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Abstract

We present algebraic multigrid (AMG) methods for the efficient so-
lution of the linear system of equations stemming from high-order dis-
continuous Galerkin discretizations of second-order elliptic problems.
For discontinuous Galerkin methods standard multigrid approaches
cannot be employed because of redundancy of the degrees of freedom
associated to the same grid point. We present new aggregation pro-
cedures and test them on extensive two-dimensional numerical experi-
ments that demonstrate that the proposed AMG method is uniformly
convergent with respect to all the discretization parameters, namely
the mesh-size and the polynomial approximation degree.

1 Introduction

High-order discontinuous Galerkin (DG) methods are widely employed for
the numerical solution of partial differential equations because of their flexi-
bility in dealing with non-conforming grids and elementwise varying approx-
imation orders, see, e.g. [21, 27,41] for an overview on DG methods.

∗Paola F. Antonietti and Laura Melas have been partially supported by SIR (Scientific
Independence of young Researchers) starting grant n. RBSI14VT0S PolyPDEs: Non-
conforming polyhedral finite element methods for the approximation of partial differential
equations funded by the Italian Ministry of Education, Universities and Research (MIUR).
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In this work we focus on multigrid methods and present a new algebraic
multigrid iterative scheme for the efficient solution of the linear system of
equations stemming from high-order discontinuous Galerkin finite element
approximations of second order elliptic differential equations. Since the pi-
oneer work of Gopalakrishnan and Kanschat [24], multigrid methods for
discontinuous Galerkin finite element discretizations of partial differential
equations have been intensively studied.
The first developments of geometric multigrid methods for low-order, i.e. lin-
ear, discontinuous Galerkin methods can be found in [8, 9, 13–16,22,24, 47].
Multigrid techniques coupling geometric and p-multigrid approaches have
also been studied, cf. [25, 26, 32]. Recently, new hp-multigrid schemes for
high-order discontinuous Galerkin discretizations have been proposed and
analyzed, cf. [3–5]. Algebraic multigrid techniques for matrices stemming
from low-order discontinuous Galerkin finite element discretizations of el-
liptic equations can be found in [10, 40, 43]. The first scalable algebraic
multigrid method for high-order discontinuous Galerkin discretizations of
the Poisson operator is developed by Olson and Schroder [35]. It assumes
the access to mesh points in order to perform the first step of coarsening,
therefore employing a geometric information. To the best of our knowledge,
purely algebraic multigrid methods for high-order discontinuous Galerkin
discretizations have not been addressed so far. Indeed the work by Prill et.
al. [40] requires the knowledge of the grid in order to build all the aggregates,
Olson and Schroder [35] assume the access to the mesh information for the
first coarsening step and the method of Bastian et al. [10] requires that the
natural embedding operator is provided. More precisely, the AMG method
proposed by Olson and Schroder [35] is a quasi-purely algebraic multigrid
because it employs the geometric assumptions only for the first aggregation
step.
In this paper we present a new algebraic multigrid method for the effi-
cient solution of the linear systems of equations stemming from high-order
discontinuous Galerkin approximations of second-order elliptic problems.
We modify the first step of coarsening of the AMG method of Olson and
Schroder [35] within an algebraic framework proposing a block-aggregation
scheme applied to the finest level. For the coarse levels we employ the clas-
sical aggregation of Vaněk et al. [48] following the guideline given in [35].
With these steps our algorithm is fully algebraic because it employs only the
entries of the matrix. We demonstrate that for the proposed AMG iterative
scheme convergence is achieved independently of both the discretization pa-
rameters, namely the mesh-size and the polynomial approximation degree,
making the method well suited for both low- and high-order DG approxi-
mations.
The remaining part of the paper is organized as follows. In Section 2 we
introduce the model problem and its discontinuous Galerkin discretization.
In Section 3 we propose our algebraic multigrid method based on smoothed
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aggregation and extend it to high-order discontinuous discretizations. In
Section 4 we present extensive numerical experiments to investigate the ef-
ficiency and robustness of our method. In Section 5 we give a summary of
the achieved results and we draw some conclusions.

2 Model Problem and its DG Discretization

In this section we present the model problem and its discontinuous Galerkin
discretization. Throughout the paper we use the standard notation for
Sobolev spaces, cf. [1]. Let Ω ⊂ R2 be a bounded polygonal domain and
let n be the unit outward normal vector to the boundary ∂Ω. For a given
function f ∈ L2(Ω) and a given g ∈ H

1
2 (∂Ω), we consider the weak formu-

lation of the Poisson problem subject to essential boundary conditions: find
u ∈ V = {v ∈ H1(Ω): u = g on ∂Ω} such that∫

Ω
∇u · ∇v dΩ =

∫
Ω
fv dΩ ∀v ∈ H1

0 (Ω). (1)

Now we describe the numerical solution of (1) based on employing the dis-
continuous finite element method. We begin by constructing a mesh Th of
the domain Ω ⊂ R2 made of non-overlapping shape-regular triangles of di-
ameter hT , and set h = maxT hT . We denote by e the edges of elements of
Th. Let EI be the set of interior edges of the mesh Th, EB the set of bound-
ary edges and E=EI ∪ EB the set of all edges. Let e ∈ EI shared by two
neighbouring elements T±, for (regular enough) scalar and vector-valued
functions v and τ , respectively, we define the jumps and averages as

{{v}} =
1

2
(v+ + v−) JvK = v+n+ + v−n−

{{τ}} =
1

2
(τ+ + τ−) Jτ K = τ+ · n+ + τ− · n−

where n± is the unit normal vector to e pointing outward to T±, and v±

and τ± are the traces of the functions v and τ on T±, cf. [7]. If e ∈ EB
belongs to the boundary ∂Ω we extend these definition as follows {{v}} = v,
JvK = vn, {{τ}} = τ and Jτ K = τ · n, cf. [7]. Let Vhp be a family of finite
dimensional spaces defined as

Vhp = {v ∈ L2(Ω) : v|T ∈ Pp(T ) ∀T ∈ Th},

where Pp(T ) is the space of polynomials of degree lower than or equal to
p ≥ 1. The space Vhp is equipped with the norm

‖v‖2DG =
∑
T∈Th

‖∇v‖2L2(T ) +
∑
e∈E
‖√γeJvK‖2L2(e),
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where, for a given penalty parameter σe > 0, γe is defined edgewise as
γe = σep2/|e|, |e| being the length of the edge e.
Next we define the bilinear form A : Vhp × Vhp → R as

A(u, v) =
∑
T∈Th

∫
T
∇u · ∇v dΩ−

∑
e∈E

∫
e
{{∇u}} · JvK dγ

−
∑
e∈E

∫
e
{{∇v}} · JuK dγ +

∑
e∈E

γe

∫
e
JuK · JvK dγ,

and the functional F : Vhp → R as

F (v) =

∫
Ω
fv dΩ−

∑
e∈EB

∫
e
∇v · ne g dγ +

∑
e∈EB

γe

∫
e
vg dγ,

The discontinuous Galerkin discrete problem reads: find uh ∈ Vhp such that

A(uh, vh) = F (vh) ∀vh ∈ Vhp, (2)

which is known as symmetric interior penalty (SIP) method [6, 50]. The
following result ensures the well-posedness of (2), cf. [6, 7, 50], see, e.g.,
[23, 28,39,44] for hp−version error estimates.

Proposition 2.1. If σe > σmin, the solution of (2) exists and is unique.

Let {φj}Nh
j=1 be a basis for the finite element space Vhp, i.e. Vhp = span{φj}Nh

j=1,
then (2) is equivalent to the following linear system of equations

Au = f , (3)

where u = [u1, . . . , uNh
]T ∈ RNh is the vector containing the unknown coef-

ficients of the expansion of the discrete solution uh in the chosen basis. The
stiffness matrix A in (3) is symmetric and positive definite, provided that
σe is large enough.
Next we describe the choice of the shape functions employed to span the
discontinuous finite element space. We assume that vh ∈ Vhp is characterized
by the values it takes at the points Pi = (xi, yi), with i = 1, . . . , Nh, and
consequently the shape functions associated to the finite element space Vhp
are defined as the Lagrangian functions associated to the nodes with support
on a single element.
To define the interpolation points, we consider the reference element T̂ =
{(x, y) : x, y ≥ 0, x + y ≤ 1} and define therein the Fekete points [18, 45].
Then for any T ∈ Th those points are mapped, through a linear, invertible
map FT : T̂ → T , T ∈ Th. In Figure 1 we show the Fekete points on the
reference triangle for p = 1, 2, 4, 7.
Remark 1. (Condition number of A). It is of our interest considering the
condition number K2(A) of the system matrix A which results from the
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Figure 1: Fekete points on the reference triangle for different choices of p
(a) p = 1, (b) p = 2, (c) p = 4, (d) p = 7.

DG approximation of problem (2). We point out that, with this choice of
interpolation points, the condition number K2(A) of A, defined as the ratio
of the extreme eigenvalues of A, seems to behave as K2(A) = O(p3/h2), as
shown in Figure 2.
These results seem to indicate that, at least on triangular meshes in two-
dimensions, a set of Lagrangian basis functions lead to an improvement
of the condition number as a function of p. Indeed, in [2] it is proved
that, whenever a modal basis based on Legendre polynomials is employed,
the condition number of the resulting stiffness matrix behaves as K2(A) =
O(p4/h2).
We point out that, in the conforming setting, i.e. continuous spectral ele-
ment methods, Pasquetti and Rapetti [37, 38] observed that the condition
number is of order p4/h2, whenever Fekete points are employed, whereas
Toselli and Widlund [46] and Bernardi and Maday [11] proved a behaviour
of order p3/h2 if the interpolation points are obtained based on mapping,
through the Dubiner map, the classical Gauss-Legendre points defined on
the reference square onto the reference triangle.
The issue of proving sharp bounds on the condition number of A, when-
ever DG methods are employed and the discrete space is spanned based
on employing Lagrangian functions associated to Fekete points, is under
investigation and will be the subject of further research.

3 Smoothed-Block Aggregation AMG

In this section, we introduce the main ingredients for the AMG algorithm.
We assume to have a sequence of successively coarser matrices Ak ∈ RNk×Nk ,
k = 1, . . . K, with the convention that A1 = A, Nk > Nk+1, and

Ak+1 = Ik+1
k AkI

k
k+1 k = 1, . . . ,K − 1.

Here, Ik+1
k : RNk → RNk+1 is a linear operator to be properly defined and

Ikk+1 = (Ik+1
k )T , see [20,31,52], for example.
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Figure 2: Condition number K2(A) as function of p (left) and h (right),
unstructured triangular meshes, σe = 10 ∀e ∈ E .

By considering a suitable smoother (e.g. dumped Jacobi, symmetrized
Gauss-Seidel,...), one iteration of the algebraic µ-cycle scheme, µ = 1, 2,
is shown in Algorithm 3.1, cf. also [19, 52]. More precisely given ul

k,
ul+1
k =AMG-µCycle(. . . ,ul

k, . . .) returns the (l + 1)−th iteration to solve
Akuk = fk. If we have a µ-cycle scheme with µ = 1 we refer to it as a
V-cycle, whereas for µ = 2 we call the method W-cycle. In particular we
denote with V(ν1,ν2)-cycle and W(ν1,ν2)-cycle the two methods above with
ν1 pre-smoothing and ν2 post-smoothing iterations [20]. Algebraic multigrid
can be used as a stand-alone solver or as a preconditioner to accelerate the
convergence of Krylov-based iterative schemes, such as conjugate gradient
method.

Algorithm 3.1 One Iteration of AMG-µCycle to solve Akuk = fk

function ul+1
k =AMG-µCycle(ν1,ν2,Ak,ulk,fk,Ik+1

k ,Ikk+1)
if k = K then

uK = A−1
K fK . Coarsest level

return uK
else

Relax ν1 times on Akuk = fk with initial guess u0
k . Pre-smoothing

fk+1 = Ik+1
k (fk −Akuν1k ) . Restriction of the residual

e0k+1 = 0k+1

for λ = 1 : µ do
eλk+1 = AMG-µCycle(ν1,ν2,Ak+1,eλ−1

k+1 ,fk+1,Ik+2
k+1 ,Ik+1

k+2 )
end for
uν1+1
k = uν1k + Ikk+1e

µ
k+1 . Interpolation and Correction

Relax ν2 times on Akuk = fk with initial guess uν1+1
k . Post-smoothing

return uν1+ν2+1
k

end if
end function

Our method is based on smoothed aggregation [48], and extends the results
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of Olson and Schroder [35] to high-order DG methods. The main challenge
in the DG setting is the redundancy of the degrees of freedom associated
to the same grid points. A similar issue occurs, for example, for systems of
partial differential equations where there exists multiple unknowns at the
same grid point. This difficulty can be solved with strategies known as
”point” or ”block” approaches [42, 48]: these techniques are based on local
aggregation of variables associated to the same grid point. Here we extend
this idea to deal with the multiple unknowns associated to the same grid
point typical of DG methods. It is based on the use of the local aggregation
for the first level coarsening, then for all the other levels different aggregation
schemes can be used.
In the next sections we detail the main steps at the basis of our AMG solvers.

3.1 Algebraic Block-Aggregation Algorithm

In the literature we can find different algorithms of the aggregation tech-
niques for AMG methods applied to problem with DG discretizations that
exploit the idea of the local aggregation, but all are based on the knowledge
of geometric or topological information, cf. [29,35,40].
Here we propose a new purely algebraic block-aggregation coarsening strat-
egy based on block-aggregation. The algorithm that we present is built
through to the analysis of the matrix entries associated with each degree of
freedom, as described in the following.
Given the matrix Ak ∈ RNk×Nk , its entries aij , i, j = 1, . . . , Nk, and its set
of unknowns V = {1, . . . , Nk}, namely the degrees of freedom of the prob-

lem, we split the set of points in a disjoint covering such that V =
⋃Nk+1

j=1 Vj ,
Nk+1 ≤ Nk, and Vl ∩ Vj = ∅ for l 6= j. In particular, the algorithm aims at
providing suitable disjoint sets such that each one of them contains the mul-
tiple variables associated to the same physical grid point, cf. Algorithm 3.2.
Algorithm 3.2 is made of three steps: startup singleton or aggregation, en-
largement of the decomposition sets, and cancellation of the empty sets.
First, for each i ∈ V, the function find strongest connection(i) chooses the
node I ∈ V to which the unknown i has the strongest connection, cf. Sec-
tion 3.3 below. If the strongest connection between i and I is negative, i.e.
aiI < 0, then the nodes i and I are grouped together (startup aggregation),
otherwise the node i is processed alone (startup singleton). Once the startup
phase is concluded, the algorithm proceeds with the enlargement of the de-
composition sets, based on joining sets with at least one node in common.
Finally, empty sets are deleted from the disjoint covering. Algorithm 3.2
is based on the function find strongest connection, that is detailed in the
following. For a given strength function s(i, j) such that smaller values in-
dicate a stronger connection, e.g. the evolution strength function defined in
Section 3.3 below, we assume that the strongest connected points to i are
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Algorithm 3.2 Algebraic Block-Aggregation Algorithm

h = 0
for all i ∈ V do

I=find strongest connection(i)
if aiI ≥ 0 then

if ∀h : Vh ∩ {i} = ∅ then . Startup Singleton
h = h+ 1, Vh = {i}

end if
else

if ∀h : Vh ∩ {i, I} = ∅ then . Startup Aggregation
h = h+ 1, Vh = {i, I}

else . Enlarging the Decomposition Sets
if ∃h̃ : Vh̃ ∩ {i} 6= ∅ & ∀h : Vh ∩ {I} = ∅ then
Vh̃ = Vh̃ ∪ {I}

else if ∃h̃ : Vh̃ ∩ {I} 6= ∅ & ∀h : Vh ∩ {i} = ∅ then
Vh̃ = Vh̃ ∪ {i}

else if ∃h̃1 : Vh̃1
∩ {i} 6= ∅ & ∃h̃2 : Vh̃2

∩ {I} 6= ∅ & h̃1 6= h̃2 then
Vh̃1

= Vh̃1
∪ Vh̃2

, Vh̃2
= ∅

end if
end if

end if
end for
j = 0 . Deleting the Empty Sets
for all h do

if Vh 6= ∅ then
j = j + 1, Vj = Vh

end if
end for

given by
Si = {j : s(i, j) ≤ θ}, (4)

where θ ≥ 1 is a given threshold. Next we fix θ and then the function
find strongest connection(i) returns an arbitrary point in the set Si.

3.2 Interpolation Operator Ik+1
k : RNk → RNk+1

Given the disjoint partition V =
⋃Nk+1

j=1 Vj , Nk+1 ≤ Nk given by Algo-
rithm 3.2, it is natural to construct the interpolation operator in a similar
manner as done for the smoothed aggregation algebraic multigrid by Vaněk
et al. [48].
In particular, we modify the algorithm of Vaněk et al. [48] in an energy-
minimization framework as follows. We define algebraically smooth error
modes to be grid functions with a small Rayleigh quotient, cf. [33] and
therefore equivalent to the near null-space or low energy modes. Hence, a
tentative interpolation operator is constructed in such a way that it preserves
the near null-space mode vector wk ∈ RNk , cf. [12, 17, 30, 36, 49, 51]. More
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precisely, the vector wk is the numerical solution of Akwk = 0k obtained
after η smoothing steps with initial guess w0

k = 1k.
We first set

[Ĩkk+1]ij =

{
wi i ∈ Vj
0 otherwise

, i = 1, . . . , Nk, j = 1, . . . , Nk+1

and apply the Gram-Schmidt orthonormalization algorithm to each column
of Ĩkk+1 to improve conditioning. Then, the interpolation operator is defined
by a classical dumped-Jacobi smoothing step, i.e.,

Ikk+1 = (Ik − ωD−1
k Ak)Ĩkk+1,

where ω = 2/3, Dk is the diagonal of Ak and Ik is the identity matrix.
Remark 2. Other approaches can be employed to construct the interpolation
matrix. For example, since our problem is symmetric and positive definite,
we can employ the Krylov-based framework, cf. [35,36], where we substitute
the simple damped Jacobi smoothing step with a fixed number of iterations
of the conjugate gradient method.

3.3 Evolution Measure

In this section we recall the evolution measure proposed by Olson et. al. [34]
which combines the local knowledge of both algebraic smooth error and
the behaviour of the interpolation. In the DG framework this measure is
necessary to define the strongest connections in Algorithm 3.2 and in the
classical aggregation scheme, cf. [35, 48].
In order to take account for algebraic smooth error, we define zk ∈ RNk as

zk = (Ik − ωkD
−1
k Ak)mek(i),

where ek(i) ∈ RNk is the unit vector centered at i ∈ V, ωk = 1/ρ(D−1
k Ak)

and m is an integer that has to be properly chosen. In our computation
m = 4, cf. [35].
Then we have to consider the local knowledge of the interpolation. Assume
that the interpolation operator is defined as in Section 3.2. Given a point
i ∈ V we would like to be able to measure the ability of each column of the
tentative interpolation operator Ĩkk+1 to interpolate zk for all points j in the
algebraic neighborhood of i, i.e. j ∈ Ni, where Ni = {j : aij 6= 0}. Therefore
this quantity is measured only for points j ∈ Ni, in particular with exact
interpolation enforced at point i.
We define the evolution measure as

e(i, j) =

∣∣∣∣1− wjzi
wizj

∣∣∣∣ i, j = 1, . . . , Nk,
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where wj and zj are the j−th components of vectors wk, defined in Sec-
tion 3.2, and zk, respectively. Since our problem is symmetric, we define the
symmetrized version of the evolution measure as

eS(i, j) = e(i, j) + e(j, i).

Finally the symmetric evolution strength function is defined as

s(i, j) =
eS(i, j)

mink 6=i eS(i, k)
. (5)

The symmetric evolution measure defined above is employed to identify the
connections in our algorithm, cf. Section 4 below. Our algorithm makes
use of the following two steps that are the block- and classical aggregations,
respectively. On the finest level, we employ Algorithm 3.2 with the choice of
evolution strength function (5) and θ = 1 in (4). On the coarsest levels we
use the aggregation scheme of Vaněk et al. [48] with still evolution strength
function (5) but with θ ∈ [2, 4], cf. (4).
This choice is guided by the following properties that hold in the DG frame-
work: we employ our block-aggregation for the finest level because it is
suited to aggregate the multiple degrees of freedom associated to each grid
point, on the other way we use the classical aggregation for the coarsest
levels because it builds larger agglomerates and this is better to have less
unknowns associated to these levels.
In Figure 3 we show some examples of block-aggregation for matrices stem-
ming from linear DG discretizations on structured and unstructured simpli-
cial meshes and with penalty parameter σe = 10, 20, 30, cf. Section 2. For
σe = 30, we obtain the same aggregations as for σe = 20. For simplicity,
these results have been omitted. Moreover, when we compute the evolution
measure, we fix wk = 1k. Each aggregate set is represented with a distinct
number as mark.
We notice that, as expected, our block-aggregation algorithm seems to be
fairly insensitive on the value of the penalty parameter.

4 Numerical Experiments

In this section we test the robustness and the efficiency of our algebraic
multigrid method in solving the linear system of equations stemming from
high-order discontinuous finite element discretizations of problem (1). We
consider a sequence of structured and unstructured simplicial meshes with
granularity h = 1/2, 1/4, 1/8, 1/16, 1/32, and let the polynomial approxi-
mation degree p vary from 1 to 10. For each h and p, we obtain a lin-
ear system of equations that we solve with our smoothed block-aggregation
AMG, cf. Section 3. At the first step of coarsening, i.e. k = 1, we use the
block-aggregation algorithm, cf. Algorithm 3.2 with the strongest evolution
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Figure 3: Examples of block-aggregation for different meshes with p =
1, h ∼= 1/2 and σe = 10 (top) and σe = 20 (bottom).

connection defined in (5) and with θ = 1, cf. (4). For the coarser levels, i.e.
k = 2, . . . ,K, we use the classical aggregation of Vaněk et al. [48] with still
the evolution strength function in (5) and θ = 2 in (4), cf. also [35].
For any multigrid level k, the associated interpolation operator is the one
proposed in Section 3.2 with η = p smoothing iterations of classical Gauss-
Seidel, where p is the polynomial degree. For the smoothing interpolation
we compare both the Jacobi iteration and the Krilov-based framework with
2 iterations of conjugate gradient method, cf. Remark 2. We remark that for
moderate values of p, one iteration of CG is enough. In our numerical results
we denote by J-smoother/CG-smoother the smoothed block-aggregation al-
gebraic multigrid with Jacobi/CG smoothing interpolation step, cf. Re-
mark 2.
In our numerical tests we test the W(ν1,ν2)-cycle with the classical Gauss-
Seidel relaxation as a stand-alone AMG solver. Moreover, we also consider
a PCG method with a preconditioner given by the the W(ν1,ν2) iteration
with a symmetric Gauss-Seidel smoother. We refer to the preconditioned
conjugate gradient with W(ν1,ν2)-cycle preconditioner as PCG W(ν1,ν2)-
cycle.
Let N be the iteration counts needed to reduce the initial relative residual
below a tolerance tol = 10−8, we compute the convergence factor ρ defined
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by

ρ = exp

(
1

N
log
||rN ||
||r0||

)
,

where rN and r0 are the final and initial residuals, respectively.
In Section 4.1 and 4.2 we report the results when employing the W-cycle al-
gorithm as iterative scheme and as preconditioner for the conjugate gradient
method, respectively. All the proposed solver components are summarized
in Figure 4.

AGGREGATION

Finest level (k = 1).
Block-aggregation of Al-
gorithm 3.2 with evolution
strength (4) and θ = 1 in
(3).

Coarsest levels (k =
2, . . . ,K). Aggregation
of Vaněk et al. [48] with
evolution strength (4) and
θ = 2 in (3).

INTERPOLATION

Dumped Jacobi
(J-smoother)

Conjugate gradi-
ent (CG-smoother)

Figure 4: Aggregation and interpolation steps in our AMG algorithm.

4.1 W-cycle Algorithm as Iterative Scheme

In this section we present some numerical results to investigate the perfor-
mance of the W-cycle AMG algorithm as iterative scheme. In Figures 5 and
6 we compare the W-cycle AMG with J- and CG-smoother in terms of p-
and h-scalability, respectively, when employing ν1 = ν2 = ν = 1, 3 pre- and
post-smoothing iterations. We note that if we employ the AMG method
with the CG- rather than the J-smoother we obtain better results both in
terms of convergence factor and scalability.
We remark that in our tests the W-cycle AMG with J-smoother do not con-
verge for p = 10, therefore in Figure 6 we show only the W-cycle AMG with
CG-smoother when p = 10.
Concerning the h- and p-scalability we observe that the J-smoother AMG
method seems to be scalable only if the number of smoothing steps is suf-
ficiently large, even if we can observe hp-weak-scalability for p = 1, . . . , 7
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and all tested h for smaller values of smoothing iterations ν. In order to
have h- and p-scalability for the J-smoother AMG method, for all the con-
sidered h and p, we should increase the number of pre- and post-smoothing
iterations, cf. [13,14,16]. On the other hand we have that the CG-smoother
AMG method is hp-quasi-scalable for ν = 1, 2 and hp-scalable for ν = 3 for
all considered h and p. The difference in h- and p-scalability when vary-
ing ν = 1, 2, 3 for AMG method with CG-smoother is small, so it is worth
considering the method with ν = 1 because it has a lower computational
costs.
In Table 1 we report the computed convergence factors for the J- and CG-
smoother AMG methods on both structured and unstructured grids when
varying the number of smoothing iterations ν1 = ν2 = ν = 1, 2, 3. From
the results reported in Table 1 we can conclude that, as expected, the AMG
algorithms performs better for larger number of smoothing iterations.
In Table 2 we report the results obtained for the J- and CG-smoother AMG
methods when varying the number of coarsening levels K = 2, . . . , 5 and
solving the problem discretized on structured and unstructured grids, re-
spectively. From the results reported in Table 2, it seems that all the pro-
posed methods converge uniformly with respect to the number of levels K.
As already observed we can summarize the following considerations:

• the J-smoother AMG method seems to be scalable w.r.t. both the
discretization parameters h and p, and the number of multigrid levels
provided that the number ν of smoothing steps is chosen large enough
(ν � 3). It seems to be hp-weak-scalable for p = 1, . . . , 7 and all tested
h for smaller values of ν;

• the CG-smoother AMG method seems to be scalable w.r.t. both the
discretization parameters h and p, and the number of levels provided
that the number of smoothing steps is large enough (in our computa-
tions ν = 3);

• the J-smoother AMG method, even if it seems to be only hp-weak-
scalable, features lower computational costs compared to the CG-
smoother AMG one.

4.2 W-cycle Algorithm as Preconditioner for PCG Method

In this section we repeat the numerical tests presented in Section 4.1, and we
present some numerical results to test the efficiency of the W-cycle algorithm
as preconditioner for the PCG method.
In Figures 7 and 8 we report the computed convergence factors based on em-
ploying the J- and CG-smoother AMG as preconditioners for PCG method
in terms of p- and h-scalability, respectively, when employing ν1 = ν2 = ν =
1, 3 pre- and post-smoothing iterations. We remark that in our tests the
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Figure 5: Convergence factor of the W-cycle algorithm as a function of p for
different values of h = 1/8, 1/16, 1/32 on structured (left) and unstructured
(right) meshes: J-smoother, ν = 1 ( ); J-smoother, ν = 3 ( ); CG-
smoother, ν = 1 ( ); CG-smoother, ν = 3 ( ).

J-smoother PCG method do not converge for p = 10, therefore in Figure 8
we show only the CG-smoother PCG method when p = 10.
In Table 3 we report the convergence factor for the J- and CG-smoother
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PCG methods both on structured and unstructured grids, respectively, when
varying the number of smoothing iterations ν1 = ν2 = ν = 1, 2, 3.
In Table 4 we report the results obtained for the J- and CG-smoother PCG
methods when varying the number of coarsening levels K = 2, . . . , 5 and
solving the problem discretized on structured and unstructured grids, re-
spectively.
For the sake of comparison, in Tables 3 and 4 we also report the values of
the converge factor when we employ the CG method.
Considering the results presented, we can obtain the same conclusions as in
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Figure 6: Convergence factor of the W-cycle algorithm as a function of h for
different values of p = 1, 4, 7, 10 on structured (left) and unstructured (right)
meshes: J-smoother, ν = 1 ( ); J-smoother, ν = 3 ( ); CG-smoother,
ν = 1 ( ); CG-smoother, ν = 3 ( ).

Table 1: Convergence factor of the W-cycle algorithm as a function of ν,
K = 4.

Structured Grids

ν p = 1 p = 4 p = 7
h = 1/32 h = 1/8 h = 1/2

1 0.1397 0.0690 0.2400
J-smoother 2 0.0276 0.0573 0.2013

3 0.0099 0.0455 0.1833

1 0.1430 0.0716 0.0599
CG-smoother 2 0.0226 0.0162 0.0315

3 0.0083 0.0148 0.0229

Unstructured Grids

ν p = 1 p = 4 p = 7
h = 1/32 h = 1/8 h = 1/2

1 0.1197 0.0616 0.2670
J-smoother 2 0.0251 0.0212 0.2069

3 0.0141 0.0194 0.1832

1 0.1382 0.0669 0.0562
CG-smoother 2 0.0277 0.0200 0.0212

3 0.0137 0.0183 0.0181

Section 4.1. We observe that the J-smoother seems to be scalable w.r.t. all
the discretization parameters and the number of multigrid levels provided
that the number of smoothing iterations is sufficiently large and the CG-
smoother AMG one seems to be scalable for smaller values of ν (in our
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Table 2: Convergence factor of the W(1,1)-cycle algorithm as a function of
the number of levels K.

Structured Grids

K p = 1 p = 4 p = 7
h = 1/32 h = 1/8 h = 1/2

2 0.1397 0.0686 0.2386
J-smoother 3 0.1397 0.0690 0.2399

4 0.1397 0.0690 0.2400
5 0.1397 0.0690 0.2400

2 0.1430 0.0717 0.0601
CG-smoother 3 0.1430 0.0716 0.0599

4 0.1430 0.0716 0.0599
5 0.1430 0.0716 0.0599

Unstructured Grids

K p = 1 p = 4 p = 7
h = 1/32 h = 1/8 h = 1/2

2 0.1196 0.0615 0.2633
J-smoother 3 0.1197 0.0616 0.2670

4 0.1197 0.0616 0.2670
5 0.1197 0.0616 0.2670

2 0.1382 0.0669 0.0571
CG-smoother 3 0.1382 0.0669 0.0562

4 0.1382 0.0669 0.0562
5 0.1382 0.0669 0.0562

computations ν = 3). In addition we notice that when we employ the two
algorithms as preconditioner for the conjugate gradient method we obtain
better values of the convergence factor.

5 Conclusions

We have presented a new algebraic multigrid method for solving the linear
system of equations stemming from high-order discontinuous Galerkin finite
element discretizations of second order elliptic problems.
We have extended the standard algebraic multigrid approach, by proposing
a new algebraic block-aggregation scheme that suitably handles the redun-
dancy of the degrees of freedom associated to the same grid point. In addic-
tion we have employed a different strength function of connection, cf. [34],
and an adaptive smoothed aggregation method, cf. [17], following the guide-
line of Olson and Schroder [35]. In particular we modified the first step of
geometric coarsening within an algebraic framework leading our schemes to
be purely AMG methods for high-order DG discretizations. The obtained
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Figure 7: Convergence factor of the PCG W-cycle algorithm as a function of
p for different values of h = 1/8, 1/16, 1/32 on structured (left) and unstruc-
tured (right) meshes: J-smoother, ν = 1 ( ); J-smoother, ν = 3 ( );
CG-smoother, ν = 1 ( ); CG-smoother, ν = 3 ( ).

results show that the proposed AMG methods are scalable with respect to
the mesh-size h, the polynomial degree p and the number of multigrid levels
provided that the number ν of smoothing steps is large enough.
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