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Abstract

In the wide literature devoted to the cardiac structural mechanics, the strain energy proposed by Holzapfel
and Ogden exhibits a number of interesting features: it has suitable mathematical properties and it is based
on few material parameters that can, in principle, be identified by standard laboratory tests. In this work
we illustrate the implementation of a numerical solver based on such a model for both the passive and
active mechanics of the heart. Moreover we discuss its performance on a few tests that can be regarded as
preliminary to the adoption of the Holzapfel–Ogden model for a real cardiac simulation.

While the passive behavior of the cardiac muscle is modeled as an orthotropic hyperelastic material, the
active contraction is here accounted for a multiplicative decomposition of the deformation gradient, yielding
the so–called “active strain” approach, a formulation that automatically preserves the ellipticity of the stress
tensor and introduces just one extra parameter in the model.

We adopt the usual volumetric–isochoric decomposition of the stress tensor to obtain a mathematically
consistent quasi–incompressible version of the material, then the numerical approximation applies to a
classical Hu–Washizu three fields formulation. After introduction of the tangent problem, we select suitable
finite element spaces for the representation of the physical fields. Boundary conditions are prescribed by
introduction of a Lagrange multiplier.

The robustness and performance of the numerical solver are tested versus a novel benchmark test, for
which an exact solution is provided. The curvature data obtained from the free contraction of muscular thin
films are used to fit the active contraction parameter.

Introduction

Looking at the heart from a structural point of view, the myocardium can be considered as an hyperelastic
orthotropic material, mechanically characterized by two families of mutually orthogonal directions, the fibers
and the sheets. In the filling phase of the cardiac cycle, its chambers deform passively because of the venous
pressure difference and the suction due to the release of elastic strain energy; in systole the fibers contract,
actively produce a strain of the cardiac wall that by contracting the left ventricle determine the ejection of
blood through the tricuspid aortic valve.

Among the many material models proposed in the literature, the hyperelastic strain energy model pro-
posed by Holzapfel and Ogden (2009) to describe the mechanics of the passive myocardium is gaining an
increasing popularity. Its simple invariant–based formulation and the small set of material parameters in-
voked makes it particularly attractive. Even more important, the material parameters of the model can,
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in principle, be determined on the basis of standard biaxial stress–strain tests (Göktepe et al., 2011; Wang
et al., 2013a) without an ad hoc fitting in the specific application. While very recent papers have already
addressed the use of this model to real geometry simulations (Wang et al., 2013b; Nobile et al., 2012; Rossi
et al., 2012), a detailed discussion about the numerical implementation aspects and the performance of the
model in test cases is still missing.

In this work we illustrate a step by step implementation of the Holzapfel–Ogden model in a finite element
code, where the contractile ability of the muscle is accounted for an active strain approach. In particular,
we address some issues that are sometimes overlooked in the literature: the codification of the active
contraction in the model, the explicit calculation of the tangent problem, the efficient implementation of
boundary conditions. The numerical code is then tested on a new benchmark of homogeneous (non–trivial)
deformation, for which we provide a semi–explicit solution (up to an algebraic equation). The same test case
where the distribution of the fibers orientation is variable in space points out the role of the fibers in dictating
the cardiac rotation. The activation of the myocardium introduces, in our modeling framework, only one
activation parameter and, coherently with the methodology that characterizes the passive mechanics, we fix
such a parameter by an independent lab test. In particular, we fix the activation parameter γ at the value
that predicts the correct bending produced by an activated monolayer of cardiomyocytes (Böl et al., 2009;
Alford et al., 2010).

1. Background and notation

Given a body B that is modeled as a continuum, we consider a reference configuration χ0, and a generally
unknown actual configuration χ as functions from B to R

3. The reference and actual placements of the
body in R

3 are Ω0 := χ0(B) and Ω := χ(B), respectively; given p ∈ B, X = χ0(p) ∈ Ω0, and x = χ(p) ∈ Ω,
so that a deformation is a map:

ϕ = χ ◦ χ−1
0 , ϕ : Ω0 ∋ X 7→ x = χ

(
χ−1
0 (X)

)
∈ Ω.

We assume ϕ to be a diffeomorphism from Ω0 into Ω, whose derivative is the tensor gradient of deformation:

F(X) :=
∂ϕ

∂X
, [Fij ] =

∂ϕi

∂Xj

, i, j ∈ {1, 2, 3}.

Denoting by Lin+(R3) the vector space of all linear transformations from R
3 to R

3 with strictly positive
determinant, we define the set of admissible configurations as follows:

C =
{
ϕ : Ω0 → Ω such that F(X) ∈ Lin+ and ϕ|∂DΩ0

= X+ g
}
, (1)

where g is a given displacement. In what follows we further assume that ∂DΩ0 and ∂NΩ0 are open subsets
(with respect to the induced topology) of the boundary ∂Ω0 on which essential (Dirichlet) and natural
(Neumann) boundary conditions apply, respectively.

As usual, we define the left and right Cauchy–Green and Green strain tensors as follows:

C := FTF, B := FFT, and E :=
1

2

(
C− I

)
,

respectively.
The constitutive relationship is prescribed within the hyperelasticity framework; this means that it exists

a function W : Ω0 × Lin+ → R, called strain energy density function, which is objective, i.e.

W(X,F) = W(X,QF), for all Q ∈ Orth.

A natural way to automatically satisfy objectivity is to prescribe a function Ŵ : Ω0 × Sym+ → R and then
set W(X,F) = Ŵ(X,FTF) = Ŵ(X,C).
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The Cauchy stress tensor is T = (detF)−1PFT = (detF)−1FSFT, where the first and the second Piola–
Kirchhoff tensors, respectively P and S, are as follows

P :=
∂W
∂F

, S := 2
∂Ŵ
∂C

. (2)

For an hyperelastic material, the elastic equilibrium can be characterized as a minimization problem:

min
u∈V

{∫

Ω0

Ŵ(X,C) dV −
〈
f ext,u

〉}
(3)

where u := ϕ − X is the displacement and f ext is the linear functional which encodes for the external
contributions. We need some extra restriction on the deformations and the functional itself, in order to
establish that at least a minimum exists. A typical choice of the function space is V := C ∩W1,s(Ω0;R

3),
with s > 3

2 ,
1
s
+ 1

q
< 4

3 , and q such that cof F ∈ Lq(Ω0; Lin
+), while the polyconvexity of the strain energy

density function is generally a basic ingredient for the well–posedness of the minimization problem (Hughes
and Marsden, 1994; Antman, 2005).

2. Passive mechanics

Given an hyperelastic material with strain energy function Ŵ(X,C), we suppose that, for a fixed point
X ∈ Ω0, the following local invariance property is verified:

Ŵ(C) = Ŵ(QCQT), for every Q ∈ G ⊆ Orth.

This relation means that the strain energy is the same if we change the reference configuration through the
rotation Q, for any given deformation C (and so is the elastic response of the considered material). It is
possible to show that G is a subgroup of Orth, with respect to the usual composition law. In particular, if
G ≡ Orth, the material is isotropic; on the other hand, if G is a proper subgroup of Orth, the material is
anisotropic.

Given an orthonormal ternary {f◦, s◦,n◦}, in the reference configuration, for an orthotropic material the
strain energy is invariant with respect to rotations around any versor of the triplet. This defines (Liu, 1982):

Gorth =
{
Q ∈ Orth: Q(m⊗m)QT = m⊗m, for m ∈ {f◦, s◦,n◦}

}
.

In our specific case, f◦ represents the local muscle fiber direction, while s◦ lies within the sheet and is
orthogonal to f◦. The last versor n◦ = f◦ ∧ s◦ is the normal of the local sheet.

If a function Ŵ(C), with C ∈ Sym+, is invariant with respect to Gorth, then there exists a representation

Ŵorth such that:
Ŵ(C) = Ŵorth(C, f◦ ⊗ f◦, s◦ ⊗ s◦,n◦ ⊗ n◦),

for every C ∈ Sym+ and with Ŵorth isotropic with respect to its arguments. As a matter of fact, the
dependency on n◦ ⊗ n◦ is redundant, because:

f◦ ⊗ f◦ + s◦ ⊗ s◦ + n◦ ⊗ n◦ = I.

The function Ŵorth can be further specified by accounting for the isotropy requirement with respect to
its tensor arguments. The Cayley–Hamilton theorem and the following observation:

(a⊗ b)k = (a · b)k−1a⊗ b, with k > 0,

restrict the number of possible combinations. Observing that n◦ is redundant and f◦ and s◦ are mutually
orthogonal, we have that the invariant set for an orthotropic material is defined as follows:

Υorth =
{
trC, trC2, trC3, f◦ · Cf◦, s◦ · Cs◦, f◦ · C2f◦, s◦ · C2s◦

}
. (4)
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It is actually possible to prove that only six of these seven invariants are independent, hence the set is not
irreducible (Shariff, 2013).

The strain energy proposed in Holzapfel and Ogden (2009) is based on the following reduced set of
invariants:

ΥHO =
{
I1, I4,f◦ , I4,s◦ , I8,f◦s◦

}
, (5)

where:
I1(C) = trC, I4,a(C) = a · Ca, I8,ab(C) = a · Cb.

The material is assumed to be incompressible, thus trC3 can be represented as a function of the first and
second invariant of C through the Cayley–Hamilton theorem. Moreover, the dependency on the quadratic
terms is (partially) expressed by I8,f◦s◦ , thanks to a relationship can be established between the invariants
(Merodio and Ogden, 2006).

From a kinematic viewpoint, all the invariants have a clear interpretation: for instance, I4,a is the square
of the local stretch along the direction a, while I8,ab is related to the angle spanned by the vectors Fa and
Fb, in the actual configuration, supposing that a and b are initially orthogonal.

A further hypothesis is the additive splitting of the strain energy, that separates the contributions of
each specific deformation measure to the total energy:

Ŵ(C) = W̃(I1, I4,f◦ , I4,s◦ , I8f◦s◦)
= W̃1(I1) + W̃4,f◦(I4,f◦) + W̃4,s◦(I4,s◦) + W̃8,f◦s◦(I8,f◦s◦).

(6)

Besides its mathematical convenience, this splitting allows an easy identification of the corresponding ma-
terial parameters from an experiment, because each term has its precise physical meaning.

The exponential form of each term in the strain energy (6) accommodates the typical response of a
biological tissue, according to which the greater the strain, the greater the apparent stiffness:

W̃1(I1) =
a

2b

[
eb(I1−3) − 1

]
,

W̃4,f◦(I4,f◦) =
af

2bf

[
ebf(I4,f◦−1)2+ − 1

]
,

W̃4,s◦(I4,s◦) =
as

2bs

[
ebs(I4,s◦−1)2+ − 1

]
,

W̃8,f◦s◦(I8,f◦s◦) =
afs

2bfs

[
ebfsI

2
8,f◦s◦ − 1

]
,

where g(x)+ := max{g(x), 0} is the positive part of g(x).
Thanks to (2) we can compute the explicit form of the Cauchy stress tensor T,

T = aeb(I1−3)B− pI

+ 2 af(I4,f◦ − 1)+e
bf(I4,f◦−1)2+ f ⊗ f + 2 as(I4,s◦ − 1)+e

bs(I4,s◦−1)2+ s⊗ s

+ afsI8,f◦s◦ebfsI
2
8,f◦s◦ (f ⊗ s+ s⊗ f),

(7)

where the Lagrange multiplier p enforces incompressibility, f = Ff◦ and s = Fs◦. The transversely isotropic
version of this model can be formally recovered taking as = bs = afs = bfs = 0, while the isotropic one
corresponds to assume also af = bf = 0; furthermore, in these two cases the set of invariants is smaller than
the irreducible one, always because the quadratic terms are not considered.

It’s interesting to observe that the assumptions made on the symmetry of the material, and in particular
on its microstructure, reflect in the tensorial form of the Cauchy stress tensor: the isotropic contribution
can be thought as due to the extracellular matrix, while the anisotropic terms play a role along the fibers
and the sheets, or when the deformation changes the angle between the two.
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As could be expected for physical and mathematical reasons, the predictions of the model (7) in the
compressive regime would be incorrect because fibers do not support compressive loads. For this reason
Holzapfel and Ogden suggest that the anisotropic terms associated to I4,f◦ and I4,s◦ are turned off under
compression, i.e. when I4,f◦ ≤ 1, or I4,s◦ ≤ 1, respectively.

An interesting property of this formulation is that W̃4,· is strongly convex.

2.1. Quasi–incompressible formulation

Following a common approach in soft tissue mechanics, the Holzapfel–Ogden model assumes that the
myocardium is an incompressible material; the usual argument in this respect is that biological tissues
are mostly made of water, an incompressible fluid. Nonetheless, a living tissue is not just a vesicle filled
with water, it is rather an intricate bundle of various cells, vessels of different size, collagen, elastin, other
substances that compose the extracellular matrix, and perfused blood; the latter in particular is responsible
for the large volume variation (up to 30%) observed in the ventricle (Yin et al., 1996). Concluding, even
neglecting the role of perfused blood, an extra degree of freedom that takes into the account very moderate
volumetric changes, is not excluded by experimental evidence. But, more importantly, there are numerical
advantages brought by a quasi–incompressible formulation over an incompressible one (Simo and Taylor,
1991).

For a given incompressible model, such us the Holzapfel–Ogden’s one, a quasi–incompressible version can
be derived by introducing the following multiplicative decomposition of the deformation gradient tensor:

F = FisoFvol, (8)

that is, by considering the local deformation as the composition of purely volumetric deformation, followed
by an isochoric one. In particular, we would like to have that detFiso = 1 and Fvol = αI, so:

J = detF = detFiso · detFvol = α3, so α = J
1
3 .

Within this context, the two deformations Fiso and Fvol (which is just J times the identity tensor)
contribute additively to the strain energy, so:

W(F) = Wiso(Fiso) +Wvol(J). (9)

The splitting can be applied to any strain energy for an incompressible material and, in this work, Wiso(Fiso)
takes the form of the Holzapfel–Ogden model.

The second term of the r.h.s. of (9) is the volumetric energy, and it increases when J 6= 1. Several forms
for Wvol can be found in the literature: as a guiding principle, a good choice is a function bounded from
below, convex, and whose first and second derivative for J = 1 are respectively zero. In general, one would
expect that Wiso → ∞ as J → 0 and J → ∞, because from a physical viewpoint we are compressing the
body down to a point or dilating it indefinitely. Nevertheless, we are considering a quasi–incompressible
model, and we expect to keep J ≈ 1, so practically there is no difference between the many models present
in the literature from a practical viewpoint; at the mathematical level instead, the well–posedness of the
problem can be compromised in some cases (Schröder and Neff, 2003). In our simulation we use

Wvol(J) =
κ

4

(
J2 − 1− 2 ln J

)
,

where κ ≫ 1 is the bulk modulus. We remark that W ′
vol(1) = 0 and W ′′

vol(1) = κ.
The Cauchy stress tensor is obtained by means of a Piola transformation and relation (2):

T = Tiso + Tvol = devTiso +W ′
vol(J)I (10)

where Tiso is the fictitious Cauchy stress tensor associated to the strain energy Wiso. In particular, for the
Holzapfel–Ogden model, we can just substitute (7) by JTiso:

JTiso = aeb(I1−3)Biso

+ 2 af(I iso
4,f◦ − 1)+e

bf(I
iso
4,f◦

−1)2+ fiso ⊗ fiso + 2 as(I iso
4,s◦ − 1)+e

bs(I
iso
4,s◦

−1)2+ siso ⊗ siso

+ afsI iso
8,f◦s◦e

bfs(I
iso
8,f◦s◦

)2 (fiso ⊗ siso + siso ⊗ fiso),
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where all the quantities marked with either superscript (◦)iso or subscript (◦)iso have to be computed with
respect to Fiso instead of F. Observe also that the pressure is exactly −W ′

vol(J).

3. Active contraction

During an isometric test, an electrically stimulated cardiomyocyte kept at fixed length produces an active
force. On the other hand, an opposition force is measured also when the cell is stretched over its resting
length without electric stimulus, as an elastic response: this is just a passive force. It is therefore natural to
assume that the total force exerted by the cell can be decomposed into two distinct contributions (Wakatsuki
et al., 2000): a passive one, that represents the elastic response of the material to external loads, when no
active contraction is involved, and an active contribution that encodes the forces generated at the microscale:

ftotal = factive + fpassive. (11)

Suppose now that the mechanical properties of a myocyte can be described by an hyperelastic material
with strain energy density function W : Lin+ → R

+. Then, the Cauchy stress is:

T = (detF)−1 ∂W
∂F

FT. (12)

This stress is purely passive, so it ideally accounts for fpassive. When the activation is involved, an extra
term shows up, associated to factive:

T(F, ξ) = Te(F) + Ta(F, ξ) = (detF)−1 ∂W
∂F

FT + Ta(F, ξ).

The active stress Ta depends on some internal variable ξ, that encodes the biochemical status of the cell and,
in general, is a function of the deformation gradient F. This dependence is reported for single cardiomyocytes
Iribe et al. (2007) and, in a continuum mechanics framework, also follows from physical considerations (a
force per unit area changes value when the area changes).

The specific tensorial form of Ta can be deduced enforcing the correct symmetries from the microstructure
and objectivity. The 2nd Piola–Kirchhoff tensor associated to Ta reads:

Sa(F, ξ) = (detF)F−1Ta(F, ξ)F
−T.

The first requirement is objectivity, meaning that Sa depends on F only through U, where U is such that
F = RU. This is guaranteed if, for instance,

Sa(F, ξ) = Ŝa(F
TF, ξ) = Ŝa(C, ξ).

The second requirement is that the active stress acts in the fiber direction f◦, so we look for a transversely
isotropic tensor Ŝa of its variables C and ξ. Following what done in section 2, we obtain

Ŝa(C, ξ) = s1 I+ s2 C+ s4 f◦ ⊗ f◦ + s5 sym(Cf◦ ⊗ f◦), (13)

where s1, s2, s4 and s5 are scalar functions of ξ and the invariants

Υ =
{
trC, trC2, f◦ · Cf◦, f◦ · C2f◦

}
,

and where we have assumed that detC = 1 and f◦ · f◦ = 1. The functional dependence of (13) can be very
complex; a common approach consists in simplifying it by neglecting the quadratic invariants, yielding

Ŝa(C, ξ) = s1(I1, I4,f◦ , ξ) I+ s4(I1, I4,f◦ , ξ) f◦ ⊗ f◦. (14)
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Although simpler than (13), this form is much richer than what has been proposed over the last decades in
the literature: the dependence on the invariant I1 is usually not considered in (14) and, most of the time,
also s1 is neglected, so that

Ŝa(C, ξ) = s1(I4,f◦ , ξ) I,
or, in terms of Cauchy stress,

Ta(F, ξ) = sa(I4,f◦ , ξ)Ff◦ ⊗ Ff◦. (15)

The active stress acts in the deformed fiber direction, with a magnitude that nonlinearly depends on the cur-
rent stretch of the fibers. Some authors (Usyk et al., 2000; Aguado-Sierra et al., 2011) adopt an orthotropic
active stress, which actually is a transversely isotropic activation of the form

Ŝa(C, ξ) = sa(I4,f◦ , ξ) f◦ ⊗ f◦ + r sa(I4,f◦ , ξ) (I− f◦ ⊗ f◦) (16)

for some factor r ≥ 0 (usually 0.2÷ 0.4).
The functional dependence of the scalar factor sa (a force per unit area) on the electrochemical signalling

and on the strain is usually related to the active force generated by a single cardiomyocyte factive, in order
to fit the experimental data. A possible starting point is to be inspired by a specific test case such as the
homogeneous contraction of an incompressible rod along its f◦ axis:

F = λf◦ ⊗ f◦ +
1√
λ
(I− f◦ ⊗ f◦).

Substituting the latter into Equation (15) we have

Ta(λ, ξ) = sa(λ
2, ξ)λ2 f◦ ⊗ f◦ =

factive

A0
λ f◦ ⊗ f◦,

where A0 is the initial cross sectional area. Simplifying we get

factive(λ, ξ) = λsa(λ
2, ξ)A0. (17)

Therefore the force is independent on λ if (observe that λ2 = I4,f◦):

sa(I4,f◦ , ξ) =
factive(ξ)

A0

√
I4,f◦

.

More physiologically motivated choices of sa depend linearly on λ, in order to recover the Frank–Starling
effect for moderate values of the strain. Another option is to use a nonlinear dependence such as λ exp(−λ2)
(or a quadratic approximation of it) which captures an optimal value of the sarcomere stretch and the
descending limb of Frank–Starling relationship (Weiwad et al., 2000).

The construction of a specific form for the active stress term Ta is delicate, because it should account
for the geometry of the deformation, which changes considerably in finite strain. Moreover, an important
property of a stress–strain relationship, that holds also for an activated material, is that an increase of the

strain is accompanied by an increase of the stress, and vice–versa (Baker and Ericksen, 1954; Hughes and
Marsden, 1994), and translates in the positiveness of the derivative of factive of equation (17)

1

A0

∂factive

∂λ
= sa(I4,f◦ , ξ) + 2I4,f◦

∂sa(I4,f◦ , ξ)
∂I4,f◦

> 0. (18)

This property does not apply to the (standing alone) active stress in any strain range, as the force produced by
cardiomyocytes exhibits a maximum at a threshold strain. However the monotonicity (or strong ellipticity)
must be satisfied by the total stress (active plus passive) to ensure the well–posedness of the mathematical
problem (Ambrosi and Pezzuto, 2012).

An alternative approach, the so–called active strain, consists in assuming a multiplicative decomposition
of the deformation gradient tensor

F = FeFa

7



F

Fa
Fe

Figure 1: Pictorial view of the active strain approach.

in an elastic deformation Fe and an active distortion Fa.
The idea, sketched in figure 1, is the following: an inelastic process, dictated by the biochemistry, locally

changes the length and the shape of the fibers, i.e. the tissue microstructure; then, an elastic deformation
Fe accommodates these local changes in order to preserve the compatibility of the deformation F. The
physiological basis behind this approach resides in the contractile units of the myocytes: the sarcomeres
shorten because of the sliding filaments of the actin–myosin molecular motor, and this shortening is encoded
by Fa, and the fictitious intermediate placement determined by Fa is the new reference configuration for the
elastic deformation.

The strain energy density is a function of Fe only, the active deformation Fa being a fully dissipative
process; the objective is to minimise the total elastic energy with respect to all the admissible configurations:

min
u∈V

{∫

Ω0

W(FF−1
a ) (detFa) dV −

〈
f ext,u

〉}
. (19)

If no dead–load is applied, i.e. fext = 0, and no Dirichlet boundary conditions are enforced, then one could
argue that F = Fa, since Fe = I is a local minimum of W (actually, if W and V are convex, the minimum
is global and hence unique). However, there is no guarantee that there exists a deformation ϕ such that
Gradϕ = Fa. This restricts the set of possible solutions among which the minimization problem makes
sense from a geometric viewpoint, and it yields a residual stress in the body, even when no body force or
surface traction apply.

Suppose that a minimum exists; then, the first variation of the functional in (19) must be null for every
admissible variation η0 ∈ TϕC ∩ V :

∫

Ω0

(detFa)
∂W(Fe)

∂Fe

F−T
a : Gradη0 dV −

〈
f ext,η0

〉
= 0.

The 1st Piola–Kirchhoff and the Cauchy stress tensors are, respectively:

P = (detFa)
∂W(Fe)

∂Fe

F−T
a , T = (detFe)

−1 ∂W(Fe)

∂Fe

FT
e .
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If no activation is triggered, then Fa = I, Fe = F, and the passive behavior of the material is recovered.
On the other hand, if F = I and Fe = F−1

a , the Cauchy stress tensor can be interpreted as a purely active
response:

T = (detFa)
∂W
∂Fe

∣∣∣∣
Fe=F

−1
a

F−T
a .

Interestingly, the tensorial form of this purely active response (and in absence of residual stress) cannot be
straightforwardly deduced from Fa, as opposed to the active stress in (15): even in the case of Fa being a
pure shortening in the fiber direction, say Fa = (1 − γ)f◦ ⊗ f◦, in general the stress response occurs in any
direction.

A physiologically motivated choice for Fa is transversely isotropic and locally isochoric tensor of the form

Fa = (1− γ)f◦ ⊗ f◦ +
1

1− γ
(I− f◦ ⊗ f◦), (20)

as supported by the observation that during a contraction myocytes shorten in the sarcomeres direction and
they don’t change their volume significantly (Boyett et al., 1991).

The coefficient γ, which depends on the internal dynamics described by the some variable ξ (the action
potential and/or specific ionic currents) in this bare–bones framework is not an explicit function of the
apparent deformation F.

4. Numerical approximation

The numerical discretization of the equilibrium equations for a quasi–incompressible material is partic-
ularly delicate when κ is very large, i.e. when we try to enforce incompressibility: in this case the locking

phenomenon might be observed. In such a regime a possible strategy is to go back to the full incompressible
formulation, with the pressure as a Lagrange multiplier. The resulting formulation of the tangent problem,
required by the Newton method, reads as a Stokes type problem, which introduces various difficulties from
a computational viewpoint.

A widely accepted alternative, that preserves quasi–incompressibility while solving the “locking” issue,
is the so called “three–fields” or “Hu–Washizu” formulation. The idea is to widen the number of unknowns
of the problem and introduce the following generalized deformation gradient:

F̃(ϕ,Θ) := Θ
1
3 (detF)−

1
3F,

which is a function of the new independent variable Θ ∈ Q := L2(Ω0), with Θ > 0. The strain energy
density function will be a function W of F̃, hence in particular of Θ and F through F̃.

Now consider a quasi–incompressible formulation for W. The first step is the splitting of F̃ into its
isochoric and volumetric parts:

(F̃(ϕ,Θ))vol := det(F̃(ϕ,Θ)) = Θ,

(F̃(ϕ,Θ))iso := (F̃(ϕ,Θ))
− 1

3

vol F̃(ϕ,Θ) = (detF)−
1
3F = Fiso.

The second step is the additive splitting of the energy:

W(F̃) = Wiso(Fiso) +Wvol(Θ).

The last ingredient is to state a variational principle. Consider the following functional FHW of the variables
(u,Θ, p) ∈ V ×Q×Q:

FHW(u,Θ, p) :=

∫

Ω0

(
Ŵiso(X,Ciso) +Wvol(X,Θ) + p(J −Θ)

)
dV −

〈
f ext,u

〉
, (21)

where Fext encodes the work of external forces. FHW mimics the functional in (3) with the additional term
p(J −Θ) that enforces the constraint Θ = J . In this respect, p is the pressure.

9



Denoting with Du the partial Gâteaux derivative with respect to u, we have

〈DuFHW,η0〉 =
∫

Ω0

2FDev
∂Ŵiso

∂Ciso

: Gradη0 dV +

∫

Ω0

p cof F : Gradη0 dV −
〈
f ext,η0

〉

=

∫

Ω

devTiso : ∇η dv +

∫

Ω

p div η dv −
〈
f ext,η

〉
,

where f ext is the linear functional in the actual configuration, Dev : A 7→ J− 2
3

(
A− 1

3 (C : A)C−1
)
and

dev : A 7→ A− 1
3 trA. The corresponding Cauchy stress tensor is simply as follows:

T = devTiso + pI.

In order to fully characterize the minimum, we have two more derivatives to enforce, one with respect to Θ
and the other to p:

〈DΘFHW,Ξ〉 =
∫

Ω0

(
W ′

vol(Θ)− p
)
Ξ dV =

∫

Ω

(
W ′

vol(Θ)− p
)
Ξ J−1dv,

〈DpFHW, q〉 =
∫

Ω0

q(J −Θ) dV =

∫

Ω

q(J −Θ) J−1dv.

The final variational problem reads as follows:

Find (u,Θ, p) ∈ V ×Q×Q such that∫

Ω

(
devTiso : ∇η + p div η

)
dv −

〈
f ext,η

〉

+

∫

Ω

(
W ′

vol(Θ)− p
)
Ξ J−1dv +

∫

Ω

q(J −Θ) J−1dv = 0, ∀(η,Ξ, q) ∈ V ×Q×Q.

(22)

4.1. Linearization

The variational formulation (22) is a non–linear problem in the unknowns (u,Θ, p). We can devise two
kinds of non–linearities: the first one is of constitutive nature, because Tiso depends on the deformation ϕ,
as well as Wvol depends on Θ; the second one is geometrical, because also the integration domain Ω = ϕ(Ω0)
is unknown.

The Newton’s method is a classical iterative algorithm to find the solution of a non–linear problem.
Given a generic operator G : W → W ∗, where W is a Banach space and W ∗ its dual, the Newton’s method
to approximate x ∈ W so that G(x) = 0 reads as follows:

1. Given x0 ∈ W

2. Until 〈convergence criteria〉 is satisfied:
3. Solve for δx such that DG(xk) δx = −G(xk)

4. Let xk+1 = xk + δx

(23)

The linear operator DG ∈ L(W,W ∗) is the Gâteaux derivative of G. As a convergence test, typically one
checks that both the increment δx and the residual G(xk) are smaller than a given tolerance, with respect
to a suitable norm.

For our variational problem (22) we have W = V × Q × Q, x = (u,Θ, p) and δx = (δu, δΘ, δp). The
computation of DG(xk) is just a tedious application of the chain–rule, so we simply report the final result:

〈DG(x) δx, (η,Ξ, p)〉 =
∫

Ω

(
∇δuT+

(
ciso + p(I⊗ I− 2I)

)
∇δu+ δp I

)
: ∇η dv

+

∫

Ω

Ξ
(
W ′′

vol(Θ)δΘ− δp
)
J−1dv

+

∫

Ω

q
(
div δu− J−1δΘ

)
dv,

(24)
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where ciso is the spatial elasticity tensor of the isochoric term:

ciso = P : ciso : P+
2

3
J−1

(
trTiso

)
P− 2

3
(devTiso ⊗ I+ I⊗ devTiso) ,

ciso = 4Ŵ ′′
1 (I iso

1 )Biso ⊗ Biso

+ 4Ŵ ′′
4,f◦(I

iso
4,f◦) fiso ⊗ fiso ⊗ fiso ⊗ fiso

+ 4Ŵ ′′
4,s◦(I

iso
4,s◦) siso ⊗ siso ⊗ siso ⊗ siso

+ 4Ŵ ′′
8,f◦s◦(I

iso
8,f◦s◦) sym(fiso ⊗ siso)⊗ sym(fiso ⊗ siso).

We have introduced the fourth–order tensor I such that IA = A for every second–order tensor A, and the
tensor P as the linear application such that P : A 7→ devA:

P := I− 1

3
I⊗ I.

Even through the expression obtained above contains several terms, its mathematical structure is par-
ticularly simple. We can identify two contributions:

∫

Ω

∇δuT : ∇η dv = residual geometrical contribution,

∫

Ω

(ciso + cvol)∇δu : ∇η dv = constitutive contribution,

where cvol = p(I⊗ I− 2I) is spatial elasticity tensor associated to the volumetric part.

4.2. Galerkin formulation

Consider a finite dimensional subspace Vh of V and other two finite dimensional subspaces Qp
h and QΘ

h

of Q, where h stands for any discretization parameter (typically the size of the mesh). Then the Galerkin
problem associated to the tangent problem reads as follows (see, e.g. Quarteroni (2014)):

Find (δuh, δΘh, δph) ∈ Vh ×Q
p
h ×QΘ

h such that∫

Ω

(
∇δuhT+

(
ciso + cvol)

)
∇δuh + δphI

)
: ∇ηh dv =

〈
f ext,ηh

〉
−
∫

Ω

T : ∇ηh dv,

∫

Ω

Ξh

(
W ′′

vol(Θ)δΘh − δph
)
J−1dv =

∫

Ω

Ξh

(
p−W ′

vol(Θ)
)
J−1dv,

∫

Ω

qh
(
div δuh − J−1δΘh

)
dv =

∫

Ω

qh
(
1− J−1Θ

)
dv, ∀(ηh,Ξh, qh) ∈ Vh ×Q

p
h ×QΘ

h .

The discrete tangent problem can be rewritten in matrix form after introducing the bases {Φi}Nv

i=1,

{Ψp
i }

Np

i=1 and {ΨΘ
i }NΘ

i=1 for the spaces Vh, Q
p
h and QΘ

h , respectively. In fact we have that:

δuh(X) =

Nv∑

i=1

δui
h Φi(X), δΘh(X) =

Np∑

i=1

δΘi
h Ψp

i (X), δph(X) =

NΘ∑

i=1

δpih ΨΘ
i (X),

where the coefficients form the vectors of the unknown (δu, δΘ, δp) with components
[
δuh

]
i
= δui

h,
[
δΘh

]
i
= δΘi

h,
[
δph

]
i
= δpih.

The algebraic form of the tangent problem is then:

Find (δuh, δΘh, δph) such that



Kϕϕ O Kϕp

O Kθθ −Kθp

Kpϕ −Kpθ O






δϕ

δΘ

δp


 =



fϕ

fθ

fp


 . (25)
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The matrix in (25) is symmetric. The explicit definition of its entries is:

[
Kϕϕ

]
ij
:=

∫

Ω

(
∇δΦjT+

(
ciso + p(I⊗ I− 2I)

)
∇δΦj

)
: ∇Φi dv,

[
Kθθ

]
ij
:=

∫

Ω

W ′′
vol(Θ) ΨΘ

j Ψ
Θ
i J−1dv,

[
Kϕp

]
ij
:=

∫

Ω

Ψp
j divΦi dv,

[
Kθp

]
ij
:=

∫

Ω

Ψp
jΨ

Θ
i J−1dv,

[
fϕ

]
i
:=

〈
f ext,Φi

〉
−
∫

Ω

T : ∇Φi dv,

[
fθ

]
i
:=

∫

Ω

ΨΘ
i

(
p−W ′

vol(Θ)
)
J−1dv,

[
fp

]
i
:=

∫

Ω

Ψp
i

(
1− J−1Θ

)
dv,

Given a triangulation Th of a polygonal approximation Ω̃0 of the domain Ω0, the finite element spaces
we are going to use are defined as follows:

CGp(Ω̃0) :=
{
u ∈ C(Ω̃0) : u|K is a polynomial of degree p, for K ∈ Th

}
,

DGp(Ω̃0) :=
{
u ∈ L2(Ω̃0) : u|K is a polynomial of degree p, for K ∈ Th

}
,

Bp(Ω̃0) :=
{
b ∈ L2(Ω̃0) : b|K is a polynomial of degree p, with b|∂K = 0, for K ∈ Th

}
.

On tetrahedral meshes we select Vh =
(
CG1 ⊕ B4

)3
or Vh =

[
CG2

]3
, Qp

h = CG1 and QΘ
h = DG0. These

choices avoid locking and also guarantee a good accuracy of the solution. The discontinuous Galerkin
approximation for the dilational variable makes it possible to easily invert the matrix Kθθ element–wise and
apply a static condensation.

The non–linear mechanical solver has been implemented with FEniCS (Logg et al., 2012), and then
ported to LifeV (http://www.lifev.org). The meshes for the ventricle have been generated with Gmsh

(Geuzaine and Remacle, 2009) and the solution is post–processed with Paraview (http://www.paraview.
org) and other scripts. All the mentioned software are open–source and freely available on the internet,
including the GNU/Linux operating system.

4.3. Boundary conditions

If ∂DΩ0 = ∅ or, more generally, if essential boundary conditions are applied only on some components of
the deformation, the solution might not be unique: any rigid motion that satisfies the boundary conditions
can be superimposed to the solution of the elastic problem. It follows, for instance, that the linear and angular
momentum of the external loads (body force and surface traction) should balance, because otherwise the
deformation cannot be static. On the other hand, even if a small1 portion of the boundary is fixed, any
force or momentum can be balanced by the constraint reaction.

As we shall see, it is not obvious to constrain the motion of the left ventricle in a physiologically correct
way, even taking into account the surrounding anatomy of the heart, because the organ slightly moves and
rotates during the heartbeat. Moreover, the heart is actually contained in a sac called pericardium, which
is filled with a fluid and whose stiffness is rather high. This prevents extremely large displacements of the
muscle. Our approach is then to constrain at a minimum the load free boundary conditions by two possible

1From a mathematical standpoint this means that the capacity of the portion of the boundary is not zero.
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strategies: introduce a “small” portion of essential boundary or require zero mean rotation and zero mean
displacement. A popular alternative is to prescribe a Robin–type boundary condition to mimic the presence
of the pericardium and other elastic components surrounding the heart.

The former approach can be formulated as follows: a global constraint on the solution is enforced in
order to avoid any rigid motion, such as ∫

Ω0

δuh dV = 0,

for the zero mean translation and, in a similar fashion, the condition

∫

Ω0

X ∧ δuh dV = 0

for a zero mean rotation. For instance, a Lagrange formulation of problem (21) accounting for these con-
straints should be

L (u,Θ, p, c1, c2) := FHW(u,Θ, p)− c1 ·
∫

Ω0

u dV − c2 ·
∫

Ω0

X ∧ u dV,

where we have two new unknowns c1, c2 ∈ R
3 to be appended to the former set (u,Θ, p).

5. Numerical assessment on a tissue slab

5.1. Compression with constant fibers distribution: a quasi–explicit solution

It is well known that simple shear is particularly difficult to obtain in large deformation regimes (Destrade
et al., 2012), because of the so–called “Poynting effect”: no simple shear in deformation can be produced
by a simple shear in boundary conditions. In this specific test we produce simple shear by applying pure
pressure on a cube of orthotropic material.

In this section we address the compression of a cube whose constant microstructure, in Cartesian coor-
dinates, reads as follows:

f◦ = cosα e1 + sinα e2, s◦ = e3.

The fibers lie on planes orthogonal to e3, which also corresponds to the sheets direction, and they form an
angle α with respect to the horizontal direction e1. A uniform compressive normal pressure pload is applied
to the faces orthogonal to e3 (see figure 2).

f◦

α
ploadpload

e3

e2

e1

Figure 2: Reference geometry for the pressure–induced shear test, with constant microstructure.

The aim is to mimic the behavior of a small portion of the wall of the left ventricle when passively
inflated. From a numerical viewpoint we want to establish whether our implementation correctly captures
rotations, which is an important expected result, not trivial considering the complexity of the model. This
test also represents a good benchmark for our solver when the tangent problem is singular (see section 4.3).
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We look for an homogeneous deformation of the type

x = λ1X + κλ2Y, y = λ2Y, z = λ3Z.

where the tensor gradient of deformation can be decomposed into an axial strain followed by a simple shear:

F =



1 κ 0
0 1 0
0 0 1





λ1 0 0
0 λ2 0
0 0 λ3


 =



λ1 κλ2 0
0 λ2 0
0 0 λ3


 . (26)

Since the material is incompressible, λ3 = (λ1λ2)
−1, thus the unknowns are λ1, λ2, κ and the pressure. The

left and right Cauchy–Green tensors are

B =



λ2
1 + κ2λ2

2 κλ2
2 0

κλ2
2 λ2

2 0
0 0 (λ1λ2)

−2


 , C =




λ2
1 κλ1λ2 0

κλ1λ2 (κ2 + 1)λ2
2 0

0 0 (λ1λ2)
−2


 ,

and the corresponding invariants are

I1 = trC = λ2
1 + (κ2 + 1)λ2

2 + (λ1λ2)
−2,

I4,f◦ = f◦ · Cf◦ = (λ1 cosα+ κλ2 sinα)
2 + λ2

2 sin
2 α,

I4,s◦ = s◦ · Cf◦ = (λ1λ2)
−2,

I8,f◦s◦ = s◦ · Cf◦ = 0.

The non–null components of the Cauchy stress tensor (7) read as follows:

T11 = 2W̃ ′
1(I1)(λ2

1 + κ2λ2
2) + 2W̃ ′

4,f◦(I4,f◦)(λ1 cosα+ κλ2 sinα)
2 − p,

T22 = 2W̃ ′
1(I1)λ2

2 + 2W̃ ′
4,f◦(I4,f◦)λ

2
2 sin

2 α− p,

T33 = 2W̃ ′
1(I1)(λ1λ2)

−2 + 2W̃ ′
4,s◦(I4,s◦)(λ1λ2)

−2 − p,

T12 = T21 = 2W̃ ′
1(I1)κλ2

2 + 2W̃ ′
4,f◦(I4,f◦)(λ1 cosα+ κλ2 sinα)λ2 sinα.

All the components of the Cauchy traction must vanish except T33 = −pload. Since the deformation keeps
the faces orthogonal to e2 still orthogonal, we have T22 = 0. Moreover, the remaining two faces become
orthogonal to e1 − κe2, thus we impose null normal and tangent stress as follows:

(e1 − κe2) · T(e1 − κe2) = T11 − 2κT12 + κ2T22 = 0,

(κe1 + e2) · T(e1 − κe2) = κT11 + (1− κ2)T12 − κT22 = 0.

The pressure can be easily computed from the equation T22 = 0:

p = 2W̃ ′
1(I1)λ2

2 + 2W̃ ′
4,f◦(I4,f◦)λ

2
2 sin

2 α,

which leaves us the following non–linear system of 3 equations in the unknowns (λ1, λ2, κ):





W̃ ′
1(I1)

(
λ2
1 + (κ2 − 1)λ2

2

)
+ W̃ ′

4,f◦(I4,f◦)
(
(λ1 cosα+ κλ2 sinα)

2 − λ2
2 sin

2 α
)
= 0,

W̃ ′
1(I1)

(
(λ1λ2)

−2 − λ2
2

)
+ W̃ ′

4,s◦(I4,s◦)(λ1λ2)
−2 − W̃ ′

4,f◦(I4,f◦)λ
2
2 sin

2 α = − 1
2pload,

W̃ ′
1(I1)κλ2 + W̃ ′

4,f◦(I4,f◦)(λ1 cosα+ κλ2 sinα) sinα = 0.

(27)

The non–linear form of (27) prevents an explicit determination of the unknowns, but the algebraic
system can be easily solved numerically. Nonetheless, it is possible to observe some interesting features of
the solution, also supported by simulations.
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• κ and α have opposite sign; indeed, from the third equation of (27), we have

κ λ2

(
W ′

1(I1) +W ′
4,f◦(I4,f◦) sin

2 α
)

︸ ︷︷ ︸
≥0

= −W ′
4,f◦(I4,f◦)λ1 cosα sinα.

In particular κ is zero for α ∈
{
−π

2 , 0,
π
2

}
, and it is maximum (resp. minimum) for α = ∓π

4 , as follows
from symmetry arguments too.

• I4,f◦ is everywhere greater than one, thus fibers are under tension. Indeed, if I4,f◦ < 1, we would have
κ = 0, so λ1 = λ2, but this would not be consistent with the second equation in (27) unless pload < 0,
i.e. when the cube is under traction. This shows a clear asymmetry between the two cases: shear is
observed only when the cube is compressed.

A similar argument can then be applied to I4,s◦ , proving that sheets are always in compressive regime
and thus W4,s◦ doesn’t show up. This observation, with I8,f◦s◦ = 0 implies that in this test the model
behaves as a transversely isotropic one, so that the deformation is essentially dictated by the fibers
elongation.

5.2. Compression with variable fibers distribution

An interesting aspect of cardiac mechanics is that the fiber angle α (defined in the previous section) is
not fixed across the wall, and it significantly varies between the two sides (LeGrice et al., 2001). Consider
the following microstructure (see figure 3):

f◦ = cosα(Z) e1 + sinα(Z) e2, s◦ = e3,

where, in this case, α depends on the Z (transmural) coordinate as follows:

α(Z) = α0 (0.5− Z) + α1 (0.5 + Z),

f◦

ploadpload

e3

e2

e1

Figure 3: Reference geometry of the pressure–induced shear test with variable microstructure.

The expected deformation is not uniform but spatially dependent, especially in the Z–direction, and
results in a geometrically simple but kinematically complex benchmark to test the numerical convergence.
Here we purposely make use of a tetrahedral (and not hexahedral) mesh, in order to better understand the
effect of the mesh on the solution, in terms of error on the strain and the stress. This is done keeping in
mind that producing a tetrahedral mesh for a patient–specific geometry of the ventricle (or possibly of both
ventricles), is much easier than an hexahedral one.

We perform a large number of tests with different combinations of material parameters, boundary con-
ditions, and fibers distribution, plotting several quantities of interest, such as the invariants and the stress,
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along the segment (0, 0, z), with z ∈ [−0.5, 0.5]. We also measure the torsion τ as the angle between the
projection on the e1–e2 plane of X and x = X+ u:

sin τ =
X ∧ x

‖X‖‖x‖
· e1, X = X− (X · e1) e1, x = x− (x · e1) e1.

The torsion is sampled along the segment (0, 0.5, z).
The final deformation can be intuitively understood as a superposition of different in–plane shear defor-

mations. Indeed, we know from the previous section that when the fiber angle is constant, the whole cube is
deformed into a prism with rhomboid section; in the present case, we can suppose that every section, which
has its own fiber direction, is deformed into a rhombus as well, but with an opening angle that depends on
the fiber angle. The whole deformation is approximatively obtained piling all these sections.
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Figure 4: Invariants and components of the Cauchy stress T with respect to z–coordinate of the pressure–induced shear test
with variable fiber microstructure.

This intuitive sketch is confirmed by the fact that I8,f◦s◦ is very small (fig. 4), so the sections orthogonal
to e1 do not change orientation and I4,s◦ doesn’t vary that much across the cube, and its value is comparable
to the one obtained with constant fiber direction. Also the torsion smoothly varies from −5◦ to 5◦.

We performed a set of simulations to inspect different choices of fibers distribution (fig. 5). The reference
case is a constant fiber direction parallel to e1, which is a uniform axial compression along e3. Surprisingly,
the displacement in the e3 direction is not significantly affected by the fiber distribution while, as expected,
the most prominent dissimilarity is in the torsion, absent in the reference case. Concerning the stress, the
component along f significantly increases with the fiber angle variability, especially at the boundaries.

Finally, we also considered an asymmetric distribution of the fibers, as assumed by some authors for
the left ventricle. The loss of symmetry is highlighted also by the value of the fibers invariant and the
corresponding stress, but the mean values is comparable to the symmetric case. On the other hand, the
torsion is quite different: in this case one side rotates less than in the other one, and the total variation is less
than the ±π

3 case. We find that no apparent difference between a variable and constant fibers distribution
exists in terms of strain and stress. The most significant difference is in the torsion, which is however a
major indicator of functionality in cardiovascular physiology.

The analysis of the deformation clearly suggests that the sheet–specific strain energy contribution W4,s◦

is always zero and that W8,f◦s◦ is negligible, because I8,f◦s◦ ≈ 0. For the proof, we consider a modified
model where these two terms are explicitly removed, going from an orthotropic to a transversely isotropic
model.

The conclusion we draw is that for this passive mechanics test it is not worth using an orthotropic model
because a transversely isotropic one is sufficient to capture the essential mechanics. This is also implicitly
stated by the model itself, because the condition

W4,s◦ > 0 ⇔ I4,s◦ > 1

behaves as a switch that reduces the model under specific deformation regimes.
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Figure 5: Fiber angle sensitivity of the fiber stress, torsion and thickness for the pressure–induced shear test with variable fiber
microstructure.

5.3. Active contraction

The second set of tests consists in the active deformation of a traction–free elastic cube with variable
fiber direction (see figure 3), using the active deformation form given in (20).

The gross deformation is that every slice of the cube with a given fiber angle undergoes a shear defor-
mation depending on the fiber direction; since the variation of the angle is smooth, also the shear varies
smoothly across the slices. On the other hand, integrity of the material requires a further elastic deformation
and corresponding elastic energy storage. Figure 6 shows the final deformation for different values of γ (no
shortening, 10% and 20%).

The convergence analysis is very similar to the one obtained for the passively compressed cube. With
N = 4 subdivisions of each side of the cube we have convergence of the displacement and the torsion, and
a good approximation of the stress, expect for I8,f◦s◦ .

In this unloaded activation test, with very weak constrains at the boundary, all the components of the
stress are very small (fig. 7): indeed, the order of magnitude of its highest component is 10−2 N/cm2. This
suggests that the final configuration is only slightly incompatible, hence F ≈ F−1

a . More in particular, the
greater the interval spanned by α, the greater the residual stress in the sheet direction.

The thickening of the tissue slab (fig. 8), which is measured in the direction of the sheets, does not
significantly vary for the tested different fibers distribution. Since fibers and sheets remain orthogonal
during the activation process, the invariant I4,s◦ simply compensates the cross–area variation due to the
fibers contraction, which is proportional to (1− γ)−1, whatever the fiber distribution is.

In contrast with the results of the previous section, here the contribution to the strain energy provided
by the elongation of the sheets W4,s◦ is not null, since Ie

4,s◦ > 1. When W4,s◦ is removed from the strain
energy, several components of the strain take totally different values. On the other hand, the influence of
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(a) γ = 0.0. (b) γ = 0.1. (c) γ = 0.2.

Figure 6: Activation of a cube with variable fiber direction (±60◦), with traction–free boundary conditions and material
parameters from Wang et al. (2013b).
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Figure 7: Invariants and Cauchy stress for the active contraction of a cube with variable fiber microstructure.

the eighth invariant I8,f◦s◦ remains negligible.
The convergence of the Newton scheme is strongly affected by several factors: with the material param-

eters from Holzapfel and Ogden (2009), the relaxation parameter needs to be an order of magnitude than
using the material parameters proposed in Wang et al. (2013b), increasing ten times the total number of
steps (146 versus 20). This is due to the strong difference in the isotropic shear modulus between the two
data sets, take makes the material particularly soft in the fiber direction in the former case, since these are
under compression (Ie

4,f◦
< 1) and therefore W4,f◦ = 0.

Concerning the Newton sub–iterations, we found that the simple switch-off of the fiber– and sheet–
specific strain energy terms in contractile regime, has a negative impact on the convergence rate. In practice,
we observe that the number of iterations needed for convergence grows when the activation of fibers is
turned off. We argue that the convergence rate deteriorates because the second derivative of the strain
energy function becomes discontinuous at F = I, and the quadratic convergence of the Newton solver is
compromised, especially when the elastic deformation Fe is close to the identity, like in this case. This issue
might be addressed by means of a mollifier, smoothing down the discontinuity.
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Figure 8: Fiber angle sensitivity of torsion and thickness of an activated cube.

6. Muscular thin films

In the previous sections we have discussed the performance of an active strain numerical model for a
slab of orthotropic elastic material. While the theoretical and numerical results demonstrate the stability
and fast convergence features of the algorithm, it remains to prescribe a rationale to fix the parameter γ,
that dictates the contraction.

Recently, Feinberg et al. (2007) were able to build micro–actuators with myocytes, providing experimental
data that perfectly fit our purpose, to evaluate γ in a controlled system with a collective dynamics of
cells. These actuators, called muscular thin films (MTFs), are a combination of a polydimethylsiloxane
substrate (PDMS) and rat ventricular cardiomyocytes, cultured on top of the former. The seeding face of
the substrate can be engineered in order to have high/low nutrients density strips, aligned according to a
specific direction. During the maturation, this external matrix induces a strong anisotropy in the tissue
architecture (cfr. figure 9a).

7 mm

2.5 mm
10 ÷ 20 µm

5 µm

(a) Sketch of the geometry.

F

Fa Fe

(b) Strain decomposition.

Figure 9: Muscular Thin Film (MTF).

The substrate is a thin sample of elastic material, and its mechanical properties are known with high
accuracy (Shim et al., 2012). After maturation, the myocytes are able to produce a visible (and easily
measurable) bending of the substrate during the contraction (systole), thanks to the active force exerted by
the cells. The maximum observed curvature is therefore a function of few physical parameters. In our active
strain hyperelastic framework the only unknown of the system is the contractility γ, which can therefore be
evaluated by solving an inverse problem.
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6.1. A specific model

Define the active strain tensor as follows:

Fa(X, t) =

{
I, for X ∈ substrate,

(1− γ(t))f◦ ⊗ f◦ +
1√

1−γ(t)
(I− f◦ ⊗ f◦), for X ∈ tissue.

(28)

A sketch of the expected deformation according to our framework is presented in figure 9b. The activation
Fa of equation (28) is a shortening of the tissue while keeping the substrate unchanged; the intermediate
configuration cannot be compatible, since it is not possible to glue the tissue and the substrate together
without an elastic deformation. Compatibility is provided by Fe.

The strain energy density function is the sum of two contributions, one for the tissue, the other for the
substrate

W(Fe) = Wsubstrate(Fe) +Wtissue(Fe).

More specifically, we assume that both the terms models a quasi–incompressible neo–Hookean material, with
different shear and bulk moduli. The passive behavior of the fibers is neglected here. Resuming, we have
the following strain energy:

W(F) =
µ

2
(I iso

1 − 3) +
κ

4
(J2 − 1− 2 ln J),

µtissue = 30 kPa,

κtissue = 3 MPa,

µsubstrate = 1.5 MPa,

κsubstrate = 1.5 GPa.

The most significant value is the shear modulus of the substrate, which is directly related to the curvature:
the higher µsubstrate, the lower the curvature of the MTF.

6.2. Results

The numerical approximation of the bending problem introduces various difficulties to be addressed:

• large aspect–ratio of geometry;

• quasi–incompressibility of the materials;

• very different passive properties between the substrate and the tissue;

• discontinuous tangential stress across the interface.

In our case, we adopt a simple “monolithic” strategy, where both the elastic problems are solved simultane-
ously.

It is well known that for a bending problem the mesh needs to be very refined in the longitudinal
direction; since this dimension is hundreds of times the thickness, we tested different meshes in order to
understand which aspect ratio keeps a good accuracy of solution. With quadratic finite element, we found
that 128 ÷ 512 subdivisions of the longitudinal direction and 8 ÷ 16 along the thickness is fine enough to
achieve convergence to a mesh–independent solution.

Concerning the boundary conditions, we fix the displacement to zero at the bottom line of left face, and
we apply symmetry condition to the left and the back face, i.e. no displacement is allowed along in the
orthogonal direction.

Avg.

ζ 0.207 0.227 0.244 0.284 0.324 0.257

γ 0.118 0.090 0.128 0.155 0.128 0.124

Table 1: Data from the experiments performed by Shim et al. (2012), with substrate thickness of 14.5 µm and the corresponding
fitted values of γ for the activation.
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Figure 10: Simulation of a MTF with thickness of substrate of 18.0 µm.

Figure 10b shows the values of the final deformation for a 20% shortening of the myocytes; moreover,
on the left panel we plot the curvature of the MTF2 versus activation: for small deformations there is a
good accordance with the Stoney’s equation, while for large ones the thin film bends more than its linear
counterpart.

Experimental data, taken from Shim et al. (2012), can be found in table 1. The authors perform several
experiments, for different thickness of the substrate, and they measure the curvature. Here we match the
curvature with the corresponding activation γ, which ranges between about 0.15 to 0.1, with an average of
0.124. This would suggest a physiological shortening range of about 10% to 15%, which is compatible with
the experiments on isolated myocytes, or just a slightly lower than expected. However, in this context the
fibers are not pre–stretched, so it is reasonable to conjecture that the working range of γ in the beating
heart is higher.

Concluding remarks

An implementation of the Holzapfel–Ogden model in a finite element code that owns a number of
mathematical and numerical positive features has been illustrated in detail. The contractile ability of the
living material has been accounted for an active strain approach. In particular, we have critically addressed
some issues that are sometimes overlooked in the literature: the codification of the active contraction in the
model, the explicit calculation of the tangent problem, the efficient implementation of boundary conditions.
The numerical code is then tested in a novel benchmark of homogeneous (non–trivial) deformation, for which
we provide an exact explicit solution up to an algebraic equation. The same test case where the distribution
of the fibers orientation is variable in space highlights the role of the fibers in dictating the cardiac rotation.

Our numerical results show that that the convexity of the strain energy, preserved by the active strain
approach, conjugated with a three fields formulation ensure a very robust numerical scheme, converging
in few Newton iterations while preserving the incompressibility of the deformation. The robustness and
accuracy of the scheme is preserved when adopting different kind of finite elements, as allowed by the
flexibility of the implementation.

In the considered test cases, which are a preliminary step to the simulation of a cardiac chamber, not
all the strain energy terms retained by Holzapfel and Ogden play a relevant role, suggesting that the I8,f◦s◦
invariant could be even neglected from the beginning. We remark that our conclusion is just based on a

2The curvature is computed taking the inverse of the radius of the circle passing through three points at x = 0, L

2
and L.
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preliminary test and could be modified at the light of numerical simulations of the left ventricle, for instance,
when a more complicated kinematics occurs.

The active bending of an activated monolayer of cardiomyocytes is correctly reproduced and confirms
the ability of the scheme to deal with strong geometric aspect ratios and very large deformations, while
providing a range of activation parameters γ to be used in complex cardiac simulations.
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