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Abstract

In this work we discuss the reliability of the coupling among three-dimensional (3D)
and one-dimensional (1D) models, that describe blood flowing into the circulatory tree.
In particular, we study the physical consistency of the 1D model with respect to the
3D one. To this aim, we introduce a general criterion based on energy balance for the
proper choice of coupling conditions between models. We also propose a way to include
in the 1D model the effect of the external tissue surrounding the vessel and we discuss
its importance whenever this effect is considered in the 3D model. Finally, we propose
several numerical results in real human carotids, studying different configurations for
the 1D model and highlighting the best one in view of the physical consistency.

Keywords: Cardiovascular simulation, geometrical multiscale, total pressure, sur-
rounding tissue, human carotid.
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1 Introduction

The cardiovascular system is formed by a complex network of vessels where local and
global phenomena influence each other. Modeling with different degree of detail is there-
fore mandatory to obtain physiological and patient-specific results. In this context, it has
been proposed in the last decade to couple heterogeneous models characterized by different
spatial dimension, leading to a geometrical multiscale approach. The main idea under-
lying this strategy is to focus on a specific district of interest, where we want to have a
three-dimensional (3D) accurate description, and to embed it in a net of one-dimensional
(1D) and/or zero-dimensional (0D) models, which take into account for the rest of the
circulatory tree and provide suitable boundary conditions to the 3D model. This idea has
been first proposed in [26] and it has been then developed and studied also in other works
and by other groups, we mention for example [13, 25, 22, 27, 29, 2, 21].

Among the different strategies, a particular attention has been paid to the 3D-1D
coupling, based on the interaction between a 3D model of blood in a compliant vessel and
a net of 1D models to account for a larger part of the vascular tree [9, 12, 3, 17]. For
the 3D model it is necessary to consider a fluid-structure interaction (FSI) problem, since
blood flow is coupled with the deformation of the arterial wall.

The 1D network is composed by connecting 1D models, each of them describing the
flow in a single vessel. They are derived by integration of the Navier-Stokes equations
written in a moving domain over sections orthogonal to the axial direction. The hypothe-
ses underlying the derivation of the 1D model, that trace back to the seminal work of
Leonhard Euler in 1775 [8], are: i) the fluid domain at rest is a cylinder; ii) the structure
is assumed to be a linear membrane, with a normal wall displacement. The 1D model
can therefore be regarded as a spatially reduced 3D-FSI model, consisting of a straight
cylinder surrounded by a linear membrane structure. Therefore, the 1D model cannot
provide insightful information about the local fluid-dynamics, but it generates an average
solution along the axial vessel’s coordinate. In particular it is able to describe flow rate
distributions and pressure wave propagation. It is therefore reasonable to ask whether the
1D model can reproduce physiological results with reasonable accuracy, when used as an
approximation of a 3D real vessel geometry with a thick wall. We refer to this topic as
physical consistency of the 1D model with respect to a 3D-FSI one. Of course, the fulfill-
ment (in a suitable sense) of the physical consistency is a major issue to obtain reliable
results when one considers a 3D-1D coupled system.

In this work, we provide three different analyses in the direction of assessing the phys-
ical consistency of the 1D model. The first aims to investigate which coupling conditions
at the interface between 3D-FSI and 1D models guarantee the satisfaction of physical
principles based on energy balance (topic I). In fact, it is known that the 3D-FSI model
and the 1D model separately satisfy an energy inequality. Here, we investigate when a
global energy estimate holds too.

The second aim of the work is to consider the tissue surrounding the vessel in the 1D
model (topic II). In the 3D-FSI model, the presence of the external tissue is often modeled
by providing the outer surface of the arterial wall with suitable boundary conditions that
“mimic” the action of the surrounding tissue. Recently, a Robin boundary condition
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has been proposed under the assumption that the external environment exerts an elastic
feedback on the artery wall [23, 6, 24]. Here, we include this modelization in the 1D
model, through the derivation of an equivalent elastic constant, that accounts for the
external tissue.

The third aim of the work consists in performing numerical simulations in real geome-
tries, using a set of coupling conditions satisfying the above energy principle. This set of
numerical experiments aims at quantifying the discrepancy between the results obtained
with the full 3D model and those obtained by using the coupled 3D-1D one (topic III).
Little has been done so far in this direction. In [12] a comparison between a full 3D model
of a cylinder with a thick linear structure, and a system obtained by coupling half of the
3D model with a 1D model was considered. The authors showed that in this case the
coupled system leads to accurate results with respect to those obtained with the full 3D
system. In [3], a comparison has been performed between a 3D model of a femoral artery
with a membrane structure and the system obtained by coupling half of the latter with a
1D model. The authors found that the coupled model is quite accurate, being the relative
error with respect to the full 3D model of the quantities of interest less than 5%. The re-
sults in [12, 3] highlight the effectiveness of the 3D-FSI/1D coupling in two different cases:
that of a cylindrical domain with a thick structure, or the one of a real complex geometry
with a membrane structure. Here we want to make the additional step of analyzing the
accuracy of the 3D-FSI/1D coupled model for a real 3D geometry with thick structure.
To this aim, we report several numerical results obtained in human carotids.

The main results achieved by this work are briefly described in what follows. Regarding
topic I, we found that the classical coupling conditions based on the continuity of the flow
rate and of the mean pressure are not in general energy preserving, differently than those
based on the continuity of the flow rate and of the mean total pressure. As for topic II,
we found that the effect of the surrounding tissue could be accounted for in the 1D case
by suitably modifying the Young modulus, by adding a term proportional to the elasticity
of the surrounding tissue. The numerical experiments showed that the inclusion of this
correction is crucial in order to yield meaningful results. Finally, regarding topic III, we
found that by considering tapering in the 1D model representing the branch cut from the
3D model, the accuracy with respect to the full 3D model considerably improves.

The outline of the paper is as follows. In Section 2, we introduce separately the 3D-
FSI and the 1D models, whilst in Section 3 we discuss which sets of coupling conditions
satisfy a physical principle based on energy dissipation. In Section 4, we discuss the effect
of accounting for the surrounding tissue in the 1D model, and we show some related
numerical results in Section 5.1 in order to study the effect of neglecting this correction.
Finally in Section 5.2 we show several numerical results in real geometries with the aim
at investigating the physical consistency of the 3D-FSI/1D coupled system.
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2 Problem setting

2.1 The 3D fluid-structure interaction problem

We consider problems defined on tubular domains, like the one depicted in Figure 1,
representing a portion of the arterial tree, and formed by a fluid part Ωt

f , the lumen, and

a structural part Ωt
s, the vessel wall, both open subsets of R

3. The superscript t indicates
that they are changing with time, as they correspond to the current configuration at time
t. We indicate with Σt the interface between the two domains, Σt = ∂Ωt

f ∩ ∂Ωt
s. The

Figure 1: Representation of the domain of the FSI problem: fluid domain on the left,
structure domain on the right.

sections that artificially separate the arterial section at hand from the remaining part of
the arterial tree are indicated with Σt

f,i and Σt
s,i, for the fluid and structure, respectively.

The external boundary is Σt
out, and involves only the structural part.

Blood velocity is denoted by uf = uf (x, t), the fluid pressure by p = p(x, t), while
ηs = ηs(x, t) is the structure displacement. Since we work in a moving domain, the fluid
problem is stated in an Arbitrary Lagrangian-Eulerian (ALE) framework (see e.g. [19, 7]),
while we adopt the common Lagrangian approach for the structure. At every time t, the
ALE map At is an appropriate lifting into the fluid domain of the structure displacement
at the fluid-structure interface Σt. It defines the displacement ηm of points in Ωt

f during

the movement of the fluid domain with respect to a reference configuration Ω̃f . Its time
derivative is the fluid domain velocity um. The ALE time derivative of a function f in Ωt

f
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is then defined as
DAf

Dt
=
∂f

∂t
+ (um · ∇)f.

The ALE frame is functional to the numerical discretization because it allows to conve-
niently express the time variation of relevant quantities at the nodes of the computational
mesh, which is moving with the domain.

The incompressible Navier-Stokes equations for a homogeneous and Newtonian fluid
are assumed to hold in Ωt

f , and we indicate with T f the related Cauchy stress tensor
defined by

T f (u, p) := −pI + 2µD(u),

where

D(u) =
1

2

(
∇u + (∇u)T

)

is the strain rate tensor.
To describe the structure kinematics we adopt a genuine Lagrangian approach. With

Ω̃s we denote the reference configuration for the solid part, assumed to be a natural state,
and the displacement ηs is taken with respect to this configuration. Whenever not clear
by the context we use the symbol ˜ to indicated quantities pushed back to the reference
configuration. In particular, we indicate with P̃ s the first Piola-Kirchoff stress tensor,
linked to the Cauchy stress tensor T s = T s(η̃s) by

P̃ s = JT sF
−T ,

where J = det(F ) and F = I + ∇η̃s are the Jacobian of the Lagrangian map and the
deformation gradient, respectively. For a hyper-elastic material the first Piola-Kirchoff
tensor is expressed as function of the Green-Lagrange stress tensor

E =
1

2
(F T F − I) =

1

2
(∇η̃s + ∇T η̃s) +

1

2
∇T η̃sη̃s

as

P̃ s = F
∂W

∂E
,

W being a suitable density of elastic energy. For arteries, several elastic energy functions
have been proposed so far, in particular neo-Hookian and exponential materials have been
mainly considered, see for example [16, 18, 28]. For a homogeneous elastic material we
have

T̃ s(η̃s) =
E

2(1 + ν)
E(η̃s) +

Eν

(1 + ν)(1 − 2ν)
tr(E(η̃s)) I, (1)

where E is the Young modulus and ν the Poisson ratio.
The fluid-structure interaction (FSI) problem is therefore governed by the following

differential problems:

5



1. Fluid-Structure interaction. Given the (unknown) fluid domain velocity um and fluid
domain Ωt

f , find, at each time t ∈ (0, T ], fluid velocity uf , pressure p and structure
displacement ηs such that





ρf
DAuf

Dt
+ ρf ((uf − um) · ∇)uf −∇ · T f (uf , p) = 0 in Ωt

f ,

∇ · uf = 0 in Ωt
f ,

ρ̃s
∂2η̃s

∂t2
−∇ · P̃ s(η̃s) = 0 in Ω̃s,

(2)

where ρf and ρ̃s are the fluid and structure density, respectively, the latter referred
to the reference configuration. We also consider the following interface conditions

{
uf =

∂ηs

∂t
on Σt,

T s(ηs)ns + T f (uf , p)nf = 0 on Σt,
(3)

stating the continuity of velocity and normal stresses at the FS interface. We indicate
with n the outward normal to the domain boundary, yet when there is ambiguity, as
in the previous expression, we add the suffix s or f to mark the fluid or the structural
domain, respectively. Furthermore we will consider the following boundary Robin-
type condition on Σ̃out,

αeη̃s + P̃ s(η̃s) ñ = Pextñ, on Σ̃out, (4)

where Pext is a given external pressure distribution, while αe is a non-negative con-
stant. This condition simulates the presence of an elastic external tissue, αe being
the elastic coefficient (see [23, 20]).

2. Geometry problem. Given the (unknown) interface structure displacement η̃s|eΣ, find
by a suitable extension of this datum, the displacement of the fluid domain ηm, for
instance by solving {

−△η̃m = 0̃ in Ω̃f ,

η̃m = η̃s on Σ̃,
(5)

and then find accordingly the fluid domain velocity ũm = ∂eηm

∂t . A point xf ∈ Ωt
f is

related to the corresponding point x̃f of the reference domain Ω̃f by

xf = x̃f + η̃m.

Equations (2) and (5) have to be endowed with suitable boundary conditions at Σf,i

and Σs,i and initial conditions for uf , η̃s and
∂η̃s

∂t
. They are not discussed here, rather,

they will be described case by case in the numerical results.
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2.2 The one-dimensional reduced model

Referring to the compliant cylinder in Figure 2, whose length is L, a simplified 1D model
can be obtained integrating at each time t the Navier-Stokes equations over each section
S normal to the axis z of the cylinder. The 1D model reads, for each t > 0 and 0 < z < L,
(see [9, 13]) 




∂A

∂t
+
∂Q

∂z
= 0,

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+
A

ρf

∂P

∂z
+Kr

Q

A
= 0,

(6)

where Q is the flow rate through S, A is the area of S, P the mean pressure over S,
Kr is a resistance parameter which accounts for the fluid viscosity, while α accounts for
the shape of the velocity profile over S. From now on, variables which in principle take
different values in the 3D-FSI and in the 1D models are denoted with symbol ̂ when
belonging to the 1D model. System (6) is a system of two equations in three unknowns

Figure 2: Reference cylinder Ω.

(P,Q,A). For its closure, a third equation is provided by a suitable wall model relating
the radial displacement (and therefore the area A) to the mean pressure P . In particular,
we consider the general law

P = Pext + ψ(A),
dψ

dA
> 0, ψ(Ã) = 0, (7)

where Ã is the area of the surface S at t = 0. A classical choice is to consider an algebraic
law of the type

ψ(A) = β(A)

√
A−

√
Ã√

π
, (8)

where

β =
ĤsÊ π

(1 − ν̂2)A
, (9)

being Ĥs the thickness of the structure, and Ê and ν̂ the Young modulus and Poisson
ratio, respectively. Ĥs and Ê (and therefore β) could in principle be functions of z, whilst
it is a common practice to use constant values over time. In particular, in this work we
use β = β(Ã) for the numerical experiments.

The characteristic variables related to the 1D reduced model (6), (7), (8) are given by
(see [9])

W1,2 =
Q

A
± 4γ

(
A1/4 −A

1/4
0

)
,
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where γ =
√

β
2ρf π . With the choices (7)-(8), it is possible to show that system (6) is

hyperbolic and possesses two distinct eigenvalues [15]

λ1,2 =
Q

A
± γ A1/4.

Under physiological conditions the flow is sub-critical, so that the eigenvalues have opposite
sign, λ1 > 0 and λ2 < 0. In this case, W1 corresponds to the incoming characteristic on
the point z = 0, while W2 is the incoming characteristic in the point z = L.

3 Energy invariant coupling conditions

Once we have at disposal a 3D-FSI and a 1D system, we would like to use them in a
coupled way as a simplified model of a full 3D-FSI one. The coupled model is obtained by
substituting a part of 3D-FSI with a 1D model. In order to guarantee that the coupled
model features accurate results, we have to show that a “physical consistency” property
holds. In other words, it is necessary to understand when the coupled model reproduces
solutions which are in agreement (in some suitable sense) with those obtained by the full
system. To this aim, we here analyze possible couplings between the 3D-FSI and the
1D models from the point of view of energy estimates. We start considering a simplified
setting, the found result can however be extended to more general situations. Let us

Figure 3: Schematic representation of the coupling between the 3D (P1) and the 1D (P2)
models.

consider a single 3D elastic pipe P modeling an artery and the differential problem provided
by (2), (3), (4) and (5). For the scope of this section we consider homogeneous Dirichlet
boundary conditions for both fluid velocity and structure displacement at the artificial
sections, and a non null initial condition. It is well known that a solution of the FSI
problem under the stated conditions satisfies an energy decay property [14, Chapter 9].
We now split the pipe along its axis into two parts, P1 and P2, then we replace P2 with
the corresponding 1D model. For simplicity, we set the origin of the axis so that z ∈ (0, L)
in the 1D model, L being the length of P2. We will use then the same notation adopted in
the previous section to denote the various portions of the boundary of P1. The interface

8



between models is given by Γt = Γt
f ∪ Γt

s for the 3D model, and z = 0 for the 1D one. In

the example depicted in Figure 3, we have Γt
f = Σt

f,2 and Γt
s = Σt

s,2.
The 3D-FSI model lies in P1, and is governed by equations (2), (3), (4) and (5), with

Dirichlet boundary conditions

uf = 0 on ∂Ωt
f \ (Σt ∪ Γt

f ) t > 0,

ηs = 0 on ∂Ωt
s \ (Σt ∪ Γt

s) t > 0,
(10)

while for the 1D model we set
Q = 0 at z = L. (11)

We leave unspecified for now the conditions at the interface Γt between models.
The proposed model problem still should simulate the flow in pipe P. Thus we wish

that a solution of the coupled problem satisfies an energy inequality akin to that of the
complete model and find interface conditions that do not affect the energy balance of the
system.

To this aim we define the following total energy of the 3D fluid-structure problem

E3D(t) =
ρf

2

∫

Ωt
f

|uf (t,x)|2 dΩ+

∫

eΩs

ρs

2
| ˙̃ηs(t,x)|2 dΩ+

∫

eΩs

W (E(t,x)) dΩ+

∫

eΓout

αe|η̃s(t,x)|2dγ,

and the following total energy of the 1D model [9]

E1D(t) =
ρf

2

∫ L

0
A(t, x)U2(t, x) dx+

∫ L

0
Ψ(A(t, x)) dx,

where U := Q
A is the mean velocity, and Ψ(A) =

∫ A

A0

ψ(τ) dτ . For the sake of notation, in

what follows we highlight the dependence of variables just with respect to time.

Proposition 1. A solution of the 3D-FSI problem under conditions (10) satisfies the
following energy equality

d

dt
E3D(t)+2µ

∫

Ωt
f

|D(uf (t))|2 dΩ+

∫

eΓout

αe| ˙̃ηs(t)|2dγ =

∫

Γt

T f (uf (t), ptot(t))n ·uf (t) dγ

+

∫

Γt

T s(ηs(t))n · η̇s(t) dγ. (12)

Here ptot := p+
ρf

2
|uf |2 is the fluid total pressure.

The proof is rather standard and is based on multiplying the momentum equation for
the fluid by uf , the equation for the structure by ˙̃ηs, followed by a formal manipulation of
the integrals using Gauss theorem and the enforcement of the given boundary conditions.

Proposition 2. The 1D problem under conditions (11) satisfies the following energy equal-
ity

d

dt
E1D(t) + ρfKr

∫ L

0
U(t)2 dx = Q(t)|z=0 Ptot(t)|z=0, (13)

where Ptot = P +
ρf

2
U2, is the total pressure in the 1D model.
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The demonstration may be found in [9]. We have then the following

Proposition 3. If the interface conditions are such that

∆E(t) =

∫

Γt
f

T f (uf (t), ptot(t))n·uf (t) dγ+

∫

Γt
s

T s(ηs(t))n·η̇s(t) dγ+Q(t)|z=0Ptot(t)|z=0 ≤ 0

(14)
for all t > 0, then the coupled 3D-FSI/1D problem satisfies the energy decay property

d

dt

(
E3D(t) + E1D(t)

)
≤ 0

for all t > 0.

Proof. It is sufficient to sum (12) and (13) member by member and apply condition (14).

If the interface conditions are such that ∆E ≤ 0 for all allowable values of pressure, ve-
locity and displacements, then we say that they are energy dissipating. Moreover, interface
conditions that satisfy the stronger requirement ∆E = 0 (which is physically justified),
will be called energy preserving interface conditions.

Proposition 4. The following interface conditions




∫
Γt

f
uf (t) · n dγ = Q(t)|z=0,

(T f (uf (t), ptot(t))n) |Γt
f

= −Ptot(t)|z=0n,
(15)

for the fluid part, joined with either

T s(ηs)n = 0 at Γt
s, (16)

or {
ηs · n = 0 at Γt

s,

(T s(ηs)n) × n = 0 at Γt
s,

(17)

for the structure, are energy preserving.

Proof. To prove this statement we first analyze conditions (15). By using both (15)1 and
(15)2 and by noticing that T f (uf , ptot)n is aligned with the normal direction and constant
over Γt

f , we obtain

∫

Γt
f

T f (uf (t), ptot(t))n · uf (t) dγ = −Ptot(t)|z=0

∫

Γt
f

uf (t) · n dγ = −Ptot(t)|z=0Q(t)|z=0,

so that from (14) we have

∆E(t) =

∫

Γt
s

T s(ηs(t))n · η̇s(t) dγ.
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This term is clearly null if (16) is true. To show that it is still zero if when considering
(17) instead of (16), it is sufficient to note that conditions (17) imply η̇s ·n = 0, and thus
η̇s = n × η̇s × n. Consequently, we obtain

∫

Γt
s

T s(ηs(t))n · η̇s(t) dγ =

∫

Γt
s

η̇s(t) · [T s(ηs(t))n × n] × n dγ = 0,

where we have used the algebraic identity a · (b × c) = c · (a × b).

The first condition in (15) states the continuity of mass flux, the second that of total
normal stresses, which are taken constant on the 3D part of the interface Γt

f . The two
alternative conditions (16) and (17) on the structural part of the interface specify zero
normal stresses (homogeneous Neumann) or null tangential component of the normal
stresses and no normal displacement, respectively. We may note that there is no direct
coupling between the 3D structure and the 1D model. This fact reflects that the simplified
structural law used in the 1D model is unable to provide enough information to feed the
structural part of the 3D-FSI model. In particular, the above conditions do not imply
continuity of the section area, i.e. in general A 6=

∫
Γf
dγ. We wish to point out that

the lack of continuity of the section area at the interface does not imply that the 3D and
1D structural models are uncoupled. The evolution of the section area in the 3D model
depends on the stress field acting on the structure, which is linked to the pressure in the
1D model (and then to the 1D structure) thanks to the second of (15).

Remark 1. The interface conditions analyzed in Proposition 4 are not the only set of
energy preserving conditions. Indeed, one may replace the last of (17) with ηs = 0 on Γt

s.
The latter, however, is physically less justifiable, since it implies that Γs remains fixed.

Remark 2. Interface conditions based on the total pressure have been already considered
in [11] for the 1D/1D coupling and in [12] for the 3D-FSI/1D coupling. In the latter work
the authors used, for stability purposes, a particular treatment of the convective term in the
Navier-Stokes equations, which leads naturally to conditions on the total pressure. Here,
we advocate the use of total pressure as energy preserving conditions independently of the
formulation adopted for the Navier-Stokes problem.

Remark 3. For practical reasons of implementation, it may be desirable to replace (15)
with 




∫

Γt
f

uf (t) · n dγ = Q(t)|z=0,

(T f (uf (t), p(t))n) |Γt
f

= −P (t)|z=0n,
(18)

which involves in the second equation the pressure instead of total pressure. Exploiting the
definition of Ptot and considering for the structure either (16) or (17), we have from (14)
that

∆E(t) =
ρf

2

(
Q(t)|z=0 (U(t)|z=0)

2 −
∫

Γt
f

|uf (t)|2uf (t) · n dγ
)
,
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whose sign is not defined in general. It follows that interface conditions (18) may jeopardize
the fulfillment of an energy inequality and consequently lead to a possible loss of stability
of the coupled problem.

The considerations here made for a single interface can be readily extended to the case
of several interfaces, leading to analogous conditions.

4 Modeling the surrounding tissue in the 1D model

In order to find a physically consistent 1D model, it is natural to use the same Poisson
ratio for the 3D-FSI and the 1D models, that is ν̂ = ν. Ragarding the Young modulus, we
should also account for the presence of the surrounding tissue. In the 3D-FSI the absence
of the external environment was surrogated by Robin condition (4). This is not the case in
the standard derivation of the 1D model. Therefore, the choice Ê = E does not seem to be
the proper one. In what follows, we examine how the presence of the external tissue may
be modeled in the 1D model, and consequently how Ê could be chosen. To start with, we
note that in the derivation of the 1D model the structure is regarded as a membrane and
therefore geometrically is a surface, coinciding with its external surface. We also point
out that both the surrounding tissue and the 1D vessel law are described through a linear
algebraic law between the pressure and the displacement, through (4) and (8), respectively.
Therefore, we can derive an equivalent model by considering the situation depicted in
Figure 4, where the stifness of the arterial wall and that of the surrounding tissue is
modeled by two springs in parallel. In particular, by denoting K1D the elastic constant of

K1D KST

Figure 4: Representative equivalent scheme of the 1D model in presence of surrounding
tissue (ST). K1D represents the elastic constant of the 1D model without considering ST,
whilst KST represents that of ST.

the 1D vessel model without surrounding tissue and KST that of the surrounding tissue,
we have that the equivalent elastic constant is given by Keq = K1D +KST . From (8), it
follows that K1D = β(E), where we have highlighted the dependence of β on the Young
modulus E, see (9). Furthermore, from (4) it follows that KST = αe. Therefore, the
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equivalent Young modulus Ê, by which the 1D model is equivalent to the 3D-FSI model
with surrounding tissue, has to satisfy

Keq = β(Ê) =
Ĥs Ê π

(1 − ν2)Ã
=

ĤsE π

(1 − ν2)Ã
+ αe.

This yields

Ê = E +
(1 − ν2)Ã

Ĥsπ
αe, (19)

which corresponds to an increase of the stiffness in the 1D model.

5 Numerical results

In this section we provide some numerical results to assess the sensitivity of the solution
with respect to the parameter accounting for the surrounding tissue in the 1D model
(Section 5.1) and carry out several numerical simulations in real geometries for the coupled
problem 3D-FSI/1D highlighting its accuracy with respect to the full 3D-FSI problem
(Section 5.2).

In all our numerical experiments, we consider the linear elastic structure law given
by (1) and we use P1-P1 stabilized finite elements [4] for the fluid, and P1 elements for
both the structure as well as the 1D model. We also consider a first order semi-implicit
scheme for advancing in time the fluid equations, a first order implicit scheme for the
structure, and a second order explicit Taylor-Galerkin scheme for the 1D model [14]. By
taking a time step equal to ∆t for the 3D-FSI problem, we use ∆t/1000 for the 1D model,
in order to guarantee the stability of the explicit scheme used for the latter problem. At
the outlet of the 1D models we consider absorbing boundary conditions [9]. The 3D-FSI
model is solved with a preconditioned monolithic strategy, with an explicit treatment of
the fluid convective term and of the fluid geometry non-linearity [5]. For the solution of
3D-FSI/1D coupling, we consider the partitioned procedure described in Algorithm 1. To
this aim let FFS(uf , p,ηs,um) = 0 be the 3D-FSI problem (2), (3), (1), (4), (5), (17), with
suitable boundary conditions on (∪jΣf,j)

⋃
(∪jΣs,j) \ Γf , depending on the test at hand,

and let F1D(Q,A, P ) = 0 be the 1D model (6), (7), (8), (9), with absorbing boundary
conditions at z = L. Moreover, we denote with Ωn the approximation at time tn of domain
Ω. We avoid to indicate the superscript n for the unknowns to avoid confusion with the
subiteration index k.

Algorithm 1.

Given the quantities at previous time steps and a tolerance ε, set Q(0)(tn+1)|z=0 =
Q(tn)|z=0. While

∣∣∣Q(k−1)|z=0 −Q(k−2)|z=0

∣∣∣+
∣∣∣U (k−1)|z=0 − U (k−2)|z=0

∣∣∣ ≥ ε, (20)

solve at each time step tn+1 the following problems:
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1. Fluid-structure interaction problem





FFS(u
(k)
f , p(k),η

(k)
s ,u

(k)
m ) = 0,∫

Γ
u

(k)
f · n dγ = Q(k−1)|z=0;

2. 1D problem





F1D(Q(k), A(k), P (k)) = 0,

P (k)|z=0 =
1

|Γn
f |

∫

Γn
f

T f (u
(k)
f , p(k))n · n dγ +

ρf

2

((
U (k−1)|z=0

)2
− 1

|Γn
f |

∫

Γn
f

|u(k−1)
f |2 dγ

)
.�

(21)

Algorithm 1 is based on the prescription of the flow rate to the 3D-FSI model and
of the mean total normal stress to the 1D model. For the latter condition, the terms
involving the velocities have been computed at previous subiteration. In this way, we rely
to a classical pressure conditions for the 1D model. Condition (21) is consistent with (15)2
so that, if convergence is achieved, Algorithm 1 allows to prescribe the preserving energy
conditions (15). No theoretical results are nowadays available regarding the convergence
of Algorithm 1. However, the numerical results presented in this work show that it is
always achieved. We also notice that in the stopping criterion (20) the first term allows
to check the satisfaction of the flow rate condition (15)1, whereas the second one that of
the total normal stresses (15)2. For the prescription of a flow rate condition, in this work
we considered the Lagrange multipliers approach introduced in [10].

Finally, in all our numerical tests we consider the following values: ρf = 1.04 g/cm3, ρs =
1.2 g/cm3, ν̂ = ν = 0.45, α = 9 and a space discretization parameter for the 1D model
h = 0.1 cm. All the numerical results have been obtained using the parallel Finite Element
library LIFEV developed at MOX - Politecnico di Milano, INRIA - Paris, CMCS - EPF of
Lausanne and Emory University - Atlanta [1].

5.1 Effect of the surrounding tissue in the 1D model

In this section, we compare the solution obtained by neglecting the surrounding tissue
(ST) in the 1D model (that is by taking Ê = E) with that obtained by including it (that
is by taking Ê given by (19)).

For the 3D-FSI problem, we consider a cylindrical domain with radius equal to 0.5 cm,
length equal to 5 cm and structure thickness Hs = 0.05 cm, and we prescribe the flow rate

Q =

{
sin2(π t/T ) t ≤ T/2,
0 t > T/2,

with T = 0.008 s, at the inlet, whilst we considered a coupling with a 1D model at the
outlet.

We consider two cases: αe = 106 dyne/cm3 and αe = 5 · 106 dyne/cm3. We also use
∆t = 0.001 s, E = 2 · 106 dyne/cm2, and, for the 1D model, L = 5 cm, Ã = 0.78 cm2 and
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Ĥs = 0.05 cm, the last two values being chosen in order to guarantee the continuity with
those of the 3D-FSI model.

In Figure 5 we show the mean pressure at the section located at 2.5 cm from the inlet,
obtained by either including or neglecting ST in the 1D model. In particular, Figure 5, left,
shows the case αe = 106 dyne/cm3, whilst Figure 5, right, the case αe = 5 · 106 dyne/cm3.
In both cases, we observe that there is a difference between the two solutions. In particular,

Figure 5: Comparison of the mean pressure at a section far 2.5 cm from the inlet obtained
by considering (continuous line) and by neglecting (dash line) the surrounding tissue in
the 1D model. αe = 106 dyne/cm3 (left) and αe = 5 · 106 dyne/cm3 (right).

the case obtained by neglecting ST in the 1D model features higher spurious reflections
due to the mismatch of elastic properties with the 3D model. On the contrary, the case
obtained by using (19) features no or very little reflections, as expected. We also notice
that the reflections are higher in the case αe = 5·106 dyne/cm3. This is easily explained by
noticing that for this case from (19) we have Ê = 2.19 · 107 dyne/cm2, whilst for the case
αe = 106 dyne/cm3 we have Ê = 5.99 · 106 dyne/cm2, so that the higher αe, the greater
the difference between E and Ê, and therefore the greater the discrepancy between 1D
and 3D-FSI models.

These results highlight that if the surrounding tissue is modeled in the 3D-FSI problem,
the coupled system is physically consistent provided that (19) is satisfied.

5.2 Comparison between complete and simplified real cases

In this section we consider three sets of simulations, related to two real cases obtained
by reconstructing the geometries of two human carotids from MRI images, by using the
package VMTK (http://www.vmtk.org). For each case, we consider the coupling between
the model Θ (which changes case by case, see below) and two 1D models at the two outlets
of Θ, in particular model Ext at the interface with the external carotid and model Int at
the interface with the internal carotid (see Figure 6, up). Models Ext and Int have length
LExt = LInt = 5 cm. As for model Θ, we consider three different situations: i) the full
3D-FSI model ΩF , called in what follows full model (FM) (see Figure 6, up, left); ii)-iii)
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the coupling between the simplified 3D-FSI model ΩS obtained by cutting a part of the
external carotid, and the 1D model Cut, representing a reduced model of the cut branch
(see Figure 6, up, right). Cases ii) and iii) differ for the choice of the 1D model Cut. In
particular, in case ii) we consider a constant in space area and thickness, along models
Cut and Ext (simplified model, SM); in case iii) we consider the same values of case i) for
model Ext, whilst a linear variation in space of area and thickness for model Cut, in order
to connect with continuity the 3D model and model Ext (simplified model with tapering,
SMT). To summarize, we report in Table 1 the criteria just described, where with Hs we
indicate the mean thickness of the structure at the artificial section Γs.

ÃCut ÃExt ÃInt ĤCut
s ĤExt

s ĤInt
s

FM X |Γ̃Ext
f,F | |Γ̃Int

f | X HExt
s,F HInt

s

SM |Γ̃Ext
f,S | |Γ̃Ext

f,S | |Γ̃Int
f | HExt

s,S HExt
s,S HInt

s

SMT
(
|Γ̃Ext

f,F | − |Γ̃Ext
f,S |

)
z |Γ̃Ext

f,F | |Γ̃Int
f |

(
HExt

s,F −HExt
s,S

)
z HExt

s,F HInt
s

+|Γ̃Ext
f,S | +HExt

s,S

Table 1: Criteria for the choice of the area and the thickness in the 1D models for the
three different cases considered. X means that there is no any quantity for the model at
hand. The coordinate z refers to model Cut with length equal to 1.

We run the simulations of these three scenarios for three different cases, namely a)
patient 1, full domain depicted in Figure 6, middle, left, and simplified model depicted
in Figure 6, middle, second subfigure from the left; b) patient 1 with simplified model
depicted in Figure 6, middle, third subfigure from the left; c) patient 2, full domain
depicted in Figure 6, bottom, left, and simplified model depicted in Figure 6, bottom,
second subfigure from the left. The length of the cuts are equal to 1 cm for case a), 1.8 cm
for case b), and 0.8 cm for case c).

In Table 2 we report the values of parameters used in the numerical simulations. As
for the Young modulus and the parameter describing the ST in the 3D-FSI model, we use
the values E = 3.2 · 106 dyne/cm2 and αe = 1.1 · 106 dyne/cm3. In Table 3 we report the
values of the equivalent Young modulus used in the 1D models, accordingly to formula
(19).

At the inlet of the 3D-FSI models, we prescribed the physiological flow rate depicted in
Figure 7. We imposed homogeneous Dirichlet boundary conditions at the inlet for struc-
ture and for harmonic extension problems. At the outlets, for the latter two subproblems
we considered homogeneous Neumann conditions. Finally, we set ∆t = 0.002 s.
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Figure 6: Top: schematic representation of the computational domains. On the left the
complete model, on the right the reduced one. Middle: geometries for patient 1 (cases
a) and b)). Bottom: geometries for patient 2 (case c)). For the last two rows, we report
the computational domains, on the left, and the section where the average quantities are
computed, on the right.

In Figures 8 and 9 we show the fluid pressure at the FS interface at two instants,
namely t = 0.06 s (left) and t = 0.12 s (right), the latter being the systole, obtained for
case a) and c), respectively. From these results, we observe that in both cases the 3D
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|Γ̃Ext
f,F | |Γ̃Ext

f,S | |Γ̃Int
f | HExt

s,F HExt
s,S HInt

s

case a) 0.054 0.074 0.082 0.024 0.035 0.040
case b) 0.054 0.083 0.082 0.024 0.035 0.040
case c) 0.092 0.120 0.127 0.020 0.025 0.053

Table 2: Geometrical data used in the numerical simulations. The values of the area are
in cm2, those of thickness in cm.

ÊCut ÊExt ÊInt

FM X 3.82 3.80
case a) SM 3.78 3.78 3.80

SMT 0.04 z + 3.78 3.82 3.80

FM X 3.82 3.80
case b) SM 3.85 3.85 3.80

SMT -0.03 z + 3.85 3.82 3.80

FM X 4.47 3.86
case c) SM 4.53 4.53 3.86

SMT -0.06 z + 4.53 4.47 3.80

Table 3: Values (×106 dyne/cm2) of the equivalent Young modulus used in the 1D model
in the numerical simulations.
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Figure 7: Flow rate prescribed at the inlet of the 3D-FSI model.

pressure fields obtained with SM is quite different with respect to that obtained with FM,
here considered as our gold standard. On the contrary, the pressure obtained with SMT
is in better agreement with that obtained with FM.

In Figure 10, we show the mean pressure (on the left) and the flow rate (on the right)
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Figure 8: Case a). Pressure field at the FS interface at time t = 0.06 s (up) and t = 0.12 s
(bottom). From left to right we report the three cases FM, SM and SMT.

computed at section Σc (depicted in Figure 6, middle and bottom, right), for all the
considered cases. These results confirm that the solution obtained with SMT is clearly
more accurate than that obtained with SM. This is also confirmed by the maximum mean
pressure errors reported in Table 4, which show that for case a) and c) the error of SMT
is about three times smaller than that obtained with SM. Figure 10 and Table 4 show
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Figure 9: Case c). Pressure field at the FS interfacee at time t = 0.06 s (up) and t = 0.12 s
(bottom). From left to right we report the three cases FM, SM and SMT.

also the numerical results obtained for case b). In this case, we can conclude that the
error featured by SMT seems to be quite independent of the length of the cut, whilst that
obtained with SM increases for larger cuts.
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SM SMT

case a) 9.3% 2.3%
case b) 14.0% 2.4%
case c) 10.0% 3.0%

Table 4: Percentage mean pressure maximum errors of simplified models with respect to
the full model FM.

6 Conclusions

In this work we dealt with the problem of the physical consistency of the 1D model with
respect to the 3D-FSI one, in view of studying the reliability of the coupling between these
two models as an effective solution to describe large portions of the vascular tree.

Firstly, we found from our theoretical results that a key ingredient in building con-
sistent coupled models is the satisfaction of an energy preserving principle which has to
be satisfied by the interface conditions. For some choices of such conditions we discussed
whenever they satisfy this principle. In particular, we found that conditions involving the
total pressure are unconditionally energy preserving.

Secondly, we proposed an effective way to introduce the effect of the surrounding
tissue in the 1D model, which is mandatory when coupling the 1D with a 3D-FSI model
accounting for the presence of the external tissue. To this aim we introduced an equivalent
Young modulus for the 1D model. The numerical results obtained accounting for the ST
in the 1D model showed a largely reduced presence of unphysical spurious reflections due
to the better matching of the two models.

Finally, we presented several numerical results obtained in real geometries of human
carotids. These highlighted that by using a tapering in the 1D model in order to take
into account the change of vessel diameter, the approximation of the coupled model is
enhanced when comparing with the solution obtained with the full model. Moreover, the
errors in this case seem to be largely independent of the dimension of the cut.

Our preliminary final conclusions drawn by this work are that the 1D model is an
effective reduced model of the 3D-FSI provided that total pressure, ST and tapering are
considered.
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Figure 10: Mean pressure (left) and flow rate (right) computed at section Σc (see Figure
6, middle and bottom, right). From up to bottom, we show case a), case b) and case
c). For each subfigure, we report the solutions obtained with FM (continuous line), SMT
(dash-dot line), and SM (dash line).
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