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Abstract

Nowadays, the importance of Educational Data Mining and Learning Analytics in
higher education institutions is increasingly recognized. The analysis of university ca-
reers and of student dropout prediction is one of the most studied topics in the area of
Learning Analytics. In the perspective of modeling the student dropout, we propose an
innovative statistical method, that is a generalization of mixed-e�ects trees for a response
variable in the exponential family: Generalized Mixed-E�ects Trees (GMET). We per-
form a simulation study in order to validate the performance of our proposed method
and to compare GMET to classical models. In the case study, we apply GMET to model
Bachelor student dropout in di�erent degree programmes of Politecnico di Milano. The
model is able to identify discriminating student characteristics and estimate the degree
programme e�ect on the probability of student dropout.

Keywords: Mixed-e�ects models; Regression and Classi�cation trees; Student dropout;
Academic data.
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1 Introduction

The present work is part of the international SPEET project (Student Pro�le for Enhanc-
ing Engineering Tutoring), an ERASMUS+ project aiming to open a new perspective to
university tutoring systems. It intends to extract useful information from academic data
provided by its partners1 and to identify di�erent Engineering students pro�les across
Europe [21]. Here, our goal is to �nd out which indicators may discriminate between two
di�erent student pro�les: dropout students, who permanently �nish their career for any
reason other than the achievement of the Bachelor of Science (BSc) degree, and graduate
students, who complete their career with the achievement of academic quali�cation. This
choice is motivated by the fact that, across all SPEET partners, almost a student out of
two leaves his/her Engineering studies before obtaining the BSc degree. If it was possible
to know as soon as possible to which pro�le a student belongs, it would be of valuable
help for tutors to improve counseling actions.

Data provided by universities usually includes indicators about the socio-economic
background and both current and previous performance of the students. However, aca-
demic success depends on di�erent factors, both internal and external [2]. The dataset we
use in our analysis includes more than 18,000 BSc careers from Politecnico di Milano: it
essentially consists of student record data, so it just partially covers these factors. Similar
dataset structures have already been used in recent developments oriented to the predic-
tion of performance and detection of dropouts or students at risk [20]. The hypothesis is
that both background and career indicators are enough to identify the students at risk
and to draw the attention of tutors, who should complete the student pro�le with further
information.

In our situation, students are naturally nested within the degree programme they are
attending. In addition, further levels of hierarchy are possibile, such as programmes within
faculties, faculties within universities and �nally universities within countries. While
investigating the learning process, it is necessary to disentangle the e�ects given by each
level of hierarchy [4]. Indeed, if the clustered aspect of the data is not inspected, it
may result in a loss of likely valuable information. Multilevel models take into account
the hierarchical nature of data and are able to quantify the portion of variability in the
response variable that is attributable to each level of grouping [9]. Generalized Linear
Mixed Models (GLMM) �t a multilevel model on a binary response variable, but they
impose a linear e�ect of covariates on a transformation of the response variable [1]. On
the contrary, tree-based methods such as the CART model learn the relationship between
the response and the predictors by identifying dominant patterns in the training data [5].
In addition, these methods allow a clear graphical representation of the results that is
easy to communicate. The goal of our work is to propose a novel method able to preserve
the �exibility of the CART model and to extend it to a clustered data structure, where
multiple observations can be viewed as being sampled within groups.

In the literature this is not the �rst time in which tree-based methods are adopted to
deal with longitudinal and clustered data. In [19] a regression tree method for longitu-
dinal or clustered data is proposed. This method is called Random E�ects Expectation-

1Universitat Autonoma de Barcelona (UAB) - Spain; Instituto Politecnico de Braganca (IPB) - Por-
tugal; Opole University of Technology - Poland; Politecnico di Milano (PoliMi) - Italy; Universidad de
Leon - Spain; University of Galati Dunarea de Jos - Romania.
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Maximization (RE-EM) tree. Independently, in [12] a Mixed-E�ect Regression Tree
(MERT) model is proposed. If clustered observations are considered, these are exten-
sions of a standard regression tree to the case of individuals nested within groups. These
methods use observation-level covariates in the splitting process and can deal with the
possible random e�ects associated to those covariates. However, they both deal with a
Gaussian response variable and they are not suitable to a classi�cation problem.

In [11] the MERT approach is extended to non-gaussian data and a generalized mixed
e�ects regression tree (GMERT) is proposed. This algorithm is basically the PQL algo-
rithm used to �t GLMMs where the weighted linear mixed-e�ect pseudo-model is replaced
by a weighted MERT pseudo-model.

Following a di�erent strategy, our proposed method intends to generalize the RE-EM
tree approach. In particular, in this work we expand its use to di�erent classes of response
variables from the exponential family: this would allow to extend it to a classi�cation
setting. At the same time this method can deal with the grouped data structure, similarly
to traditional multilevel models. As in RE-EM tree estimation, we develop an algorithm
that disentangles the estimation of �xed and random e�ects. That is, an initial tree is
built ignoring the grouped data structure, a mixed-e�ects model is �tted based on the
resultant tree structure, and a �nal mixed-e�ects tree is reported.

In this paper we apply this model to the Politecnico di Milano dataset. In this speci�c
case, we can identify which �xed-e�ects covariates discriminate between dropout and
graduate students. Through a GMET model, we can relax the assumption of linear e�ects
of student-level covariates on their performance and we can identify which interactions
relevantly in�uence the career status. In addition, the choice of a multilevel model allows
to estimate the degree programme e�ect on the predicted probability of obtaining the
degree.

The paper is organized as follows. In Section 2 we describe model and methods -
generalized mixed tree algorithm (GMET) - and in Section 3 we show a simulation study.
In Section 4 we describe the PoliMi dataset, we report the application of the proposed
algorithm to the case study and outline the results. Finally, in Section 5 we draw our
conclusions.

All the analysis are made using R software [17]. The code for the algorithm is available
upon request to the authors.

2 Model and methods

In this section, we present the proposed generalized mixed-e�ects tree model (Subsection
2.1) and the algorithm for the estimation of its parameters (Subsection 2.2).

2.1 Generalized mixed-e�ects tree model

We start considering a generic GLMM. This model is an extension of a generalized linear
model that includes both �xed and random e�ects in the linear predictor [1]. Therefore,
GLMMs handle a wide range of response distributions and a wide range of scenarios
where observations are grouped in groups rather than completely independently. For a
GLMM with a two-level hierarchy, each observation j, for j = 1, . . . , ni, is nested within
a group i, for i = 1, . . . , I. Let yi = (y1i, . . . , ynii) be the ni-dimensional response vector
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for observations in the i-th group. Conditionally on random e�ects denoted by bi, a
GLMM assumes that the elements of yi are independent, with density function from the
exponential family, of the form

fi(yij |bi) = exp

[
yijηij − a(ηij)

φ
+ c(yij , φ)

]
where a(·) and c(·) are speci�ed functions, ηij is the natural parameter and φ is the
dispersion parameter. In addition, we have

E[yij |bi] = a′(ηij) = µij

V ar[yij |bi] = φa′′(ηij)

A monotonic, di�erentiable link function g(·) speci�es the function of the mean that
the model equates to the systematic component. Usually, the canonical link function is
used, i.e., g = a′ −1. From now on, without loss of generality the canonical link function
is used. In this case, the model is the following [14]:

µi = E[Yi|bi] i = 1, . . . , I

g(µi) = ηi

ηi = Xiβ + Zibi

bi ∼ Nq(0,Ψ) ind.

(1)

where i is the group index, I is the total number of groups, ni is the number of observations
within the i-th group and

∑I
i=1 ni = J , ηi is the ni-dimensional linear predictor vector.

In addition, Xi is the ni × (p + 1) matrix of �xed-e�ects regressors of observations in
group i, β is the (p+ 1)-dimensional vector of their coe�cients, Zi is the ni× q matrix of
regressors for the random e�ects, bi is the (q + 1)-dimensional vector of their coe�cients
and Ψ is the q × q within-group covariance matrix of the random e�ects. Fixed e�ects
are identi�ed by parameters associated to the entire population, while random ones are
identi�ed by group-speci�c parameters.

Our proposed Generalized Mixed-E�ects Tree (GMET) method expands the use of
tree-based mixed models to di�erent classes of response variables from the exponential
family. At the same time the method can deal with the grouped data structure as GLMMs
do. We now specify the GMET model. The random component of this model consists
of a response variable Y from a distribution in the exponential family. The �xed part
in the GMET is not linear as in (1) but it is replaced by the function f(Xi) that is
estimated through a tree-based algorithm. Thus, the matrix formulation of the model is
the following:

µi = E[Yi|bi] i = 1, . . . , I

g(µi) = ηi

ηi = f(Xi) + Zibi

bi ∼ Nq(0,Ψ) ind.

(2)

where i is the group index, I is the total number of groups, ni is the number of observations
within the i-th group and

∑I
i=1 ni = J . In addition, ηi is the ni-dimensional linear

predictor vector and g(·) is the link function. Finally, Xi is the ni × (p + 1) matrix of
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�xed-e�ects regressors of observations in group i, Zi is the ni× q matrix of regressors for
the random e�ects, bi is the (q + 1)-dimensional vector of their coe�cients and Ψ is the
q×q within-group covariance matrix of the random e�ects. As in a GLMM, bi and bi′ are
independent for i 6= i′. Fixed e�ects are identi�ed by a non-parametric CART tree model
associated to the entire population, while random ones are identi�ed by group-speci�c
parameters.

Without loss of generality, let us now specify model (2) for the case of a binary random
variable and univariate random e�ect. The logit function is the canonical link function:

g(µij) = g(pij) = log

(
pij

1− pij

)
= logit(pij).

Here, the random-e�ects structure simpli�es to a random intercept. The model formula-
tion for observation yij may therefore be written as:

Yij ∼ Bernoulli(pij) i = 1, ..., I j = 1, ..., ni

pij = E[Yij |bi]
logit(pij) = f(xij) + bi

bi ∼ N(0, σ2) ind.

(3)

where we observe xij = (x1ij , .., xijp)T , a (p + 1)-dimensional vector of �xed-e�ects co-
variates for each observation j in group i.

2.2 Generalized mixed-e�ects tree estimation

In this subsection we show the algorithm for the estimation of the parameters of the
GMET model (2). The basic idea behind the algorithm is to disentangle the estimation
of �xed and random e�ects. The structure of the algorithm is the following:

1. Initialize the estimated random e�ects bi to zero.

2. Estimate the target variable µij through a generalized linear model (GLM), given
�xed-e�ects covariates xij = (xij1, ..., xijp)T for i = 1, ..., I and j = 1, ..., ni. Get
estimate µ̂ij of target variable µij .

3. Build a regression tree approximating f using µ̂ij as dependent variable and xij =
(xij1, ..., xijp)T as vector of covariates. Through this regression tree, de�ne a set of
indicator variables I(xij ∈ R`) where the index ` ranges over all of the terminal
nodes in the tree.

4. Fit the mixed e�ects model (2), using yij as response variable and the set of indicator
variables I(xij ∈ R`) as �xed-e�ects covariates. Speci�cally, for i = 1, ..., I and

j = 1, ..., ni, we have g(µij) = I(xij ∈ R`)γ` + zTijbi. Extract b̂i from the estimated
model.

5. Replace the predicted response at each terminal node R` of the tree with the esti-
mated predicted response g(γ̂`) from the mixed-e�ects model �tted in Step 4.
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The GLM in Step 2 is �tted through maximum likelihood. The maximum likelihood esti-
mates can be found using an iteratively reweighted least squares algorithm or a Newton-
Raphson method [15].

The �tting of the tree in Step 3 can be achieved using any tree algorithm, based on
any tree-growing rules that are desired. Here, tree building is based on the CART tree
algorithm [5]. After building a large tree T0, pruning is advised to avoid over�tting on
training data. In principle, any tree-pruning rule could be used; here, we propose cost-
complexity pruning [13]. It considers a sequence of nested trees indexed by a nonnegative
tuning parameter α which controls the trade-o� between the subtree's complexity and its
�t to the training data. For each value of α exists a subtree T ⊂ T0 to minimize

|T |∑
`=1

∑
xi∈R`

(yi − ŷR`
)2 + α|T |. (4)

Here, |T | indicates the number of terminal nodes of tree T . When α = 0, then the subtree
T will simply be equal to T0. However, as α increases, the quantity (4) will tend to be
minimized for a smaller subtree. We can select a value of α using a validation set or using
K-fold cross-validation: for example, we can pick α̃ to minimize the average CV error.
Tree building and pruning is implemented in R library rpart [22], according to the CART
tree-building algorithm and cost-complexity pruning. In order to ensure that initial trees
are su�ciently large, we set the complexity parameter to zero. Thus, the largest tree
is grown then pruned based on ten-fold cross-validation error. Instead of choosing the
tree that achieves the lowest CV error, we use the so-called 1-SE rule: any CV error
within one standard error of the achieved minimum is marked as being equivalent to the
minimum. Among all these equivalent models in terms of CV error, the simplest one is
chosen as �nal tree model.

The generalized linear mixed model in Step 4 can be estimated using �tting tech-
niques that were previosly described. Di�erent statistical packages can estimate those
type of models: the glmer function of the R library lme4 [3] is used here. It �ts a gen-
eralized linear mixed model via maximum likelihood. For a GLMM the integral must be
approximated: the most reliable approximation is adaptive Gauss-Hermite quadrature,
at present implemented only for models with a single scalar random e�ect, otherwise
Gaussian quadrature is used.

Prediction for new observations

After estimating a GMET it is possible to make out-of-sample predictions for new obser-
vations. Suppose the tree is estimated on data from groups i = 1, .., I for observations
yij , j = 1, ..., ni. Given a new observation xij′ we are able to output its corresponding
response since we know the estimation of the �xed-e�ects function f(·), of the random
e�ects bi and of the associated covariance matrix Ψ. We may look for two types of
prediction:

• predict response yij′ given a new observation xij′ for a group in the sample i ∈
{1, ..., I}. We de�ne it a group-level prediction.

• predict response yi′j′ given an observation xi′j′ for a group i′ for which there are
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no observations in our current sample, or for which we do not know the group it
belongs to. We de�ne it a population-level prediction.

For the �rst type of prediction, we estimate f(xij′) using the estimated tree and
attributes xij′ and then add zTij′bi on the linear predictor scale, and get back to the

response scale through the inverse link function g−1(·). As we underlined before, random-
e�ects coe�cients bi are known from the estimation process.

For the second type of prediction, we have no information to evaluate bi. A possible
solution is to set it to its expected value of 0, yielding the value f̂(xi′j′), and transform
it back to the response scale through the inverse link function. As noted in [19], in this
case we might expect that methods that do not incorporate random e�ects would have
comparable performance to those that do, as long as the sample is large enough so that
the �xed-e�ects function f(xij′) is well-estimated by both types of methods.

3 Simulation study

In this section we compare the performance of the proposed GMET method to standard
classi�cation trees on di�erent simulated binary outcomes datasets.

We �rst use a variation of a simulation design proposed in [11]. It has a two-level
data structure of I = 50 groups with ni = 60 observations each: 10 observations in
each group are included in the training sample, and the other 50 observations constitute
the test sample. Therefore, Ntrain = 500, while Ntest = 2500. Setting i = 1, ..., I and
j = 1, ..., ni, the response values yij are simulated according to a Bernoulli distribution
with conditional probability of success µij . Both �xed and random e�ects are used to
generate µij . Overall, we consider 10 di�erent Data Generating Processes (DGP) outlined
in Table 1 by combining di�erent �xed- and random-e�ect speci�cations.

X1

X3

µij = g−1
(
g(ϕ6) + zTijbi

)
X5

µij = g−1
(
g(ϕ5) + zTijbi

)
µij = g−1

(
g(ϕ4) + zTijbi

)

X2

X4

µij = g−1
(
g(ϕ3) + zTijbi

)
µij = g−1

(
g(ϕ2) + zTijbi

)
µij = g−1

(
g(ϕ1) + zTijbi

)

> 5

> 5

≤ 5
> 5

≤ 5

≤ 5 > 5

> 5

≤ 5

≤ 5

Figure 1: Mixed-e�ects tree structure used to generate the conditional probability of success
µij in the simulation study
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Let us de�ne the �xed-e�ect structure. Eight random variablesX1, ..., X8, independent
and uniformly distributed in the interval [0, 10], are generated. While all of them are being
used as predictors, only �ve of them are actually used to generate µij , based on the tree
rule summarized in Figure 1. Each observation is classi�ed into one of the six terminal
nodes according to the values xij1, ..., xij5. Within each leaf, values ϕ1, ..., ϕ6 denote the
probabilities of success when the random e�ects bi are equal to zero:

Leaf 1: if x1ij ≤ 5 ∧ x2ij ≤ 5 then µij = g−1
(
g(ϕ1) + zTijbi

)
;

Leaf 2: if x1ij ≤ 5 ∧ x2ij > 5 ∧ x4ij ≤ 5 then µij = g−1
(
g(ϕ2) + zTijbi

)
;

Leaf 3: if x1ij ≤ 5 ∧ x2ij > 5 ∧ x4ij > 5 then µij = g−1
(
g(ϕ3) + zTijbi

)
;

Leaf 4: if x1ij > 5 ∧ x3ij ≤ 5 ∧ x5ij ≤ 5 then µij = g−1
(
g(ϕ4) + zTijbi

)
;

Leaf 5: if x1ij > 5 ∧ x3ij > 5 ∧ x5ij > 5 then µij = g−1
(
g(ϕ5) + zTijbi

)
;

Leaf 6: if x1ij > 5 ∧ x3ij > 5 then µij = g−1
(
g(ϕ6) + zTijbi

)
;

where g(·) is the logit link function. Two di�erent possibilities are speci�ed for the
�xed e�ects: in the large �xed-e�ects speci�cation, the standard deviation of the typical
probabilities across the leaves is higher than in the small one (0.37 versus 0.24).

The random component bi ∼ N(0,Ψ) is generated according to three di�erent possi-
bilities:

• No random e�ects: Ψ = 0;

• Random intercept: zij = 1 ∀i,∀j and Ψ = ψ11;

• Random intercept and slope, which add a linear random e�ect for the �xed-e�ect
covariate X1, uncorrelated from the random e�ect on the intercept. That is, zij =

[1 x1ij ]
T ∀i,∀j and Ψ =

[
ψ11 0
0 ψ22

]
.

Within each �xed e�ects scenario with random e�ects, we consider two speci�cations
(low and high) for the covariance matrix Ψ to account for di�erent levels of magnitude
of the between-group variability.

Simulation results

We �t four di�erent models for each one of the 10 DGPs: a standard binary classi�cation
tree model (Std), a random intercept GMET model (RI ), a random intercept and slope
GMET model (RIS ), a parametric mixed-e�ects logistic regression model (MElog) that
uses the true model leaves' indicators as �xed covariates. As noted in [12] the MElog
model could not be a real competitor of any other model. Indeed, it is not possible
in practice to specify this parametric structure without knowing the underlying data
generating process. This model only serves as a reference to compare the performance of
the other models. In tree-based models, we �x to 10 the maximum depth parameter and
to 20 the minimum number of observations necessary to attempt a split. After �tting
each model on the training set, we can compute the corresponding predicted probability
µ̂ij and the predicted class ŷij of observation j in group i in the test dataset. While the
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DGP
Random component Fixed component

Structure E�ect ψ11 ψ22 E�ect ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

1 No random
e�ect

�
� �

Large 0.10 0.20 0.80 0.20 0.80 0.90
2 � Small 0.20 0.40 0.70 0.30 0.60 0.80

3

Random
Intercept

Low 4.00 �
Large 0.10 0.20 0.80 0.20 0.80 0.90

4 High 10.00 �

5 Low 0.50 �
Small 0.20 0.40 0.70 0.30 0.60 0.80

6 High 4.00 �

7 Random
Intercept

and
Slope

Low 2.00 0.05
Large 0.10 0.20 0.80 0.20 0.80 0.90

8 High 5.00 0.25

9 Low 0.25 0.01
Small 0.20 0.40 0.70 0.30 0.60 0.80

10 High 2.00 0.05

Table 1: Data Generating Processes (DGP) for the simulation study

former is directly estimated by the algorithm, the latter depends on the threshold value
µ∗k used to classify subjects in the test set: µ̂ij ≥ µ∗k ⇒ ŷij = 1 where (i, j) ∈ test. There
are at most K distinct �tted values µk, with K ≤ I|T |. We use each of them to classify
observations in the training set and we �x the threshold µ∗k as the one that yields the
closest proportion of class 1 to the actual proportion of class 1 in the training set.

We measure the predictive performance by:

• the predictive mean absolute deviation (PMAD) of the estimated probability

PMAD =
1

Ntest

I∑
i=1

ntest

i∑
j=1

|µij − µ̂ij |

• the predictive misclassi�cation rate (PMCR)

PMCR =
1

Ntest

I∑
i=1

ntest

i∑
j=1

|yij − ŷij |.

The mean, standard deviation, minimum and maximum of the PMAD and the PMCR
over 50 runs were calculated and are reported in Table 2.

We observe that when there is no random e�ect (DGPs 1 and 2), the standard classi�-
cation tree algorithm performs better, speci�cally when the �xed e�ect is large. However,
when random e�ects are present (DGPs 3 to 10), the mixed e�ects classi�cation tree per-
forms better than the standard classi�cation tree in terms of average PMAD. The highest
improvement in PMAD using a mixed tree model is observed when both the �xed and the
random e�ects are large (16.50% in DGP4 - Std vs RI and 16.78% in DGP8 - Std vs RIS ).
The lowest improvement is observed when both the �xed and the random e�ects are small
(2.35% in DGP5 - Std vs RI and 2.34% in DGP9 - Std vs RIS ). Analogous considerations
can be made about PMCR. In addition, GMETs perform better than standard trees even
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DGP
Random
e�ect

Fixed
e�ect

Fitted
model

PMAD (%) PMCR (%)

mean sd min max mean sd min max

1
NO

RANDOM

EFFECT

Large

Std 5.35 1.53 2.71 8.79 17.20 1.40 14.64 20.52
RI 20.22 2.31 15.15 24.72 31.09 2.63 26.04 37.68
RIS 20.36 2.36 13.14 24.88 31.03 2.40 24.24 35.48
MElog 3.11 0.88 1.42 4.95 17.79 3.18 14.52 24.24

2 Small

Std 12.93 2.78 7.01 19.28 33.16 2.18 28.92 38.60
RI 13.99 1.78 9.84 17.19 37.57 1.88 32.72 41.64
RIS 14.08 1.82 9.93 17.81 37.33 1.79 33.16 41.56
MElog 4.16 1.30 1.02 6.45 29.32 1.63 26.96 33.16

3

INTERCEPT

Large

Std 23.83 2.94 17.53 29.88 30.53 3.13 23.32 38.20

Low
RI 18.28 1.47 15.07 22.67 26.80 1.86 22.84 31.92
RIS 18.43 1.31 15.28 21.89 26.84 1.73 22.72 30.76
MElog 8.59 0.87 6.02 10.56 19.34 1.29 16.08 22.48

4

Std 32.05 2.37 26.90 37.59 37.80 2.65 32.08 44.96

High
RI 15.55 1.28 12.49 18.71 21.62 1.88 16.32 26.56
RIS 15.66 1.27 12.52 18.91 21.71 1.87 16.56 26.40
MElog 8.09 0.76 6.04 10.06 16.32 1.53 13.32 19.80

5

Small

Std 17.89 2.32 13.28 22.48 35.30 2.23 31.40 41.40

Low
RI 15.54 1.58 12.52 19.12 35.89 2.18 30.76 41.20
RIS 15.76 1.56 12.76 19.63 36.12 2.14 31.20 41.32
MElog 8.63 0.92 6.49 10.53 28.90 0.95 27.20 31.84

6

Std 29.47 2.22 24.56 35.08 41.42 2.36 36.36 45.48

High
RI 14.11 1.46 10.17 17.38 26.23 2.35 21.40 30.96
RIS 14.25 1.49 10.39 17.81 26.27 2.40 21.28 31.20
MElog 9.36 0.98 7.07 11.25 22.85 1.70 19.12 26.08

7

INTERCEPT

& SLOPE

Large

Std 23.24 2.49 18.54 29.68 29.61 2.91 23.44 38.44

Low
RI 19.59 1.37 15.42 22.51 27.89 1.98 22.16 31.20
RIS 19.29 1.40 15.15 22.22 27.84 1.82 22.08 31.08
MElog 10.01 1.02 8.07 11.91 19.92 1.37 17.20 24.04

8

Std 32.89 2.61 27.47 38.04 38.69 3.67 31.64 46.32

High
RI 17.52 1.57 14.29 20.85 22.03 2.04 17.48 26.08
RIS 16.11 1.41 12.90 18.93 21.26 1.92 17.04 25.48
MElog 9.86 1.02 7.82 13.16 16.59 1.48 13.20 20.36

9

Small

Std 18.15 2.25 13.36 24.73 35.34 2.56 31.36 42.64

Low
RI 15.84 1.17 12.37 18.61 35.83 1.92 30.84 40.48
RIS 15.81 1.24 12.41 19.05 35.76 1.92 31.28 39.80
MElog 9.31 0.86 7.95 11.06 29.11 0.94 26.76 30.96

10

Std 29.09 2.06 24.21 33.51 41.64 2.45 37.16 49.76

High
RI 15.88 1.26 13.60 19.77 27.66 1.97 23.00 32.76
RIS 15.21 1.15 13.20 18.32 27.20 1.93 21.96 31.64
MElog 10.80 1.02 9.20 13.06 24.25 1.69 20.32 28.04

Table 2: Results of the 50 simulation runs in terms of predictive probability mean absolute
deviation (PMAD) and predictive misclassi�cation rate (PMCR). In bold, DGPs in
which the performance gap between MElog and GMET is the largest or the smallest
are marked.
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when we �t a mixed tree whose random component is over-speci�ed (like in DGPs 3-6,
Std vs RIS ) or under-speci�ed (like in DGPs 7-10, Std vs RI ) in relation to the true data
generating process.

Next, we compare the performance of the GMET approach to the results of the MElog
reference model. If the DGP does not include random e�ects, the di�erence in PMAD
and PMCR is higher when the �xed e�ects are large (DGP1). When random e�ects are
large and �xed e�ects are small (DGPs 6 and 10), the GMET model performs closer to
the MElog model. In terms of PMAD, this di�erence equals to 4.75% and 4.41% in DGPs
6 and 10 respectively; in terms of PMCR it equals to 3.38% and 2.95% respectively. The
di�erence in predictive accuracy between the two models reaches the maximum when
random e�ects are small and �xed e�ects are large (DGPs 3 and 7). In terms of PMAD,
this di�erence equals to 9.69% and 9.28% in DGPs 3 and 7 respectively; in terms of
PMCR it equals to 7.46% and 7.92% respectively.

4 Case study: application of mixed-e�ects tree algo-

rithm to education PoliMi data

In this section, we describe the PoliMi dataset and we apply the generalized mixed-e�ects
tree algorithm to these data. Using a GMET model, we can identify discriminating �xed-
e�ects covariates and estimate the degree programme e�ect on the predicted success
probability. In addition, we also analyse the accuracy of this model in predicting dropout
careers.

The PoliMi dataset consists of 18,612 careers in Bachelor of Science (BSc) that began
between A.Y. 2010/2011 and 2013/2014. Students are nested within I = 19 degree
programmes.2 A descriptive analysis shows that a high percentage of students leaves the
Politecnico before obtaining the degree. Therefore, our goal is to �nd out which student-
level indicators could discriminate between two di�erent pro�les: dropout and graduate
students.

We assume the binary GMET model (3) where student j is nested within degree
programme i. The response variable Y is the career status, a two-level factor we code
as a binary variable:

• status = 1 for careers de�nitely completed with graduation;

• status = 0 for careers de�nitely concluded with a dropout.

We would like to make predictions at the very early stage of the academic career. So,
we choose as predictors �ve variables available at the time of enrollment and three more
variables collected just after the �rst semester of studies. The list and explanation of
student-level variables to be included as covariates is reported in Table 3. In addition we
choose as grouping variable the degree programme at the time of the enrollment (factor
DegreeProgramme) which has 19 levels. The in�uence of the grouping factor on the
predictor is modeled through a group-level intercept bi. We randomly split the dataset

2We are considering the following Engineering programmes: Aerospace, Automation, Biomedical,
Building, Chemical, Civil, Civil and Environmental, Electrical, Electronic, Energy, Computing Systems,
Environmental and Land Planning, Industrial Production, Management, Materials and Nanotechnology,
Mathematical Mechanical, Physics, Telecommunications.
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into training and test subsets, with a ratio of 80% for training and 20% for evaluation.
Thus, the training subset equals to 14,890 careers while the test subset amounts to 3,722
careers.

Variable Description Type of variable

Sex gender factor (2 levels: M, F)

Nationality nationality factor (Italian, foreigner)

PreviousStudies high school studies factor (Liceo Scienti�co, Istituto

Tecnico, Other)

AdmissionScore PoliMi admission test result real number

AccessToStudiesAge age at the beginning of the BSc stud-
ies at PoliMi

natural number

WeightedAvgEval1.1 weighted average of the evaluations
during the �rst semester of the �rst
year

real number

AvgAttempts1.1 average number of attempts to be
evaluated on subjects during the �rst
semester of the �rst year (passed and
failed exams)

real number

TotalCredits1.1 number of ECTS credits obtained by
the student during the �rst semester
of the �rst year

natural number

Table 3: List and explanation of variables at student level to be included as covariates in the
GMET model

While growing the tree, we �x to 10 the maximum depth parameter and to 20 the min-
imum number of observations necessary to attempt a split. Figure 2 shows the estimated
mixed-e�ects tree for the graduating probability. Every internal node has its correspond-
ing condition that splits it into two sons: if the condition is true, observations are sent
down the tree through the left son, while through the right son if the condition is false. In
addition, all nodes report two values: the estimated graduating probability and the per-
centage of observations in the node over the total training set. We remind that variable
PreviousStudies has been coded as a three-level factor with levels S (Liceo Scienti�co),
T (Istituto Tecnico) and O (other high school studies). The number of ECTS obtained in
the �rst semester of the �rst year is used as �rst split: students who obtained less than
13 ECTS are associated to lower success probability (0.16 versus 0.86). Then, students
are further classi�ed using other explainatory variables: we can notice that Italian stu-
dents who obtained more than 24 ECTS have the highest predicted success probability
(0.95). Other variables actually used to split smaller internal nodes are Nationality and
PreviousStudies: in these nodes, students who attended Istituto Tecnico and foreign
students have lower predicted success probability than the others. Through this model, it
is possible to point out signi�cant interactions among the covariates: for example, variable
Nationality is used to split the group of students that obtained at least 13 ECTS, while
this same variable does not appear in the complementary branch of the tree. Finally,
covariates Sex, AdmissionScore and AvgAttempts1.1 do not compare in the trees, so
they do not appear to have strong in�uence on how a career ends.
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TotalCredits1.1 < 13

WeiAvgEval1.1 < 20

TotalCredits1.1 < 4 PrevStudies = O,T

Nationality = foreigner

TotalCredits1.1 < 24

PrevStudies = T

0.63
100%

0.16
33%

0.07
25%

0.044
22%

0.27
3%

0.45
8%

0.32
3%

0.44
5%

0.86
67%

0.44
3%

0.88
64%

0.75
17%

0.69
3%

0.76
14%

0.95
47%

yes no

Figure 2: Estimated mixed-e�ects tree of model (3) for the graduating probability

Using the tree structure in Figure 2, we can get a population-level prediction for
new observations that do not include the e�ect of the programme. However, if we also
specify the level of the random e�ect covariate, our model is able to adjust this prediction
to account for this e�ect and make a group-speci�c prediction. Indeed, we can extract
coe�cients b̂i from the full estimated mixed model (3) and provide di�erent predictions for
di�erent programmes within each leaf of the tree structure. Figure 3 shows the estimated
random e�ects for all 19 groups in the dataset. The coe�cients bi are rearranged by their
point estimate. In many groups, the 95% con�dence interval does not overlap the vertical
line at zero, underlining substantial di�erences between the groups. If we use this model to
estimate the graduating probability, in many of the groups it is signi�cantly di�erent from
the average one. After �xing all other covariates, levels Environmental and Land Planning
Engineering and Civil and Environmental Engineering have higher positive e�ect on the
intercept: being a student from one of these programmes improves the log odds by 1.051
and 0.705 respectively. On the contrary, studying either Civil Engineering or Electrical
Engineering penalizes the log odds by 0.680 and 0.546 respectively.

Since we are using a multilevel model we can account for the interdependence of obser-
vations by partitioning the total variance into di�erent components due to the clustered
data structure in model (3). The Variance Partition Coe�cient (VPC) is a possible mea-
sure of intraclass correlation: it is equal to the percentage of variation that is found at
the higher level of hierarchy over the total variance [10]. The idea of VPC was extended
using the latent variable approach, to de�ne a method to partition the total variance in
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DegreeName.out

Civil Engineering

Electrical Engineering

Engineering of Computing Systems

Building Engineering

Chemical Engineering

Mechanical Engineering

Telecommunications Engineering

Materials and Nanotechnology Engineering

Aerospace Engineering

Energy Engineering

Biomedical Engineering

Mathematical Engineering

Electronic Engineering

Physics Engineering

Automation Engineering

Management Engineering

Industrial Production Engineering

Civil and Environmental Engineering

Environmental and Land Planning Engineering

−0.5 0.0 0.5 1.0

(Intercept)

Figure 3: Estimated random intercept for each degree programme in model (3). For each Engi-
neering programme, the blue dot and the horizontal line marks the estimate and the
95% con�dence interval of the corresponding random intercept

the case of a binary response and group-speci�c intercept as random e�ects structure [7].
In this case, the Variance Partition Coe�cient is constant across all individuals and it
can be estimated as:

VPC =
σ̂2
b

σ̂2
b + σ2

lat

=
0.2988

0.2988 + π2/3
= 0.0612

where σ̂2
b is the estimated variance of the random intercept and σ2

lat is the residual vari-
ability that can neither be explained by �xed e�ects, nor through the group features that
are represented by the random intercept. In this case, it is equal to the variance of the
standard logistic distribution. This VPC value means that 6.12% of variation in the re-
sponse is attributed to the classi�cation by degree type. This value underlines the need
to use a mixed model.

We can now evaluate the performance of the model and its predictive quality using
the test data. For each test observation, we are given a full set of covariates: therefore,
we are able to compute an estimate p̂ of the probability of successfully concluding the
BSc and getting the degree. We use this estimate to de�ne a binary classi�er based
on model (3): we choose p0 = 0.6 as optimal cuto� value through ROC curve analysis.
For 20 iterations, we randomly split the observations in training and test set, we �t a
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GMET model on the training set and we classify test observations using the optimal
threshold value. At the end, we compute the average accuracy, sensitivity and speci�city
and their standard deviation, reported in Table 4. High values of accuracy, sensitivity and
speci�city point to a good e�ectiveness of the model. In addition, the model performance
is robust, as highlighted by the low standard deviation of mean performance indexes.

It is interesting to compare these average performance indexes against those obtained
using di�erent methods. This approach has similar accuracy to a standard classi�cation
tree (0.878 versus 0.879), but its accuracy shows less variability across the iterations. For
example, its standard deviation of accuracy is 0.5% against 2.8% for a classi�cation tree.
Since we are interested in the detection of dropout careers, we should compare mean
sensitivity using di�erent models. Using mixed-e�ects trees, we get higher sensitivity
than using standard classi�cation trees (0.835 versus 0.800). Thus, the choice of a mixed-
e�ects model seems appropriate: the degree programme is a meaningful covariate for the
prediction of career status. A mixed-e�ects tree is slightly less sensitive than a classi�er
build through a GLMM (0.835 versus 0.850), suggesting that a tree-like structure for �xed
e�ects might not be as suitable as the GLMM one. However, it has other advantages like
o�ering an easily interpretable model that could be graphically displayed and understood.

Index Mean Std deviation

Accuracy 0.860 0.006
Sensitivity 0.816 0.012
Speci�city 0.886 0.008

Table 4: Performance indexes of a classi�er based on the mixed-e�ects tree of model (3)

5 Conclusions

This paper proposes a multilevel tree-based model for a non-gaussian response (GMET
algorithm), shows a simulation study and applies the GMET algorithm to the PoliMi ca-
reers dataset as a tool to �nd discriminating student-level variables between two di�erent
student pro�les (graduate and dropout) and to estimate the degree programme e�ect on
the predicted success probability.

The GMET model can deal with a grouped data structure, while providing easily
interpretable models that can outline complex interactions among the input variables.
In the simulation study, the performance of the proposed mixed-e�ects tree method is
a marked improvement over the CART model when the data generating process (DGP)
includes random e�ects, even if of small magnitude. In addition, the performance of
the GMET model is closer to the one of the benchmark logistic model that is �tted
assuming the whole speci�cation of the DGP. Although our study focuses on the binary
response case, the mixed-e�ects tree approach could be extended to other types of response
variables. Using a suitable link function, we could study if the method is appropriate to
model di�erent outcomes such as counts data or a multinomial factor response. Moreover,
ensemble methods which use a mixed-e�ects tree as base learner may be developped.
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In our case study, the e�ectiveness of the GMET model in dropout prediction is
comparable to the ones of more established classi�cation methods. A GMET model with
high accuracy and sensitivity has been obtained by considering information available at
the time of the admission and the career of the �rst semester of studies. In addition, our
work identi�es a signi�cant e�ect of the Engineering programme on dropout probability.

In the context of the SPEET project, a future development could be the extension of
our analysis to the other project partners in order to compare the programme e�ect at
country level. This would allow us to relate this e�ect to programme-level variables and
we could establish if the same pro�les of students with dropout risk arise at country level.
Moreover, in accordance to the validity and the potential of GMET method when applied
to model student dropout prediction, our future perspective goes in the direction of major
applications in the Learning Analytics area. This method, when applied to educational
data, can be a useful tool to support the de�nition of best practices and new tutoring
programmes aimed at enhancing student performances and reducing student dropout. A
worthwhile aspect regards also the approach that teachers and students have with respect
to its results. Indeed, this method is also valuable in the perspective of recommendation
systems, since, if its results are interpreted and communicated in the right way, they can
be used to drive students in their career choices.
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