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Abstract

In this work we present a new high order space-time discretization method based on a
discontinuos Galerkin paradigm for the second order visco-elastodynamics equation. After
introducing the method, we show that the resulting space-time discontinuous Galerkin
formulation is well-posed, stable and retains optimal rate of convergence with respect to
the discretization parameters, namely the mesh size and the polynomial approximation
degree. A set of three-dimensional numerical experiments confirms the theoretical bounds.

1 Introduction

Hyperbolic initial-boundary value problems, such as wave propagation phenomena, arise in
many and different engineering disciplines: in sound and vibration analysis, in medical imag-
ing, in sonar or radar detection, in computational seismology and in life and social sciences.
Developing numerical methods for this class of problems has been a constant interest in the
field of computational mechanics and ingeneering. To represent effectively the underlying
physical phenomeneon it is needed: i) an accurate representation of the waves propagating
through the elastic or acoustic medium, ii) a detailed description of the involved geometry
(such as complex surfaces and irregular interfaces) and iii) a considerable amount of compu-
tational effort in order to resolve the problem for all the wavelenghts of interest.

Standard discretization methods in time and space are based on time-stepping methods
(e.g. finite defferences, Newmark or Runge-Kutta type schemes) combined with suitable
spatial discretization techniques, like finite element methods. In this framework we can dis-
tinguish two families of methods: i) the method of lines, cf. [32] (first discretize in space
and then solve the resulting ordinary differential equation) and ii) the Rothe method (first
discretize in time and then solve the resulting partial differential equation), cf. [31].

More recently, discretizations of hyperbolic equations consider the full problem in the
space-time configuration, i.e. the finite element method is also use to discretize the temporal
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domain, and aim to overcome limitations of classical approaches such as issues of stability and
convergence with the choice of parameters. Space-time finite element schemes can be divided
in two classes according to which type of mesh they employ, i.e., an unstructured simplicial
or a structured prismatic grid.

The first approach allows for discretization in time and space simultaneously because the
temporal domain is treated as an additional dimension and a d+ 1-dimensional partition can
be constructed directly in the space-time domain. In this sense, a one dimensional evolution
problem is hence treated as a two dimensional one by considering, for instance, a triangu-
lar mesh. On the one hand, this approach has become quite popular and has been widely
employed for problems that require deforming and/or moving meshes. See, for instance,
[26, 12, 13, 29]. On the other hand, although recent advances in the generation of unstruc-
tured simplicial space-time meshes, see [43, 20], its construction for realistic three dimensional
problems, hence composed of fourth dimensional polytopes, is still problematic and not easily
achievable. It is mainly for that reason that space-time structured meshes are still preferable
for three dimensional applications. Indeed, these grids can be easily obtained by extruding,
in the time direction, the (generally) unstructured spatial mesh, giving rise to prismatic el-
ements. The approximations built on top of such grids is less flexible that the one made by
generic poytopes, but still allows for adaptivity. Additionally, the construction of space-time
finite elements is very natural in this setting, [15, 41].

Looking only at time discretization, we can distinguish between time continuous space-time
Galerkin method (TcG) and time-discontinuous Galerkin method (TdG). In TcG schemes no
discontinuity in time is allowed in the approximation. In its general implementation, TcG
involves high computational cost because the entire temporal domain has to be discretized.
Relevant applications to the wave propagation problem can be found in [1, 44, 24, 34, 22, 33].
We refer the reader to [27, 28] for an exhaustive review on the subject.

In TdG schemes the time interval is further sbdivided into independent time slabs and
temporal discontinuities or jumps are allowed between the slabs. The finite element approach
is applied in each time slab and the unknowns that are solved in one time slab serve as inputs
for the following one. This formulation is much more efficient than the TcG one for obvious
reasons. In particular, it has been shown that TdG scheme leads to approximations that are A-
stable and high order accurate. In literature, it is possible to find different TdG finite element
formulations that are built upon reformulating the original problem as a system of first-order
equations (see, e.g., [19, 26, 30, 21]) or directly applied to the second-order hyperbolic system,
where a Galerkin least square (GLS) approach is applied to stabilize the numerical scheme,
e.g., [28, 42, 3, 45]).

In this paper we develop a new high-order space-time dG finite element method for the
resolution of the visco-elastodynamics equation on prismatic grids. The scheme that we pro-
pose is the result of a combination between the space dG formulation introduced in [11]
and the time dG approximation presented in [7]. In particular, for the spatial discretization
is employed a combined dG-cG approach where the solution is allowed to be discontinuous
subdomain-wise while it is continuous inside each subdomain and approximated with spectral
elements, see e.g., [8, 36, 9]. For the time integration a recently introduced TdG method is
applied to the second-order differential problem, [7] stemming after space discretization. The
obtained TdG method is implicit and unconditionally stable, allowing independent displace-
ment interpolations between different time slabs. This new space-time method is naturally
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suited for an adaptive choice of the time discretization parameters, i.e., the use of high-order
polynomials/small time steps only when the solution features a sharp spatial-temporal deriva-
tive.

The remainder of the paper is organized as follows. In Section 2 we formulate the problem,
we describe separately the space and time discretization techniques and their main properties.
Then, we present the space-time dG method and we analyze its well-posedness. In Section 3
we derive the algebraic formulation while in Section 4 we investigate the stability of the scheme
and we prove an a-priori error estimates. Finally, numerical results are shown in Section 5
concerning the verification and the validation of the proposed discretization. Throughout the
paper, we use standard notation for Sobolev spaces [2]. The Sobolev spaces of vector–valued
and symmetric tensor-valued functions are denoted by Hm(D) = [Hm(D)]d and Hm(D) =
[Hm(D)]d×dsym , respectively. We will use the symbol (· , ·)D to denote the standard inner product

in any of the spaces H0(D) = L2(D) or H0(D) = L2(D). For time dependent functions we
define, for any T > 0, the spaces

Lq(0, T ;Hs(Ω)) = {w : (0, T )→ Hs(Ω) :

∫ T

0
||w||qHs(Ω)dt < +∞, 1 ≤ q <∞},

and

Hq(0, T ;Hs(Ω)) = {w : (0, T )→ Hs(Ω) :

∫ T

0
||w(k)||2Hs(Ω)dt < +∞, 1 ≤ q <∞, 0 ≤ k ≤ q},

for any 0 ≤ s <∞. We define analogously the spaces Cq(0, T ;Hs(Ω)) for any 0 ≤ q ≤ ∞, 0 ≤
s <∞ as well as the corresponding vector-valued counterparts. In the following C denotes a
generic positive constant that may take different values in different places, but is always mesh
(either in space and time) independent. The notation x . y will represent the inequality
x ≤ Cy for a constant C as before.

2 The visco-elastic wave propagation problem

We consider the general visco-elastic wave propagation problem in an open bounded polygonal
domain Ω ⊂ Rd, d = 2, 3, with boundary ∂Ω = ΓD∪ΓN such that ΓD∩ΓN = ∅, and |ΓD| > 0.
The problem reads as follows: for T > 0 find u : Ω× (0, T ]→ Rd such that

ρ∂ttu+ 2ρζ∂tu+ ρζ2u−∇ · σ(u) = f , in Ω× (0, T ],

σ(u)−Dε(u) = 0, in Ω× (0, T ],

u = 0, on ΓD × (0, T ],

σ(u)n = 0, on ΓN × (0, T ],

∂tu(0) = û1(x), in Ω× {0},
u(0) = û0(x), in Ω× {0},

(1)

where ρ ∈ L∞(Ω) is a positive, bounded function representing the mass density of the
medium, ζ ∈ L∞(Ω) is a positive decay factor whose dimension is the inverse of time,
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f ∈ C1((0, T ];L2(Ω)) is a given source term, û0 ∈ H1
0,ΓD

(Ω)∩H∆
D(Ω) and û1 ∈ H1

0,ΓD
(Ω) are

smooth enough initial conditions and

H1
0,ΓD

(Ω) = {w ∈ H1(Ω) : w = 0 on ΓD},
H∆

D(Ω) = {w ∈ L2(Ω) : div(Dε(w)) ∈ L2(Ω)}.

We remark that the damping factor ζ has been introduced to model viscoelastic effects without
resorting to constitutive laws based on Prony series, which involve time convolutions to express
the stress in terms of the strain history (see e.g. [38, 39]). The main idea is to regard the sum of
ζ-dependent terms as a viscous displacement-dependent volume force fvs = −2ρζ∂tu− ρζ2u
acting upon a purely elastic body undergoing a displacement field u (see e.g. [8]). It can
be shown that, considering an harmonic excitation, the solution u obtained by adding the
viscous force can be related to the solution û of the corresponding linear elastic problem by
the relation u = e−ζtû. Hence, every frequency component of the solution to the linear elastic
problem is attenuated by an exponential factor.

The second equation in (1) is the Hooke’s constitutive law and relates the strain ten-
sor ε(u) = 1

2(∇u + ∇uT ) to the stress tensor σ through the 4th order uniformly bounded
symmetric and positive definite stiffness tensor D defined as follows

Dε = 2µε+ λtr(ε)I. (2)

In (2), λ and µ are the first and second Lamé elastic coefficients, respectively, while tr(·) is
the trace operator and I ∈ Rd×d is the identity tensor. Hereafter, we suppose that λ and µ
are uniformly bounded positive functions in Ω, i.e., λ, µ ∈ L∞(Ω), λ, µ > 0. Next, we consider
the variational formulation of problem (1): for all t ∈ (0, T ] find u ∈ H1

0,ΓD
(Ω) such that:

(ρutt,v)Ω + (2ρζ∂tu,v)Ω + (ρζ2u,v)Ω + (σ(u), ε(v))Ω = (f ,v)Ω ∀v ∈ H1
0,ΓD

(Ω), (3)

supplemented with the initial conditions u(0) = û0 and ut0 = û1. Under the above regularity
assumptions problem (3) has a unique solution u ∈ C2(0, T ;L2(Ω)) ∩ C1(0, T ;H1

0,ΓD
(Ω)) ∩

C0(0, T ;H1
0,ΓD

(Ω) ∩H∆
D(Ω)), see for instance [5, Theorem 3.1].

2.1 Space discretization based on a dG spectral element method

We consider a (not necessarily conforming) decomposition Th of Ω into L nonoverlapping
polyhedral sub-domains Ω`, i.e., Ω = ∪`Ω`, Ω` ∩ Ω`′ = ∅ for ` 6= `′. On each Ω`, we build
a conforming, quasi-uniform computational mesh Th` of granularity h` > 0 made by open

disjoint elements Kj` , and suppose that each Kj` ∈ Ω` is the affine image through the map

F j` : K̂ −→ Kj` of either the unit reference hexahedron (resp. square) or the unit reference

tetrahedron (resp. triangle) K̂ for d = 3 (resp. d = 2), see Fig. 1. Given two adjacent
regions Ω`± , we define an interior face F as the non-empty interior of ∂K+ ∩ ∂K−, for some
K± ∈ Th`± ,K

± ⊂ Ω`± , and collect all the interior faces in the set FIh . Moreover, we define

FDh and FNh as the sets of all boundary faces where displacement and traction are imposed,
respectively. Implicit in this definition is the assumption that each boundary face can belong
to exactly one of the sets FDh or FNh . Finally, we collect all the boundary faces in the set Fbh.
To carry out the analysis, we suppose that the following shape-regularity mesh assumption
holds, see [37, 23].
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hF ∈ F b

h

Figure 1: Two dimensional example of the domain decomposition partition. Non-conforming
subdomain partition Ω = ∪`Ω` and conforming quasi-uniform computational mesh within
each Ω`.

Assumption 2.1. Mesh assumption. For any element K ∈ Th and for any face F ⊂ ∂K, it
holds hK . hF .

Assumption 2.2. Local bounded variation. Mesh-size h` and polynomial degree N` have local
bounded variation, i.e. h`+ . h`− . h`+ and N`+ . N`− . N`+ for any pair of neighboring
elements Ω`±,

We refer to [16], for example, for the weakening of the above assumptions and to [15, 6, 10]
for the use of polyhedral-shaped elements.
Let K± ∈ Th`± be two elements sharing a face F ∈ FIh , and let n± be the unit normal vectors
to F pointing outward to K±, respectively. For (regular enough) vector and tensor-valued
functions w and τ , respectively, we denote by w± and τ± the traces of w and τ on F , taken
within the interior of K±, respectively, and set

JwK = w+�n+ +w−�n−, Jτ K = τ+n+ +τ−n−, {w} =
w+ +w−

2
, {τ} =

τ+ + τ−

2
,

where w � n = (wTn+ nTw)/2.
Now, to each subdomain Ω` we assign a nonnegative integer N`, and introduce the finite
dimensional spaces for ` = 1, . . . , L,

VN`

h` (Ω`) = {w ∈ C0(Ω`) : w
∣∣
Kj

`
◦ F j` ∈ [MN`(K̂)]d ∀ Kj` ∈ Th` , w = 0 on ΓD}, (4)

where MNk(K̂) is either the space PNk(K̂) of polynomials of total degree at most Nk on K̂, if
K̂ is the reference tetrahedron (resp. triangle), or the space QNk(K̂) of polynomials of degree
Nk in each coordinate direction on K̂, if K̂ is the unit reference hexahedron (resp. square) in

R3 (resp. R2). We then define the space V N
h as V N

h =
∏
`V

N`

h`
(Ω`). The semi-discrete dG

spectral element approximation of problem (3) reads: ∀t ∈ (0, T ], find uh = uh(t) ∈ V N
h such
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that

L∑
`=1

[
(ρüh,v)Ω`

+ (2ρζu̇h,v)Ω`
+ (ρζ2uh,v)Ω`

]
+ Bh(uh,v) = Fh(v) ∀v ∈ V N

h , (5)

subjected to the initial conditions uh(0) = û0,h and u̇(0) = û1,h, where û0,h and û1,h are
suitable approximation to û0 and û1, respectively. In (5) the right-hand side Fh(·) is defined
as

Fh(v) =

L∑
`=1

(f ,v)Ω`
v ∈ V N

h , (6)

while the bilinear form Bh(·, ·) is given by

Bh(u,v) =
L∑
`=1

(σ(u), ε(v))Ω`
− 〈{σ(u)}, [[v]]〉FI

h
− 〈[[u]], {σ(v)}〉FI

h
+ 〈η[[u]], [[v]]〉FI

h
, (7)

for any u,v ∈ V N
h and where we have used the short-hand notation 〈w,v〉FI

h
=
∑

F∈FI
h
〈w,v〉F .

In (7) the facewise stabilization function η ∈ L∞(FIh) is defined as

η|F = α{D}H
max{N2

`+, N
2
`−}

min{h`+, h`−}
, ∀F ∈ FIh , F ⊆ ∂Ω`+ ∩ ∂Ω`−, (8)

where α is a positive constant to be properly chosen and, for a piecewise constant tensor D,

{D}H = 2
((n+)TD+(n+))((n−)TD−(n−))

((n+)TD+(n+)) + ((n−)TD−(n−))
.

Remark 2.3. If L = 1, i.e., if there is only one subdomain and FIh = ∅, formulation (5)
corresponds to the classical spectral element method, see e.g. [17, 18]. On the other hand, if
Ω` for ` = 1, ..., L consists of only one element, the dG paradigm is employed elementwise.

We next introduce the following (mesh-dependent) norms

‖w‖2∗ =

L∑
`=1

‖D1/2ε(w)‖2L2(Ω`)
+ ‖η1/2[[w]]‖2L2(FI

h)
∀w ∈H1(TΩ),

|||w|||2∗ = ‖w‖2∗ + ‖η−1/2{Dε(w)}‖2L2(FI
h)

∀w ∈H2(TΩ),

(9)

with the convention that ‖w‖2
L2(FI

h)
=
∑

F∈FI
h
‖w‖2L2(F ). Using the trace-inverse inequalities

[14, 40, 17] and Assumption 2.2, it can be proved that the norms ‖·‖∗ and |||·|||∗ are equivalent
when restricted to the space V N

h . The well-posedness of the semi-discrete formulation (5)
follows from the following result, cf. [4] for the proof.

Proposition 1. The bilinear form Bh(·, ·) : V N
h × V N

h −→ R defined as in (7) satisfies

|Bh(w,v)| . ‖w‖∗‖v‖∗, Bh(v,v) & ‖v‖2∗ ∀v,w ∈ V N
h ,

where the second estimate holds provided that the parameter α appearing in the definition of
the stabilization function (8) is chosen sufficiently large. Moreover,

|Bh(w,v)| . |||w|||∗‖v‖∗ ∀w ∈H
2(Th) ,∀v ∈ V N

h .
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We now recall the stability and convergence properties of the semi-discrete solution to (5).
We refer the reader to [8] for the detailed proofs. For any real s ≥ 0, we denote by Hs(TΩ)
the space of piecewise Hs vector-valued functions, we introduce the space-energy norm

‖w‖2E = ‖√ρẇ‖2L2(Ω) + ‖√ρζw‖2L2(Ω) + ‖w‖2∗ ∀w ∈H1(Th). (10)

and assess the following results.

Theorem 1. [8, Theorem 3.3] For any time t ∈ (0, T ], let uh(t) ∈ V N
h be the solution of

problem (5). If f ∈ L2(0, T ;L2(Ω)), then

‖uh(t)‖E . ‖uh(0)‖E +

∫ T

0
‖f(τ)‖L2(Ω)dτ, 0 < t ≤ T.

Theorem 2. [8, Theorem 3.6] Assume that, for any time t ∈ (0, T ], the solution u(t) of
problem (1) together with its two first temporal derivatives satisfy u(t)|Ω`

, u̇(t)|Ω`
, ü(t)|Ω`

∈
Hs`(Ω`), ` = 1, . . . , L, s` ≥ 2. Let uh(t) be the corresponding solution of the semi-discrete
formulation (5) with a sufficiently large penalty parameter α in (8) and let eh(t) = u(t)−uh(t)
for any t ∈ (0, T ]. Then,

sup
t∈[0,T ]

‖eh(t)‖2E .
L∑
`=1

h2β`−2
`

N2s`−3
`

(
sup
t∈[0,T ]

I(u)(t) +

∫ T

0
I(u̇)(τ)dτ

)
, ∀t ∈ (0, T ],

where
I(w) = ‖ẇ‖2Hs` (Ω`)

+ ‖w‖2Hs` (Ω`)

and β` = min{s`, N` + 1}, for all ` = 1, ..., L.

Now, we introduce the algebraic formulation of (5) that will be the starting point of the
time discretization we will discuss in the next section. We denote by Ndof = dim(V N

h ), by

introducing a basis {φi}Ndof
i=1 for V N

h , we write

uh(x, t) =

Ndof∑
j=1

Uj(t)φj(x), (11)

where Uj(t) are the expansion coefficients of uh(t) in the chosen basis. By taking v = φi, ∀i =
1, . . . , Ndof, in (5) and using (11) we obtain the following system of second-order differential
equations

MÜ(t) + CU̇(t) + EU(t) = F (t), (12)

with U(0) = Û0 and U̇(0) = Û1, where U(t) ∈ RNdof contains the expansion coefficients Uj
in (11). The elements of the matrices M,C and E can be expressed as

Mij =
L∑
`=1

(ρφj ,φi)Ω`
, Cij =

L∑
`=1

(2ρζφj ,φi)Ω`
, Eij =

L∑
`=1

(ρζ2φj ,φi)Ω`
+Bh(φj ,φi), (13)

for any i, j = 1, ..., Ndof, while the right-hand side Fi(t) = Fh(φi) for any i = 1, ..., Ndof.

Remark 2.4. Problem (12) is well posed and admits a unique solution U ∈ H 2(0, T ] in the
interval (0, T ], provided that F ∈ L2(0, T ], see [35].
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2.2 dG time discretization

In this section we briefly review the time integration scheme introduced in [7] that is used for
the time integration of the system (12). Notice that the following approach is independent
from the choice of finite element discretization applied to the general problem (1).
We consider a partition Tk of the time interval I = (0, T ] made by NT time-slabs such that
0 = t0 < t1 < · · · < tn < · · · < tNT

= T and define In = (tn−1, tn] having length kn = tn−tn−1,
see Fig. 2. We define for (a regular enough function) w, the time jump operator at tn as

t0 · · · tn−1

In

tn

In+1

tn+1 · · · T

t−n t+nt+n−1 t−n+1
kn

Figure 2: Example of time domain partition (top). Zoom of the time domain partition: values
t+n and t−n are also reported (bottom).

[w]n = w(t+n )−w(t−n ), for n ≥ 0,

where
w(t±n ) = lim

ε→0±
w(tn + ε), for n ≥ 0.

Moreover, we use the symbols w+
n = w(t+n ) and w−n = w(t−n ) to represent the trace of (a

regular enough) w, taken with the interior of In+1 and In, respectively. Finally, we introduce
the functional spaces

W rn
kn

= {w : In → RNdof : w ∈ [Prn(In)]Ndof},

and
W r

k = {w ∈ L2(0, T ) : w|In ∈W rn
kn
∀n = 1, . . . , NT }.

Next, by multiplying equation (12) by a test function V ∈W r
k and integrating it with respect

to time we obtain the problem: find Uk ∈W r
k such that

NT∑
n=1

[
(MÜk, V̇ )In + (CU̇k, V̇ )In + (EUk, V̇ )In

]
+

NT−1∑
n=1

[
M [U̇k]n · V̇ (t+n ) + E[Uk]n · V (t+n )

]
+MU̇k(0

+) · V̇ (0+) + EUk(0
+) · V (0+) =

NT∑
n=1

(F , V̇ )In +MÛ1 · V̇ (0+) + EÛ0 · V (0+),

(14)

for any V ∈W r
k . Note that, thanks to the regularity assumption on U, cf. Remark 2.4, we

added to (12) the null terms E[U]n and [U̇]n for any n = 1, ..., NT , see also [7]. Finally, we
recall the following stability and convergence results of the time discretization (14). We refer
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the reader to [7] for an exhaustive analysis of the method and for the complete proofs of the
main results. We firstly introduce the energy norm

||W ||E =

NT∑
n=1

||C1/2Ẇ ||L2(In) +
1

2
(M1/2Ẇ (0+))2 +

1

2

NT∑
n=1

(M1/2[Ẇ ]n)2 +
1

2
(M1/2Ẇ (T−))2

+
1

2
(E1/2W (0+))2 +

1

2

NT∑
n=1

(E1/2[W ]n)2 +
1

2
(E1/2W (T−))2, (15)

for any W ∈W r
k .

Theorem 3. [7, Proposition 3] Let F ∈ L2(0, T ] and Û0, Û1 ∈ RNdof. Then, the solution
Uk ∈W r

k of (14) satisfies

||Uk||E .

(
||C1/2F ||2L2(0,T ) + (E1/2Û0)2 + (M1/2Û1)2

) 1
2

.

Theorem 4. Let U be the solution of (12) such that U |In ∈Hqn(In), for any n = 1, . . . , NT

with qn ≥ 2, and let Uk ∈W r
k be the solution of (14). Then, it holds

||U −Uk||2E .
NT∑
n=1

k2βn−3
n

r2qn−6
n

||U ||Hqn (In), (16)

where βn = min{rn + 1, qn}, for any n = 1, . . . , NT , and the hidden constants depend on the
infinity norm of the matrices M , C and E.

2.3 dG space-time discretization

In this section we present a space-time discontinuous Galerkin approximation that combine
the discretization techniques described in Section 2.1 and Section 2.2. We consider a domain
partition T of the domain Q = Ω × I obtained as the tensor product of space and time
mesh grids, i.e, T = Th ⊗ Tk. The general mesh element Q`n ∈ T is a polytope of the
form Q`,n = Kj` ⊗ In where Kj` is either a tetrahedron (resp. triangle) or a hexahedron (resp.
square) in Ω` ⊂ Th and In is the n−th time-slab. Notice that within this discretization we can
allow for discontinuous approximation both in the space domain, i.e., across the hypersurface
FI ⊗ In for n = 1, ..., NT , and in the time domain, i.e., along the interface Th ⊗ {tn} for
any n = 1, ..., NT . A sketch of a three dimensional (space-time) domain discretization is
represented in Fig. 3.
The space-time dG finite element space VDG = V N

h ⊗W r
k is defined based on the previous

domain decomposition in the following way

VDG = {w(x, t) = w1(x)w2(t) : Th × Tk → R3 : w1(x) ∈ V N
h and w2(t) ∈W r

k }. (17)

Now, we consider the first equation in (1) in the cylinder Q`,n = Ω` ⊗ In, we multiply it
by a test function v̇, with v ∈ VDG and integrate in space and time over the cylinder Q`,n,
obtaining

(ρü, v̇)Q`,n
+ (2ρζu̇, v̇)Q`,n

+ (ρζ2u, v̇)Q`,n
− (∇ · σ(u), v̇)Q`,n

= (f , v̇)Q`,n
. (18)
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y

t

x

tn−1tn−2 tnIn tn+1

ΩjK`j ⊗ In

Ω1

Ωk
Ωk ⊗ In

Ω2

FI ⊗ In

Figure 3: Example of space-time domain partition T obtained as the tensor product of space
and time mesh grids Th and Tk, cf. Fig 1 and Fig 2, respectively. The general element mesh
Kj` ⊗ In ∈ T is also reported.

Next, being u ∈ C1(0, T ;L2(Ω)) we add the null terms

(ρ[u̇]n−1, v̇(t+n−1))Ω, (ρζ2[u]n−1,v(t+n−1))Ω, (σ([u]n−1), ε(v(t+n−1)))Ω, (19)

we integrate by parts with respect to both space and time variables over Q`n and we sum up
over all time slabs and all subdomains obtaining: find uDG ∈ VDG such that

A(uDG,v) = F(v) ∀v ∈ VDG, (20)

where

A(w,v) =

NT∑
n=1

L∑
`=1

[
(ρw1ẅ2,v1v̇2)Q`n

+ (2ρζw1ẇ2,v1v̇2)Q`n
+ (ρζ2w1w2,v1v̇2)Q`n

]
+

NT∑
n=1

Bh(w1,v1)(w2, v̇2)In +

NT−1∑
n=1

Bh(w1,v1)[w2]nv2(t+n ) + Bh(w1,v1)w2(0+)v2(0+)

+

NT−1∑
n=1

L∑
`=1

[
(ρw1,v1)Ω`

[ẇ2]nv̇2(t+n ) + (ρζ2w1,v1)Ω`
[w2]nv2(t+n )

]
+

L∑
`=1

[
(ρw1,v1)Ω`

ẇ2(0+)v̇2(0+) + (ρζ2w1,v1)Ω`
w2(0+)v2(0+)

]
,

(21)

and

F (v) =

NT∑
n=1

L∑
`=1

(f ,v1v̇2)Qn`
+

L∑
`=1

[
(ρû1,v1)Ω`

v̇2(0+) + (ρζ2û0,v1)Ω`
v2(0+)

]
+ Bh(û0,v1)v2(0+),

(22)
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for any w,v ∈ VDG.
In view of the forthcoming analysis we state the following result.

Proposition 2. The function ||| · ||| : H2(0, T ;H1
0,ΓD

(Ω))→ R+ defined as

|||w|||2 =
1

2
‖w(0+)‖2E +

1

2

NT−1∑
n=1

‖[w]n‖2E +
1

2
‖w(T−)‖2E +

NT∑
n=1

||
√

2ρζẇ||2L2(Qn) (23)

is a norm on H2(0, T ;H1
0,ΓD

(Ω)).

Proof. It is clear that homogeneity and subadditivity hold, since ||| · ||| is the combina-
tion of norms. Therefore, we have only to show that |||w||| = 0 ⇐⇒ w = 0 ∀w ∈
H2(0, T ;H1

0,ΓD
(Ω)).

If w = 0, it is immediate that |||w||| = 0. Then, suppose that |||w||| = 0. This implies that
all the terms on the right hand side of (23) are null. Therefore, we have that

||
√

2ρζẇ(t)||2L2(Qn) = 0 ∀n = 1, . . . , NT ,

that means ∂tw(x, t) = 0 on each Qn. In addition, from

||
√
ρζ2w(0+)||2L2(Ω) = 0,

we have that w(x, 0+) = 0. It follows that w satisfies{
∂tw(x, t) = 0 on Q1,

w(x, 0+) = 0,

and so w = 0 on Q1. We proceed by induction and suppose w(x, t) = 0 on Qn−1. Using that

||
√
ρζ2[w]n||2L2(Ω) = 0 ∀n = 1, . . . , NT − 1,

in (23), cf. also (10), and the induction assumption, we obtain

0 = [w]n = w(x, t+n−1)−w(x, t−n−1) = w(x, t+n−1)

Therefore, once again we have that{
∂tw(x, t) = 0 on Qn,

w(x, t+n−1) = 0,

and so w = 0 on Qn ∀n = 1, . . . , NT − 1.

Remark 2.5. If w ∈ VDG then we can write the energy norm (23) as

|||w|||2 = N (ẇ2)||√ρw1||2L2(Ω) +

NT∑
n=1

||ẇ2||2L2(In)||
√

2ρζw1||2L2(Ω)

+N (w2)
[
||
√
ρζ2w1||2L2(Ω) + ‖w‖2∗

]
,

(24)

where

N (w) =
1

2
w(T−)2 +

1

2
w(0+)2 +

1

2

NT−1∑
n=1

([w]n)2. (25)
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We are next ready to prove that (20) is well-posed.

Theorem 5. (Well-posedness). Problem (20) admits a unique solution, provided that the
stabilization parameter α in (8) is chosen large enough.

Proof. We first show that A(·, ·) is coercive w.r.t. the energy norm (10). Taking u = u1u2 ∈
VDG, we have

A(u,u) =

NT∑
n=1

L∑
`=1

[(ρu1ü2,u1u̇2)Q`n
]︸ ︷︷ ︸

T1

+

NT∑
n=1

L∑
`=1

[(2ρζu1u̇2,u1u̇2)Q`n
]︸ ︷︷ ︸

T2

+

NT∑
n=1

L∑
`=1

[
(ρζ2u1u2,u1u̇2)Q`n

]
︸ ︷︷ ︸

T3

+

NT∑
n=1

Bh(u1,u1)(u2, u̇2)In︸ ︷︷ ︸
T4

+

NT−1∑
n=1

Bh(u1,u1)[u2]nu2(t+n )︸ ︷︷ ︸
T5

+Bh(u1,u1)u2(0+)2︸ ︷︷ ︸
T6

+

NT−1∑
n=1

L∑
`=1

[
(ρu1,u1)Ω`

[u̇2]nu̇2(t+n )
]

︸ ︷︷ ︸
T7

+

NT−1∑
n=1

L∑
`=1

(ρζ2u1,u1)Ω`
[u2]nu2(t+n )︸ ︷︷ ︸

T8

+
L∑
`=1

(ρu1,u1)Ω`
u̇2(0+)2

︸ ︷︷ ︸
T9

+ (ρζ2u1,u1)Ω`
u2(0+)2︸ ︷︷ ︸

T10

Integrating by parts with respect to time the term T1 we obtain

NT∑
n=1

L∑
`=1

(ρu1ü2,u1u̇2)Q`n
=

L∑
`=1

‖√ρu1‖2L2(Ω`)

NT∑
n=1

[
−(u̇2, ü2)In + u̇2(t−n )2 − u̇2(t+n−1)2

]
=

L∑
`=1

‖√ρu1‖2L2(Ω`)

NT∑
n=1

[
1

2
u̇2(t−n )2 − 1

2
u̇2(t+n−1)2

]
,

and summing it up with T7 and T9 we have

T1 + T7 + T9 =

L∑
`=1

‖√ρu1‖2L2(Ω`)

[
1

2
u̇2(0+)2 +

1

2

NT−1∑
n=1

([u̇2])2
n +

1

2
u̇2(T−)2

]
.

Then, we integrate by parts T3 and sum it with T8 and T10 obtaining

T3 + T8 + T10 =

L∑
`=1

‖
√
ρζ2u1‖2L2(Ω`)

[
1

2
u2(0+)2 +

1

2

NT−1∑
n=1

([u2])2
n +

1

2
u2(T−)2

]
,

and, similarly, for T4, T5 and T6 we obtain

T4 + T5 + T6 =

NT∑
n=1

Bh(u1,u1)(u2, u̇2)In +

NT−1∑
n=1

Bh(u1,u1)[u2]nu2(t+n ) + Bh(u1,u1)u2(0+)2

= Bh(u1,u1)

[
1

2
u2(0+)2 +

1

2

NT−1∑
n=1

[u2]2n +
1

2
u2(T−)2

]
.
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Now, using the coercivity of the bilinear form Bh(·, ·), of Proposition 1, and definition (25),
we obtain

A(u,u) & N (u̇2)‖√ρu1‖2L2(Ω) +

NT∑
n=1

‖u̇2‖2L2(In)‖
√

2ρζu1‖2L2(Ω)

+N (u2)
[
‖
√
ρζ2u1‖2L2(Ω) + ‖u1‖2∗

]
= |||u|||2.

We now prove the continuity of F(·). Using definition (22), the arithmetic-geometric inequal-
ity and the Cauchy-Schwartz inequality we have that

|F(v)|2 .‖(2ρζ)−
1
2f‖2L2(Q)‖

√
2ρζv1‖2L2(Ω)

NT∑
n=1

‖v̇2‖2L2(In) + ‖û1‖2L2(Ω)‖
√
ρv1‖2L2(Ω)v̇2(0+)2

+
[
‖û0‖2L2(Ω)‖

√
ρζ2v1‖2L2(Ω) + Bh(û0,v1)2

]
v2(0+)2 ∀v = v1v2 ∈ VDG.

Now, using the continuity of Bh(·, ·) in Proposition 1, i.e.,

|Bh(û0,v1)| . |||û0|||∗‖v1‖∗

we can easily obtain

|F(v)| .
[
‖(2ρζ)−

1
2f‖2L2(Q) + ‖û1‖2L2(Ω) + ‖û0‖2L2(Ω) + |||û0|||∗

] 1
2 |||v|||,

and this concludes the proof.

As a direct consequence of the previous theorem we have the following result

Theorem 6. (Stability). Let uDG ∈ VDG be the solution of (20) and let f ∈ C1((0, T ];L2(Ω)),
û0 ∈ H1

0,ΓD
(Ω) ∩H∆

D(Ω) and û1 ∈ H1
0,ΓD

(Ω). Then, it holds

|||uDG|||2 . ‖(2ρζ)−
1
2f‖2L2(Q) + ‖û1‖2L2(Ω) + ‖û0‖2L2(Ω) + |||û0|||∗, (26)

where the hidden constant is independent of the discretization parameters.

Proof. The proof follows from the coercivity of the bilinear form A(·, ·) and the continuity of
the linear functional F(·).

3 Algebraic formulation

We derive here the algebraic formulation corresponding to problem (20) for the time slab
In, n = 1, ..., NT − 1. Notice that the employment of discontinuous approximation between
different hypersurfaces Th ⊗ {tn} allows to compute the solution of the problem separately
for one time slab at a time. Indeed, the weak formulation (20) restricted to In reads as: find
unDG ≡ uDG|In ∈ V

N
h ×Wrn

kn
such that

An(unDG,v) = Fn(v) ∀v ∈ V N
h ×Wrn

kn
, (27)
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where

An(w,v) =
L∑
`=1

[
(ρw1,v1)Ω`

(ẅ2, v̇2)In + (2ρζw1,u1)Ω`
(ẇ2, v̇2)In ,+(ρζ2w1,v1)Ω`

(w2, v̇2)In
]

+ Bh(w1,v1)(w2, v̇2)In + Bh(w1,v1)w2(t+n−1)v2(t+n−1)

+

L∑
`=1

[
(ρw1,v1)Ω`

ẇ2(t+n−1)v̇2(t+n−1) + (ρζ2w1,v1)Ω`
w2(t+n−1)v2(t+n−1)

]
,

(28)

for any w,v ∈ V N
h ×Wrn

kn
and

Fn(v) =
L∑
`=1

(f ,v1v̇2)Q`n
+

L∑
`=1

[
(ρu̇(t−n−1),v1)Ω`

v̇2(t+n−1) + (ρζ2u(t−n−1),v1)Ω`
v2(t+n−1)

]
+ Bh(u(t−n−1),v1)v2(t+n−1),

(29)

for any v ∈ V N
h ×Wrn

kn
. Notice that in (29) the values u̇(t−n−1) and u(t−n−1) computed for

In−1 are used as initial conditions for the current slab. Notice also that, for the slab I1, we
set u̇1(t−0 ) = û1 and u1(t−0 ) = û0. Let us set a basis {φi(x)ψ`(t)} for V N

h ×Wrn
kn

, where

{φi(x)}Ndof
i=1 , resp. {ψ`(t)}rn+1

`=1 is basis for V N
h , resp. Wrn

kn
, and fix D = Ndof(rn + 1). Then,

we can write the trial function uDG as a linear combination of the basis functions, i.e.,

uDG(x, t) =

Ndof∑
j=1

rn+1∑
m=1

αmj φj(x)ψm(t),

where αmj ∈ R for j = 1, . . . , Ndof and m = 1, . . . , rn + 1. Next, we write equation (27) for

any test function φi(x)ψ`(t), i = 1, . . . , Ndof, ` = 1, . . . , rn + 1, obtaining the algebraic system

Anαn = Fn, (30)

where on the interval In, An ∈ RD×D is the associated local stiffness matrices, αn ∈ RD the
solution vector and Fn ∈ RD corresponds to the data. We next investigate the structure of
the matrix An by defining the following local matrices for `,m = 1, . . . , rn + 1,

N `m
1 = (ψ̈m, ψ̇`)In , N `m

2 = (ψ̇m, ψ̇`)In , N `m
3 = (ψm, ψ̇`)In ,

N `m
4 = ψ̇m(t+n−1)ψ̇`(t+n−1), N `m

5 = ψm(t+n−1)ψ`(t+n−1).

Then, by using equation (28) we can write

An = M ⊗ (N1 +N4) + C ⊗N2 + E ⊗ (N3 +N5),

where M,C and E are defined in (13) and A ⊗ B denotes the Kronecher tensor product
between the matrix A and the matrix B. On the other hand, the right-hand side Fn can be
expressed as Fn = [F1,1, ..., F1,rn+1, F2,1, ..., F2,rn+1, ..., FNdof,1, ..., FNdof,rn+1]T , where

Fi,k =
L∑
`=1

(f ,φiψ̇
k)Q`n

+
L∑
`=1

[
(ρu̇DG(t−n−1),φi)Ω`

ψ̇k(t+n−1) + (ρζ2uDG(t−n−1),φi)Ω`
ψk(t+n−1)

]
+ Bh(uDG(t−n−1),φi)ψ

k(t+n−1),

14



for any i = 1, ..., Ndof and k = 1, ..., rn + 1. We remark that the matrix An associated to the
linear system (30) is skew symmetric and, in the general case, has to be built for any time
slab In. However, if the time discretization parameter are fix, i.e., the time integration step
kn = k and the polynomial degree rn = r for any n = 1, ..., NT − 1, then the matrix An can
be stored and factorized once and for all, at the beginning of the temporal loop.

4 Convergence analysis

In this section we will prove a space-time a-priori error estimate in the energy norm (23). To
this aim, we first prove the following result.

Proposition 3. Let w ∈ VDG be the solution of (20) and let W ∈ W r
k be the solution of

problem (14). Then, |||w||| . ||W ||E, provided that α in (8) is chosen large enough.

Proof. We write w ∈ VDG as w(x, t) = w1(x)w2(t) with w1(x) =
∑Ndof

j=1 Wjφj(x), being {φj}
a basis for V N

h and we set W (t) = [W1, . . . ,WNdof
]Tw2(t). Therefore, using the definition of

energy norm ||| · ||| in (10) we can write

‖w(0+)‖E = ‖√ρẇ(0+)‖2L2(Ω) + ‖√ρζw(0+)‖2L2(Ω) + ‖w(0+)‖∗ = T1 + T2 + T3.

In particular T1 reduces to

T1 = ẇ2(0+)2‖√ρw1‖2L2(Ω) = ẇ2(0+)2
Ndof∑
i,j=1

WiWj(ρφi,φj)Ω

=

Ndof∑
i,j=1

Wiẇ2(0+)MijWjẇ2(0+) = (M1/2Ẇ (0+))2,

while for T2 and T3 we have

T2 + T3 = ẇ2(0+)2

[
‖
√
ρζ2w1‖2L2(Ω) +

L∑
`=1

‖D1/2ε(w1)‖2L2(Ω`)
+ ‖√ηJw1K‖2L2(FI

h)

]

. ẇ2(0+)2

[
‖
√
ρζ2w1‖2L2(Ω) +

L∑
`=1

‖D1/2ε(w1)‖2L2(Ω`)
+ ‖√ηJw1K‖2L2(FI

h)

− 2({σ(w1)}, Jw1K)FI
h

]

. ẇ2(0+)2
Ndof∑
i,j=1

WiWj

[
(ρζ2φi,φj)Ω + (σ(φi), ε(φj))Ω + (ηJφiK, JφiK)FI

h

−({σ(φi)}, JφjK)FI
h
− (JφiK, {σ(φj)})FI

h

]
. (E1/2W (0+))2.

where in the last step we have used α big enough. Proceeding similarly for the remaining

15



terms in (10) we obtain

|||w|||2 .
1

2
(M1/2Ẇ (0+))2 +

1

2

NT∑
n=1

(M1/2[Ẇ ]n)2 +
1

2
(M1/2Ẇ (T−))2 +

NT∑
n=1

||C1/2Ẇ ||L2(In)

+
1

2
(E1/2W (0+))2 +

1

2

NT∑
n=1

(E1/2[W ]n)2 +
1

2
(E1/2W (T−))2

= ‖W ‖2E .

We are now ready to prove the following error estimate.

Theorem 7. Assume that the exact solution of problem (1) satisfies u ∈ H2(0, T ;Hs`(Ω`)),
` = 1, . . . , L, s` ≥ 2 and that f ∈ Hqn(0, T ;L2(Ω)) ∀n = 1, . . . , NT . Let uDG be the solution
of the discrete DG formulation given in (20) with α sufficiently large. Then, it holds

|||u− uDG|||2 .
NT∑
n=1

k2γn−3
n

r2qn−6
n

[
‖uh(0)‖2E + ‖f‖2Hqn (0,T ;L2(Ω))

]
+

L∑
`=1

h2β`−2
`

N2s`−3
`

‖u‖2H2(0,T ;Hs` (Ω`))

where γn = min{rn + 1, qn} and β` = min{N` + 1, s`}.
Proof. Supposing that uh ∈ V N

h is the solution to the semidiscrete problem (5) we can split
the error e = u − uDG as the sum of two contributions eh = u − uh and ek = uh − uDG,
being the former the error due to space discretization while the latter the one obtain after
time integration. Then, by triangle inequality we have

|||u− uDG|||2 ≤ |||eh|||2 + |||ek|||2.

We first focus on |||eh|||. Since eh ∈ H2(0, T ;H2(Ω)), it holds [ėh]n = [eh]n = 0 ∀n =
1, . . . , NT and then |||eh||| reduces to

|||eh|||2 =
1

2
‖√ρėh(T−)‖2L2(Ω) +

1

2
‖√ρėh(0+)||2L2(Ω) +

NT∑
n=1

‖
√

2ρζėh‖2L2(Qn)

+
1

2
‖
√
ρζ2eh(T−)‖2L2(Ω) +

1

2
‖
√
ρζ2eh(0+)‖2L2(Ω)

+
1

2

L∑
`=1

‖D1/2ε(eh(T−))‖2L2(Ω`)
+

1

2

L∑
`=1

‖D1/2ε(eh(0+))‖2L2(Ω`)

+
1

2
||√ηJeh(T−)K||2L2(FI

h)
+

1

2
||√ηJeh(0+)K‖2L2(FI

h)
.

By using the classical trace inequality, cf. [40], we get

|||eh|||2 .
∫ T

0

[
‖√ρėh‖2L2(Ω) + ‖

√
ρζ2eh‖2L2(Ω) +

L∑
`=1

‖D1/2ε(eh)‖2L2(Ω`)
+ ‖√ηJehK‖2L2(LIh)

]
+

+

∫ T

0

[
‖√ρëh‖2L2(Ω) + ‖

√
ρζ2ėh‖2L2(Ω) +

L∑
`=1

‖D1/2ε(ėh)‖2L2(Ω`)
+ ‖√ηJėhK‖2L2(FI

h)

]
=

=

∫ T

0
‖eh‖2E +

∫ T

0
‖ėh‖2E .
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We next use the result of Theorem 2 so that∫ T

0
‖eh‖2E .

L∑
`=1

h`
2β`−2

N2s`−3
`

(∫ T

0
I(u)(t) dt+ T

∫ T

0
I(u̇)(t) dt

)
∫ T

0
‖ėh‖2E .

L∑
`=1

h`
2β`−2

N2s`−3
`

(∫ T

0
I(u̇)(t) dt

)
.

with β` = min{s`, N` + 1}, for all ` = 1, ..., L and the following inequalities∫ T

0
I(u)(t) dt =

∫ T

0

(
‖u̇(t)‖2Hs` (Ω`)

+ ‖u(t)‖2Hs` (Ω`)

)
dt ≤ ‖u‖2H2(0,T ;Hs` (Ω`))∫ T

0
I(u̇)(t) dt =

∫ T

0

(
‖ü(t)||2Hs` (Ω`)

+ ‖u̇(t)‖2Hs` (Ω`)

)
dt ≤ ‖u‖2H2(0,T ;Hs` (Ω`))

,

to obtain

|||eh|||2 .
L∑
`=1

h2β`−2
`

N2s`−3
`

‖u‖2H2(0,T ;Hs` (Ω`))
. (31)

Now we estimate |||ek|||. By using the result in Proposition 3 and Theorem 4 we obtain

|||ek||| . ‖Ek‖2E .
NT∑
n=1

k2βn−3
n

r2qn−6
n

‖uh‖2Hqn (In)

.
NT∑
n=1

k2βn−3
n

r2qn−6
n

∫
In

(
‖uh(t)‖2L2(Ω) + ‖u̇h(t)‖2L2(Ω) + · · ·+ ‖u(qn)

h (t)‖2L2(Ω)

)
dt.

where βn = min{rn + 1, qn}, for any n = 1, . . . , NT . Finally, using the result of Theorem 1 we
get ∫

In

‖uh(t)‖2L2(Ω) dt .
∫
In

‖uh(t)‖2E dt . T

(
‖uh(0)‖2E +

∫ T

0
‖f(τ)‖2L2(Ω) dτ

)
,

and ∫
In

‖u(qn)
h ‖2L2(Ω) .

∫
In

‖u(qn)
h ‖2E . T

(∫ T

0
‖f (qn)(τ)‖2L2(Ω) dτ

)
.

Then

|||ek|||2 .
NT∑
n=1

k2βn−3
n

r2qn−6
n

(
‖uh(0)‖2E + ‖f‖2Hqn (0,T ;L2(Ω))

)
. (32)

with βn = min{rn + 1, qn}. Putting together estimate (31) and (32) we obtain the thesis.

Corollary 4.1. Under the same assumption of Theorem 7, suppose moreover that the solution
to problem (1) is regular enough with s` = s ∀` = 1, . . . , L and qn = q ∀n = 1, . . . , NT . If we
set h` = h, N` = N ∀` = 1, . . . , L and kn = k, r` = r ∀n = 1, . . . , NT , then it holds

|||u− uDG||| .
kγ−3/2

rq−3

[
‖uh(0)‖E + ‖f‖Hq(0,T ;L(Ω))

]
+

hβ−1

N s−3/2
‖u‖2H2(0,T ;Hs(Ω`))

, (33)

where γ = min{r + 1, q} and β = min{N + 1, s}.

17



5 Numerical results

In this section we present a set of numerical experiments to verify the theoretical bounds.
The numerical results have been obtained with the open-source software SPEED (http:
//speed.mox.polimi.it/), see [36].

5.1 Verification test

We set I = (0, T ], T = 10, and Ω = (0, 1)3 with homogeneous Dirichlet boundary conditions,
i.e. ΓN = 0, ΓD = ∂Ω. We set the external force f and the initial conditions u0, u1 so that
the exact solution of (1) is

u(t) = cos(3πt)

sin(πx)2 sin(2πy) sin(2πz)
sin(2πx) sin(πy)2 sin(2πz)
sin(2πx) sin(2πy) sin(πz)2

 , t ∈ [0, T ]. (34)

On the one hand, we consider a decomposition Th of Ω made by a single macro element,
i.e. Ω = Ω1, we introduce a conforming hexahedral mesh of granularity h in Ω1, and choose
a polynomial degree N1 = N ≥ 2 for the spatial discretization. On the other hand, we
use a uniform time domain partition of step size ∆t and set a polynomial degree r ≥ 2 for
the temporal discretization. We compute the error |||uDG − u||| by employing the energy
norm (23), and verify the error estimate (33) separately in space and time. We firstly set
h = 0.0125 corresponding to 512 elements and fix N = 4, and let the time step ∆t varying
from 0.4 to 0.00625 for r = 2, 3, 4. The computed energy errors are shown in Figure 4. We
can observe that the numerical results are in agreement with the thoeretical ones. We note
that with r = 4, the error reaches a plateau for ∆t ≤ 0.025. However, this effect could be
easily overcome by increasing the spatial polynomial degree N and/or by refining the mesh
size h.
Now, we fix the time step ∆t = 0.001, the polynomial degree r = 5 and we use increasingly
refined spatial grids with h = 0.5, 0.25, 0.2, 0.125, 0.0625, for different choices of the polynomial
degree N = 2, 3, 4. The results are shown in Figure 5. We observe that there is a perfect
correspondence between the numerical results and the theoretical error estimates predicted
by Corollary 4.1.
Finally we fix a grid size h = 0.25, a time step ∆t = 0.1 and make vary together the polynomial
degrees, N = r = 2, 3, 4, 5. Figure 6 shows the decay of the error, that is again in agreement
with (33).

5.2 Validation test

The second experiment is aimed at comparing the performance of our method with a DGSE
space discretization coupled with leap-frog time integration scheme for the solution of (1).

We consider a plane wave propagating along the vertical direction in a (horizontally strat-
ified) heterogeneous domain having dimensions Ω = (0, 100) m × (0, 100) m × (−1850, 0) m,
cf. Figure 7 and Table 1. The source plane wave is polarized in the x direction and its time
dependency is given by a unit amplitude Ricker wave with peak frequency at 2 Hz. The
subdomains are discretized in space with a cartesian hexahedral grid having size h ranging
from 15 m in the top layer to 50 m in the bottom layer. We impose a free surface condition
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Figure 4: Computed errors |||e||| = |||uDG−u||| as a function of time-step ∆t, with r = 2, 3, 4,
h = 0.125 and N = 4.
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Figure 6: Computed errors |||e||| = |||uDG − u||| as a function of polynomial degree N = r,
with ∆t = 0.1, h = 0.25.

on the top surface, absorbing boundary conditions on the bottom surface and homogeneous
Dirichlet conditions along the y and z direction on the remaining boundaries.

In Figure 8 (left) we report the computed time history of the first component of the
displacement field, namely ux, on a receiver located at (50 m, 50 m, 0 m) on the free surface.
We compare the results obtained with the space-time dG method (with N` = N = 2 ∀`,
rn = r = 2 ∀n and ∆t = 10−2s) and the DGSE method coupled with the leap-frog scheme
(with N = 2 and ∆t = 10−4) with a reference semi-analytical solution uTH obtained with the
Thomson-Haskell propagation matrix method, [25]. As one can see the three different curves
overlap each others and are in a good qualitative agreement. To have a quantitative measure
of the misfits with respect to the semi analytical solution we report in Figure 8 (right) the
time evolution of the error ex = |uDG,x − uTH,x|. We notice that both numerical methods
achieve the same level of accuracy. Finally, in Table 2, we compare the efficiency of the
schemes here denoted as “time to solution”. From the second row in Table 2 we can conclude
that the space-time dG scheme is as good as the leap-frog time integration. However, due to
the assembly phase of the linear system in (30) it becomes much more expensive (third row
in Table 2). In addition, if one employs a direct solver, this reveals to be a great limitation
concerning the dimension of the problems that we can consider due to the amount of memory
required to store the entries of the matrix. In this situation, a suitable iterative algorithm is
preferrable. This will be a topic for a future research.

20



100m100m

1850m

�1

�2

..
.

�11

Figure 7: Computational
domain Ω = ∪11

`=1Ω`

Layer Height [m] ρ[kg/m3] cp[m/s] cs[m/s] ζ[1/s]

Ω1 15 1800 1064 236 0.261

Ω2 15 1800 1321 294 0.216

Ω3 20 1800 1494 332 0.190

Ω4 30 1800 1664 370 0.169

Ω5 40 1800 1838 408 0.153

Ω6 60 1800 2024 450 0.139

Ω7 120 2050 1988 523 0.120

Ω8 500 2050 1920 600 0.105

Ω9 400 2400 3030 1515 0.041

Ω10 600 2400 4180 2090 0.030

Ω11 50 2450 5100 2850 0.020

Table 1: Mechanical properties for the considered test. Here,
the Lamé parameters λ and µ can be obtained through the
relations µ = ρc2

s and λ = ρc2
p − µ.
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Figure 8: Left: time evolution of the first component of the displacement field ux at
(50 m, 50 m, 0 m) computed with the DGSE method coupled with leap-frog scheme (N = 2,
∆t = 10−4) and the proposed space-time dG method (N = r = 2 and ∆t = 10−2s). The
results are compared with a reference semi-analytical solution obtained with the Thomson-
Haskell propagation matrix method, [25]. Right: the time evolution of the error ex =
|uDG,x − uTH,x|.

Leap-frog Time-DG

N = r ∆t Exec. time error ∆t nnz(A) Mat. build Time loop error

2 10−4 180s 0.065 10−1 8.6 · 108 39s 31s 0.104

2 10−4 180s 0.065 10−2 8.6 · 108 39s 171s 0.065

Table 2: Comparison of the performance for the resolution of plane wave case test. Total
execution time of the DGSE method coupled with the leap-frog scheme versus the space-time
dG method. The accuracy of the methods is compared using the `2-norm of the error in the
x component of the displacement ux, computed using the semi-analytic solution
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6 Conclusions

In this work we have presented a space-time Discontinuous Galerkin method for the numerical
approximation of visco-elastic wave propagation problems. We have built an energy norm that
naturally arose by the variational formulation of the problem, and that we have employed to
prove well-posedness, stability and error bounds. We have implemented our method in the
open-source software SPEED and we have verified and validated the proposed numerical
algorithm on some three dimensional benchmarks.
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