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SUMMARY

The shortening of the myocardial fibers is the microstructural engine that produces the contraction of the
cardiac muscle. The complex interplay between fibers shortening and elastic macroscopic strain is functional
to the ejection of blood into the pulmonary and arterial networks. Here we address the contraction of the left
ventricle in a finite elasticity framework, adopting the “prolate ellipsoid” geometry and the invariants–based
strain energy proposed by Holzapfel and Ogden, where the mechanical role of fibers and sheets is accounted
for. We show that a microstructurally motivated mathematical model of active strain type reproduces the
main indicators of normal cardiac function along the whole PV-loop without introduction of any further ad
hoc law. The bare–bones mathematical model depends on one measurable parameter only, i.e. the shortening
ratio of the sarcomere units, which we assume to be nearly independent on the prestretch. Strict enforcement
of incompressibility and novel treatment of boundary conditions are shown to be crucial to simulate the
correct muscle torsion. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

INTRODUCTION

From a structural point of view, the myocardium can be classified as a hyperelastic orthotropic

material, characterized by two mutually orthogonal directions of mechanical relevance: the fibers

and the sheets [1, 2]. In this work we focus on the left ventricle, the cardiac chamber that produces

the largest work. In systole the fibers contract, actively producing a strain of the cardiac wall that

shrinks the inner volume and, at the aortic valve opening, the blood is ejected. In the filling phase of

the cardiac cycle, the elastic strain in the cardiac wall is released, thus favoring the inflow of blood

that eventually deforms the chamber passively under the action of the venous pressure difference.

In the present paper we focus on the (active) structural mechanics of the cardiac muscle. Among

the many material models available in the literature [3, 4, 5], the hyperelastic strain energy proposed

by Holzapfel and Ogden [6] to describe the mechanics of the passive myocardium is gaining an

increasing interest. Its simple invariant–based formulation, the small set of material parameters

invoked and its suitable mathematical properties make it particularly attractive for numerical

simulations. Even more important, the material parameters of the model can, in principle, be

determined on the basis of standard biaxial and shear stress–strain tests [7, 8] without an ad hoc

fitting in the specific application. Recent papers have already addressed the use of this model to real

geometry simulations [9, 10, 8, 11, 12, 13, 14, 15], while a detailed discussion about the numerical

implementation and the performance of the model in test cases has been discussed elsewhere [16].

In this work we study the performance of the Holzapfel–Ogden strain energy along the whole

PV-loop for physiological values of pressure. In our bare–bones approach, we dictate a constant
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shortening of the microstructure in the macroscopic model, independent of the strain, and we

compute the strain and stress in myocardium. The numerical model, that has been tested versus

elementary geometries in a past work [16], is here applied to the simulation of the full PV–loop

in a prolate ellipsoid, using a tetrahedral unstructured mesh. We adopt novel, very weak, boundary

conditions that enforce null average displacement and null average rotation only. In the same vein,

the constant-volume constraint that applies in the filled chamber during the isochoric contraction

and relaxation is enforced at a variational level with a Lagrange multiplier that turns out to be the

produced blood pressure.

The performance of the method is discussed in terms of its numerical stability and versus its

ability to reproduce in a correct physiological range a number of indicators of normal cardiac

functionality: passive filling volume, thickening of the wall, elongation and shortening along the

main axis, muscle torsion, stroke volume and strain measures. Intriguingly, the nonlinearity of the

material properties is sufficient by itself to reproduce the expected growth of the produced force

versus the prestretch.

1. BACKGROUND AND NOTATION

Given a continuum body B, we consider a reference configuration χ0, and a generally unknown

actual configuration χ as functions from B to R
3. The reference and actual placements of the

body in R
3 are Ω0 := χ0(B) and Ω := χ(B), respectively; given p ∈ B, X = χ0(p) ∈ Ω0, and

x = χ(p) ∈ Ω, so that a deformation is the map:

ϕ = χ ◦ χ−1
0 , ϕ : Ω0 ∋ X 7→ x = χ

(
χ−1
0 (X)

)
∈ Ω.

We assume ϕ to be a diffeomorphism from Ω0 to Ω, whose derivative is the tensor gradient of

deformation:

F(X) :=
∂ϕ

∂X
, [Fij ] =

∂ϕi

∂Xj

, i, j ∈ {1, 2, 3}.

Denoting by Lin+(R3) the vector space of all linear transformations from R
3 to R

3 with strictly

positive determinant, we define the set of admissible configuration as follows:

C =
{
ϕ : Ω0 → Ω such that J := det(F) > 0 and ϕ|∂DΩ0

= g
}
, (1)

where g is a given displacement. In what follows we further assume that ∂DΩ0 and ∂NΩ0 are

open subsets (with respect to induced the topology) of the boundary on which essential and natural

boundary conditions apply, respectively.

As usual, we define the right and left Cauchy–Green and Green strain tensors as follows:

C := FTF, B := FFT, and E :=
1

2

(
C− I

)
,

respectively.

The stress state of the body is described, on the actual configuration, by the Cauchy stress

tensor T; thanks to the Piola transformation, we can also write the first and second Piola–Kirchhoff

tensors:

P := JTF−T, S := F−1P = JF−1TF−T. (2)

The constitutive relation between the stress T and F is prescribed within the hyperelasticity

framework; it exists a function W : Ω0 × Lin+ → R, called strain–energy density function, such

that, for every admissible F, the following relationship holds:

∂W
∂F

: Ḟ = P : Ḟ, or, equivalently 2
∂Ŵ
∂C

: Ċ = S : Ċ, (3)
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where Ŵ(X,C) = Ŵ(X,FTF) = W(X,F). As usual, W must be objective, which implies that:

W(X,F) = W(X,QF), for all Q ∈ Rot,

where Rot = {Q ∈ Lin: QQT = I}. In this respect, we directly use Ŵ in order to automatically

satisfy the objectivity.

In the hyperelasticity framework, the elastic equilibrium can be characterized as a minimization

problem:

min
ϕ∈V

∫

Ω0

Ŵ(X,C) dV (4)

where suitable boundary conditions and possible constraints are to be enforced. We need some

extra restriction on the deformations and the functional itself, in order to establish that at least a

minimum exists. A typical choice of the function space is V := C ∩W1,s(Ω0;R
3), s > 3

2 , and the

polyconvexity of the strain–energy density function is usually the characterization required for the

well–posedness of the minimization problem [17, 18].

A material is incompressible when J := detF = 1. The explicit form of the Cauchy stress is

obtained from (2) and (3), after properly restricting the set of admissible Ċ:

T = J−1F

(
2
∂Ŵ
∂C

− pJC−1

)
FT = 2J−1F

∂Ŵ
∂C

FT − pI, (5)

where p ∈ Q = L2(Ω0) is an unknown scalar field [19]. In this case, the minimization problem (4)

can be recasted to a saddle–point problem:

min
ϕ∈V

max
p∈Q

∫

Ω0

{
Ŵ(X,C)− p(J − 1)

}
dV. (6)

2. PASSIVE MECHANICS

Given a hyperelastic material with strain–energy function Ŵ(X,C), we suppose that, for a fixed

point X ∈ Ω0, the following local invariance property is verified:

Ŵ(C) = Ŵ(QCQT), for every Q ∈ G ⊆ Rot.

The relation means that the strain–energy is the same if we change the reference configuration

through the rotation Q, for any given deformation C (and so is the elastic response of the considered

material). It is possible to show that G is a subgroup of Rot, with respect to the usual composition

law [20]. In other words, Ŵ is invariant under the action of the material symmetry group G . The

characterization of G defines the possible anisotropic properties of the material: if G ≡ Rot, the

material is isotropic, while if G is a proper subgroup of Rot, the material is anisotropic.

Given an orthonormal ternary {f◦, s◦,n◦}, in the reference configuration, for an orthotropic

material the strain–energy is invariant with respect to rotations around any versor of the triplet.

This defines [21]:

Gorth =
{
Q ∈ Rot: Q(m⊗m)QT = m⊗m, for m ∈ {f◦, s◦,n◦}

}
.

In our specific case, f◦ represents the local muscle fiber direction, while s◦ lies in the sheet surface

and is orthogonal to f◦. By definition n◦ = f◦ ∧ s◦ is normal of the local sheet.

The strain energy proposed in [6] is based on the following reduced set of invariants:

ΥHO =
{
I1, I4,f◦ , I4,s◦ , I8,f◦s◦

}
, (7)

where:

I1(C) = trC, I4,a(C) = a · Ca, I8,ab(C) = a · Cb.
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The material is assumed to be incompressible, thus the dependence on trC3, which is related to

detC and the other invariants through the Cayley–Hamilton theorem, is neglected. Moreover, the

dependency on the quadratic terms is (partially) fulfilled by I8,f◦s◦ , since a relationship can be

established between them [22].

From a kinematic viewpoint, all the invariants have a clear interpretation: for instance, I4,a is the

square of the local stretch along the direction a, while I8,ab is related to the angle spanned by the

vectors Fa and Fb, in the actual configuration, supposing that a and b are orthogonal.

A further hypothesis is the additive splitting of the strain–energy, thus separating the contributions

of each specific deformation measure to the total energy:

Ŵ(C) = W̃(I1, I4,f◦ , I4,s◦ , I8f◦s◦)
= W̃1(I1) + W̃4,f◦(I4,f◦) + W̃4,s◦(I4,s◦) + W̃8,f◦s◦(I8,f◦s◦).

(8)

Besides the mathematical reasons behind this simplification, there is also an experimental argument:

it is easier to identify the corresponding material parameters from experiments.

The specific form of each term is of exponential type:

W̃1(I1) =
a

2b

[
eb(I1−3) − 1

]
, W̃4,f◦(I4,f◦) =

af
2bf

[
ebf((I4,f◦−1)+)2 − 1

]
,

W̃4,s◦(I4,s◦) =
as
2bs

[
ebs((I4,s◦−1)+)2 − 1

]
, W̃8,f◦s◦(I8,f◦s◦) =

afs
2bfs

[
ebfsI

2
8,f◦s◦ − 1

]
,

where (·)+ denotes the positive part of the argument.

Thanks to (5) we can compute the explicit form of the Cauchy stress tensor T

T = aeb(I1−3)B− pI

+ 2 af(I4,f◦ − 1)+e
bf((I4,f◦−1)+)2 f ⊗ f + 2 as(I4,s◦ − 1)+e

bs((I4,s◦−1)+)2 s⊗ s

+ afsI8,f◦s◦ebfsI
2
8,f◦s◦ (f ⊗ s+ s⊗ f),

(9)

where f = Ff◦ and s = Fs◦. It can be observed that the assumptions made on the symmetry of the

material, and in particular on its microstructure, reflect in the tensorial form of the Cauchy stress

tensor: the isotropic contribution accounts for the extracellular matrix, while the anisotropic terms

play a role along the fibers and the sheets, or when the deformation changes the angle between the

two.

Following [6], the strain energy (2) is consistent with standard inequalities required from

considerations of convexity, strong ellipticity and material stability. However, it is worth mentioning

that the anisotropic terms associated to I4,f◦ and I4,s◦ needs to be turned off under compression,

i.e. when I4,f◦ < 1 and I4,s◦ < 1, respectively, in agreement with the heuristic idea that physically

a fiber is not able to bear load in compressive regime.

3. ACTIVE CONTRACTION

The myocardium is mainly composed by cardiac myocytes, arranged along fibers and sheets,

plus a smaller component of collagen and elastin. The passive properties of the material are well

reproduced by a strain energy of structural type, like the one introduced in the section above, where

the material parameters can be identified on the basis of standard experiments: apply a load, measure

the strain and fit the data. However living matter owns the special ability to produce motions even

tough there are no external forces that act: in particular the cardiac fibers shorten to eject the blood.

This peculiar property of living matter can be studied with quite a detail at a cell level. A stress–

strain relation can be measured when a myocyte is stretched over its resting length and no electric

stimulus is applied: this is the passive force. Conversely, during an isometric test an electrically

stimulated cardiomyocyte kept at fixed length produces a tension that can be associated to an active
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force that cooperates (with a non-trivial feedback) with the passive one. In a real tissue the two

contributions concur, together with the other components of the cardiac wall (collagen, elastin), to

produce the macroscopic active behavior.

We account for the activation of the cardiac muscle as a change in the reference (relaxed)

configuration of the body or, in other words, a control in strain of the microstructure. We carry

out a multiplicative decomposition of the deformation gradient tensor into an elastic deformation Fe

times an active distortion Fa [23]:

F = FeFa,

where the factor Fa has to be constitutively prescribed.

F

Fa
Fe

Figure 1. Pictorial view of the active strain approach: the active distortion of the fibers Fa does not preserve
the integrity of the material and incompatibility is recovered by the elastic (energy storing) term Fe.

The idea, sketched in Figure 1 is the following: an inelastic dynamics, dictated by biochemical and

biophysical processes, locally changes the length and the shape of the fibers, i.e. the microstructure;

then, an elastic deformation Fe accommodates the material in order to preserve the compatibility

of the deformation F. The physiological basis of the approach resides in the contractile units of the

myocytes: the sarcomeres shorten because of the sliding filaments of the actin–myosin molecular

motor, and this shortening is encoded by Fa, hence the fictitious intermediate placement determined

by Fa is the new reference configuration for the elastic deformation.

The strain–energy density is a function of Fe only, the active deformation Fa being a fully

dissipative process; the saddle–point problem (6) rewrites as follows:

min
ϕ∈V

max
p∈Q

∫

Ω0

{
Ŵ(F−T

a CF−1
a )− p (JJ−1

a − 1)
}
Ja dV, (10)

where Ja = detFa. If the saddle point exists, the first variation of the functional in (10) must be null

for every admissible variation (η, q) ∈ TϕV ×Q:

∫

Ω0

[
2JaF

−1
a

∂Ŵ(Ce)

∂Ce

F−T

a − p JC−1

]
: sym(FT GRAD η) dV −

∫

Ω0

q (J − Ja) dV = 0.

The 2st Piola–Kirchhoff and the Cauchy stress tensors are, respectively:

S = 2JaF
−1
a

∂Ŵ(Ce)

∂Ce

F−T

a − p JC−1, T = Fe

∂W(Fe)

∂Fe

FT

e − J−1
a p I.
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If no activation is triggered, then Fa = I and Fe = F, and the purely passive behavior of the material

is recovered. If the strain energy satisfies the conditions illustrated in Section 2 then the Piola stress

tensor is strongly elliptic, thus ensuring local existence and uniqueness of the solution.

The tensorial form of the active Cauchy stress is dictated by Fa through the strain–energy form as

well. A transversely isotropic and isochoric choice might be

Fa = (1− γ)f◦ ⊗ f◦ +
1√
1− γ

(
I− f◦ ⊗ f◦

)
. (11)

as supported by the physiological observation that during a contraction myocytes do not change

their volume significantly [24]. The explicit form of the invariants of Ce with the respect to the

invariants of C easily follows from (11):

Ie

1 = (1− γ) I1 +
1− (1− γ)3

(1− γ)2
I4,f◦ , Ie

4,f◦ =
1

(1− γ)2
I4,f◦ ,

Ie

4,s◦ = (1− γ) I4,s◦ , Ie

8,f◦s◦ =
1√
1− γ

I8,f◦s◦ .

The coefficient γ here does not depend on the strain. This constitutive, very simple assumption

is somehow supported by a physiological argument suggested by the inner structure of the

cardiomyocyte. The cardiac myocyte is approximately 25 µm in diameter and about 100 µm

in length. The myocyte is composed of bundles of myofibrils that contain myofilaments. The

myofibrils have distinct, repeating microanatomical units, termed sarcomeres, which represent the

basic contractile units of the myocyte. A microstructural motivation for keeping γ constant can be

understood from Figure 2 where cells activated at different levels of prestretch produce a different

force to reach nearly the same activated elongation of the sarcomeres [25]. In other words, a bigger

active stress is the control used by externally stretched cells to obtain the same target contracted

length. This inner behavior prompts us to adopt a constant γ in the constitutive law (11); we shall

check a posteriori if the nonlinearity of the material yields by itself the correct active stress–strain

feedback at the macroscale. The same argument follows from the very steep stress versus sarcomere

length plot reported by Kentish et al (see Figure 4b in [26]).

Figure 2. Cells activated at increasing prestretch at the frequency of 1 Hertz produce an increasing force in
order to reach nearly the same activated sarcomere shortening (from [25] with permission).
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4. GEOMETRY, FIBERS’ ARCHITECTURE AND NUMERICAL IMPLEMENTATION

4.1. Geometry and microstructure

All the main modeling and computational difficulties of cardiac mechanics are already present in

nuce in the numerical simulation of the left ventricular–cavity geometry approximated as a truncated

ellipsoid, where the major axis is about two times longer than the minor one.

It is common in the literature to adopt the prolate coordinate system to describe the geometry of

the ventricle, because it is a convenient starting point to fit patient–specific geometries from medical

images [2]. With this curvilinear coordinate system, the position of a point in the space is given by

a triplet (λ, µ, θ) as follows: 



x = d sinhλ sinµ cos θ,

y = d sinhλ sinµ sin θ,

z = d coshλ cosµ,

where d is the focal length, λ ≥ 0, µ ∈ [0, π) and θ ∈ (0, 2π].

x

y

z

λ

θµ eθ eλ

eµ

Figure 3. Prolate coordinate system (λ, µ, θ) and the corresponding orthogonal basis eλ, eµ and eθ .

The coordinate λ measures the distance of a point from the major axis along a hyperbola (see

Figure 3); thus, for a fixed value of λ, the other two variables µ and θ span an ellipsoidal surface

with major and minor axes equal to d coshλ and d sinhλ, respectively. The focal length d is a

scaling factor and, for the human left ventricle, it ranges between 3.5 and 4.5 cm.

Given the domain

Ω̃0 :=
{
(λ, µ, θ) : λendo < λ < λepi, 0 < µ < µbase, 0 ≤ θ < 2π

}
, (12)

with parameters taken from [27], we define the computational domain Ω0 (i.e. the left ventricle) by

first translating Ω̃0 in order to have the basal endocardium ring at z = 0, and then intersecting it

with the set {z < 0}.

The prolate coordinate system is curvilinear, the associated metric tensor is not constant but the

local basis of the tangent space {eλ, eµ, eθ} at a given point (λ, µ, θ) is orthogonal. Fibers and

sheets direction are defined by means of a linear combination of the normalized basis e〈λ〉, e〈µ〉 and

e〈θ〉 as follows:

f◦ = cosα(λ∗) e〈θ〉 + sinα(λ∗) e〈µ〉,

s◦ = sinβ(λ∗)
(
sinα(λ∗) e〈θ〉 − cosα(λ∗) e〈µ〉

)
+ cosβ(λ∗) e〈λ〉,

(13)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (0000)
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with α(λ∗) = αendo(1− λ∗) + αepi λ∗ and β(λ∗) = βendo(1− λ∗) + βepi λ∗. The parameter λ∗ ∈
[0, 1] measures the wall depth: λ∗ = 0 refers to the endocardium while λ∗ = 1 identifies the

epicardium, according to the following definition

λ∗ :=
λ− λendo

λepi − λendo

.

It is easy to check that, by definition (13), fibers and sheets are everywhere orthogonal. This property

is required by constitutive mechanical reasons because, as showed in Section 2, the symmetry group

of an orthotropic material is defined through an orthonormal basis {f◦, s◦,n◦}.

The orientation of the cardiac fibres according to this protypical law neglects the the mechanical

impact of more complex but more physiological distributions. In particular, non null imbrication

angle, non-symmetric and non-linear transmural variation of the helix angle are not accounted for

in the present work. This choice is made on purpose, to keep the parametrization of the geometrical

model at a minimum degree of complexity.

4.2. Numerical approximation of the PV-loop

In the heart, the systole starts when the electric potential triggers the sarcomeres twitch inside the

myocytes. This marks the end–diastolic point (EDP) of the PV-loop, just after that the blood has

been pushed by the atrial contraction and ventricle relaxation inside the ventricle itself through the

mitral valve. The contraction of the fibers suddenly increases the cavity pressure, the mitral valve

closes and the ventricle undergoes an isovolumic strain: the incompressibility of blood preserves the

chamber volume during the twitch. During this phase the inner pressure significantly raises from the

end–diastolic value (which is the preload) to the arterial one (afterload), reached when the aortic

valve opens.

Let Vinner(ϕ) be the inner volume computed from the deformation ϕ. During the isovolumic

contraction, the following constraint has to be variationally imposed:

Vinner(ϕ) = VEDP,

where VEDP is the constant end–diastolic volume. The corresponding Lagrange formulation reads:

L (ϕ, p, pinner; γ, VEDP) :=

∫

Ω0

W
(
F(ϕ)F−1

a (γ)
)
dV −

∫

Ω0

p (J − 1) dV

− pinner

(
Vinner(ϕ)− VEDP

)
,

(14)

where the first integral is the strain–energy, while the second accounts for the incompressibility of

the material. To enforce the preservation of the inner volume, the (scalar) Lagrange multiplier pinner

has been introduced. Finally, the activation γ = γ(t) is prescribed at the (fictitious) time t.
The volume Vinner(ϕ) can be calculated by a surface integral

Vinner(ϕ) =

∫

ϕ(Ωinner)

dv =
1

3

∫

∂ϕ(Ωinner)

x · n da = −1

3

∫

∂ϕ(Γendo)

x · n da,

where Ωinner is the volume enclosed by the endocardium Γendo and the plane at z = 0, and n is the

outgoing unit normal vector.

The saddle–point of the functional (14) can be characterised taking the first variation of L in

(ϕ, p, pinner):





〈DϕL ,η〉 =
∫

Ω0

(
P(FF−1

a )F−T

a − p cof F
)
: GRAD η dV − pinner

∫

Ω0

DϕVinner · η dV = 0,

〈DpL , q〉 = −
∫

Ω0

q (J − 1) dV = 0,

〈DξL , qinner〉 = −qinner

(
Vinner − VEDP

)
= 0,

(15)
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for all (η, q, qinner) ∈ V ×Q× R, with V ⊆ TϕC and Q = L2(Ω0).
The derivative DϕVinner can be explicitely calculated as follows:

〈DϕVinner,η〉 =
∫

Ωinner

cof F : GRAD η dV = −
∫

∂ϕ(Γendo)

(η ◦ϕ) · n da.

We observe that pinner is nothing but the (unknown) inner pressure, to be applied in order to have

the inner volume equal to VEDP (given).

From an implementation viewpoint, the Newton-Raphson method applied to a finite elasticity

problem (15) rewrites in solving a linearized and then discretized problem where the second order

derivative of the Lagrangian is symmetric (although not positive definite since it is a saddle-point

problem); this can be exploited in the numerical solution of the linear system (for instance by a

Cholesky decomposition).

In absence of commonly accepted physiological boundary conditions at the base and at the

epicardium, we fix the normal displacement of the base have fixed normal (axial) displacement

Γbase = Ω0 ∩ {z = 0}. Then we adopt the weakest possible choice that mathematically ensure

well posedness: null average displacement and null average rotation of the ventricle. The actual

implementation of these constraints rewrites in terms of two conditions to be appended to the

Lagrange functional with three scalar multipliers to be determined (see details in [16]).

The constant–volume contraction ends when the inner pressure is high enough to open the aortic

valve and let the blood flow outside. This stage is called ejection phase, and it is located in the P–V

curve between the aortic valve opening (AVO) and the aortic valve closing (AVC).

During the ejection phase, pressure and volume in the chamber are related in a complex manner,

since the time–variation of the volume depends on the valve geometry, on the compliance of the

arterial vessels, on the overall resistance of the circulatory system, and so on. It is not the purpose of

the present work to address such issues not even partially, so we simply fix an end–systolic pressure

and compute the volume from the corresponding deformation, moving along a horizontal line in the

P–V plane.

The only computational issue for this branch of the PV-loop is the valve opening effect to be

encoded in the mechanical model. During the isovolumic contraction, the pressure is a Lagrange

multiplier that can be controlled through the activation parameter γ, i.e. a function γ 7→ pinner(γ).
The afterload pressure pafterload is targeted according to the following strategy: γ is increased step

by step and when the threshold is crossed, we apply a root–finding algorithm (the Brent’s method,

in our case) to the equation pinner(γ) = pafterload, for γ between the last two computed values. In

general, after less than six iteration the Newton residual is below the requested tolerance (10−8).

The diastolic phase resembles the systole from the implementation viewpoint: when γ reaches its

maximum value, the aortic valve is closed, and so the isovolumic relaxation starts. The deactivation

continues until the inner pressure is below the preload ppreload, when the mitral valve opens. The

last phase closes the loop by keeping the pressure constant.

5. RESULTS AND DISCUSSION

The simulations illustrated in this section start with a passive inflation up to the end–diastolic

pressure ppreload = 1 kPa. Then, an entire PV–loop is approximated by a linear increase of γ up

to 0.2 and pafterload = 10 kPa, and backward. The value γ = 0.2 is fixed on the basis of best fit of

experiments with sheets of active cardiomyocytes [16].

The stages of the PV-loop are graphically illustrated in Figure 4 with the table of fixed corner

values. For the canine geometry, the stroke volume, defined as the difference between the end–

diastolic and end–systolic volumes, is about 22.56 ml, which yields an ejection fraction (the stroke

volume over the end–diastolic volume) of 56%. This value is within the physiological range for a

normal heart.

Numerical simulations are performed with different combinations of material parameters and

microstructure. Our reference set up of parameters involves a radial sheet distribution, a symmetric

±60◦ fiber orientation across the wall and material parameters from [8].
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Figure 4. Pressure, volume and contraction at key points of the PV-loop, namely end–diastolic point (EDP),
aortic valve opening (AVO), end–systolic point (ESP) and mitral valve opening (MVO). The reference
configuration is initially passively inflated to reach the end–diastolic point. Note that the contraction

parameter γ does not vanish at MVO, but at EDP.

Results of the numerical simulations are post–processed to evaluate the ability of the

mathematical model to reproduce relevant physiological quantities: thickening, total length of

the ventricle, stroke volume, transmural strain and stress, torsion. According to [28], there is no

standard protocol to measure the torsion of the left ventricle, and two formulas are reported as most

significant:

sin τ1θµ =
2Eθµ√

1 + 2Eθθ

√
1 + 2Eµµ

, (case 1)

τ2θµ =
φbaserbase − φapexrapex

D
. (case 2)

The first formula relies on the Green tensor E and is therefore intrinsically objective, while the

second one deserves more explanations. Given two axial sections of the ventricle, one near the

base and the other just above the apex, separated by a distance D, we select one point per section,

say Xbase and Xapex, initially aligned. The deformation maps these two points to xbase and xapex,

respectively. Then we compute

R = ‖X− (X · e3)X‖ , r = ‖x− (x · e3)x‖ , sinφ =
x ∧X · e3

rR
,

for both sections, and eventually the torsion τ2θµ.

In Figures 5 and 6 are plotted several relevant mechanical fields computed during a cardiac cycle.

The simulation starts at the end of the passive filling stage, during which the venous pressure raises

the inner volume from 32 to about 40 ml. In the following we compare these results with statistically

significant normal human values [29]. Reference length ratios are taken using values at systole and

diastole (and not vs. the relaxed configuration), the only possible protocol that can be adopted in

vivo.

During the systolic phase, the difference in peak radial displacement between endocardium and

epicardium (Figure 6) tells us that the wall thickens for 36%, while the ventricle shortens of

about 4% (not shown). These values are slightly smaller than the physiological ones. Under the

incompressibility constraint, the transmural orientation of the fibers favors the transverse shear, and

then thickening, with respect to axial elongation [30, 28].

The strain distribution across the wall (Figure 5) is within the physiological range [31]. The

hoop strain is around −20% at the sub–endocardium and −2% at the sub–epicardium, which
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Figure 5. Plot of the Green-Lagrange strain (upper) and Cauchy stress (lower) components during the cardiac
cycle of a canine ventricle. The data refer to a mid-axis section of the ellipsoid. At a given time, the shaded
area represents the range of values transmurally spanned by the specific field in the radial direction. The lines
refer to the sub–epicardium (solid line), sub–endocardium (dashed line), and mid–myocardium (dash–dotted

line). The time (abscissa) is fictitious, so no scale is provided.

yields a significantly higher transmural variation than the strain in the fibers direction (the latter

being gathered from I4,f◦). We conjecture that this could be physiologically advantageous from

a structural point of view: myocytes bear nearly the same mechanical load irrespective of the

transmural position.

Among the off–diagonal components of the strain, Eθµ takes the largest values (the same occurs

for the Cauchy stress T). This is not surprising since the longitudinal–circumferential shear is

associated to the torsion (and it is indeed exploited to compute the torsion with the formula (case 1)).
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All the components of the stress exhibit a peak at end systole, a signature of the exponential form

of the strain energy which manifests itself at large (microstructural) strains.

The value of the transmural pressure is of the same order of magnitude as the biggest component

of the Cauchy stress: therefore p contributes as much as the strain energy to the principal components

of the stress. An accurate enforcement of the incompressibility constraint is therefore essential to

compute the stress field correctly; in our computations | detF− 1| < 10−8 ∀X.

5.1. Axial torsion and transverse shear

Two shear deformations can be identified: a rotation of the apex with respect to the base (say

axial torsion) and a rotation of the endocardium with respect to the epicardium (transmural shear).

They are both associated to the shear stress, Tθµ and Tθλ, respectively, that are generated by the

asymmetric distribution of the fibers; the shortening of the left handed epicardial fibers induces a

rotation opposite to the one of the right handed endocardial ones. The force balance is generally

in favor of the epicardial fibers because of the longer arm of their torque. Torsion is therefore

essentially dictated by the mechanical functionality of the fibers.

We calculate a significant longitudinal torsion of the ventricle during the contraction (Figure 6).

The difference between diastole and systole at epicardium is about 15◦, a value consistent with the

physiological range [32]. The plot of torsion versus time computed using the two formulas are quite

similar, the maximum value obtained using the formula (case 1) being slightly higher.

A significant transmural shear is observed during the cardiac cycle (see Figure 8). At systole

we numerically find that near the base the endocardium slightly rotates clockwise (view from the

apex of the ventricle) and the epicardium rotates counterclockwise, while the opposite occurs during

relaxation. This transmural shear is also apparent, at minor extent, when the ventricle isovolumically

contracts, in the early systolic phase. The shear is not homogeneous along the longitudinal direction:

moving towards the apex, it changes sign around µ = π
2 , so that the rotation is in the opposite
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Figure 8. Torsion of the ventricle at four stages of the PV-loop. The mid-figure strip refers to the epicardium,
while top and bottom figures represent the in-plane transversal rotation at the base and the apex, respectively.
The epicardial torsion (difference in the rotation angle) at end diastole is very small, it is appreciable at
the aortic valve opening and, as expected, it reaches its maximum during the ejection phase. The in-plane
transversal shear reflects a rotation in opposite directions of the inner and external walls at the AVO, while
during the ejection the epicardium only rotates for a large angle, the rotation of the endocardium being very

small.
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direction near the apex (which yields a different longitudinal torsion at the sub–endocardium and

the sub–epicardium). In the midsection and near the apex the shear is positive, meaning that the

epicardium rotates counterclockwise while the endocardium clockwise, and it ranges from 0.02 at

the diastole to 0.14 at the systole.

The transverse shear resulting in our numerical simulations is also reported in the physiological

literature [33, 28] (see Figure 9), but with an important difference: the internal and external rotation

in a given axial plane are observed to occur in the same direction with a decreasing amplitude

going from the internal to the external boundary. This behavior is paradoxical on the basis of

our mechanical understanding, since the rotation is expected to be dictated by the fibers on the

epicardium, which take advantage of their longer arm; therefore we coherently predict a larger

epicardial rotation that can, at most, contrast the rotation of the endocardial surface in its (opposite)

direction.

Epi

Endo

Apex

Epi

Endo

Base

Figure 9. Physiological rotation of the endo and epicardium occur in the same direction, the inner being
larger than the outer one. This behavior (not numerically reproduced) is paradoxical on the basis of our

current understanding of cardiac mechanics and not yet understood.

To get rid of such a puzzle, we observe that sheets are radially oriented, while fibers are in

circumferential layers, so that the transverse shear is measured by the eighth invariant I8,f◦s◦ . As it

is well known that it is difficult to evaluate experimentally the shear moduli of soft biological tissues,

we have conjectured that a greater stiffness modulus in the corresponding strain–energy term might

affect the results discussed above. As a matter of fact, we do not notice significant modifications in

the results when the shear modulus afs is 5 times greater (not shown).

In our opinion the failure of the numerical model in reproducing the experimentally observed

transverse rotation goes beyond a mere tuning of the parameters: there is some deeper mechanism

which is still to be understood together with its encoding in terms of mathematical equations (see

a nice discussion in [28] in this respect). We just mention that according to [33] the transverse

fiber angle (or imbrication angle) is responsible for the mechanical paradox illustrated above. We

do not address this possible explanation in the present work, where fibers always lie on surfaces at

constant λ.

5.2. Energy partition

If the orientation of the fibers across the wall spans an interval smaller than the commonly accepted

one (−60◦, 60◦), the isovolumic contraction exhibits an unphysiological elongation of the ventricle

(not shown). Conversely, with a standard distribution of fibers, the apparent deformation F is small,

as certified by the nearly constant value of I4,f◦ calculated between the EDP and the AVO stages

(see Figure 7).

This observation suggests an energetic argument to interpret the optimality of the fibers

architecture in the cardiac tissue [34]. If the fibers are physiologically oriented, they do not produce

apparent strain during the isovolumic contraction, as they are designed to produce, at this stage, the

maximum compression of the inner blood volume. Energy possibly spent during the isovolumic
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branch of the PV–loop to give rise to visible displacement would be wasted; so we can argue

that the fiber architecture is designed to maximize the incompatibility of Fa and make F ≃ I. The

strain energy W ≃ W(F−1
a ) storage is here maximized to provide the maximum stroke volume in

the ejection phase that follows, by using also the simple passive relaxation of the (not any more

activated) elastic walls.

As expected, the largest contribution in the strain energy comes from W4,f◦ (Figure 6), while

the cardiac material is largely under compression in the fibers’ direction during systole, as certified

by the value I4,f◦ < 1. Intriguingly, while I4,f◦ = Ff◦ · Ff◦ is smaller than one, the strain energy

contribution is not turned off, seemingly in contrast with the prescription of vanishing stress

contribution of the fibres under compression. As a matter of fact, this is not in contradiction with

the form of the Cauchy stress tensor (9) and the discussion at the end of Section 2, because it

is calculated from the activated configuration Fef◦ · Fef◦, not on the basis of the physical one

(Figure 6). This transparent result arises in an active strain framework only.

The sheet–specific contribution encoded in the strain energy W4,s◦ shows up only in the late

systole and early diastole (Figure 6), thus confirming that sheets work in compressive regime during

inflation; during the contraction, the thickening and torsion become large enough to compensate the

sheets’ shortening due to the compression.

The energetic contribution W8,f◦s◦ is much smaller than fibers’ one W4,f◦ , but comparable or

larger than the isotropic one W1. The eighth invariant I8,f◦s◦ is significantly different from zero

during the cycle and its value can be interpreted as a measure of the shear strain driven by the twisted

contraction of endocardial and epicardial fibers. However, we have seen that removing such a term,

no substantial difference arises in terms of volume, torsion, radii and height. On the other hand,

the stress distribution is slightly different in all the components, especially the trace of the Cauchy

stress and its component along the fibers. This observation is supported by the small contribution

to the strain energy provided by W8,f◦s◦ (Figure 6). To make this result more robust, we recall that

an high uncertainty is known to affect the shear experiments on soft biological tissues [35]. As a

matter of fact, such a small energetic contribution of the shear strain in the elastic energy persists

under variation of the corresponding elastic modulus for an order of magnitude (not shown). The

minor relevance of the sheets architecture in the cardiac dynamics (with fixed material parameters)

is confirmed by the sensitivity analysis reported in Figure 10: at variance of the orientation of the

sheets there is no significant modification in the indicators of the cardiac activity.

These observations support the conclusion that the Holzapfel–Ogden model effectively accounts

for the laminar structure of the myocardium that is at some extent relevant in the systole. On the

other hand, for the material parameters reported in the literature, the contribution of the sheets is

secondary with respect to the one of fibers structure.

5.3. End systolic pressure raise vs. end diastolic pressure

The stroke volume of the heart linearly increases in response to an increase in the end

diastolic volume, a self–regulation mechanism known as Frank–Starling law [36]. In tissue–

scale mathematical models it is usually represented in terms of a stretch–dependent active stress,

introducing further complexity (and a possible source of instability) in the mechanical model. There

is a common agreement that the subcellular explanation of this adaptation of the produced stress to

pre–stretch of the muscle is the increased Calcium sensitivity [26].

In our model we do not explicitly encode any subcellular dynamics; the factor γ here enforces

at a macroscopic level the shortening of the fibers and it is taken independent of the stress state of

the body. Therefore there can be no expectations about the possibility to reproduce behaviors based

on unresolved subcellular electrophysiology. However, it is worth to mention that in an active strain

framework an increase in the preload is naturally accompanied by an even higher increase in the

end–systolic pressure. We have performed several simulations passively inflating the ventricle up to

a given pressure, and then triggering an isovolumic contraction with γ = 0.1. The result plotted in

Figure 11 clearly shows that the end–systolic pressure grows nonlinearly with the preload.

An elementary explanation of this behavior can be understood considering a lumped system

composed by an activable spring of stiffness κ and subject to a force f0. The spring is initially
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not activated and the corresponding elongation x0 satisfies

κx0 = f0.

If the elongation is fixed at x0 and then the spring is activated, the reference strain passes from 1 to

xa, and the corresponding produced force f is

f = κx0/xa.

It follows that the actively produced force at fixed apparent elongation x0 grows linearly with the

prestress f0.

This elementary argument makes transparent the reason why in an active strain framework the

ESP grows with EDP in such a natural way: the ventricle prefill volume, represented by x0, is

recorded in the passive stress f0 that dictates the magnitude of the active stress f and raises the

blood pressure. While this argument is manifestly too simple to account for the real subcellular

physiology of the system, it intriguingly captures some qualitative behavior.

FINAL REMARKS

In this paper we have discussed a numerical simulation of the cardiac cycle in a prolate ellipsoid

using an active strain formulation of the Holzapfel–Ogden strain energy. The finite elements

computation has been carried on an unstructured (tetrahedral) grid, using a two–fields formulation

of the equations and mixed (quadratic–linear) conformal basis. The solution of the discrete nonlinear

problem is achieved by a Newton–Raphson scheme.

• The numerical scheme is robust and, in the wide range of parameters explored, it never

exhibits instabilities. The Newton–Raphson method converges rapidly, provided that the

pseudo-time step is sufficiently small. About 8 000 quadratic finite elements, yielding 9

degrees of freedom across the wall thickness, are sufficient to capture an accurate deformation

and stress field.

• The very weak boundary conditions adopted perform well from a numerical point of view,

enforcing null average displacement and rotation without introducing further hand–tuned

boundary conditions.

• The predicted passive filling during diastole, the stroke volume, elongation of the height,

strain and torsion are in the range of physiological values. Cardiac wall thickening and axial

elongation in systole are slightly below the physiological ones.

• Numerical results are weakly sensitive to the material parameters in the variability range

spanned by different papers. Sheets play a minor role in the overall strain energy (for fixed

material moduli) while a strong dependence on the fibers orientation has been observed. The

contribution of the I8,f◦s◦ invariant is negligible.

• We find that the contribution of the pressure in the stress is as large as the one due to the

strain–energy, and incompressibility dictates the torsion. Results highlight that an accurate

numerical implementation of the incompressibility constraint is mandatory.

• In our active strain setting, the stress term depending on the fibers’ deformation W̃4,s◦ is not

turned off for stability reasons under compression, because it depends on the fourth invariant

Ie
4,s◦ calculated from Fe, and it is always bigger than one in our computations. Interstingly,

this is in agreement with recent works on the mechanical role of fibres in muscles [37].

• The pressure jump generated by the active contraction in the isochoric phase grows vs.

the prestretch dictated by the volume prefill, even though the contraction length of the

microstructure γ is kept constant, independent of the macroscopic strain. This seem a natural

framework where quantitative modelling of the coupling between cell level electrophysiology

and macroscopic stress could be addressed in the future.
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