ(t;Xij , wk, zjk) =

K∏
k=1

[
λ0(t)wk exp

(
XT
ijβ
)]zjk

(2.1)

where λ0(t) represents the baseline hazard, β is the vector of regression coefficients and wk is the
frailty term shared among groups of the same latent population k. Both the frailty and the baseline
hazard are assumed to be nonparametric, which makes model (2.1) an extension of a proportional
hazard Cox model. The observable data Y are made up of the set of Yij = {Tij , δij ,Xij} over
all i, j. We define this as the ”incomplete” data, while the ”complete” data are the realizations of
the vector {Tij , δij ,Xij , wk, zjk}. We also assume that censoring is noninformative, thus that T ∗ij
and Cij are conditionally independent, given Xij , wk and zjk.
Starting from the hazard rate, we can to write down the full likelihood of our model for the
complete data explicitly:

Lfull(θ;Y|z) =

K∏
k=1

J∏
j=1

π
zjk
k · Ljkfull(θ;Yj |z) (2.2)
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where

Ljkfull(θ;Yj |z) =

nj∏
i=1

{
[λ0(tij)wk exp

(
XT
ijβ
)
]δij · exp

[
−Λ0(tij)wk exp

(
XT
ijβ
)]}zjk

(2.3)

and θ = (π,w, λ0(t),β) is the vector of parameters, z := {zjk}k=1:K
j=1:J is the matrix of random

vectors {zj}j=1:J indicating membership of groups j in populations k, and Λ0(t) =
∫ t
0
λ0(s)ds is

the cumulative baseline hazard function.
This model can be interpreted as a shared frailty Cox model where the frailties are shared

among latent populations, and also as a mixture model, where each component is a survival
distribution, π is the vector of mixing proportions and w is the vector of component-specific
frailties. Finally, the number of latent populations, K, can be considered as an unknown parameter,
and the relative hazard between two individuals with the same covariate values but from different
latent populations k and k# can be described by the frailty ratio wk/wk# . We note that the
model as written is over-parameterised, since the same likelihood would result from multiplying
λ0(t) by a constant c while dividing all the wk by c, but identifiability is ensured within the
estimation algorithm (Section 3.1).

3 Computation

3.1 A Tailored Expectation-Maximization Algorithm

We propose a novel Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to estimate
θ for a given K. The algorithm iterates between two steps, Expectation and Maximization and,
under regularity conditions, the algorithm is guaranteed to converge to a stationary point
(Dempster et al., 1977; Laird, 1978; Vaida et al., 2000; Cortiñas Abrahantes and Burzykowski,
2005).

E-step: The full log-likelihood (2.2)-(2.3) can be decomposed into two parts, the first (3.1)
depending on π and the second (3.2) depending on λ0(t),β,w.

lfull,1(π;Y|z) =

K∑
k=1

J∑
j=1

zjk · log(πk). (3.1)

lfull,2(λ0(t),β,w;Y|z) =

K∑
k=1

J∑
j=1

zjk ·
nj∑
i=1

δij [log(λ0(tij)) + log(wk) + XT
ijβ]−

Λ0(tij)wk exp{XT
ijβ}. (3.2)

The Expectation step consists of computing:

Q(θ) = Ez|θ̂[lfull(θ;Y|z)] = Ez|θ̂[lfull,1(θ;Y|z)] + Ez|θ̂[lfull,2(θ;Y|z)] (3.3)

the expectation over z, given the current values of parameters θ̂ = (π̂, λ̂0(t), β̂, ŵ), of the full
log-likelihood for the observed data Y.
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This reduces to the computation of E[zjk|Y, θ̂], which we then include in (3.1) and (3.2).

E[zjk|Y, θ̂] can be derived in closed form using Bayes’ theorem (3.4).

E[zjk|Y, θ̂] =
πk · exp

{∑nj

i=1 δij · log(wk)− Λ0(tij)wk exp{XT
ijβ}

}
∑
r∈{1:K} πr exp

{∑nj

i=1 δij · log(wr)− Λ0(tij)wr exp{XT
ijβ}

} . (3.4)

For simplicity, we write αjk = E[zjk|Y, θ̂]. Furthermore, we note that this step is similar to the
posterior probability computation in general mixture models.

M-step: The Maximization step consists of maximizing Q(θ) with respect to θ. Q(θ)

can be partitioned so that we can maximize Q1(π) := Ez|θ̂[lfull,1|Y, θ̂] with respect to π and

Q2(λ0,β,w) := Ez|θ̂[lfull,2|Y, θ̂] with respect to λ0,β,w separately. The maximization of Q1(π)

is a constrained optimization problem, since
∑K
k=1 πk is equal to 1, and we can solve it by applying

the Lagrange multipliers technique (3.5).

π̂k =
1

J

J∑
j=1

αjk. (3.5)

The optimization of Q2(λ0,β,w) is not trivial, since we adopt a nonparametric baseline
hazard. We note that Q2(λ0,β,w) is a weighted version of the log-likelihood in a Cox regression
model with known offset. Following Johansen (1983), we adapt a profile log-likelihood approach
for the estimation of the shared parametric frailty Cox model. Initially, we estimate the w fixing
λ0,β, giving:

ŵk =

J∑
j=1

αjk

nj∑
i=1

δij

J∑
j=1

αjk

nj∑
i=1

{
Λ0(tij) · exp{XT

ijβ}
} . (3.6)

By substituting these estimates in Q2, we obtain:

Q2(λ0,β, ŵ) =

K∑
k=1

J∑
j=1

αjk ·
nj∑
i=1

δij [log(λ0(tij)) + log(ŵk) + XT
ijβ]− Λ0(tij)ŵk exp{XT

ijβ}.

(3.7)

We can rewrite Q2 in the following form, recalling that
∑K
k=1 αjk = 1,

Q2(λ0,β, ŵ) =

J∑
j=1

nj∑
i=1

δij log(λ0(tij)) + δij

(
K∑
k=1

αjk log(ŵk)

)
+ δij{XT

ijβ}− (3.8)

Λ0(tij)

(
K∑
k=1

αjkŵk

)
exp{XT

ijβ}.

This is similar to the form of the log-likelihood in a Cox regression model with known offset

log
(∑K

k=1 αjkŵk

)
. With arguments similar to Johansen (1983), it is possible to show that the

estimate of the cumulative baseline that maximizes (3.7) is the following:
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Λ̂0(tij) =
∑

(fg):tfg≤tij

dfg∑
rs∈R(tfg)

(∑K
k=1 αskŵk

)
exp
(
XT
rsβ
) (3.9)

where dfg is the total number of events happening at time tfg and R(tfg) represents the set of
patients who are at risk at time tfg, which is the event time of patient f in cluster g.

Including (3.9) in Q2(λ0,β, ŵ), we obtain the profile log-likelihood as a function of only β:

lprofile(β) =

J∑
j=1

nj∑
i=1

δij [X
T
ijβ − log

∑
rs∈R(tij)

(
K∑
k=1

αskŵk

)
exp
(
XT
rsβ
)

] (3.10)

Since (3.10) is of the form of the usual partial log-likelihood in the Cox model with known

offsets, standard software can be used to obtain the maximal β̂.
The profile likelihood method also ensures identifiability between λ0(t) and the wk, since

at each step of the algorithm, one is estimated conditionally on the current value of the other.
We observed better convergence from leaving the wk unconstrained, compared to applying a
constraint such as w1 = 1 before running the EM algorithm. However, for interpretability we
divide the estimates of the set wk’s by the lowest value of wk.

In order to address the identifiability issue, we tried to include the frailty ratio directly in the
model:

λ(t;Xij , wk, zjk) =

K∏
k=1

[
λ0(t)

wk
wk−1

exp
(
XT
ijβ
)]zjk

(3.11)

where w0 is assumed to be equal to w1, so the ratio associated to zj1 is equal to 1. This hazard
leads to the following full log-likelihood, which is the analogous of (3.2):

lfull,2(λ0(t),β,w;Y|z) =

K∑
k=1

J∑
j=1

zjk ·
nj∑
i=1

δij [log(λ0(tij)) + log

(
wk
wk−1

)
+ XT

ijβ]−

Λ0(tij)
wk
wk−1

exp{XT
ijβ}. (3.12)

If we differentiate with respect to the ratio wk/wk−1, we obtain that the ratio’s estimate is equal
to the singular wk’s estimate in (3.6) and this is due to the fact that it is not possible to identify
the w1.

̂( wk
wk−1

)
=

J∑
j=1

αjk

nj∑
i=1

δij

J∑
j=1

αjk

nj∑
i=1

{
Λ0(tij) · exp{XT

ijβ}
} . (3.13)

Moreover, we tried to fix an order constraint in order to avoid label switching. We defined a new

variable bk = log
(

wk

wk−1
− 1
)

, which means that wk

wk−1
= exp{bk}+ 1 and that wk > wk−1. We

wrote (3.12) as follows:

lfull,2(λ0(t),β,w;Y|z) =

K∑
k=1

J∑
j=1

zjk ·
nj∑
i=1

δij [log(λ0(tij)) + log(exp{bk}+ 1) + XT
ijβ]−

Λ0(tij)(exp{bk}+ 1) exp{XT
ijβ}. (3.14)
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By differentiating with respect to bk we obtain:

b̂k = log

{
̂( wk
wk−1

)
− 1

}
(3.15)

The obtained result is coherent with the fact that the derivative of the log-likelihood with respect
to the ratio is analytically solvable, and the same holds for its transformation bk. So, it is not
possible to introduce an order constraint for the proposed model.

3.2 Estimation of the Standard Errors

In the case of the Cox model with shared frailty terms, it is not possible to compute the variance-
covariance matrix directly from the marginal log-likelihood, but it is possible to derive it from the
observed information matrix, I(θ)−1, (Klein, 1992), and this has been shown to be a consistent
estimator (Parner et al., 1998). The observed information matrix can be written as:

I(θ) = −∂
2l(θ)

∂θ2
(3.16)

where l(θ) is the observable log-likelihood:

l(θ) =

J∑
j=1

nj∑
i=1

δij log
(
λ0(tij) exp

(
XT
ijβ
))

+ log

(
K∑
k=1

πkw
Dj

k · exp

nj∑
i=1

[
−Λ0(tij)wk exp

(
XT
ijβ
)])

where Dj is the total number of events in cluster j, Dj =
∑nj

i=1 δij . Note that this is obtained
by integrating the full likelihood over the random variable z. For further information about the
derivation of the observable log-likelihood and the elements of the observed information matrix,
see Appendix A.

This asymptotic estimate of the covariance matrix can be computed once the parameters
are estimated from the EM algorithm. A more computationally convenient approximation that
exploits the EM framework was proposed by Louis (1982) together with a method to accelerate
the algorithm, and a proof of quadratic convergence near the maximum likelihood estimate. Louis
(1982) states that the jth component of the observed information matrix I can be written as:

Ij = E[Bj ]− E[SjS
T
j ] + S?j S

?T
j (3.17)

where S and S? are the gradient vectors of the full log-likelihood and the observable log-likelihood
respectively, while B is the negative second derivative matrix of the full log-likelihood (see
Appendix A for element-wise computation).

In this work we implement both methods in order to compare them and we provide also a
third estimate for the observed information matrix, by using numerical methods (Gilbert and
Varadhan, 2016) to obtain the first and second derivatives of the full log-likelihood.

In this work we estimate the frailties separately due to superior convergence; however, because
we are interested in the ratios of frailties, we estimate the standard errors related to the ratios
through the following formula:

V ar(ŵk/ŵ1) =

(
µŵk

µŵ1

)2

·

[
σ2
ŵ1

µ2
ŵ1

+
σ2
ŵk

µ2
ŵk

− 2Cov(ŵ1, ŵk)

µŵ1µŵk

]
(3.18)

which can be derived by using the first and second order Taylor expansions.
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3.3 Selection of the number of latent populations

Since it is impossible to estimate K using a log-likelihood maximization argument (Figueiredo
and Jain, 2002), we estimate θ for each potential K, and compute a model selection criterion
such as AIC, BIC, or search for the optimal K using the the approach proposed by Laird (1978).
For all the computations, we used the R software (R Development Core Team, 2016) developing
an R code available upon request.

4 Simulation study

A simulation study was conducted to evaluate the performance of the estimators obtained with
the algorithm described in Section 3. We simulated 100 datasets, each with J = 100 groups (e.g.,
healthcare providers) and nj = 50 statistical units (e.g., patients) per group, giving a total of
5, 000 records in each dataset. For all simulations, we set the covariate-related log hazard ratio
β = 0.4, and define the baseline cumulative hazard so that Λ−10 (t) = 0.01 · t1.9 in order to mimic
the dataset that motivated this work. The aim of the simulation was to estimate how well the
algorithm estimates the true frailty ratios w/w1, mixing proportions π and number of latent
populations K for various values of these parameters of interest.

(i) Firstly we focus on π, by setting K = 2 and w2/w1 = 1.71, and run 9 scenarios with
π1 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The results are shown in Appendix B. In general,
we observe estimates closer to the true values when the mixing proportion, π1, is closer to
0.5, i.e., when there is a relatively large amount of data in all mixture components.

(ii) We focus on w2/w1, by setting K = 2, π = [0.3, 0.7] and run 7 scenarios, with w2/w1 ∈
{1.14, 1.29, 1.43, 1.57, 1.71, 2, 3}. We assume that frailty ratios smaller than 1.1 are not of
practical interest. Conversely, we assume that for frailty ratios bigger than about 3, the
presence of two latent populations can be identified easily by exploratory analysis, e.g.
plotting a set of survival curves by group. The results are shown in Appendix C. The
estimates of all parameters become more accurate as the frailty ratio increases, thus the
contrast between latent populations becomes larger. In particular, the true number of latent
populations K = 2 is detected for values of w2/w1 of around 1.6 and higher.

(iii) We focus on K, which leads to a complex pattern of simulations since varying K changes the
length of the vectors π and of w/w1. We tested K ∈ {2, 3, 4}, π ∈ {(0.4, 0.6), (0.3, 0.2, 0.5),
(0.15, 0.25, 0.3, 0.3)} and w/w1 ∈ {(1.5), (1.5, 2.5), (1.5, 2.5, 4)} respectively. In our applica-
tions (5) we did not detect more than 4 populations with any method of model selection. The
results are shown in Appendix D. The frailty ratios and mixing proportions are estimated
accurately for all values of K. However, the three model selection methods produce different
estimates of K, with BIC recovering the true values more often, and AIC and the method
of Laird (1978) tending to estimate higher values.

AIC theoretically favours more complex models than BIC, however they produced the same
estimate for the number of latent populations in the majority of the scenarios. As discussed by, e.g.
Burnham and Anderson (2003), BIC would be preferred if we believe there is a low-dimensional
“true” clustering structure which would not change with the amount of data, whereas AIC is
preferred if we expect more latent populations (with more weakly-contrasting frailties) to be
revealed as the dataset becomes bigger. We would expect the method of Laird (1978) to behave
in a similar way to AIC, though we are unaware of any formal comparison.
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Overall, the algorithm performs well, especially when there is a moderately large contrast
between the frailty in different latent populations, and there is sufficient information in all latent
populations. Thus, more clearly-defined latent population structures are revealed more easily.

5 An application to healthcare structures admission for
patients with heart failure

The nonparametric frailty Cox model was applied to administrative data from patients with
heart failure treated in Lombardia Region, Italy. Heart failure is the most common cause of
hospitalization in Western countries for people more than 65 years old, with a 5 year risk of death
similar or worse than that observed after a diagnosis of cancer (Frigerio et al., 2017). Moreover,
heart failure is a chronic disease and has a substantial economic impact on health services (Corrao
et al., 2014).

While some work has investigated the full history of healthcare structure admission and
death for heart failure patients through multi-state models (Gasperoni et al., 2017), an event of
particular interest is the second admission, as a marker of success of the initial treatment and
possible future health care use.

Patient outcomes may be influenced by characteristics of the healthcare provider that may be
difficult to measure or observe, such as infrastructure, extent or expertise of staff, efficiency or
case mix. These unobserved covariates may cause over-dispersion. The time to readmission is
thought to be particularly related to healthcare provider policies, and the risk of readmission is
high. In contrast, times to first discharge or death are thought to be primarily related to illness
severity. By assuming a shared frailty between patients admitted to the same healthcare provider,
we investigate how the time to second admission is associated with the healthcare provider.
Furthermore, we use the nonparametric frailty distribution to detect clusters of healthcare
providers with similar outcomes, which may reflect unobserved structure-level predictors.

The original database is composed of 338, 861 admission records for a total of 210, 917 patients
with a first diagnosis of Heart Failure between 2005 and 2012, in the Lombardia Region in
Italy. The outcome is defined as the time between the first discharge and the second admission,
excluding those patients who died during the first treatment and between the first discharge and
the second admission. We select only those healthcare providers with more than 20 patients.
The final dataset consists of 25, 621 patients admitted for the first time between 2006 and 2007,
from 124 healthcare providers. The selected population have an average age of 73 years (SD 12)
and 52% male. 41% have three or more comorbidities, which include renal disease, tumours and
diabetes. 20% of the patients underwent one or more (up to 5) procedures, including coronary
artery bypass graft surgery (CABG), percutaneous transluminal coronary angioplasty (PTCA),
or insertion of an implantable cardioverter defibrillator (ICD).

We applied the nonparametric frailty Cox model, described in Section 2, with four individual-
level predictors: age, gender, a binary indicator of the presence of three or more comorbidities,
and the (continuous) total number of procedures. We fitted models with values of K ranging
from 1 to 5. The AIC and BIC were optimised by a model with K = 2 latent populations, while
the criterion of Laird (1978), as expected, suggested a greater number K = 4. In cases where the
true K ≤ 4 and between-population frailty ratios are > 1.1 our simulation suggested that AIC
and BIC estimate K more accurately.

We illustrate the variability among healthcare providers in times to second admission as 124
structure-specific Kaplan-Meier curves in Figure 1. The curves are coloured according to the
classification of healthcare providers from the model with K = 2. The blue curves represent the
latent population of healthcare providers with ŵ2 = 1.39 times the hazard of readmission relative
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Figure 1: 124 structure-specific Kaplan-Meier curves colored by membership of two latent
populations from the frailty model for time to readmission.

to ŵ1 , and the model estimates a probability of π̂2 = 0.67 that a healthcare provider belongs to
this population. All estimates are reported in Table 1.

Older people have a higher risk of being readmitted (hazard ratio, HR, e0.04 = 1.04 per year of
age), as do men (HR e0.27 = 1.31), people having three or more comorbidities (HR e0.35 = 1.42)
and people having fewer medical or surgical procedures (HR e−0.14 = 0.87 per procedure). The
relationship between fewer procedures and risk of readmission may seem counter-intuitive but it
reflects the fact that people undergoing procedures are younger on average (with mean age 68.5
(SD 11.7), compared to 74.3 (11.7) for people who do not) and there may be some collinearity
between age and number of procedures. Moreover, the procedure should have successfully treated
the underlying heart disease, thereby reducing the need for readmission. The estimates and
standard errors for the same covariate effects from a standard Cox model without frailties are
almost identical (Table 1).

We then sought to describe the latent population structure, indicated by the model with
K = 2, in terms of characteristics of the healthcare providers that are recorded in the database.
Healthcare providers belonging to the population with higher risk of readmission, on average, had
a higher number of patients and a higher percentage of in-structure deaths per year, although
the percentages of surgical and complex cases were similar between the two latent populations,
Table 2. Comparing the type of institution, we found that medical institutions belonged to the
higher-frailty population more often, while nursing homes and public IRCCS (research center
institutes) tended to belong to the lower-frailty population, Figure 2.
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Table 1: Estimates of Cox model with a nonparametric frailty term and a classical Cox model
Cox with nonparametric frailty Cox model

Parameters Estimates Standard errors Estimates Standard errors
Louis Exact Numerical (exact)

π1 0.33 0.0596 0.0600 0.0596 - -
π2 0.67 - - - - -
w2/w1 1.39 0.0420 0.0420 0.0420 - -
Log hazard ratios for covariates
1 year of age 0.04 0.0009 0.0009 0.0009 0.04 0.0009
Male 0.27 0.0181 0.0181 0.0181 0.28 0.0180
3 or more comorbidities 0.35 0.0175 0.0175 0.0175 0.35 0.0174
Number of procedures -0.14 0.0125 0.0125 0.0125 -0.13 0.0124

Table 2: Healthcare providers’ profiles
Latent population 1 Latent population 2

Average number of patients (s.d.) 7,071.8 (5,121.1) 11,965.2 (9894.0)
Average % of in-structure death (s.d.) 2.8 (2.1) 3.5 (1.5)
Average % of surgical cases (s.d.) 35.9 (21.2) 30.7 (12.2)
Average % of complex cases (s.d.) 13.8 (5.7) 14.3 (3.4)
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Figure 2: Healthcare providers structures in the two latent populations. Red bars are related to
structures that belong to the second latent population, while blue bars to the first one.
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We then extended the frailty model to include two structure-specific covariates, describing the
type of healthcare provider with three categories, as in Figure 2, and the percentage of admissions
in which the patient died. The optimal model according to AIC and BIC still has K = 2, with
relative frailty w2/w1 = 1.42 between the two populations, and an estimated probability of
π2 = 0.76 that the healthcare provider belongs to the group with the higher frailty. Thus these
two covariates can characterize the two latent populations only partially, and the remaining
clustering pattern probably depends on unobserved characteristics of the healthcare providers.
The nonparametric frailty model therefore serves as a starting point for further investigation of
the effect of healthcare providers and their characteristics on patient outcomes.

6 Discussion

In this paper, we propose a new model that deals with hierarchical time-to-event data and tackles
two issues: extending the classical Cox proportional hazard model and detecting a clustering
structure among groups by including a shared nonparametric frailty term. Classical approaches
for hierarchical time-to-event data use proportional hazard models with a parametric shared
frailty, however, the most appropriate parametric frailty distribution will not always be clear
(Austin, 2017) and the data may not fit any standard parametric family. Having a discrete frailty
distribution, together with an unspecified baseline hazard, leads to a novel and very flexible model
for grouped survival data.

Moreover, we are able to detect clustering at the second level of a hierarchy of time-to-event
data. In published literature, healthcare providers (or specifically hospitals) clustering is usually
investigated by applying a logistic regression where the covariates are patient or structure specific
(Ohlssen et al., 2007; Grieco et al., 2011). These models have two limitations: first, the covariates
are chosen a priori; second, the time-to-event data are reduced to a single binary variable
representing incidence (or not) of an event of interest. Through our model, we can identify the
existence and nature of a clustering structure, without defining a priori a set of covariates that
describe the investigators’ opinions about the performance of the healthcare providers. A further
strength of the proposed model is that it may be used to detect clusters of individuals, as well as
clusters of groups, since the frailties may be group-related or individual-related. Here we defined
a model with a shared frailty term for groups of healthcare providers, but individual frailty
models are simply specific cases of shared frailty models where each group is composed of a single
healthcare provider. This application would be of interest when patient clusters are suspected
but the available covariates are not sufficient to describe the full variability. Additionally, also
detecting more complex hierarchical structures (e.g., patients grouped in structures grouped
in regions) may be of interest. In this case, we could consider an extension to nested frailty
models, in a frequentist framework, or we could consider Bayesian methods, that would express
the uncertainty in the clustering structure more easily. These models could also be fitted in
standard Bayesian software using Markov Chain Monte Carlo algorithms, although they may
take a longer time to converge, especially for big databases.

Usually, the software used to estimate the parameters of proportional hazard models with
shared frailties relies on some version of the EM algorithm. In this work, we proposed a EM
algorithm that was designed for our model. Other techniques, besides the EM algorithm, have
been explored in the literature for specific models: for example, the penalized partial likelihood
approach (Therneau et al., 2003) has been applied for Gamma-distributed frailties (with the same
results as the EM) or Log-Normal-distributed frailties (with similar results to the EM), while
Gauss-Hermite quadrature was applied by Crowther et al. (2014) for a parametric proportional
hazards model. Li et al. (1998) proposed Monte Carlo EM (MCEM), in which the expectation step
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is computed through a Monte Carlo simulation. Extension of our work to investigate alternative
implementation methods that could speed up the procedure would be worthwhile. More efficient
algorithms would be particularly important for analysis of very large databases, such as the
administrative clinical database that motivated this work. Such administrative databases are
emerging as powerful tools for addressing questions in epidemiology and other medical research;
the need of rigorously defined models and reliable methods for preliminary analysis is clear. The
proposed model, which makes few assumptions about the baseline hazard or frailty distribution,
represents a step in this direction. Further extension of this model to a realistic but more complex
framework, such as multiple events, would also be a natural next step.
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Jos Cortiñas Abrahantes and Tomasz Burzykowski. A version of the em algorithm for proportional
hazard model with random effects. Biometrical Journal, 47(6):847–862, 2005. ISSN 1521-4036.
doi: 10.1002/bimj.200410141. URL http://dx.doi.org/10.1002/bimj.200410141.

David R Cox. Regression models and life-tables (with discussion). Journal of the Royal Statistical
Society, Series B, 34:187–220, 1972.

Michael J Crowther, Maxime P Look, and Richard D Riley. Multilevel mixed effects parametric
survival models using adaptive gauss–hermite quadrature with application to recurrent events
and individual participant data meta-analysis. Statistics In Medicine, 33(22):3844–3858, 2014.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society, Series B, 39:1–38, 1977.

Dirley M dos Santos, Richard B Davies, and Brian Francis. Nonparametric hazard versus
nonparametric frailty distribution in modelling recurrence of breast cancer. Journal of statistical
planning and inference, 47(1-2):111–127, 1995.

Luc Duchateau and Paul Janssen. The frailty model. Springer Science & Business Media, 2007.

Bradley Efron and David V Hinkley. Assessing the accuracy of the maximum likelihood estimator:
Observed versus expected fisher information. Biometrika, 65:457–487, 1978.

Chris Elbers and Geert Ridder. True and spurious duration dependence: The identifiability of
the proportional hazard model. The Review of Economic Studies, 49(3):403–409, 1982.

V. T. Farewell. The use of mixture models for the analysis of survival data with long-
term survivors. Biometrics, 38(4):1041–1046, 1982. ISSN 0006341X, 15410420. URL
http://www.jstor.org/stable/2529885.

Mario A. T. Figueiredo and Anil K. Jain. Unsupervised learning of finite mixture models. IEEE
Transactions on pattern analysis and machine intelligence, 24(3):381–396, 2002.

15



Maria Frigerio, Cristina Mazzali, Anna Maria Paganoni, Francesca Ieva, Pietro Barbieri, Mauro
Maistrello, Ornella Agostoni, Cristina Masella, Simonetta Scalvini, et al. Trends in heart failure
hospitalizations, patient characteristics, in-hospital and 1-year mortality: A population study,
from 2000 to 2012 in lombardy. International Journal of Cardiology, 236:310–314, 2017.

Francesca Gasperoni, Francesca Ieva, Giulia Barbati, Arjuna Scagnetto, Annamaria Iorio,
Gianfranco Sinagra, and Andrea Di Lenarda. Multi-state modelling of heart failure care
path: A population-based investigation from italy. PLOS ONE, 12(6):1–15, 06 2017. doi:
10.1371/journal.pone.0179176. URL https://doi.org/10.1371/journal.pone.0179176.

Paul Gilbert and Ravi Varadhan. numDeriv: Accurate Numerical Derivatives, 2016. URL
https://CRAN.R-project.org/package=numDeriv. R package version 2016.8-1.
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Supplementary Materials

Appendix A

In this section we compute the observed information matrix and we compute it in two ways:
evaluating the derivatives of the observable loglikelihood and with the Louis method.

Hessian of the observable loglikelihood

First of all, we write the observable likelihood, which is obtained by integrating out the random
variable z:
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To compute the second derivatives with respect to all parameters, recall the definition of the
baseline and cumulative baseline hazard estimates and the related derivatives:
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where dfg is the total number of events recorded at time tfg.
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)
}(∑K

k=1 πkw
Dj

k · exp{−wk
∑nj

i=1 Λ0(tij) exp
(
XT
ijβ
)
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(6.10)
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ijβ},

α, γ = 1 : p (6.11)
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,

g = 1 : (K − 1), q = 1 : K (6.12)
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, g = 1 : (K − 1), α = 1 : p

(6.13)
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}
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 ,

q = 1 : K,α = 1 : p (6.14)

Louis method

We start from the jth component of the full loglikelihood, written in Eq. (6.15).
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ljfull(θ; data|z) =

K∑
k=1

zjk ·

[
log(πk) +

{
nj∑
i=1

δij [log(λ0(tij)) + log(wk) + XT
ijβ]− Λ0(tij)wk exp{XT

ijβ}

}]
.

(6.15)

Louis states that the jth component of the observed information matrix I can be written as
follows:

Ij = E[Bj(Tij , δij , zjk)]−E[Sj(Tij , δij , zjk)Sj(Tij , δij , zjk)T ] + Sj(Tij , δij)
?Sj(Tij , δij)

?T

(6.16)

The final observed information matrix is the sum of all jth elements: I =
∑J
j=1 I

j .

We define S and S? as the gradient vectors of the full loglikelihood and the observable loglikeli-
hood, see (6.17) and (6.18), while B and B? are the negative second derivative matrices of full
loglikelihood and the observable loglikelihood, see (6.20). We remind that the unique observable
variables are (Tij , δij), while the complete set of variables is (Tij , δij , zjk).

STj (Tij , δij , zjk) = ∇ljfull =

[
∂ljfull
∂π1

, . . . ,
∂ljfull
∂πK−1

,
∂ljfull
∂w1

, . . . ,
∂ljfull
∂wK

,
∂ljfull
∂β1

, . . . ,
∂ljfull
∂βp

]T
(6.17)

S?j (Tij , δij) = E[Sj(Tij , δij , zjk)] (6.18)

E[Sj(Tij , δij , zjk)Sj(Tij , δij , zjk)T ] =

 E[∇πljfull∇Tπ l
j
full] E[∇πljfull∇Twl

j
full] E[∇πljfull∇Tβ l

j
full]

E[∇wljfull∇Tπ l
j
full] E[∇wljfull∇Twl

j
full] E[∇wljfull∇Tβ l

j
full]

E[∇βl
j
full∇Tπ l

j
full] E[∇βl

j
full∇Twl

j
full] E[∇βl

j
full∇Tβ l

j
full]


(6.19)

Bj(Tij , δij , zjk) =

−∂
2ljfull

∂π2
1

· · · − ∂2ljfull

∂π1∂πK−1

...
. . .

...
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· · · −∂
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−∂
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∂wK∂βp

− ∂2ljfull

∂β1∂w1
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−∂
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...
...
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. . .
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p


(6.20)
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The components of S are computed in (6.21), (6.22) and (6.23).

∂ljfull
∂πg

=
zjg
πg
− zjK
πK

, g = 1 : (K − 1) (6.21)

∂ljfull
∂wq

= zjq

nj∑
i=1

δij
wq
− Λ0(tij) exp

{
XT
ijβ
}
, q = 1 : K (6.22)

∂ljfull
∂βα

=

K∑
k=1

zjk

nj∑
i=1

δij

{
λ0α(tij)

λ0(tij)
+XT

ijα

}
− wk exp

{
XT
ijβ
}
{Λ0α(tij) + Λ0(tij)Xijα} , α = 1 : p

(6.23)

The components of E[Sj(Tij , δij , zjk)Sj(Tij , δij , zjk)T ] are:

E

[
∂ljfull
∂πg

∂ljfull
∂πl

]
=
αjg
π2
g

1{g=l} +
αjK
π2
K

, g, l = 1 : (K − 1) (6.24)

E

[
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]
=1{q=r} · αjq

(
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δij
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− Λ0(tij) exp

{
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})2

, q, r = 1 : K (6.25)

E

[
∂ljfull
∂βα

∂ljfull
∂βγ

]
=

K∑
k=1

αjk

(
nj∑
i=1

δij

{
λ0α(tij)

λ0(tij)
+XT

ijα

}
− wk exp

{
XT
ijβ
}
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}
− wk exp

{
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)
,

α, γ = 1 : p (6.26)
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(6.27)
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g = 1 : (K − 1), α = 1 : p (6.28)
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The components of B are computed in (6.30), (6.31), (6.32) and (6.33).

∂2ljfull
∂πg∂πl

= −zjg
π2
g

1{g=l} −
zjK
π2
K

, g, l = 1, ..,K − 1 (6.30)

∂2ljfull
∂w2
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q

, q = 1 : K (6.31)

∂2ljfull
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zjk
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δij

{
λ0αγ(tij)λ0(tij)− λ0α(tij)λ0γ(tij)

λ0(tij)2

}
−

wk exp
{
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ijβ
}
{Λ0αγ(tij) + Λ0α(tij)Xijγ + Λ0γ(tij)Xijα + Λ0(tij)XijαXijγ} ,

α, γ = 1 : p (6.32)

∂2ljfull
∂wq∂βα

=zjq

nj∑
i=1

− (Λ0(tij)Xijα + Λ0α(tij)) exp
{
XT
ijβ
}
, q = 1 : K,α = 1 : p (6.33)

Appendix B

This appendix shows the results of the first simulation study with K = 2 hidden populations, a
constant frailty ratio of w2/w1 = 1.71 and the proportion π1 belonging to the first population
varied in 9 scenarios (Table 3).

π1 w1 w2 ratio
1 0.10 0.70 1.20 1.71
2 0.20 0.70 1.20 1.71
3 0.30 0.70 1.20 1.71
4 0.40 0.70 1.20 1.71
5 0.50 0.70 1.20 1.71
6 0.60 0.70 1.20 1.71
7 0.70 0.70 1.20 1.71
8 0.80 0.70 1.20 1.71
9 0.90 0.70 1.20 1.71

Table 3: First simulation study
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Figure 3: Estimates of number of latent populations, K, from model with minimum AIC, fixed
frailty ratio and nine alternative values of π1. In the y-axis we count the total number of
simulations giving each estimate of K, while on x-axis we show the nine scenarios (from the lowest
π1 on the left to the highest π1 on the right). π1 is associated with the lowest frailty (w1 = 0.7).
The part of the bars in black is the total number of simulations in which the best model estimate
K = 1, the green part of the bars represents the total number of simulations in which the best
model estimate K = 2 and so o and so forth. The true model has K = 2.

Fig. 3, 4 and 5, present the resulting estimates of K, the number of latent populations, using
three alternative methods of model selection. Each bar represents one of the nine scenarios with
alternative values of π1. The proportion of the 100 simulations estimating each value of K from 1
to 5 is indicated by stacked bars of different colours. The majority of simulations estimate the
correct value of K = 2 for all three model selection methods, otherwise for AIC and BIC K = 1
is the next most common estimate, and, for the method of Laird (1978), K = 3.

Fig. 6 shows that the mixing proportion π1 is well estimated in all scenarios. Fig. 7 shows
that the frailty ratio of 1.71 tends to be estimated more accurately when the mixing proportion
is closer to 0.5.

Appendix C

This appendix shows the results of the second simulation study with K = 2, the proportion of
groups with the lower frailty value fixed at π1 = 0.3, and the frailty ratio w2/w1 varying in 7
scenarios from 1.14 to 3.00 (Table 4).
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Figure 4: Estimates of number of latent populations, K, from model with minimum BIC, fixed
frailty ratio and nine alternative values of π1. In the y-axis we count the total number of
simulations giving each estimate of K, while on x-axis we show the nine scenarios (from the lowest
π1 on the left to the highest π1 on the right). π1 is associated with the lowest frailty (w1 = 0.7).
The part of the bars in black is the total number of simulations in which the best model estimate
K = 1, the green part of the bars represents the total number of simulations in which the best
model estimate K = 2 and so o and so forth. The true model has K = 2.
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Figure 5: Estimates of number of latent populations, K, up to Laird (1978) criterium, fixed frailty
ratio and nine alternative values of π1. In the y-axis we count the total number of simulations
giving each estimate of K, while on x-axis we show the nine scenarios (from the lowest π1 on the
left to the highest π1 on the right). π1 is associated with the lowest frailty (w1 = 0.7). The part
of the bars in black is the total number of simulations in which the best model estimate K = 1,
the green part of the bars represents the total number of simulations in which the best model
estimate K = 2 and so o and so forth. The true model has K = 2.
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Figure 6: Estimates of π1, fixed frailty ratio and nine alternative values of π1. We represent the
nine boxplot (median and quantiles) of the maximum likelihood estimators for π1 over all 100
simulations, for each case. The red lines represent the real values.
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Figure 7: Estimates of the ratio w2/w1, fixed frailty ratio and nine alternative values of π1.
We represent the nine boxplot (median and quantiles) of the ratio of the maximum likelihood
estimators for w1 and w2 over all 100 simulations, for each case. The red lines represent the real
values.
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π1 w1 w2 ratio
1 0.30 0.70 0.80 1.14
2 0.30 0.70 0.90 1.29
3 0.30 0.70 1.00 1.43
4 0.30 0.70 1.10 1.57
5 0.30 0.70 1.20 1.71
6 0.30 0.70 1.40 2.00
7 0.30 0.70 2.10 3.00

Table 4: Second simulation study

As before, in Fig. 8, 9 and 10, we present the estimates of K, the number of latent populations.
Broadly for all three model selection methods, the larger the contrast in frailties w2/w1 between
the populations, the more frequently the true K = 2 is obtained.

The estimates of the mixing proportion are represented in Fig. 11, and the estimates of the
frailty ratio in Fig. 12, showing that more accurate estimates are obtained as the frailty ratio
increases, thus as the contrast between the two populations becomes greater.

Appendix D

In Appendix D, we show the full results of the third simulation study, where the number of latent
populations is varied in three scenarios with K = 2, 3, 4 in turn, while the mixing proportions
and frailty ratios are fixed at values listed in Table 5.

K π1 π2 π3 π4 w1 w2 w3 w4

2 0.40 0.60 - - 2 3 - -
3 0.20 0.30 0.50 - 2 3 5 -
4 0.15 0.25 0.30 0.30 2 3 5 8

Table 5: Third simulation study

In Fig. 13, 14 and 15, we present the estimates of K, the number of latent populations, under
three methods of model selection. We note that AIC estimates the true value of K in the majority
of simulations in the three considered frameworks, Fig. 13. Both AIC and BIC show the best
performances in the case of real K = 2 and the worst performances in the case of real K = 3.
BIC estimates one latent population less than the true value in the majority of cases for both real
K = 3 and K = 4, Fig. 14. Finally, Laird (1978) method tends to estimate the true K in about
half of the simulations, but in the other half it tends to estimate one or two latent populations
more than the true value, Fig. 15.

The mixing proportions (Fig. 16) and the frailty ratios (Fig. 17) are estimated accurately.
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Figure 8: Estimates of number of latent populations, K, from model with minimum AIC, fixed
π1 and seven alternative values of w2/w1. In the y-axis we count the total number of simulations
giving each estimate of K, while on x-axis we show the seven scenarios (from the lowest w2/w1

on the left to the highest w2/w1 on the right). The part of the bars in black is the total number
of simulations in which the best model estimate K = 1, the green part of the bars represents the
total number of simulations in which the best model estimate K = 2 and so o and so forth. The
true model has K = 2.
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Figure 9: Estimates of number of latent populations, K, from model with minimum BIC, fixed
π1 and seven alternative values of w2/w1. In the y-axis we count the total number of simulations
giving each estimate of K, while on x-axis we show the seven scenarios (from the lowest w2/w1

on the left to the highest w2/w1 on the right). The part of the bars in black is the total number
of simulations in which the best model estimate K = 1, the green part of the bars represents the
total number of simulations in which the best model estimate K = 2 and so o and so forth. The
true model has K = 2.
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Figure 10: Estimates of number of latent populations, K, from model up to Laird (1978) criterium,
fixed π1 and 7 alternative values of w2/w1. In the y-axis we count the total number of simulations
giving each estimate of K, while on x-axis we show the 7 scenarios (from the lowest w2/w1 on
the left to the highest w2/w1 on the right). The part of the bars in black is the total number of
simulations in which the best model estimate K = 1, the green part of the bars represents the
total number of simulations in which the best model estimate K = 2 and so o and so forth. The
true model has K = 2.
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Figure 11: Estimates of π1, fixed π1 and seven alternative values of w2/w1. We represent the
seven boxplot (median and quantiles) of the maximum likelihood estimators for π1 over all 100
simulations, for each case. The red lines represent the real values.
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Figure 12: Estimates of w2/w1, fixed π1 and seven alternative values of w2/w1. We represent the
seven boxplot (median and quantiles) of the ratio of the maximum likelihood estimators for w2

and w1 over all 100 simulations, for each case. The red lines represent the real values.
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Figure 13: Estimates of number of latent populations, K, from model with minimum AIC. In
this case, we vary all the parameters up to Table 5. In the y-axis we count the total number
of simulations giving each estimate of K, while on x-axis we show the three scenarios (from
the lowest K on the left to the highest K on the right). The part of the bars in black is the
total number of simulations in which the best model estimate K = 1, the green part of the bars
represents the total number of simulations in which the best model estimate K = 2 and so o and
so forth. The true model has K = 2 in the first bar on the left, K = 3 in the central bar and
K = 4 in the third bar from the left.
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Figure 14: Estimates of number of latent populations, K, from model with minimum BIC. In
this case, we vary all the parameters up to Table 5. In the y-axis we count the total number
of simulations giving each estimate of K, while on x-axis we show the three scenarios (from
the lowest K on the left to the highest K on the right). The part of the bars in black is the
total number of simulations in which the best model estimate K = 1, the green part of the bars
represents the total number of simulations in which the best model estimate K = 2 and so o and
so forth. The true model has K = 2 in the first bar on the left, K = 3 in the central bar and
K = 4 in the third bar from the left.
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Figure 15: Estimates of number of latent populations, K, from model up to Laird (1978). In
this case, we vary all the parameters up to Table 5. In the y-axis we count the total number
of simulations giving each estimate of K, while on x-axis we show the three scenarios (from
the lowest K on the left to the highest K on the right). The part of the bars in black is the
total number of simulations in which the best model estimate K = 1, the green part of the bars
represents the total number of simulations in which the best model estimate K = 2 and so o and
so forth. The true model has K = 2 in the first bar on the left, K = 3 in the central bar and
K = 4 in the third bar from the left.
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Figure 16: Estimates of the mixing proportions. In the first boxplot from the left we have K = 2
and the real values are w = [0.4, 0.6], in the second we have K = 3 and the real values are
π = [0.2, 0.3, 0.5], in the third we have K = 4 and the real values are π = [0.15, 0.25, 0.30, 0.30].
The red lines represent the real values.
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Figure 17: Ratios of the estimated ratios. In the first boxplot from the left we have K = 2
and the real values are w2/w1 = 1.5, in the second we have K = 3 and the real values are
w/w1 = [1.5, 2.5], in the third we have K = 4 and the real values are w/w1 = [1.5, 2.5, 4]. The
red lines represent the real values.
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