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Abstract
In the latest years, scholars started focusing on how to develop statistical tool
for the analysis of population of complex data, such as sets of labelled or unla-
belled graphs graphs. The present works adds to this literature by focusing on a
strangely overlooked area, namely the formulation of prediction sets. By exploit-
ing cutting edge techniques in the realm of machine learning, we propose a fore-
casting method for populations of both labelled and unlabelled graphs based on
Conformal Prediction, able to identify prediction regions. Our method is model-
free, achieves finite-sample validity, is computationally efficient and it identifies
interpretable prediction sets, in the shape of a parallelotope. To explore the fea-
tures of this novel forecasting technique, a simulation study and and a real-world
example are presented.
Keywords: Population of Graphs; Conformal Prediction; Non-parametric Infer-
ence; Simultaneous Inference; Network Analysis

1. Introduction
One of the major challenges that the field of statistics is facing in the latest years,
from both a theoretical and applied perspective, is to deal not only with a big
and increasing amount of data, but also with statistical units of big and increas-
ing complexity. As noted in Marron and Alonso (2014), the objects of the analysis
for the modern statistician are no longer scalars or vectors, but new and complex
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data structures or “objects”, and this new field of research takes the name “Object-
Oriented Data Analysis” (OODA). The first tasks that a statistician has to perform
when dealing with this novel kind of statistical unit is to find a proper mathe-
matical embedding and to “port” the standard elements of a statistician’s toolbox
(e.g clustering, principal component analysis, classification, regression). Starting
from the pioneering analysis of functions embedded in an euclidean space (Ram-
say, 1982; Ramsay and Silverman, 2005), statistical research has gradually shifted
its focus towards statistical units of increasing complexity: from functions in non-
euclidean spaces (Menafoglio et al., 2016), to trees (Billera et al., 2001; Wang and
Marron, 2007; ?) and graphs (Jain and Obermayer, 2009; Durante et al., 2017;
Chowdhury and Mémoli, 2018; Calissano et al., 2020a).

Despite the relative wealth of methods present in the OODA literature, predic-
tion and forecasting has been relatively overlooked, despite its importance in ap-
plication tasks. While some attempts at tackling this problem have been proposed
in a functional setting (Degras, 2011; Antoniadis et al., 2016) and for phylogenetic
trees (Willis, 2019), to the best of our knowledge, no uncertainty quantification
techniques has been proposed for more general graph data.

In this paper we are focusing on the analysis of populations of graphs (also
referred as networks), namely a set of different graphs generated by the same data
generating process. Hereby we focus on two classical scenarios of populations
of graphs: populations of graphs either with the same nodes (labelled) or with
different nodes (unlabelled). While the labelled graphs can be embedded in an
euclidean space (labelled graphs are usually modelled as sets of adjacency ma-
trices), unlabelled graphs require more complex geometrical embeddings such as
Jain and Obermayer (2008); Chowdhury and Mémoli (2018). Notice that there
can be many different scenarios between the pure labelled and the pure unla-
belled, because many different matching between the nodes are possible. In this
work we will focus on the Graph Space embedding proposed by Jain and Ober-
mayer (2009), able to embrace both the pure labelled and the pure unlabelled
graphs. Within this framework, some statistical models have been proposed such
as Fréchet Means (Jain and Obermayer, 2008), Principal Components (Calissano
et al., 2020a) and Linear Regression (?).

The aim of the present work is so to develop a set forecasting framework for
populations of graphs. Due to the natural complexity of a population of graphs,
we adopt a Conformal Prediction (Vovk et al., 2005; Zeni et al., 2020) framework.
Apart from the evident theoretical interest, forecasting a new instance of a pop-
ulation of graphs has also a clear and meaningful application in different fields,
such as in the analysis of international trade networks (Amador and Cabral, 2017),
Input-Output networks (Cerina et al., 2015) and epidemic models where the sub-
jects are connected using a network topology (Ball et al., 2019).

In Section 2, we will introduce population of labelled graphs. Section 3 is then
devoted to the definition of the concept and desirable shape of a Conformal Pre-
diction set in the population of labelled graphs case. To tackle an issue of having
sets of constant amplitude for all the edges and nodes, in Section 3.2 we modify the
procedure via the use of a modulation function, which lets to adjust the amplitude
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of the identified set in a data-driven fashion. Section 4 generalizes the presented
framework to the much more challenging case of population of unlabelled graphs.
We then present a simulation study, in which we explore the performance of our
method (Section 5.1), by analysing labelled and unlabelled graphs and comparing
different parametric and non-parametric prediction intervals and. An application
to a real world scenario is provided in Section 5.4, where we apply the developed
tools to a dataset describing human mobility during COVID-19 in Lombardy.

2. Mathematical Structure of Populations of Graphs
Let X = (V ,E,a) be a graph (or a network) with vertex set V = {v1, . . . , vn}. The
edge set is E ∈ V × V , and its size is n2 = p. a : E → A represents the attribute
map. All the following theoretical framework is presented for graphs with scalar
euclidean attributes on nodes and edges (A = R). Some notions about the possible
generalizations of this assumption are presented in Section 6. Notice that the node
attributes are described as self-loops. I this framework, graphs are represented as
flattened adjacency matrices x ∈ X, X = R

p, where p = n2. Given a set of graphs
x1, . . . ,xk ,xi ∈ X, the distance between two flattened adjacency matrices is defined
as the sum of the distances between the attributes on nodes and edges:

dX(x1,x2) =
p∑
j=1

d(x1(j),x2(j)) (1)

where d : A×A→ R is the chosen distance between the attributes, and x(j) is the
j−th element of the vectorized graph x ∈ X. In our framework, d will be a squared
euclidean distance.

If the nodes have a certain unique and non interchangeable meaning across the
graphs, the graphs are said to be labelled. If, instead, the nodes are interchangeable
and their meaning is not unique but it is related to the role they assume within
the graph topology, we have unlabelled graphs. An example of labelled graphs is a
set of graphs measuring the social interaction between the same individuals along
time. An example of unlabelled graphs is a set of social interaction between stu-
dents of the same age in different classes (i.e. one graph for each class). The reader
should note how a graph being labelled or unlabelled is a problem driven deci-
sion and depends on the aims and scope of the analysis. For example, the graph
of social interaction between the same people along time can be interpreted as
unlabelled if the researcher is interested in finding interchangeable role between
individuals along time, and as labelled if the same friends are present in all the
social networks.

3. Prediction Parallelotopes for Labelled Graphs
Consider an i.i.d. population of graphs X1, . . . ,Xk ,xi ∈ X, sampled from a distri-
bution P. The problem we want to tackle is define an interval for an estimator.
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Formally, we define a prediction set Ck,1−α := Ck,1−α(X1, . . . ,Xk) as

P

(
Xk+1 ∈ Ck,1−α

)
≥ 1−α (2)

where α ∈ [0,1]. The measure on X is the Lebesgue measure defined on the Borel
σ−algebra. Let X(j), j = 1, . . . ,p be a generic element of the flattened adjacency
matrix X, where p = n2 since the attributes are scalars, and we are working with
weighted adjacency matrices. As we said previously, X(j) ∈ R. With respect to a
univariate setting, the case of formulating prediction sets for complex data poses
a serious question in terms of interpretability and practical usefulness of the ob-
tained intervals. It is intuitive to understand that the best case in terms of inter-
pretability for a prediction set is a region in space that allows a component-wise
identification of an element that is inside or outside the prediction region. In more
mathematical terms, we are interested in a set defined as:

C := {X ∈ X : X(j) ∈ C(j), ∀ j ∈ 1, . . . ,p} , (3)

where C(j) ⊆ R. The sets described in Equation 3 are the Cartesian product of p
intervals of the real line. A set like this forms a parallelotope in R

p

The prediction set in the shape of a parallelotope allows a practitioner to
project the multivariate prediction region which is valid at a level α, in inter-
vals for each element of X without changing the coverage level. Our applied goal
is thus to identify parallelotope-shaped sets with a given unconditional coverage
level, namely: P

(
Xk+1 ∈ Ck,1−α

)
≥ 1−α.

3.1 Conformal Prediction Parallelotopes for Graphs

A method which has the explicit aim to identify prediction sets of the type de-
scribed in Equation 3 is the Conformal Prediction Method (Vovk et al., 2005; Zeni
et al., 2020). The key quantity around which a Conformal Prediction framework
revolves is a so called conformity (or non-conformity) measure, on which a very
weak “quasi-model” (in the sense of Cella and Martin, 2020) is imposed, and it al-
lows to obtain prediction sets. By aptly choosing a non-conformity measure with
the desired iso-contours, one is able to obtain prediction sets with the minimal
size and/or with the desired shape.

Let us put ourselves in a Split/Inductive Conformal Framework (see Papadopou-
los et al. (2002); Lei and Wasserman (2014) for an introduction). We start by
splitting our X1, . . . ,Xk in a proper training set I1 and a calibration set I2, where
|I1|+ |I2| = k, indexing the sets as: l ∈ I1 and m ∈ I2.
∀Xm, m ∈ I2, one can compute an empirical P-value:

pXm :=
|{i ∈ I2 : Ri ≥ Rm}|

|I2|+ 1

where R : Xk → R is a non-conformity measure as defined in Vovk et al. (2005).
The conformal prediction set defined using the above definition of P-value is:

Ck,1−α := {X ∈ X : pX > α} (4)
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where α is the desired coverage level. To identify a prediction set that is also a
set in the sense of Equation 3, we can use the Linf metric. Namely, we define our
non-conformity measure (NCM) R : Xk→R to be

Rm = max
j∈1,...,p

∣∣∣Xm(j)− µ̂(j)
∣∣∣ , m ∈ I2 (5)

where µ̂ =A ({Xl , l ∈ I1}) is an estimator of central tendency based on a algorithm
A, trained on Xl , l ∈ I1. We can also note that, having defined a prediction set as
in Equation 10, and the NCM as in Equation 5, one can say that Xk+1 ∈ Ck,1−α ⇐⇒
Rk+1 ≤ h, with h the d(|I2| + 1)(1 − α)e-th smallest value in the set {Rm : m ∈ I2}.
Then

max
j∈1,...,p

∣∣∣Xk+1(j)− µ̂(j)
∣∣∣ ≤ h

⇒
∣∣∣Xk+1(j)− µ̂(j)

∣∣∣ ≤ h ∀ (j)

⇒Xk+1(j) ∈ [µ̂(j)− h, µ̂(j) + h] ∀j = 1, . . . ,p

Therefore, the split conformal prediction set induced by the nonconformity mea-
sure (5) is

Ck,1−α :=
{
X ∈ X : X(j) ∈ [µ̂(j)− h, µ̂(j) + h] ∀j = 1, . . . ,p

}
. (6)

Algorithm 1 Split Conformal Prediction Parallelotopes for Populations of Graphs

1: Require: Data Xi , i = 1, . . . , k,, type-1 error level α ∈ (0,1), central tendency
estimation algorithm A

2: split randomly {1, . . . , k} into two subsets I1,I2
3: µ̂ =A ({Xl , l ∈ I1})
4: Rm = maxj=1,...,p (Xm(j)− µ̂(j)) , m ∈ I2
5: h is the d(|I2|+ 1)(1−α)e-th smallest value in the set {Rm :m ∈ I2}
6: Ensure: Ck,1−α :=

{
X ∈ X : X(j) ∈ [µ̂(j)− h, µ̂(j) + h] ∀j

}
The described procedure is summarised in Algorithm 1. The calculation of

these sets is very convenient: we require to train the central tendency estimation
algorithm A only once, and we have a closed form for the calculation of the semi-
amplitude of the set.

3.2 Amplitude Modulation

The main shortcoming of the approach proposed in Section 3.1 is that the identi-
fied parallelotope has constant amplitude across all j = 1, . . . ,p. While there may
be situations in which such feature is desirable, practitioners usually face cases in
which edge attributes have different variability, and may want to take into account
such variability when making a global prediction (for instance, with wider or nar-
rower sets). The limit situation in this case would be the one where a vertex is
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completely absent from the population of graph analysed, meaning that X(j) = 0
for the position j assigned to the null node. Any amplitude different from 0 for the
interval in B(j) is not desirable, since we do not want to “add” a node that never
appears in the observed data.

To do so, following Lei et al. (2018), we condition the amplitude of Equation 6
across j ∈ 1, . . . ,p using a local notion of variability. Namely, we modify Equation
5 in the following fashion:

Rm = max
j∈1,...,p


∣∣∣Xm(j)− µ̂(j)

∣∣∣
ŝ(j)

 (7)

Where ŝ = S ({Xl , l ∈ I1}) is an estimator of local variability, trained on the set
{Xl , l ∈ I1} using the symmetric algorithm S . Please note that the modulation func-
tion is computed on the training set only.

We summarise the Split Conformal Procedure with Modulation in Algorithm
2

Algorithm 2 Split Conformal Prediction Parallelotopes for Populations of Graphs
with Amplitude Modulation

1: Require: DataXi , i = 1, . . . , k,, type-1 error level α ∈ (0,1), regression algorithm
A, amplitude modulation algorithm S

2: split randomly {1, . . . , k} into two subsets I1,I2
3: µ̂ =A ({Xl , l ∈ I1}), ŝ = S ({Xl , l ∈ I1})
4: Rm = maxj

(
|Xm(j)−µ̂(j)|

ŝ(j)

)
, m ∈ I2

5: h = is the d(|I2|+ 1)(1−α)e-th smallest value in the set {Rm :m ∈ I2}
6: Ensure: Ck,1−α :=

{
X ∈ X : X(j) ∈ [µ̂(j)− hŝ(j), µ̂(j) + hŝ(j)] ∀j = 1, . . . ,p

}
According to the choice of the algorithm to compute S , the modulating be-

haviour dramatically changes. We mention two notable cases: (i) When ŝ(j) = 1∀j
and no modulation is taking place, Algorithm 2 will yield results equal to Algo-
rithm 1; (ii) If ŝ(j) =

√
V ar(X(j)) the resulting set amplitude will be modulated

according to the local variability of the attributes of the graph.

Remark 1 Consider the case when ŝ(j) =
√
V ar(X(j)), if an attribute of an element of the graph

is deterministic, the attentive reader can immediately understand that both the numerator and
the denominator of the non-conformity function will be equal to zero. This yields to an inde-
terminate form. To solve this computational problem, we will use, as a modulation function
ŝ(j) =

√
V ar(X(j))+ε, where ε is a very small constant. This yields to a prediction interval for a

deterministic values centered in the actual value of the constant, and of negligible length, while
allowing the computation of the global set to be performed.

4. Prediction Class of Parallelotopes for Unlabelled Graphs
In this section, we are going to extend the concept introduced in the previous sec-
tion to the more general, unlabelled, framework. As already stated in Section 1, a
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set of graphs can share the same nodes, share only a subset of nodes, or not share
any nodes. If the nodes are not the same, graphs are considered as unlabelled and
they should be compared using some kind of isomorphism, allowing a meaning-
ful topological comparison. In this paper, the specific isomorphism is obtained by
applying a permutation action. This framework has been introduced in a general
form by Jain and Obermayer (2009) and studied in the particular case of graphs
by Guo et al. (2019); Calissano et al. (2020a). Note that the choice of permuta-
tion actions to compare unlabelled graphs is not necessarily the only possible one.
There are in fact other group action used to compare graph structures such as the
one introduced by Chowdhury and Mémoli (2017).

Applying the nodes permutation group action T to the space of flattened adja-
cency matrices X gives rise to a quotient space X/T , called Graph Space (Jain and
Obermayer, 2009; Calissano et al., 2020a), where every equivalence class corre-
sponds to all the graphs you can obtain from one adjacency matrix by permuting
the nodes. This geometrical framework has the labelled setting as the special case
that arises when the only allowed permutation is the identity.

From the definition of the distance in the X space, we can define the following
distance in X/T :

dX/T (X1,X2) = min
t∈T

dX(tX1,X2) (8)

Where t ∈ T is a permutation matrix of {0,1} values applied to the flatted adja-
cency matrix. Given a t ∈ T , we can associate a unique function σt : V → V that
assign the corresponding permuted index to the original one. All the geometrical
properties of X/T are thoroughly described in Calissano et al. (2020a). We remind
the reader that the Graph Space is a geodesic metric measure space, but it is not
a manifold. Here we report only the needed definitions for the purpose of this
article. In particular, it is useful to define the projection function π : X → X/T
that associates every element to its equivalent class x 7→ [x] = {tx,∀t ∈ T }. We also
remind the reader the push-forward measure on X/T given a measure on X:

Definition 2 The Graph Space X/T is endowed with a probability measure η which is abso-
lutely continuous with respect to the push-forward of the Lebesgue measure m on X. In partic-
ular, for A ⊂ X/T , we have η(A) = 0 if m(π−1(A)) = 0.

Definition 3 A set C ∈ X as defined in Equation 3 can be projected on the Graph Space as:

[C] =
|T |⋃
t=1

p�
j=1

C(σt(j)), [C] ⊆ X/T

where σt : {1, . . . ,p} → {1, . . . ,p} is the relabelling function associated to the permutation t ∈ T

The idea is to define a set of intervals that follow the index permutation of the
elements in the Graph Space. For the sake of simplicity we define:

Ct =
p�
j=1

C(σt(j))
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where C(σt(j)) ⊆R, Ct ⊆R
p.

The probability of this interval in the Graph Space can be computed using the
projection on the total space X:

Pη

 |T |⋃
t=1

Ct
 =

|T |∑
t=1

(−1)t−1
∑

I⊆{1,...,|T |}
|I |=t

P(AI )


where AI :=

⋂
t∈I Ct

x(1)=x(2)=x(3)

x(1)=x(2)

x(2)=x(3)

x(1)=x(3)

X(1)

X(2)

X(3)

Figure 1: Conceptual visualization of the shape of an interval in the Graph Space
and its back-projection π−1 in the total space for an un-directed graph with three
nodes and no attributes on the nodes.

Example 1 Consider an undirected graph with three nodes n = 3, real attributes on edges and
no attributes on nodes. This graph can be described as a point in R3. The number of permutation
is 3! = 6. The interval C is the Cartesian product of three intervals on the real line C = C(1) ×
C(2)×C(3). If we permute this shape with the following permutation t = {2,1,3}, we obtain a new
set Ct = C(σt(1) = 2)× C(σt(2) = 1)× C(σt(3) = 3). The union of all their possible permutations
is [C], shown in Figure 1

As in the labelled case, we can define the interval with a given coverage level:

Pη
(
[X]k+1 ∈ [C]k,1−α

)
≥ 1−α (9)

We start by splitting our set of unlabelled graphs {[X1], . . . , [Xk]} in a training set
I1 and a calibration set I2, where |I1|+ |I2| = k.
∀[Xm],m ∈ I2, one can compute an empirical P-value define exactly as in the

labelled case:

p[Xm] :=
|{i ∈ I2 : Ri ≥ Rm}|

|I2|+ 1

where R is a non-conformity measure as defined by Vovk et al. (2005). The confor-
mal prediction set defined using the above definition of P-value can be identified
as

[C]k,1−α :=
{
[X] ∈ X/T : p[X] > α

}
(10)
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We define our non-conformity measure Rm to be

Rm = max
j=1,...,p

|tmXm(j)−A(j)| (11)

where:
tm = argmin

t∈T
(dX(tXm,A) (12)

whereA is a symmetric function of the data. This non-conformity measure selects
the permutation that optimally aligns the two graphs and consequently selects the
edge or node that are mostly far apart from each other.

In the case of amplitude modulation, the Equation 11 becomes:

Rm = max
j=1,...,p

|tmXm(j)−A(j)|
ŝ(j)

(13)

Where ŝ is an estimator of the variability of the edge or node j after the alignment
with respect to the central estimator A. The whole procedure is summarised in
Algorithm 3.

Algorithm 3 Split Conformal Prediction Parallelotopes for Populations of Unla-
belled Graphs with Amplitude Modulation

1: Require: Data [Xi], i = 1, . . . , k,, type-1 error level α ∈ (0,1), Predictive algo-
rithm A, amplitude modulation algorithm s

2: split randomly {1, . . . , k} into two subsets I1,I2
3: µ̂ =A ({[Xl], l ∈ I1}), ŝ = S ({[Xl], l ∈ I1})
4: Find {t1, . . . , t|I2|} s.t. tm = argmint∈T (dX(tmXm, µ̂))

5: Rm = maxj=1,...,p

( |(tmXm)(j)−µ̂(j)|
ŝ(j)

)
= maxj=1,...,p

(
|Xm(σtm (j))−µ̂(j)|

ŝ(j)

)
, m ∈ I2

6: h is equal to d(|I2|+ 1)(1−α)e-th smallest value in the set {Rm :m ∈ I2}
7: Ensure: Ck,1−α :=

{
[X] ∈ X/T : (tX)(j) ∈ [µ̂(j)− hŝ(j), µ̂(j) + hŝ(j)] ∀j = 1, . . . ,p, ∀t ∈ T

}
Remark 4 The reader should note how it is not required to specify anything about A. This
generality, which is one of the main interesting features of the conformal prediction framework,
allows for the use of any predictive algorithm, either statistical inspired, machine-learning in-
spired, or a combination of the two. However, due to the geometrical complexity of the Graph
Space, extending regression strategies as well as neural network strategy to this framework is not
straightforward. In this paper, we are going to use the Fréchet Mean as the A (see (Calissano
et al., 2020a) for definitions and details).

5. Simulation and Case Study
In this section, we illustrate the theoretical results described in the previous sec-
tion on two simulated dataset and one case studies. In all these examples, the
A function is going to be a Frèchet Mean estimator. In the unlabelled case, the
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Frèchet mean corresponds to the Sample Mean, while in the unlabelled case, the
Fréchet Mean is computed with the Align All and Compute Procedure (Calissano
et al., 2020a). The Conformal Prediction Parallelotopes is implemented as a func-
tion in the Python Package Graph Space (Calissano et al., 2020b).

5.1 Simulation

5.2 Simulation: Labelled Case

In this simulation, we compute the Empirical Coverage of different parametric
intervals and the conformal prediction intervals. We generated a set of graphs
130 graphs (|I1|+ |I2| = 30 is the training set - eventually divided in training and
calibration for the split conformal method- and 100 is the test set) for 100 times.
Every directed graph has 5 nodes with Gaussian attributes N (0,1) and 20 edges
following four different distributions:

1. Gaussian attributes N (0,1),

2. Uniform attributes U (−1.7,1.7),

3. t-Student attributes with 4 degrees of freedom,

4. t-Student attributes with 1 degree of freedom,

Having two different distributions on nodes and edges attributes is very common
in the applications, because nodes and edges usually describe two different phe-
nomena. For every generated model, we compute the sample mean and three
different prediction intervals, in a labelled fashion:

1. Univariate Gaussian Intervals:

x̂i ± tk−1(α/2)

√
1 +

1
k
ŝi

2. Univariate Gaussian Intervals with Bonferroni Correction:

x̂i ± tk−1((α/p)/2)

√
1 +

1
k
ŝi

3. Simultaneous Gaussian Intervals:

x̄i ± ŝi

√(
1 +

1
k

) (k − 1)p
(k − p)

F(p,k−p)(α)

4. Gaussian Ellipse

(x − x̄)′Ŝ−1(x − x̄) ≤
(
1 +

1
k

) (k − 1)p
(k − p)

F(p,k−p)(α)
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where tk−1(α/2) and F(p,k−p)(α) denotes the upper quantile. Ŝ denotes the sample
covariance matrix and ŝi the estimated sample variance; x̂ = [x̂1, . . . , x̂p] the sample
vector mean.

Given a set of 100 different different α, we compute the empirical coverage on
the test set, defined as:

Ê(1−α) =
1

100

K∑
k=1

100∑
i=0

1xi∈ICk(α)

100
(14)

In the Figures 2, we show the calibration curves α for the the different gener-
ative models and the different intervals. As expected, and coherently with the
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Figure 2: Empirical Coverage as a function of theoretical α

theory, Univariate gaussian intervals are wildly under-covering in a global sense,
given the absence of any multiplicity correction. Bonferroni-corrected intervals
are quite conservative in the gaussian case, and very conservative in leptocurtic
cases such as the uniform one. With respect to the two platicurtic cases (t-student
with 1 degree of freedom and t-student with 4 degrees of freedom), we observe a
generic conservativeness for low levels of nominal coverage, generated by the Bon-
ferroni correction: this effects tends to disappear for higher coverage levels. We
see that Bonferroni-corrected intervals are under-covering for nominal levels that
are commonly used in the practice. The projection over the components of multi-
variate gaussian intervals generates, similarly to our method, prediction sets with
the shape of a parallelotope: It appears evident how they are grossly conservative.
Multivariate gaussian prediction ellipses are exact in the gaussian case, and pro-
vide a conservative approximation in the uniform case, while they fail to cover for
platicurtic distributions. In any case a high-dimensional prediction ellipse such
as this one is of very relative practical value. The only method that is able to pro-
vide properly calibrated regardless of the distribution and interpretable (thanks
to their parallelotopic shape) prediction intervals is the proposed conformal one.
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5.3 Simulation: Unlabelled Case

In this example, we simulated 500 pentagons from the equivance classes shown
in Figure 5b. We first randomly select one of the equivalent class and then we
randomly pick one element from the class (i.e. a random permutation of the
graphs shown in the figure). These pentagons have constant attribute on nodes
(10) and decreasing attributes on edges (100,80,60,40,20). The interesting part of
this example reside on the simplicity of the graph topology and the possibility of
visualizing and understanding the correct alignment as shown in Figure 5b.

Figure 3: Example of Unlabelled Dataset
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Figure 4: Labelled Setting: Conformal Prediction interval of level 95%.
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Figure 5: UnLabelled Setting Conformal Prediction interval of level 95%.

In Figures 4 and 5, we show the Fréchet Mean and the corresponding 95% in-
tervals for both the labelled (no alignment procedure is applied to the data) and
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the unlabelled setting. The exact values of the intervals are visualized on top of
each edge. The example shows the capability of the conformal prediction inter-
vals of capturing the topology and the attribute, when working in an unlabelled
setting.

5.4 Application

In this section, we apply the described methodology to case study concerning the
mobility during the first phases of the COVID-19 epidemic in the Italian region of
Lombardy. Covid-19 hit with particular violence the northern part of Italy. The
Italian government decided for a complete lockdown from the 21st of March 2020.
The so-called phase II started the 4th of May 2020, with a slow reopening of com-
mercial activities. The data are provided by a location marketing company Cuebiq
and consists of GPS location data gathered via smartphone of anonymous users in
the Lombardy Region from the 17th of February to the 17th of May 2020. Among
the anonymous users we randomly sampled 50000. This anonymised data is col-
lected from users who opt-in to share their data for research purposes, through
a GDPR-compliant framework. Cuebiq then applies additional privacy preserva-
tion techniques to remove sensitive locations from the dataset, and to obfuscate
personal areas such as home locations by “up-leveling” them to 600m x 600m
geo-hash tiles. Data have been aggregated in Origin-Destination Matrices (ODM).
ODMs - a standard data type commonly used in transport and mobility modelling
- are graphs where nodes are geographical locations and edges are the flows of peo-
ple between locations. In this case study, we focus on the peoples’ trips arriving
before 7 p.m. of the working days of the given period. The result is a datset of 65
labelled graphs with 11 nodes each. In Figure 6, the map of the 11 provinces of
Lombardy and an example of a ODM is reported.

The conformal prediction intervals for the Fréchet Mean are computed at three
different levels of α = 0.25,0.5,0.75, to shows how this conformal prediction strat-
egy can be used to understand the distribution of a complex phenomena. In Figure
7, we report the intervals of the incoming and outgoing edges from the province of
Bergamo (cut for negative values and standardized due to privacy reasons). Berg-
amo was the province most hit by the COVID-19 epidemic in Lombardy and it is
an important regional and national economic hub, being at the centre of a very in-
dustrialized area. As it is clear from the prediction interval, the COVID lockdown
decreased the mobility to and from Bergamo province and the mobility activities
have not recovered in the Phase II. From a modelling perspective, the plots shows
how the intervals sizes increase for higher values of 1−α. Notice that the predic-
tion intervals are in dimension 144 and in the Figure 7 we are only showing the
components along 11 axes, even if the coverage is in the higher dimension.

6. Discussion and Conclusions
The issue of predicting with uncertainty the complex statistical units analysed in
Object Oriented Data Analysis is a key research topic in modern statistics, from
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Figure 6: A map of the Lombardy Region with the 11 provinces (M-B stands for
Monza-Brianza) and an example of data point randomly sampled from the Origin-
Destination Population of graphs.

Figure 7: Intervals with α = 0.25, 0.5, 0.75 for the outgoing and incoming edges of
the province of Bergamo. Data has been standardized and negative values are set
to zero.

both a theoretical and applied perspective. Only a few works have been proposed
on the topic, which focus on set forecasting techniques based on either distribu-
tional assumptions that are hard to justify, or on heavy computational methods.
Moreover, they concentrate on producing forecasts for well-behaved objects, for
which an embedding in a euclidean or mildly non-euclidean space is possible.

In this work, we address this series of problems by proposing a model-free,
computationally efficient set forecasting method, based on Conformal Prediction,
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for two types of statistical objects of increasing complexity: population of labelled
and unlabelled graphs with scalar attributes on nodes and edges. It should be
noted that the current framework can be extended to population of graphs with
more complex euclidean (and potentially even non euclidean) attributes.

An extensions of the current work regards the embedding strategy, and in par-
ticular the codification of absent nodes and edges as zeros. This choice is very
convenient because it allows an euclidean representation of the same dimension
for the adjacency matrices but it treats equally absent elements with existing el-
ements with zero attributes. The problem is not relevant in the context where a
zero attributes correspond to a non-existing element (e.g. context were the weight
represent the intensity of the relation). Otherwise, conformal prediction can be
extended to other embedding context such as the one proposed in Chowdhury
and Mémoli (2018).

The current work poses the basis of the conformal prediction for population
of graphs. As soon as novel statistical prediction methods will be defined to the
context of population of graphs, the current framework can be easily extended.
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Appendix 1
Conformal prediction intervals for different number of observations: |I1| + |I2| =
30,130,230 and calibration always to show the discrete possible level of α. From
the plots it is clear how the line tents to the theoretical line
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