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Abstract

We introduce a fundamental restriction on the strain energy function
and stress tensor for initially stressed elastic solids. The restriction
applies to strain energy functions W that are explicit functions of the
elastic deformation gradient F and initial stress τ , i.e. W := W (F, τ ).
The restriction is a consequence of energy conservation and ensures
that the predicted stress and strain energy do not depend upon an
arbitrary choice of reference configuration. We call this restriction
initial stress reference independence (ISRI). It transpires that most
strain energy functions found in the literature do not satisfy ISRI,
and may therefore lead to unphysical behaviour, which we illustrate
via a simple example. To remedy this shortcoming we derive three
strain energy functions that do satisfy the restriction. We also show
that using initial strain (often from a virtual configuration) to model
initial stress leads to strain energy functions that automatically satisfy
ISRI. Finally, we reach the following important result: ISRI reduces
the number of unknowns in the linear stress tensor for initially stressed
solids. This new way of reducing the linear stress may open new
pathways for the non-destructive determination of initial stresses via
ultrasonic experiments, among others.

Keywords: initial stress, residual stress, constitutive equations, hypere-
lasticity, linear elasticity, reference independence

1 Introduction

Materials in many contexts operate under a significant level of internal stress,
which is often called residual stress if the material is not subjected to any
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external loading. Residual stress is desirable in many circumstances; for
example, living matter uses residual stress to preserve ideal mechanical con-
ditions for its physiological function [9, 19]. In manufacturing, if residual
stress is controlled, it can be used to strengthen materials such as turbine
blades [20] and toughened glass [59]; however, residual stress is often prob-
lematic as it can cause materials to fail prematurely [62, 24]. Pre-stress is
another common term, which is often used to refer to internal stress caused
by an external load [36, 37, 52, 53]. In this paper, the term initial stress is
used to describe any internal stress, irrespective of boundary conditions, and
therefore encompasses both residual stress and pre-stress.

In both industrial and biological contexts, the origin and extent of initial
stresses are often unknown. One way to determine these stresses is by mea-
suring how they affect the elastic response of the material. In metallurgy,
it is well known that residual stress can be estimated by drilling small holes
into a metal and observing how they change shape [43]. Elastic waves are
also used in many applications, since their behaviour is very sensitive to the
initial stress in a material [13].

One alternative to link the response of a material to a very general depen-
dence on the internal stress, therefore including initially stressed materials,
is the implicit form of elasticity described by Rajagopal and coworkers [2, 39,
40], but this generality comes with the drawback of adding greater constitu-
tive complexity. Explicit hyperelastic models are simpler and are accurate
for many applications – the work of Hoger [16, 17] and Man [28, 27] has led
to improved inverse methods for measuring initial stress [41, 38, 25, 1, 48, 22]
and monitoring techniques [3].

The mechanical properties of a hyperelastic material can be conveniently
determined from its strain energy function W , which gives the strain energy
per unit volume of the initially stressed reference configuration. In classical
elasticity, W is a function of only the elastic deformation gradient F (i.e.
W := W (F)). The simplest way to account for initial stresses is to allow
W to depend on either the initial Cauchy stress tensor τ , or on an initial
deformation gradient F0 from some stress-free configuration B0. For the
first method, W := W (F, τ ) [12, 46, 45], whereas for the second, W :=
J−10 W0(FF0) [17, 21], where J0 = det F0 and W0 is the strain energy per unit
volume in B0. In both cases, F is the elastic deformation gradient from the
initially stressed to the current configuration.

The two approaches each have relative advantages and disadvantages. If
measuring the initial stress is the main goal, then using W := W (F, τ ) is
the more direct method, but requires an extra restriction – ISRI (presented
below). It is also the more useful form when the initial stress is known or
postulated a priori – by assuming that the stress gradient in an arterial wall
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is homogeneous [11], for example. If W := J−10 W0(FF0), then the classical
theory of nonlinear elasticity can be used (by taking B0 as the reference
configuration), and ISRI is automatically satisfied. This form is more useful
when a stress-free configuration is known, or when the exact form of the initial
stress is not important. The two approaches are not equivalent because it
is not always possible to deduce F0 from τ explicitly, as they are related
by the equilibrium equation of the initially stressed configuration, which is
a nonlinear partial differential equation in F0. We discuss initially strained
models in Section 3.

The primary purpose of this paper is to deduce a fundamental restriction
on W := W (F, τ ), and discuss its consequences. To motivate the need for
a new restriction, we show how a simple uniaxial deformation can lead to
unphysical results when this restriction is ignored in Section 2.1. In Sec-
tion 2.2, we derive this restriction, which follows from the fact that elastic
deformations conserve energy, and we call it initial stress reference indepen-
dence (ISRI), for reasons that will be clarified later. We assume the only
source of anisotropy is the initial stress, though a more general form of ISRI
could also be deduced for materials that include other sources of anistropy.
ISRI can be stated solely in terms of stress tensors, and should therefore
hold for materials whose constitutive behaviour is not expressed in terms of
a strain energy function.

It transpires that it is not easy to choose a strain energy function that
satisfies ISRI. In fact, almost every strain energy function found by the
authors in the literature to date does not satisfy it, in both finite elastic-
ity [45, 32, 47, 31, 44, 33] and linear elasticity [27, 46]. To the authors’
knowledge, the only existing strain energy function that does satisfy ISRI is
that derived in [11], which is an initially stressed incompressible neo-Hookean
solid, as discussed in Section 2.3. To address this lack of valid models, we
present two new strain energy functions that satisfy ISRI in Section 2.4. In
Section 3, we discuss strain energy functions based on initial strain, and show
that they automatically satisfy ISRI in Section 3.1.

The equations associated with small deformations of initially stressed
solids are much simpler than their finite strain analogues. This makes them
ideal for establishing methods to measure initial stress. An important conse-
quence of ISRI is that it restricts the linearised elastic stress tensor δσ(F, τ ),
as we discuss in Section 4. For materials subjected to small initial stress, we
use ISRI to reduce the number of unknowns in δσ(F, τ ) in Section 4.3. The
result is a reduced version of the stress tensor deduced in [27], which could
ultimately improve the measurement of initial stress via ultrasonic experi-
ments, among others.

In the literature, it is common to deduce the linear stress tensor δσ by
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considering an initial strain from a stress free configuration [58, 10, 23]. This
approach is broadly called acousto-elasticity, and as discussed in Section 3,
the resulting δσ automatically satisfies ISRI, but leads to an indirect con-
nection between δσ and τ . In fact, acousto-elasticity was used by Tanuma
and Man [57] to restrict the form of δσ(F, τ ) when both strain and initial
stress are small, which led them to our equation (4.36) (their equation (81)).
In our approach we clarify that this equation must hold for every initially
stressed elastic material, regardless of the origins of this stress.

2 Initial stress reference independence

The mechanical properties of an elastic material can be determined from
its strain energy function W , which gives the strain energy per unit volume
of the reference configuration. For an initially stressed material, W can be
expressed in terms of the deformation gradient F from the reference to the
current configuration and τ , the Cauchy stress in the reference configura-
tion, so that W := W (F, τ ). In general, W may also depend on position,
but we omit this dependency for clarity. We call τ the initial stress tensor
and, when discussing consititutive choices, we will not require any specific
boundary conditions in the reference configuration, in agreement with [32]
(i.e the boundaries can either be loaded or unloaded).

In what follows, we assume that F is within the elastic regime of the
material, but make no assumptions about how the initial stress formed. The
Cauchy stress tensor σ [35, 12] for an initially stressed material is given by

σ := σ(F, τ ) = J−1F
∂W

∂F
(F, τ )− pI, (2.1)

where J = det F, I is the identity tensor and p is zero if the material is
compressible or, otherwise, is a Lagrange multiplier associated with the in-
compressibility constraint det F = 1. We define differentiation with respect
to a second-order tensor as follows:

(
∂

∂P

)

ij

=
∂

∂Pji

. (2.2)

Before moving on, we present an example where a specific choice of
W (F, τ ) leads to two different stress responses for the same uniaxial de-
formation.
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2.1 Motivating example

To study the influence of initial stress on the elastic response of a material, a
simple strain energy function was postulated by Merodio et al. [32] as follows

WMOR =
µ

2

(
tr(FTF)− 3

)
+

1

2

(
tr(FTτF)− tr τ

)
, (2.3)

where µ is a material constant – a quantity that is inherently associated with
the material and does not depend upon the reference configuration or level of
residual stress, the superscript T indicates the transpose operator and tr the
trace. As WMOR is used for incompressible materials, the Cauchy stress (2.1)
becomes

σ = −pI + µFFT + FτFT. (2.4)

Consider an initially stressed material described by Euclidean coordinates
(X, Y, Z). Suppose the initial stress takes the form of a homogeneous tension
T along the X axis, and that the material is subsequently stretched along
the same axis, then the components of the deformation gradient and initial
stress tensor are given by

F =



λ 0 0
0 λ−1/2 0
0 0 λ−1/2


 and τ =



T 0 0
0 0 0
0 0 0


 , (2.5)

where λ is the amount of stretch. Applying stress-free boundary conditions
on the faces not under tension gives p = λ−1µ, which in turn leads to

σ11 := σ11(λ, T ) = λ2(µ+ T )− λ−1µ, (2.6)

which is the stress necessary to support any stretch λ given an initial tension
T . We will now choose two different ways of achieving the same uniaxial
stretch λ = λ̃ that should, but do not, result in the same stress when using
the strain energy function (2.3). First, we consider a direct application of

the stretch λ = λ̃ and assume that the initial tension is T = τ0. In this case,

σ̃11 = σ11(λ̃, τ0) = λ̃2(µ+ τ0)− λ̃−1µ. (2.7)

We can also achieve the same stretch in two steps by taking λ̃ = λ̂λ. That is,
first we stretch by λ and then apply a further stretch λ̂, as shown in Fig. 1.
Taking λ = λ, and again using T = τ0, results in the stress

σ11 = σ11(λ, τ0) = λ2(µ+ τ0)− λ−1µ, (2.8)
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in the intermediate configuration. To further stretch the material, we take
this intermediate configuration as our intially stressed reference configura-
tion, where the initial tension is now T = σ11. Upon applying the second
stretch λ̂, we obtain

σ̃11 = σ11(λ̂, σ11) = λ̂2(µ+ σ11)− λ̂−1µ (2.9)

= λ̂2λ2(µ+ τ0) + λ̂2µ− λ̂2λ−1µ− λ̂−1µ. (2.10)

Both (2.7) and (2.10) result from the same uniaxial deformation, so should

be identical, but, upon substituting λ̃ = λ̂λ into (2.7), we find they are not.
If, instead of equation (2.4), we had used an initially strained model,

e.g. an incompressible neo-Hookean W := µ tr(FF0)/2, then this unphysical
result would not occur. However, as explained in the introduction, when the
initial strain or stress are unknown, both τ and F0 are unknown, and an
explicit form W := W (F, τ ) leads to more direct connections between the
elastic response and initial stress τ .

The unphysical behaviour illustrated by this example is typical of many
of the strain energy functions of the form W := W (F, τ ) in the literature
and highlights the need to restrict what forms are physically permissible.
Therefore, in the following section, we present a restriction on W (F, τ ) that
ensures that such unphysical behaviour does not occur.

2.2 The restriction

The elastic energy stored in a material should remain constant under a rigid
motion, so W (F, τ ) = W (QF, τ ) for every proper orthogonal tensor Q (so
that QQT = I and det Q = 1). This identity can be used to show that W
depends on F only through the right Cauchy-Green tensor C = FTF [35],
which we use to rewrite the Cauchy stress (2.1) as

σ(F, τ ) = 2J−1F
∂W

∂C
(C, τ )FT − pI. (2.11)

The presence of initial stress generally leads to an anisotropic material
response, but for simplicity we assume that no other source of anisotropy is
present. Referring to the three configurations shown in Fig. 2, let the strain
energy per unit volume in B̃ be denoted by ψ. The strain energy stored as a
result of the elastic deformation from B to B̃ should be the same as that due
to successive elastic deformations from B to B, then from B to B̃. In detail,
taking B as the reference configuration, we conclude ψ = J̃−1W (F̂F, τ ),

where J̃ = Ĵ J , Ĵ = det F̂ and J = det F, whereas if B is taken as the
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λ
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λ−1/2`

λ`

λ̂

σ11

λ̂λ`

λ̂−1/2λ−1/2`

λ̃ = λ̂λ

σ̃11

Figure 1: Uniaxial deformation of an initially stressed cube (depth not illus-

trated), with sides of length `, into a cuboid of height λ̂λ` and width (equal

to depth) λ̂−1/2λ−1/2`. The hollow arrows represent the stress applied to the

top boundary. The uniaxial stretch λ̃ is indicated by the bottom arrow. This
stretch can also be achieved in two steps: first a stretch of λ, then a further
stretch of λ̂. The second of these stretches treats the middle configuration as
its reference configuration. Both of these ways of achieving the same uniaxial
stretch λ̂λ should require the same stress σ̃11 in the rightmost configuration.

reference configuration, we conclude ψ = Ĵ−1W (F̂,σ(F, τ )). Since these
two quantities must be equal, we therefore have

W (F̂F, τ ) = JW
(
F̂,σ(F, τ )

)
for every τ , F and F̂, (2.12)

where both F and F̂ are associated with elastic deformations (which may
be constrained by incompressibility). We call this criterion initial stress
reference independence (ISRI).

When F = I, equation (2.12) reduces to W (F̂, τ ) = W (F̂,σ(I, τ )),
which, from equation (2.11), is always satisfied if

σ(I, τ ) = 2
∂W

∂C
(I, τ )− pI = τ , (2.13)

for every τ . We refer to this well-known restriction as initial stress compati-
bility. Additionally, if F = Q, where again Q is a proper orthogonal tensor
representing a rigid body motion, then, using equations (2.11) and (2.13),
we obtain σ(Q, τ ) = QτQT. Using this result, along with F = Q in equa-

7



B

B B̃

σ̃

τ

σ

F̃ = F̂F

F
F̂

Figure 2: Deformation of an initially stressed elastic solid. The stress and
strain energy in B̃ should not depend on whether B or B is taken as the
reference configuration.

tion (2.12), we obtain

W (F̃, τ ) = W
(
F̃QT,QτQT

)
, (2.14)

where F̃ = F̂F. The above identity is typically used for anisotropic materi-
als [54] and can be used to derive the following ten invariants [45]1

I1 = tr C, I2 =
1

2
[(I21 − tr(C2)], I3 = det C, (2.15)

Iτ1 = tr τ , Iτ2 =
1

2
[(I2τ1

− tr(τ 2)], Iτ3 = det(τ ), (2.16)

J1 = tr(τC), J2 = tr(τC2), J3 = tr(τ 2C), J4 = tr(τ 2C2), (2.17)

though only nine of theses invariants are independent [49]. Using these in-
variants, the Cauchy stress can be rewritten as

σ(F, τ ) = −pI +
1

J

(
2WI1B + 2WI2(I1B−B2)+

2I3WI3I + 2WJ1FτFT + 2WJ2(FτFTB + BFτFT) + 2WJ3Fτ
2FT+

2WJ4(Fτ
2FTB + BFτ 2FT)

)
, (2.18)

1Note that the invariants Iτ1
, Iτ2

and Iτ3
are different from, but can be expressed as

combinations of, those derived in [45].
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where B = FFT is the left Cauchy-Green tensor, WIi = ∂W/∂Ii and WJj =
∂W/∂Jj, with i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}. For an incompressible mate-
rial I3 = 1 and WI3 = 0. Note that the Cauchy stress in a standard non-linear
elastic material can be obtained from (2.18) simply by letting W depend only
on the strain invariants I1, I2 and I3.

By evaluating equation (2.18) at F = I we obtain another form of the
initial stress compatibility equation (2.13):

τ = I(− I
p+ 2

I

W I1 + 4
I

W I2 + 2
I

W I3)

+ τ (2
I

W J1 + 4
I

W J2) + τ 2(2
I

W J3 + 4
I

W J4), (2.19)

where the notation
I· is used to denote that · is evaluated at F = I after

differentiation. Since this equation has to hold for any initial stress tensor
τ , the initial stress compatibility condition is equivalent to

2
I

W I1 + 4
I

W I2 + 2
I

W I3 =
I
p, 2

I

W J1 + 4
I

W J2 = 1,
I

W J3 + 2
I

W J4 = 0. (2.20)

In the literature, W is often chosen as a simple function of the ten invari-
ants (2.15-2.17) that satisfy initial stress compatibility (2.20). However, it is
highly unlikely that any W chosen a priori will satisfy ISRI (2.12).

A version of ISRI can also be stated in terms of the stress tensor, without
reference to a strain energy function. To do so, let us assume the internal
stress is given by some constitutive choice σ := σ(F, τ ), then using reasoning
similar to that which led to equation (2.12) we find that

σ(F̂F, τ ) = σ(F̂,σ(F, τ )), for every τ , F and F̂. (2.21)

This restriction states that the Cauchy stress in B̃ should not change when
a different reference configuration is selected. As the above is stated solely
in terms of stress tensors, it could be possible to extend ISRI to materials
without an explicit strain energy function.

By choosing F̂F = I and using equation (2.13), we obtain τ = σ(F−1,σ),
where σ = σ(F, τ ). This restriction was derived in [11] and termed initial
stress symmetry. It allowed a straightforward way to model the adaptive
remodelling of living tissues such as arterial walls towards an ideal target
stress [5, 56]. For more details see [11] and [6]. To the authors’ knowledge,
the only strain energy function that does satisfy initial stress symmetry and
ISRI is that derived in [11].

As demonstrated in Section 2.1, strain energy functions that do not sat-
isfy ISRI may exhibit unphysical behaviour. We prove this in the following
section, then derive two new strain energy functions that satisfy ISRI in
Section 2.4.
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2.3 An incompressible strain energy function that sat-
isfies ISRI

In a recent paper, Gower et al. [11] proposed the strain energy function

WGCD =
1

2
(p0(Iτ1 , Iτ2 , Iτ3)I1 + J1 − 3µ), (2.22)

where p0 is a function of Iτ1 , Iτ2 and Iτ3 given by

p0 =
1

3

(
T3 +

T1
T3
− Iτ1

)
, (2.23)

T1 = I2τ1
− 3Iτ2 , T2 = I3τ1

− 9

2
Iτ1Iτ2 +

27

2
(Iτ3 − µ3), (2.24)

T3 =
3

√√
T 2
2 − T 3

1 − T2. (2.25)

One way to derive WGCD is to rewrite an initially strained neo-Hookean
strain energy function as an initially stressed strain energy function [11].
An alternative derivation is given in Appendix A. Using WGCD in equation
(2.18), the left side of equation (2.21) becomes

σ(F̂F, τ ) = p0F̂BF̂T − p̃ I + F̂FτFTF̂T, (2.26)

and the right side becomes

σ(F̂,σ(F, τ )) = (p1 − p)B̂ + p0F̂BF̂T − p̂ I + F̂FτFTF̂T, (2.27)

where p1 is the Lagrange multiplier associated with F. In Appendix A we
show that p = p1, and therefore equation (2.27) reduces to

σ(F̂,σ(F, τ̂ )) = p0F̂BF̂T − p̂ I + F̂FτFTF̂T. (2.28)

Equation (2.21) then gives

σ(F̂F, τ ) = σ(F̂,σ(F, τ )) ⇔ p̂ = p̃. (2.29)

Since equations (2.26) and (2.28) have exactly the same functional form and
they must be subjected to the same boundary conditions because they both
represent the Cauchy stress in B̃, their Lagrange multipliers must be equal
(i.e. p̂ = p̃ ). Therefore, WGCD does satisfy ISRI.
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2.4 Two compressible strain energy functions that sat-
isfy ISRI

By using the same method as that used in Appendix A to derive WGCD,
we have derived two new strain energy functions for compressible materials.
Both are based on compressible extensions of the neo-Hookean model:

WCNH1 =
µ

2
(I1 − 3− 2 log

√
I3) +

λ

2
(log

√
I3)

2, (2.30)

and

WCNH2 =
µ

2
(I1 − 3− 2 log

√
I3) +

λ

2
(
√
I3 − 1)2, (2.31)

where µ and λ are the ground state first and second Lamé parameters, re-
spectively. The initially stressed strain energy functions corresponding to
these are

WGSC1 =
q1
2
I1+

J1
2
− µ

2K1

(
3 + 2 log(K1

√
I3)
)

+
λ

2K1

(
log(K1

√
I3)
)2

(2.32)

and

WGSC2 =
q2
2
I1+

J2
2
− µ

2K2

(
3 + 2 log(K2

√
I3)
)

+
λ

2K2

(
K2

√
I3 − 1

)2
, (2.33)

where q1, q2, K1 and K2 are functions of Iτ1 , Iτ2 and Iτ3 and can be thought
of as initial stress parameters defined implicitly by the equations

µ3

K1

= q31 + q21Iτ1 + q1Iτ2 + Iτ3 , q1 =
1

K1

(µ− λ logK1), (2.34)

µ3

K2

= q32 + q22Iτ1 + q2Iτ2 + Iτ3 , q2 =
µ

K2

+ λ(1−K2), (2.35)

where the solutions for K1 and K2 should both be real and such that K1 → 1
and K2 → 1 when τ → 0. The Cauchy stress tensors corresponding to these
strain energy functions are, respectively,

σGSC1 =
1

J

(
q1B +

1

K1

(λ log(JK1)− µ)I + FτFT

)
, (2.36)

and

σGSC2 =
1

J

(
q2B +

(
λ(I3K2 − J)− µ

K2

)
I + FτFT

)
. (2.37)

These constitutive equations provide a simple way to study the effects of
initial stress on any deformation.
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3 Initially strained materials

Another way to model initial stress is via initial strain. This is normally done
by including an initial deformation gradient F0 from some configuration B0
in the strain energy function W := J−10 W0(FF0), where J0 = det F0 and
W0 is the strain energy per unit volume in B0. This representation of W
is a consequence of both a fundamental covariance argument [30, 26], and
utilising a virtual stress-free configuration [21]. The Cauchy stress tensor is
then given by [30, 26]

σ := σ(FF0) = J−1J−10 F
∂W0

∂F
(FF0)− pI. (3.1)

Usually, W0(FF0) is chosen such that B0 is stress-free, that is, σ(I) = 0.
Assuming that the initial strain is the only source of anisotropy, the strain
energy can be shown to depend only on the isotropic invariants of FT

0 CF0:

Î1 = tr(FT
0 CF0), Î2 =

1

2
(Î21 − tr((FT

0 CF0)
2)), Î3 = det(FT

0 CF0), (3.2)

so that W := J−10 W0(Î1, Î2, Î3). These strain energy functions automatically
satisfy ISRI, as shown below in Section 3.1. An example of such a strain
energy function is this initially strained form of the Mooney-Rivlin strain
energy function:

W0 = C1(Î1Î
−1/3

3 − 3) + C2(Î2Î
−2/3

3 − 3) + C3(Î
−1/2

3 − 1)2, (3.3)

where C1, C2 and C3 are material constants that must be chosen such that
the body is stress free when F = F0 = I.

Taking W as a function of F and τ , or of F and F0, gives two different
perspectives on the same phenomenon, each being useful in different circum-
stances. The former is more useful when the initial stress is known, whereas
the latter is more useful when the initial strain can somehow be inferred.

3.1 All initially strained materials satisfy ISRI

We have discussed, in previous sections, that it is not easy to choose a func-
tion of the form W := W (F, τ ) that satisfies ISRI (2.12). Let us consider
the case of initially strained materials with

W = W (F, τ ) := J−10 W0(FF0), and τ = σ0(F0). (3.4)

We will prove that if W = W (F, τ ) is defined as above, and the function σ0

is invertible, it satisfies ISRI for any choice of W0(FF0). First we assume
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that for any W0 and initial stress τ there is a deformation gradient F0
2 such

that

τ = σ0(F0) where σ0(F0) = J−10 F0
∂W0(F0)

∂F0

− pI. (3.5)

Next, we define an initially stressed strain energy function

W (F, τ ) = W (F,σ0(F0)) := J−10 W0(FF0) for every F and τ . (3.6)

By substituting F = F̂F into equation (3.6) we obtain

W (F̂F, τ ) = J−10 W0((F̂F)F0)

= JJ−1J−10 W0(F̂(FF0)) = JW (F̂,σ0(FF0)). (3.7)

Then, using equation (3.1), we obtain

σ0(FF0) = J−1J−10 F
∂W0

∂F
(FF0)− pI, (3.8)

and, since J−10 W0(FF0) = W (F, τ ),

σ0(FF0) = J−1F
∂W

∂F
(F, τ )− pI, (3.9)

which, using equation (2.1), gives

σ0(FF0) = σ(F, τ ). (3.10)

Substituting the above into equation (3.7) we obtainW (F̂F, τ ) = JW (F̂,σ(F, τ )),
which is the ISRI restriction (2.12).

Whilst such strain energy functions are guaranteed to satisfy ISRI, it is
not often possible to state their dependence on the stress invariants Iτ1 , Iτ2

and Iτ3 explicitly (a notable exception being the strain energy function dis-
cussed in Section 2.3). Instead, it may be necessary to define that dependence
implicitly, as is the case for the two models presented in Section 2.4.

4 Linear elasticity with initial stress

Elastic waves in solids are highly sensitive to initial stress, and linear elastic
models fit measurements from currently-employed experimental techniques

2For there to be a unique F0, for every τ , the strain energy W0 needs to be rank-one
convex [34] and some restrictions need to be made about the reference configuration of
F0 [21].
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well. Our aim here is, in the long run, to improve these measurements by
using a linearised version of ISRI (2.12).

In Section 4.1 we deduce the linearised stress without considering ISRI.
Then, in Section 4.2, we calculate a linearised form of ISRI and discuss how
to use it to restrict the linearised stress. Hoger [16, 18], Man and cowork-
ers [28, 27] derived the equations for small initial stress, up to first order in
τ . In [27] the authors remark that many experiments indicate that for small
deformations the elastic stress depends linearly on the initial stress, at least
for metals. Motivated by these observations, we linearise the elastic stress in
both the elastic strain and initial stress in Section 4.3 and reach a reduced
form for the stress (4.37) which adds a restriction to all previous models, to
the authors’ knowledge. The restriction (4.36) has been used before in the
literature (see equation (81) from [57]) but was deduced from the context of
acousto-elasticity.

4.1 Linear elastic stress

For a small elastic deformation, we can write the associated deformation
gradient as F = I +∇u, where u is a small displacement. By Taylor series
expanding the Cauchy stress (2.1) about F = I, the linearised Cauchy stress
becomes

δσ(F, τ ) = τ +

I

∂σ

∂F
: ∇u +O((∇u)2), (4.1)

where we have exploited the fact that σ(I, τ ) = τ and we remind the reader

that
I· denotes that · is evaluated at F = I after differentiation. We define

(
∂P

∂Q

)

ijkl

=
∂Pij
∂Qlk

and (C : P)ij = CijαβPβα, (4.2)

for any second-order tensors P and Q and fourth-order tensor C, using Ein-
stein summation convention for the repeated dummy indices α and β. Using
equations (2.11) and (4.2) it can be shown that

I

∂σ

∂F
: P =

∂

∂F

(
2J−1F

∂W

∂C
FT

)∣∣∣∣
F=I

: P

= Pτ + τPT − τ tr P + 4

I

∂2W

∂C2
: P, (4.3)

for every second-order tensor P, where we have exploited the fact that
2∂W/∂C|F=I = τ from equation (2.13). We now introduce the linear strain
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and rotation tensors:

ε =
1

2
(∇u + (∇u)T) and ω =

1

2
(∇u− (∇u)T), (4.4)

respectively, which satisfy ∇u = ε + ω. Substituting ω for P in equa-
tion (4.3), we obtain

I

∂σ

∂F
: ω = ωτ − τω, (4.5)

since trω = 0 and




I

∂2W

∂2C
: ω



ij

=

I

∂2W

∂Cji∂Cαβ

ωαβ = −
I

∂2W

∂Cji∂Cβα

ωβα ⇒
I

∂2W

∂2C
: ω = 0, (4.6)

where we have used the fact that ωT = −ω and CT = C. Using equa-
tions (4.4) and (4.5) we can now rewrite equation (4.1) as

δσ = τ + ωτ − τω +

I

∂σ

∂F
: ε+O((∇u)2). (4.7)

At this point, we do not yet know the form of ∂σ/∂F|F=I : ε explicitly. It
could be calculated directly from equation (2.18); however, an alternative
approach is to write it as a general rank two symmetric tensor in terms of τ
that is expanded up to first order in ε:

I

∂σ

∂F
: ε = α1ε+ (α2I + α3τ + α4τ

2) tr(ε) + (α5I + α6τ + α7τ
2) tr(ετ )

α8(ετ + τε) + α9(ετ
2 + τ 2ε) +O((∇u)2), (4.8)

where αi, (i = 1, ..., 9) are, in general, functions of Iτ1 , Iτ2 and Iτ3 . Note
that neither tr(ετ 2), τετ , τ 2ετ + τετ 2, nor any power of τ higher than
two is present because they can be written as combinations of the terms
already included (see Appendix B). For more details on linearising elasticity
see [18, 7, 8, 45].

We now seek to restrict the parameters α1, ..., α9. We begin by rear-
ranging equation (4.3) and contracting it twice on the left with an arbitrary
second-order tensor Q, to obtain

4Q :

I

∂2W

∂C2
: P = (Q : τ ) tr P−Q : (Pτ )−Q : (τPT) + Q :

I

∂σ

∂F
: P. (4.9)
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Since equation (4.9) must hold for any P and Q, we can swap them to obtain

4P :

I

∂2W

∂C2
: Q = P : τ tr Q−P : (Qτ )−P : (τQT) + P :

I

∂σ

∂F
: Q. (4.10)

Now, due to the fact that



I

∂2W

∂2C



ijkl

=




I

∂2W

∂2C



klij

(4.11)

we must have

P :

I

∂2W

∂C2
: Q = Q :

I

∂2W

∂C2
: P, (4.12)

for every P and Q. Upon substituting equations (4.9) and (4.10) into equa-
tion (4.12), and assuming that P and Q are small and symmetric, so that
equation (4.8) holds with P and Q substituted for ε, we find that equa-
tion (4.12) can hold if and only if

α4 = α7 = 0 and α5 = α3 + 1. (4.13)

Substituing the above into equation (4.7), we obtain a reduced expression for
the stress:

δσ = τ + ωτ − τω + I tr(ετ ) + α1ε+ α2I tr(ε) + α3 (τ tr(ε) + I tr(ετ ))

+ α6τ tr(ετ ) + α8(ετ + τε) + α9(ετ
2 + τ 2ε).

(4.14)
In Section 4.2, we discuss the linearised version of ISRI and its relationship
to the linear stress tensor given in equation (4.14). When the initial stress
is small, we are able to derive a closed-form expression for the linear stress
that satisfies ISRI, as is shown in Section 4.3.

4.1.1 Initially stressed neo-Hookean models

As an aside, we note that if the stress tensors for the initially stressed neo-
Hookean models given in equations (2.36) and (2.37) are expanded for small
deformations, the resulting linear stress tensors have the above form with

α1 =
2

K1

(µ− λ logK1), α2 =
λ

K1

, α3 = −α8 = −1, α6 = α9 = 0, (4.15)

for the first model, and
α1

2
=

µ

K2

+ λ(1−K2), α2 = λ(2K2 − 1), α3 = −α8 = −1, α6 = α9 = 0,

(4.16)
for the second.
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4.2 The linearised equations of ISRI

We now wish to consider the restrictions that are imposed by ISRI in the
case of small deformations. We begin by differentiating equation (2.12) with
respect to F to obtain

∂W

∂F
(F̂F, τ )F̂ =

∂J

∂F
W (F̂,σ(F, τ )) + J

∂W

∂σ
(F̂,σ(F, τ ))

∂σ

∂F
(F, τ ), (4.17)

where ∂/∂F denotes partial differentiation with respect to the first argument
of the function and ∂/∂σ denotes partial differentiation with respect to the

second. Evaluating equation (4.17) at F̂ = F = I and contracting twice on
the right with the linear strain tensor ε gives

τ : ε = tr ε
I

W +

I

∂W

∂τ
:

I

∂σ

∂F
: ε for every τ and ε, (4.18)

which was simplified using equation (2.13). One of the terms on the right
side can be expanded using the chain rule as follows

I

∂W

∂τ
= β1I + β2τ + β3τ

2, (4.19)

where

β1 =

I

∂W

∂ tr τ
=

I

∂W

∂Iτ1

+ Iτ1

I

∂W

∂Iτ2

+ Iτ2

I

∂W

∂Iτ3

+

I

∂W

∂J1
+

I

∂W

∂J2
, (4.20)

β2 = 2

I

∂W

∂ tr(τ )
= −

I

∂W

∂Iτ2

− Iτ1

I

∂W

∂Iτ3

+ 2

I

∂W

∂J3
+ 2

I

∂W

∂J4
, (4.21)

β3 = 3

I

∂W

∂ tr(τ 3)
=

I

∂W

∂Iτ3

. (4.22)

Using equations (4.14) and (4.19) and the Cayley-Hamilton theorem (see
Appendix B) we can rewrite the restriction (4.18) in the form

tr(ετ ) = (γ0 +
I

W ) tr ε+ γ1 tr(ετ ) + γ2 tr(ετ 2) for every τ and ε, (4.23)

where γ0, γ1 and γ2 are functions of α1, ..., α9, β1, β2, β3, Iτ1 , Iτ2 and Iτ3 .
Since equation (4.23) has to hold for every τ and ε (for more details see the
supplementary material of [11]), we obtain the three equations

γ0 = −
I

W, γ1 = 1 and γ2 = 0, (4.24)
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which can be written in matrix form as

M ·



β1
β2
β3


 =



−

I

W
1
0


 , (4.25)

where the matrix M depends only on α1, ..., α9, Iτ1 , Iτ2 and Iτ3 (the entries

of M are given explicitly in Appendix C). Since β1, β2 and β3 depend on
I

W ,
the above gives three linear partial differential equations for the single vari-

able
I

W . This implies that if α1, ...α9 are unrestricted,
I

W is over-prescribed.
Hence, the only way to satisfy equation equation (4.25) is to restrict α1, ..., α9,
as we show in the following section.

4.3 The case of small initial stress

Our goal is to expand the linearised stress (4.14) for small ‖τ‖, where ‖ · ‖
can be the Frobenius norm, and then use linear ISRI (4.18), or equivalently
equations (4.24), to restrict the coefficients of the stress. To achieve this we
need to expand linear ISRI up to higher orders in ‖τ‖, as potentially some of
these terms may restrict our linearised stress. For more details on linearising
functions of isotropic invariants, see [7].

Our approach is to take the equations (4.24) and expand for small ‖τ‖
and neglect O(‖τ‖3) terms. With reference to equation (4.23), we note that
γ1 multiplies an O(‖τ‖) term and γ2 multiplies an O(‖τ‖2) term. Therefore,
it is only necessary to expand γ1 up to O(‖τ‖) and γ2 up to O(‖τ‖0). Upon
doing so, we obtain

β1 (α1 + 3α2 + α3 tr τ ) + β2
(
α2 tr τ + α3 tr(τ 2)

)
+ β3α2 tr(τ 2) = −

I

W,
(4.26)

β1 (3(α3 + 1) + α6 tr τ + 2α8) + β2 (α1 + (α3 + 1) tr τ ) = 1, (4.27)

2β1α9 + 2β2α8 + β3α1 = 0. (4.28)

Next, we expand α1, ..., α9 and neglect O(‖τ‖2) terms:

αi = αi0 + αi1 tr τ + αi2(tr τ )2 + αi3 tr(τ 2) for i = 1, 2, ..., 9, (4.29)

where the αij, i = 1, ...9, j = 0, ..., 3 are constants. We also expand
I

W up
to O(‖τ‖3):

I

W = ψ0 + ψ1 tr τ + ψ2(tr τ )2 + ψ3 tr(τ 2) + ψ4(tr τ )3

+ ψ5 tr τ tr(τ 2) + ψ6 tr(τ 3), (4.30)
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where ψ0, ..., ψ6 are constants and we immediately choose ψ0 = 0 since we
expect

lim
τ→0

I

W = 0. (4.31)

Upon substituting equation (4.30) into equations (4.26)–(4.28), we obtain
β1, β2 and β3 expanded up to O(‖τ‖2), O(‖τ‖1) and O(‖τ‖0), respectively,
which can then be substituted into equations (4.26)–(4.22). We then solve
the resulting system of equations for the parameters αij and ψi, where we
note that the stress tensor of an initially stressed material must generalise
that derived from classical linear elasticity. In other words, when τ → 0 we
must have

δσ = α10ε+ α20I tr(ε), where α10 = 2µ and α20 = λ, (4.32)

where λ and µ are the first and second Lamé parameters, respectively. Us-
ing equation (4.32), the final system of equations simplifies to the following
conditions:

ψ1 = 0, ψ2 = − λ

12κµ
, ψ3 =

1

4µ
, (4.33)

ψ4 =
2λ2(3α11 − 2α80) + 2λµ(4α11 + 4α30 + 3)− 8µ2α21

216κ2µ2
, (4.34)

ψ5 =
λ(2α80 − 3α11)− 2µ(α11 + α30 + 1)

24κµ2
, ψ6 = −α80

6µ2
, (4.35)

α80 =
2µα30 − 3κα11

2λ
, (4.36)

where κ = λ+ 2µ/3 is the bulk modulus of the material under consideration.
Equation (4.36) relates α80 to λ, µ, α11 and α30, and therefore reduces the
number of free parameters in the system by one. We now use the above to
write the linearised Cauchy stress in terms of the strain and initial stress:

δσ = τ + ωτ − τω + I tr(ετ ) + 2(µ+ µ1 tr τ )ε+ (λ+ λ1 tr τ )I tr(ε)

+ η (τ tr(ε) + I tr(ετ )) +

(
µη

λ
− 3κµ1

2λ

)
(ετ + τε),

(4.37)
where we have renamed α11 = 2µ1, α21 = λ1 and α30 = η and all the pa-
rameters in the equation above are constants. Equation (4.37) differs from
the stress tensor first deduced in [27] because of the restriction given in
equation (4.36). The parameters above may be further restricted by con-
siderations such as strong-ellipticity [61, 14], but ultimately, they can be
determined by ultrasonic, indentation, or hole drilling experiments.
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4.3.1 Initially stressed neo-Hookean models

If equations (2.34) and (2.35) are expanded for small τ , they can be solved
for K1 and K2, which have the same series expansion up to order one in τ :

K1 = K2 = 1 +
Iτ1

3κ
+O(τ 2). (4.38)

Equation (4.38) can then be substituted into equations (4.15) and (4.16) to
obtain

α1 = 2µ− 2(λ+ µ)

3κ
Iτ1 +O(τ 2), α2 = λ− λ

3κ
Iτ1 +O(τ 2), (4.39)

for the first model, and

α1 = 2µ− 2(λ+ µ)

3κ
Iτ1 +O(τ 2), α2 = λ+

2λ

3κ
Iτ1 +O(τ 2). (4.40)

for the second. Therefore, for both models, we have

α10 = 2µ, α11 = −2(λ+ µ)

3κ
, α20 = λ α30 = −1, and α80 = 1,

(4.41)
which satisfy equation (4.36), as required. The linearised stress tensors as-
sociated with the two models are

δσGSC1 = τ + ωτ − τω − τ tr(ε) + 2

(
µ− λ+ µ

3κ
tr τ

)
ε (4.42)

+

(
λ− λ

3κ
tr τ

)
I tr(ε) + ετ + τε, (4.43)

and

δσGSC2 = τ + ωτ − τω − τ tr(ε) + 2

(
µ− λ+ µ

3κ
tr τ

)
ε (4.44)

+

(
λ+

2λ

3κ
tr τ

)
I tr(ε) + ετ + τε. (4.45)

5 Discussion

Many constitutive choices in the literature of the form W := W (F, τ ) do
not satisfy the ISRI restrictions (2.12) and (4.18) presented in this paper.
In Section 2.1, we gave an example of how these constitutive choices may
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lead to unphysical behaviour even for simple deformations such as uniax-
ial extension. This is also true of more complex deformations. Taking an
example from biomechanics, where residual stresses play a crucial role, sup-
pose we wish to model the mechanics of an arterial wall that supports an
internal pressure. Let us choose two different reference configurations: first,
the unloaded configuration where the fluid in the artery has been removed,
and second, the opening angle configuration [42, 21] where the fluid has been
removed and the artery has been cut along its axis. Both these configura-
tions are subject to no external loads, but there will be less (and differently
distributed) internal stress in the opening angle configuration. If we use a
strain energy function W (F, τ ) that does not satisfy ISRI, then each of the
two reference configurations will lead to a different stress distribution in the
intact, inflated configuration of the arterial wall. We therefore cannot believe
the preditions from either reference configuration since a physically correct
model should not give different results due to an arbitrary choice of reference
configuration.

By using ISRI, we were able to derive a restricted form for the linear elas-
tic stress tensor (4.37) in the case of small initial stress. This reduced form
may ultimately improve material characterisation based on ultrasonic and
indentation experiments. Many studies (see [27] and the references therein)
have confirmed that a linearised stress tensor of the form given in equa-
tion (4.37) is well-suited to fitting experimental data.

One outstanding problem for metals [60], biological soft tissues and other
materials [29] is the difficulty in differentiating between the effects of struc-
tural anisotropy [55] and anisotropy caused by initial stress. The linear form
of ISRI given in equation (4.18) will help to differentiate between these ef-
fects, as it dictates a specific dependency of the elastic stress on the initial
stress. Nevertheless, future work should focus on developing the consequences
of ISRI for materials with structural anisotropy. This will be particularly
important for collagenous soft tissues, which are known to be structurally
anisotropic due to the presence of collagen fibres [51, 50]. Initial stresses in
soft tissues can be significant [42, 22, 6], so assuming a small initial stress
may not give accurate predictions. Currently, the internal stress in soft tis-
sues is often measured by excising a sample and then estimating its initial
deformation from a theoretically stress-free configuration. To measure stress
in-vivo, non-invasive techniques need to be improved. Ultrasound techniques
are among the most suitable and promising methods for measuring initial
stress [4, 15], and the ISRI restrictions could ultimately improve them.
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of residual stress on finite deformation elastic response. International
Journal of Non-Linear Mechanics, 56:43–49, November 2013.

[33] N. T. Nam, J. Merodio, R. W. Ogden, and P. C. Vinh. The effect of
initial stress on the propagation of surface waves in a layered half-space.
International Journal of Solids and Structures, 88–89:88–100, June 2016.

[34] P Neff and LA Mihai. Injectivity of the cauchy-stress tensor along rank-
one connected lines under strict rank-one convexity condition. Journal
of Elasticity, 127(2):309–315, 2017.

[35] Ray W Ogden. Non-linear elastic deformations. Courier Dover Publi-
cations, 1997.

[36] William J Parnell, Andrew N Norris, and Tom Shearer. Employing
pre-stress to generate finite cloaks for antiplane elastic waves. Applied
Physics Letters, 100(17):171907, 2012.

[37] William J Parnell and Tom Shearer. Antiplane elastic wave cloaking
using metamaterials, homogenization and hyperelasticity. Wave Motion,
50(7):1140–1152, 2013.

25



[38] Lizabeth V. Rachele. Uniqueness in Inverse Problems for Elastic Media
with Residual Stress. Communications in Partial Differential Equations,
28(11-12):1787–1806, January 2003.

[39] K. R. Rajagopal. On Implicit Constitutive Theories. Applications of
Mathematics, 48(4):279–319, 2003.

[40] K. R. Rajagopal and A. R. Srinivasa. On the response of non-dissipative
solids. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 463(2078):357–367, February 2007.

[41] Robert L. Robertson. Determining Residual Stress from Boundary Mea-
surements: A Linearized Approach. Journal of Elasticity, 52(1):63–73,
July 1998.

[42] Edward K. Rodriguez, Anne Hoger, and Andrew D. McCulloch. Stress-
dependent finite growth in soft elastic tissues. Journal of Biomechanics,
27(4):455–467, April 1994.

[43] N. S. Rossini, M. Dassisti, K. Y. Benyounis, and A. G. Olabi. Methods of
measuring residual stresses in components. Materials & Design, 35:572–
588, March 2012.

[44] M. Shams. Effect of initial stress on Love wave propagation at the
boundary between a layer and a half-space. Wave Motion, 65:92–104,
September 2016.

[45] M. Shams, M. Destrade, and R. W. Ogden. Initial stresses in elastic
solids: Constitutive laws and acoustoelasticity. Wave Motion, 48(7):552
– 567, 2011.

[46] Moniba Shams. Wave propagation in residually-stressed materials. PhD,
University of Glasgow, 2010.

[47] Moniba Shams and Ray W Ogden. On Rayleigh-type surface waves in
an initially stressed incompressible elastic solid. IMA Journal of Applied
Mathematics, 79(2):360–376, 2014.

[48] Vladimir Sharafutdinov and Jenn-Nan Wang. Tomography of small
residual stresses. Inverse Problems, 28(6):065017, 2012.

[49] M. H. B. M. Shariff, R. Bustamante, and J. Merodio. On the spectral
analysis of residual stress in finite elasticity. 82(3):656–680.

26



[50] Tom Shearer. A new strain energy function for modelling ligaments and
tendons whose fascicles have a helical arrangement of fibrils. Journal of
biomechanics, 48(12):3017–3025, 2015.

[51] Tom Shearer. A new strain energy function for the hyperelastic mod-
elling of ligaments and tendons based on fascicle microstructure. Journal
of biomechanics, 48(2):290–297, 2015.

[52] Tom Shearer, I David Abrahams, William J Parnell, and Carlos H Daros.
Torsional wave propagation in a pre-stressed hyperelastic annular circu-
lar cylinder. The Quarterly Journal of Mechanics and Applied Mathe-
matics, 66(4):465–487, 2013.

[53] Tom Shearer, William J Parnell, and I David Abrahams. Antiplane
wave scattering from a cylindrical cavity in pre-stressed nonlinear elastic
media. Proceedings of the Royal Society A, 471(2182):20150450, 2015.

[54] AJM Spencer. Theory of invariants. In Continuum physics, Vol. 1,
volume 1, pages 239–353. Academic Press, 1971.

[55] Anthony James Merrill Spencer. Deformations of fibre-reinforced mate-
rials. Oxford University Press, 1972.

[56] Larry A. Taber and Jay D. Humphrey. Stress-Modulated Growth, Resid-
ual Stress, and Vascular Heterogeneity. J Biomech Eng, 123(6):528–535,
July 2001.

[57] Kazumi Tanuma and Chi-Sing Man. Perturbation Formulas for Polariza-
tion Ratio and Phase Shift of Rayleigh Waves in Prestressed Anisotropic
Media. J Elasticity, 92(1):1–33, July 2008.

[58] R. N. Thurston and K. Brugger. Third-Order Elastic Constants and the
Velocity of Small Amplitude Elastic Waves in Homogeneously Stressed
Media. Phys. Rev., 133(6A):A1604–A1610, March 1964.

[59] RI Todd, AR Boccaccini, R Sinclair, RB Yallee, and RJ Young. Thermal
residual stresses and their toughening effect in al 2 o 3 platelet reinforced
glass. Acta materialia, 47(11):3233–3240, 1999.

[60] George E. Totten. Handbook of Residual Stress and Deformation of
Steel. ASM International, 2002.

[61] Jay R. Walton and J. Patrick Wilber. Sufficient conditions for strong
ellipticity for a class of anisotropic materials. International journal of
non-linear mechanics, 38(4):441–455, 2003.

27



[62] G. A. Webster and A. N. Ezeilo. Residual stress distributions and their
influence on fatigue lifetimes. International Journal of Fatigue, 23, Sup-
plement 1:375–383, 2001.

A Deduction of the strain energy function

WGCD

The strain energy function (2.22) was first derived in [11]. Here, an alterna-
tive derivation is presented by considering deformations of an incompressible
neo-Hookean material from a stress-free configuration B0 to the stressed con-
figurations B and B (see Fig. 3 and compare with Fig. 2).

B

B

B0

τ

σ

F0

F

F1

Figure 3: Deformation of an incompressible neo-Hookean material from a
stress-free configuration B0 to the stressed configurations B and B.

The neo-Hookean strain energy function is given by

WNH = µ(I1 − 3), (A.1)

where µ is the ground state shear modulus of the material under considera-
tion. Upon substituting (A.1) into (2.18) with WI3 = 0 (because the material
is incompressibile) and then taking F = F0 and F = F1, it follows that

τ = µB0 − p0I and σ = µB1 − p1I, (A.2)
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where B0 = F0F
T
0 , B1 = F1F

T
1 and p0 and p1 are the Lagrange multipli-

ers associated with the two respective deformations. By rearranging equa-
tion (A.2)1 and taking the determinant of both sides, the following is ob-
tained:

det(µB0) = det(τ + p0I) ⇔ µ3 = p30 + p20Iτ1 + p0Iτ2 + Iτ3 , (A.3)

where det(B0) = 1 because the material is incompressible. Only one of the
three roots of the above polynomial is physically meaningful [11] and it is
given by equation (2.23). Using F1 = FF0, equation (A.2)2 gives

σ = µFB0F
T − p1I. (A.4)

The aim is to derive an initially stressed strain energy function that gives
equation (A.4) with B as the reference configuration. For simplicity, it is
assumed that the strain energy function depends only upon I1, J1 and the
three initial stress invariants Iτ1 , Iτ2 and Iτ3 . Making this assumption and
substituting F = F into equation (2.18) with WI3 = 0, it follows that

σ = σ(F, τ ) = 2W1B + 2WJ1FτFT − pI (A.5)

= 2W1B + 2WJ1(µFB0F
T − p0B)− pI. (A.6)

For equation (A.6) to be equivalent to equation (A.4), the following equations
must be satisfied:

2W1 = p0, 2WJ1 = 1, p = p1. (A.7)

The third of these equations does not tell us anything about the required
functional form of W ; however, upon solving the first two, the following is
obtained:

W =
1

2
(p0(Iτ1 , Iτ2 , Iτ3)I1 + J1) + f(Iτ1 , Iτ2 , Iτ3), (A.8)

where f is an arbitrary function of Iτ1 , Iτ2 and Iτ3 . Upon choosing f(Iτ1 , Iτ2 , Iτ3) =
−3

2
µ, the final form of the strain energy function (2.22) is obtained. This

choice ensures that the energy derived using the initially stressed strain en-
ergy function is the same as that obtained by considering a direct deformation
of a neo-Hookean material from the stress-free configuration.

All that remains is to prove that, when using WGCD, the third equation
of (A.7) holds. Equations (A.2)1 and (A.4) can be rearranged to give

p0I = µB0 − τ and p1I = µFB0F
T − σ, (A.9)
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respectively. Multiplying the first of these equations on the left by F and on
the right by FT, and upon substituting equation (A.8) into equation (A.5)
and equation (A.5) into equation (A.9)2, we obtain

p0B = µFB0F
T − FτFT (A.10)

and
p1I = µFB0F

T − p0B + pI− FτFT, (A.11)

respectively. Then substituting (A.10) into (A.11), we obtain

p1I = pI ⇒ p1 = p, (A.12)

as required.

B Tensor Identities

The Cayley-Hamilton theorem allows us to determine which tensors are in-
dependent. It states that any 3× 3 tensor P satisfies

P3 − IP1P
2 + IP2A− IP3I = 0, (B.1)

where IP1 , IP2 and IP3 are the invariants of P analagous to Iτ1 , Iτ2 and Iτ3

for τ . From equation (B.1), we can see that any power of τ higher than two
can be rewritten in terms of τ 2, τ , I and the invariants Iτ1 , Iτ2 and Iτ3 .

We will now show that tr(τ 2ε) and τετ , τ 2ετ + τετ 2 can be written as
combinations of terms already present in equation (4.8). First substitute P =
ε+ γτ in equation (B.1), where γ is an arbitrary scalar. Since the resulting
equation must hold for every γ, each coefficient multiplying a different power
of γ must be zero individually. The term multiplying γ2 is given by

τετ + ετ 2 + τ 2ε− (ετ + τε)Iτ1 − τ 2 tr ε+ τ (Iτ1 tr ε− tr(ετ )) + εIτ2

+ I(Iτ1 tr(τε)− Iτ2 tr ε− tr(ετ 2)) = 0. (B.2)

By taking the trace of both sides of this equation (and using the properties
tr(A + B) = tr A + tr B and tr(AB) = tr(BA)) we establish that tr(τ 2ε)
is indeed a combination of the terms already present in equation (4.8). The
same can then be said for τετ directly from equation (B.2), and for τ 2ετ +
τετ 2 by multiplying equation (B.2) on the left by τ .
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C The entries of the matrix M

The entries of the matrix M are as follows:

M11 = α1 + 3α2 + α3 tr τ , M12 = α2 tr τ + α3 tr(τ 2) + 2α9Iτ3 , (C.1)

M13 = α2 tr(τ 2) + α3 tr(τ 3) + 2α8Iτ3 + 2α9Iτ1Iτ3 , (C.2)

M21 = 3(α3 + 1) + α6 tr τ + 2α8, (C.3)

M22 = α1 + (α3 + 1) tr τ + α6 tr(τ 2)− 2α9Iτ2 , (C.4)

M23 = (α3 + 1) tr(τ 2) + α6 tr(τ 3)− 2α8Iτ2 + 2α9(Iτ3 − Iτ1Iτ2), (C.5)

M31 = 2α9, M32 = 2α8 + 2α9 tr τ , (C.6)

M33 = α1 + 2α8 tr τ + 2α9 tr(τ 2). (C.7)
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