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Simple Summary: Patients receiving chemotherapy for liver metastases from colorectal cancer may
develop liver injuries that impair hepatic function and postoperative outcome. The non-invasive
diagnosis of these damages is still an unmet need. Recently, advanced imaging analysis techniques,
including the so-called “radiomics”, achieved adequate prediction of pathology data. The present
study demonstrated that radiomic analysis of liver parenchyma in combination with clinical and
laboratory data improves non-invasive diagnosis of chemotherapy-related liver injuries.

Abstract: Non-invasive diagnosis of chemotherapy-associated liver injuries (CALI) is still an un-
met need. The present study aims to elucidate the contribution of radiomics to the diagnosis of
sinusoidal dilatation (SinDil), nodular regenerative hyperplasia (NRH), and non-alcoholic steato-
hepatitis (NASH). Patients undergoing hepatectomy for colorectal metastases after chemotherapy
(January 2018-February 2020) were retrospectively analyzed. Radiomic features were extracted from
a standardized volume of non-tumoral liver parenchyma outlined in the portal phase of preoper-
ative post-chemotherapy computed tomography. Seventy-eight patients were analyzed: 25 had
grade 2–3 SinDil, 27 NRH, and 14 NASH. Three radiomic fingerprints independently predicted
SinDil: GLRLM_f3 (OR = 12.25), NGLDM_f1 (OR = 7.77), and GLZLM_f2 (OR = 0.53). Combining
clinical, laboratory, and radiomic data, the predictive model had accuracy = 82%, sensitivity = 64%,
and specificity = 91% (AUC = 0.87 vs. AUC = 0.77 of the model without radiomics). Three ra-
diomic parameters predicted NRH: conventional_HUQ2 (OR = 0.76), GLZLM_f2 (OR = 0.05), and
GLZLM_f3 (OR = 7.97). The combined clinical/laboratory/radiomic model had accuracy = 85%,
sensitivity = 81%, and specificity = 86% (AUC = 0.91 vs. AUC = 0.85 without radiomics). NASH
was predicted by conventional_HUQ2 (OR = 0.79) with accuracy = 91%, sensitivity = 86%, and
specificity = 92% (AUC = 0.93 vs. AUC = 0.83 without radiomics). In the validation set, accuracy was
72%, 71%, and 91% for SinDil, NRH, and NASH. Radiomic analysis of liver parenchyma may provide
a signature that, in combination with clinical and laboratory data, improves the diagnosis of CALI.

Cancers 2021, 13, 3077. https://doi.org/10.3390/cancers13123077 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-7007-0205
https://orcid.org/0000-0002-9013-4728
https://orcid.org/0000-0003-0165-1983
https://orcid.org/0000-0001-5798-5021
https://orcid.org/0000-0002-4108-4832
https://doi.org/10.3390/cancers13123077
https://doi.org/10.3390/cancers13123077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13123077
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13123077?type=check_update&version=1


Cancers 2021, 13, 3077 2 of 18

Keywords: chemotherapy-associated liver injuries; sinusoidal dilatation; nodular regenerative hy-
perplasia; steatohepatitis; diagnostic imaging; radiomics; textural features; colorectal liver metastases;
liver surgery; virtual liver biopsy

1. Introduction

The combination of chemotherapy and surgery is the standard treatment of patients
with colorectal liver metastases (CLM) [1,2]. Systemic chemotherapy prolongs progression-
free survival, allows for the selection of the candidates for surgery, and moves some initially
unresectable patients to secondary resectability [3–7]. However, systemic treatment may
lead to chemotherapy-associated liver injuries (CALI) such as sinusoidal dilatation, nodular
regenerative hyperplasia (NRH), and non-alcoholic steatohepatitis (NASH) [8–11]. Gener-
ally, sinusoidal dilatation and NRH are related to oxaliplatin-based chemotherapy [8,10,12],
while steatohepatitis is associated with irinotecan-based chemotherapy [9,13]. Steatohepati-
tis can be caused not only by chemotherapy, but also observed in patients with metabolic
disorders [14,15]. This is epidemiologically relevant given the increasing prevalence of
such disorders in the general population. CALI are of major interest for liver surgeons
because of their association with an increased risk of intraoperative bleeding, postoperative
morbidity, and liver dysfunction [9,10,16–20].

Preoperative diagnosis of CALI is still an unmet need [21]. Presently, the prediction
of CALI relies on risk factors (e.g., chemotherapy regimen and duration) [9–11,16], some
laboratory tests and scores (e.g., APRI score, ICG tests, and LiMax test) [10,16,19,22–24]
and imaging modalities (e.g., heterogeneous liver parenchyma at computed tomography
(CT) and magnetic resonance imaging) [25,26], but has limited accuracy. Also liver biopsy
has low effectiveness because of the heterogeneous distribution of injuries and insufficient
sample size [27].

In the last few years, a new approach to medical imaging has gained momentum.
It is driven by the hypothesis that tissue features could be expressed on the radiological
images as voxel patterns, which are invisible to the human eye. To identify these patterns,
mathematical functions analyzing the spatial relation and the frequency distribution of
gray levels in the voxels were developed, providing modern and specific image biomark-
ers [28,29]. This texture-based approach has been termed “radiomics”. However, although
texture analysis has shown high accuracy in the identification of liver fibrosis [30–33],
no studies have yet focused on radiomics for CALI.

The present analysis aims to investigate whether the radiomic features extracted
from preoperative CT imaging can improve diagnosis of NASH and CALI in patients
undergoing liver resection for CLM after preoperative chemotherapy. A defined volume of
non-tumoral liver parenchyma was analyzed, thus performing a “virtual biopsy”.

2. Material and Methods

All consecutive patients that underwent liver resection for CLM between January 2018
and February 2020 were retrospectively considered. The following inclusion criteria were
adopted: preoperative chemotherapy for at least two months; oxaliplatin- or irinotecan-
based chemotherapy regimen; availability of preoperative CT for imaging review and
texture analysis; preoperative imaging performed <2 months before liver resection.

The primary endpoint of the study was to analyze the contribution of radiomic
analysis of liver parenchyma in the portal phase of preoperative post-chemotherapy CT
scan to the diagnosis of clinically relevant CALI. Clinically relevant CALI included grade
2–3 sinusoidal dilatation, NRH of any grade, and NASH. Radiomic features were extracted
from a standardized volume of interest (VOI) of non-tumoral liver parenchyma identified
on the portal phase of the CT scan. The VOI was a cylinder with a basis diameter of 10 mm
and a height of 25 mm outlined in the right liver between the anterior and posterior sections
and positioned not to include CLM or major intrahepatic vessels. If an adequate VOI of
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non-tumoral parenchyma was not available in the right liver, the VOI was outlined in
the left liver. In any case, a minimal distance of 20 mm between the VOI and CLM was
respected. In all patients, VOI had the same shape, dimension, and requisites (no major
vessels and no CLM). Radiomic features were automatically extracted from the VOI by
the LifeX ®software 6 [34,35]. The study was approved by the local ethics committee and,
because of its retrospective design, the need for informed consent was waived.

2.1. Patients Management and Pathology Data

The management of patients with CLM candidates to liver resection has been pre-
viously reported [36–38]. After the end of chemotherapy, patients were considered for
surgery only in case of stable disease or partial response to treatment. Liver resection
was performed 4 to 6 weeks after the end of chemotherapy (six weeks if bevacizumab
was administered).

In the authors’ institution, CALI are prospectively assessed in all patients undergoing
resection for CLM after preoperative chemotherapy. For the present study, all specimens
were reviewed by a single expert pathologist (L.d.T.). The sample of non-tumoral hepatic
parenchyma was taken at a distance of at least 10 mm (20 mm whenever possible) from the
tumor and the resection margin [39]. The tissue specimen (minimum area 1 cm2) was fixed
in formalin, paraffin-embedded, and stained with hematoxylin-eosin, Masson’s trichrome,
and Gomori staining. CALI evaluation was performed according to standard criteria.
In details, sinusoidal dilatation was graded semi-quantitatively (from grade 0 to grade 3),
according to Rubbia-Brandt et al. [8]; NRH was graded (from grade 0 to grade 3) according
to the Wanless scoring system [40]; and NASH definition was based on Kleiner et al.,
adopting the cut-off value modified by Vauthey et al. and the scoring system of the most
recent guidelines (steatohepatitis defined as the joint presence of steatosis, ballooning,
and lobular inflammation ) [9,41,42] (Table S1). Fibrosis was assessed according to the
METAVIR score [43].

2.2. Statistical Analyses

Summary statistics were constructed with the use of frequencies and proportions for
categorical data and medians and ranges for continuous variables. Chi-square (or Fisher’s
exact test) and t-test (or Mann-Whitney U test) were used to evaluate potential differences
in the distribution of variables according to different CALI. Univariate analysis was carried
out to explore the association between the different CALI and clinical (i.e., dyslipidemia,
diabetes, metabolic syndrome, body mass index (BMI), type and length of chemotherapy,
age), laboratory variables (i.e., APRI, GGT), and chemotherapy details.

A multivariate logistic regression model was performed to estimate the adjusted
association between each candidate predictor and the presence of different CALI (grade
2–3 sinusoidal dilatation, NRH, or steatohepatitis). Clinical rationale associated with a
backward stepwise regression approach was used to retain only relevant associations.
In particular: a principal component analysis (PCA) of second-order radiomic features,
i.e., textural features quantifying tumor heterogeneity by analyzing the spatial distribution
of pixel/voxel intensities, was performed to obtain effective predictors (Fingerprint in
the following) for the model. PCA was performed on the following matrices: gray-level
co-occurrence matrices (GLCM), gray-level run-length matrices (GLRLM), neighboring
gray-level difference matrices (NGLDM), and gray-level zone-length matrices (GLZLM).
For each of them, we retained components of the PCA that explain at least 95% of original
features variability. Note that the retained fingerprints have neither clinical nor biological
interpretations, but related estimates (OR and CI) may be interpreted as usual. Clinical
and laboratory variables were selected according to a priori knowledge and the results of
univariate analysis; then a stepwise regression was run, and all the variables retained by
this procedure were used for predictive purposes. Continuous variables were included as
continuous predictors, i.e., without assuming any categorization with arbitrary thresholds.
Finally, a correlation matrix of continuous variables and correlation heat-map were gen-
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erated. Correlation between features was analyzed and, whenever higher than 0.85, one
of the two features involved in the correlation was removed. The final predictive model
underwent internal cross-validation by splitting the series into a training set (90% of the
population) and a validation set (10%). The validation procedure was repeated 100 times
over 100 different samples. Results are reported in terms of mean (Std Dev) accuracy.

A decision tree was built with the variables retained by the backward stepwise selec-
tion of the multivariate model to highlight and exploit the possible nonlinear association
with the outcome. Indeed, a decision tree for classification problems is a top-down greedy
algorithm that divides the predictor space into distinct and non-overlapping regions (iden-
tified by the criteria/split adopted to reach each node). The slitting criteria for decision
rules are defined according to the principle of minimizing the variability of the response
within each node. For every observation falling into one region (node), the decision tree
predicts the occurrence of the corresponding CALI of interest. Decision trees are displayed
as dendrograms to highlight decision steps. Each node of the tree reports: (a) the response
mode class in the node, i.e., the predicted outcome for that node (presence of CALI = 1;
absence of CALI = 0, the top number in the square); (b) the percentages of observations in
the node belonging to the first response class (absence of CALI) and the second response
class (presence of CALI) (the two central numbers in the square, summing up to 1); (c) the
percentage of the total population falling into the node (the bottom number in the square).
Decision rules are specified on each split.

Stata 15 [44] and R software 1.2 [45] were used for all the analyses.

3. Results

In the study period (January 2018–February 2020), 78 consecutive patients that under-
went liver resection for CLM after preoperative chemotherapy were enrolled in the present
study. Of these, 47 (60%) patients were male, and the median age of the entire cohort was
65 (range 30–82) years. Eleven (14%) patients were obese (BMI > 30 kg/m2), 8 (10%) had a
metabolic syndrome, and two (3%) had chronic medications potentially associated with
NASH [46] (steroids in one, and tamoxifen in one). No patient had chronic medication
potentially associated with NRH or sinusoidal dilatation [47,48]. CLMs were synchronous
with the primary tumor in 54 (70%) patients, multiple in 70 (90%), and larger than 50 mm in
13 (17%). All patients had oxaliplatin- or irinotecan-based preoperative chemotherapy. Tar-
geted therapies were associated with chemotherapy in 65 (83%) patients, anti-VEGF being
the commonest one (58%, n = 45). Table 1 summarizes chemotherapy details. The median
interval between chemotherapy and liver surgery was five weeks (range 4–7). All patients
but four underwent minor hepatectomy. No patient had preoperative or intraoperative
signs of portal hypertension. Ninety-day operative mortality rate was nil, five (6%) patients
had postoperative severe morbidity and two (3%) had grade B-C liver failure.

Table 1. Details of chemotherapy and pathology data.

Chemotherapy Data

Regimen

Oxaliplatin 69 (88%)

Irinotecan 33 (42%)

Anti-VEGF treatment 45 (58%)

Anti-EGFR treatment 29 (37%)

Number of cycles, median (range) 8 (3–35)

>6 cycles 48 (62%)

≥2 lines 25 (32%)

Interval chemotherapy-surgery, weeks, median (range) 5 (4–7)
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Table 1. Cont.

Chemotherapy Data

CALI

Sinusoidal dilatation 56 (72%)

Grade 2–3 * 25 (32%)

NRH 27 (35%)

Grade 2–3 ** 9 (12%)

Steatosis 34 (44%)

Grade 2–3 *** 19 (24%)

Lobular inflammation 21 (27%)

Hepatocellular ballooning 14 (18%)

NASH **** 14 (18%)
VEGF, Vascular Endothelial Growth Factor; EGFR, Epidermal Growth Factor Receptor; CALI, Chemotherapy-
Associated Liver Injury; NRH, Nodular Regenerative Hyperplasia; NASH, Non-alcoholic Steatohepatitis; * accord-
ing to Rubbia-Brandt et al. [8]; ** according to the Wanless scoring system [40]; *** according to Kleiner et al. [41];
**** according to EASL guidelines, Marchesini et al. [42].

At the final pathology examination, CALI were evident in 61 (78%) patients (Table 1).
In details, grade 2–3 sinusoidal dilatation was present in 25 (32%) patients, NRH in 27
(35%), and NASH in 14 (18%). The association between CALI and patients’ characteristics,
laboratory data, and chemotherapy details is reported in Table 2.

Table 2. Association between CALI and clinical and laboratory data.

Grade 2–3 Sinusoidal Dilatation

N Y p

Age, years, median (range) 61 (30–82) 66 (51–80) 0.032

APRI score, median (range) 0.33 (0.10–1.16) 0.50 (0.12–1.89) 0.006

GGT, UI/L, median (range) 59 (7–247) 76 (11–372) 0.290

BMI, kg/m2, median (range) 25.8 (19.0–40.3) 24.9 (20.4–33.6) 0.368

Dyslipidemia N 24 (69%) 11 (31%)
0.915

Y 29 (67%) 14 (33%)

Diabetes
N 44 (66%) 23 (34%)

0.487
Y 9 (82%) 2 (18%)

Metabolic syndrome N 47 (67%) 23 (33%)
0.652

Y 6 (75%) 2 (25%)

Oxaliplatin-based chemotherapy N 7 (78%) 2 (22%)
0.502

Y 46 (67%) 23 (33%)

Irinotecan-based chemotherapy N 30 (67%) 15 (33%)
0.777

Y 23 (70%) 10 (30%)

Anti-VEGF treatment
N 18 (55%) 15 (45%)

0.030
Y 35 (78%) 25 (32%)

Number of cycles of chemotherapy 1–6 19 (63%) 11 (37%)
0.490

>6 34 (71%) 14 (29%)
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Table 2. Cont.

NRH

N Y p

Age, years, median (range) 62 (30–82) 64 (47–80) 0.333

APRI score, median (range) 0.32 (0.10–1.16) 0.49 (0.12–1.89) 0.006

GGT, UI/L, median (range) 54 (7–247) 83 (11–372) 0.032

BMI, kg/m2, median (range) 26.0 (19.0–40.3) 4.6 (20.4–32.3) 0.161

Dyslipidemia N 21 (60%) 14 (40%)
0.367

Y 30 (70%) 13 (30%)

Diabetes
N 43 (64%) 24 (36%)

0.739
Y 8 (73%) 3 (27%)

Metabolic syndrome N 44 (63%) 26 (37%)
0.165

Y 7 (87%) 1 (13%)

Oxaliplatin-based chemotherapy N 7 (78%) 2 (22%)
0.406

Y 44 (64%) 25 (36%)

Irinotecan-based chemotherapy N 31 (69%) 14 (31%)
0.447

Y 20 (61%) 13 (39%)

Anti-VEGF treatment
N 17 (52%) 16 (48%)

0.027
Y 34 (76%) 11 (24%)

Number of cycles of chemotherapy 1–6 21 (70) 9 (30%)
0.498

>6 30 (62%) 18 (38%)

Steatohepatitis

N Y p

Age, years, median (range) 63 (30–82) 61 (47–78) 0.595

APRI score, median (range) 0.37 (0.10–1.89) 0.42 (0.14–1.16) 0.610

GGT, UI/L, median (range) 63 (7–372) 72 (21–218) 0.651

BMI, kg/m2, median (range) 25.4 (19.0–33.7) 29.9 (22.6–40.3) <0.001

Dyslipidemia N 31 (89%) 4 (11%)
0.239

Y 33 (77%) 10 (23%)

Diabetes
N 55 (82%) 12 (18%)

1.000
Y 9 (82%) 2 (18%)

Metabolic syndrome N 60 (86%) 10 (14%)
0.013

Y 4 (50%) 4 (50%)

Oxaliplatin-based chemotherapy N 7 (78%) 2 (22%)
0.722

Y 57 (83%) 12 (17%)

Irinotecan-based chemotherapy N 40 (89%) 5 (11%)
0.066

Y 24 (73%) 9 (27%)

Anti-VEGF treatment
N 31 (94%) 2 (6%)

0.019
Y 33 (73%) 12 (27%)

Number of cycles of chemotherapy 1–6 25 (83%) 5 (17%)
0.816

>6 39 (81%) 9 (19%)
APRI, AST-to-Platelet Ratio Index; GGT, Gamma-glutamyltransferase; BMI, Body Mass Index; VEGF, Vascular
Endotelial Growth Factor; NRH, Nodular Regenerative Hyperplasia; N refers to NO; Y refers to YES.
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At the univariate analysis, grade 2–3 sinusoidal dilatation and NRH were associated
with preoperative APRI score (median value 0.50 if grade 2–3 sinusoidal dilatation vs. 0.33
if grade 0–1, p = 0.006; 0.49 if NRH vs. 0.32 if not, p = 0.006) and were reduced in patients
having received preoperative anti-VEGF therapy (32% vs. 45%, p = 0.030, and 24% vs. 48%,
p = 0.027, respectively). Steatohepatitis was associated with body mass index (BMI, median
value 29.9 kg/m2 if steatohepatitis vs. 25.4 kg/m2 if not, p < 0.001) and metabolic syndrome
(50% vs. 14%, p = 0.013, respectively). Of the patients with chronic medications potentially
associated with NASH [46], none had steatohepatitis at the final pathology evaluation.
The association between postoperative outcome and CALI is reported in Table S2. Of note,
in the present series, three patients had F3 fibrosis; none had cirrhosis (F4).

The a priori defined characteristics of the VOI (dimension, shape, and distance from
vessels and metastases) were respected in all cases. The VOIs were adequate and homoge-
neous in all patients.

3.1. Predictive Model for Sinusoidal Dilatation

At the multivariate analysis, the following clinical and laboratory variables were
associated with grade 2–3 sinusoidal dilatation (Table 3): age (Odds Ratio (OR) = 1.11,
Confidence Interval (CI)95% = 1.02–1.21, p = 0.015), anti-VEGF therapy associated with
chemotherapy (OR = 0.18, CI95% = 0.04–0.77, p = 0.021), and APRI score (OR = 64.16,
CI95% = 3.32–120.3, p = 0.006). In addition, three fingerprints derived from radiomic
features were independent predictors of sinusoidal dilatation: GLRLM_f3 (OR = 12.25,
CI95% = 1.34–111.9, p = 0.026), NGLDM_f1 (OR = 7.77, CI95% = 1.37–44.06, p = 0.021),
GLZLM_f2 (OR = 0.53, CI95% = 0.31–0.91, p = 0.022).

Table 3. Multivariate analysis of predictors of grade 2–3 sinusoidal dilatation.

Variable. OR (95% IC) p

Age 1.11 (1.02–1.21) 0.015

APRI score 64.16 (3.32–120.30) 0.006

Oxaliplatin-based chemotherapy 11.92 (0.54–26.29) 0.118

Irinotecan-based chemotherapy 3.46 (0.66–18.18) 0.142

Anti-VEGF treatment 0.18 (0.04–0.77) 0.021

Number of cycles of chemotherapy 1.08 (0.98–1.2) 0.128

Hist_IQR 0.74 (0.49–1.11) 0.144

GLRLM_f3 12.25 (1.34–111.90) 0.026

NGLDM_f1 7.77 (1.37–44.06) 0.021

NGLDM_f2 0.28 (0.04–1.73) 0.169

GLZLM_f2 0.53 (0.31–0.91) 0.022

GLZLM_f4 1.72 (0.85–3.48) 0.131
APRI, AST-to-Platelet Ratio Index; VEGF, Vascular Endothelial Growth Factor; Hist_IQR, Histogram Interquartile
Range; GLRLM_f3, Grey-Level Run Length Matrix Fingerprint 3; NGLDM_f1, Neighborhood Grey-Level Different
Matrix Fingerprint 1; NGLDM_f2, Neighborhood Grey-Level Different Matrix Fingerprint 2; GLZLM_f2, Grey-
Level Zone Length Matrix Fingerprint 2; GLZLM_f4, Grey-Level Zone Length Matrix Fingerprint 4.

The combined clinical, laboratory and radiomic model had 82% accuracy, 64% sensi-
tivity, and 91% specificity (AUC = 0.87, Figure 1).

The model without radiomic features had AUC = 0.77 (Figure S1, delta AUC with
the model including the radiomic features = −0.10). We built a decision tree based on the
results of multivariate analysis (Figure 2).
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Figure 2. Decision tree for the prediction of grade 0–1 vs. grade 2–3 sinusoidal dilatation (based
on model in Table 3). Nodes correspond to the decision steps. Each colored square reports: (a) the
response mode class in the node, i.e., the predicted outcome of that node (presence of grade 2–3
sinusoidal dilatation = 1; absence of grade 2–3 sinusoidal dilatation = 0, the top number in the square);
(b) the percentages of observations in the node belonging to the first response class (absence of
grade 2–3 sinusoidal dilatation) and the second response class (presence of grade 2–3 sinusoidal
dilatation) (the two central numbers in the square, summing up to 1); (c) the percentage of the total
population falling into the node (the bottom number in the square). Decision rules are specified on
each node.
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The following knots were identified: age < 69 years, APRI score < 0.68, NGLDM_f2 <
−0.36, Hist_IQR < 20, GLRLM_f3 ≥ 0.49. The decision tree achieved 78% accuracy, 92%
sensitivity, and 72% specificity (AUC = 0.87).

In the validation set, the multivariate logistic regression had an average accuracy of
72% (Std Dev 15%).

3.2. Predictive Model for NRH

At the multivariate analysis, the following clinical and laboratory variables were
associated with NRH (Table 4): age (OR = 1.10, CI95% = 1.01–1.20, p = 0.027), BMI (OR = 0.68,
CI95% = 0.49–0.94, p = 0.021), Irinotecan (OR = 28.71, CI95% = 1.8–459.04, p = 0.018),
number of cycles of chemotherapy (OR = 1.15, CI95% = 1.01–1.32, p = 0.031), anti-VEGF
therapy associated with chemotherapy (OR = 0.05, CI95% = 0.01–0.49, p = 0.010), and
APRI score (OR = 275.08, CI95% = 4.75–15937.97, p = 0.007). In addition, three radiomic
predictors of NRH were identified: conventional_HUQ2 (OR = 0.76, CI95% = 0.62–0.92,
p = 0.005), GLZLM_f2 (OR = 0.05, CI95% = 0.01–0.43, p = 0.007), and GLZLM_f3 (OR = 7.97,
CI95% = 1.52–41.85, p = 0.014).

Table 4. Multivariate analysis of predictors of NRH.

Variable OR (95% IC) p

Age 1.10 (1.01–1.20) 0.027

APRI score 275.08 (4.75–15937.97) 0.007

BMI 0.68 (0.49–0.94) 0.021

Oxaliplatin-based chemotherapy 34.41 (0.52–2295.05) 0.099

Irinotecan-based chemotherapy 28.71 (1.80–459.04) 0.018

Anti-VEGF treatment 0.05 (0.01–0.49) 0.010

Number of cycles of chemotherapy 1.15 (1.01–1.32) 0.031

CONVENTIONAL_HUQ2 0.76 (0.62–0.92) 0.005

GLCM_f2 1.99 (0.84–4.71) 0.119

GLRLM_f3 0.39 (0.11–1.42) 0.153

NGLDM_f2 2.65 (0.86–8.24) 0.091

GLZLM_f2 0.05 (0.01–0.43) 0.007

GLZLM_f3 7.97 (1.52–41.85) 0.014
APRI, AST-to-Platelet Ratio Index; BMI, Body Mass Index; VEGF, Vascular Endothelial Growth Factor; HUQ2,
Hounsfield Unit Quartile 2; GLCM_f2, Gray - Level Co-occurrence Matrix Fingerprint 2; GLRLM_f3, Grey-Level
Run Length Matrix Fingerprint 3; NGLDM_f2, Neighborhood Grey-Level Different Matrix Fingerprint 2; GL-
ZLM_f2, Grey-Level Zone Length Matrix Fingerprint 2; GLZLM_f3, Grey-Level Zone Length Matrix Fingerprint 3.

The combined clinical, laboratory and radiomic model had 85% accuracy, 81% sensi-
tivity, and 86% specificity (AUC = 0.91, Figure 3). The model without radiomic features
had AUC = 0.85 (Figure S2, delta with the model including the radiomic features = −0.06).
The decision tree based on the results of multivariate logistic regression had the following
knots: APRI score < 0.28, BMI ≥ 24, GLZLM_f3 < −0.3, GLZLM_f3 ≤ 0.5, GLCM_f2 < 0.094
(Figure 4). It achieved 83% accuracy, 89% sensitivity, and 80% specificity (AUC = 0.88).

In the validation set, the multivariate logistic regression had an average accuracy of
71% (Std Dev 12%).
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to the decision steps. Each colored square reports: (a) the response mode class in the node, i.e., the
predicted outcome of that node (presence of NRH =1; absence of NRH =0, the top number in the
square); (b) the percentages of observations in the node belonging to the first response class (absence
of NRH) and the second response class (presence of NRH) (the two central numbers in the square,
summing up to 1); (c) the percentage of the total population falling into the node (the bottom number
in the square). Decision rules are specified on each node.

3.3. Predictive Model for NASH

At the multivariate analysis, one radiomic feature was associated with NASH (Table 5):
conventional_HUQ2 (OR = 0.79, CI95% = 0.66–0.94, p = 0.010).
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Table 5. Multivariate analysis of predictors of NASH.

Variable OR (95% IC) p

CONVENTIONAL_HUQ2 0.79 (0.66–0.94) 0.010

GLZLM_f2 0.22 (0.03–1.66) 0.143
HUQ2, Hounsfield Unit Quartile 2; GLZLM_f2, Grey-Level Zone Length Matrix Fingerprint 2.

Steatohepatitis was predicted with 91% accuracy, 86% sensitivity, and 92% specificity
(AUC = 0.93, Figure 5).
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The model without radiomic features had AUC = 0.83 (Figure S3, delta with the
model including the radiomic features = −0.10). The decision tree based on the results of
multivariate analysis had a single knot, i.e., conventional_HUQ2 ≥ 99 (Figure 6).
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Figure 6. Decision tree for the prediction of NASH (based on model in Table 5). Nodes correspond
to the decision steps. Each colored square reports: (a) the response mode class in the node, i.e., the
predicted outcome of that node (presence of NASH =1; absence of NASH =0, the top number in the
square); (b) the percentages of observations in the node belonging to the first response class (absence
of NASH) and the second response class (presence of NASH) (the two central numbers in the square,
summing up to 1); (c) the percentage of the total population falling into the node (the bottom number
in the square). Decision rules are specified on each node.



Cancers 2021, 13, 3077 12 of 18

It achieved 86% accuracy, 93% sensitivity, and 84% specificity (AUC = 0.88). In the vali-
dation set, the multivariate logistic regression had an average accuracy of 91% (Std Dev 11%).

3.4. Contribution of Radiomic Features Extracted from the Unenhanced CT Scan

In the same setting of 78 patients, we analyzed the performances of models considering
radiomic features extracted from the unenhanced CT scans. No textural parameter was
predictive of grade 2–3 sinusoidal dilatation. Considering NRH, the following independent
predictors were identified: Hist_IQR (OR 0.55, CI = 0–34–0.89, p = 0.01), NGLDM_f2
(OR 0.16, CI = 0.04–0.067 p = 0.012), and GLZLM_f5 (OR 30.46 CI = 1.24–745.57 p = 0.036).
The model identified at the multivariate analysis had 82% accuracy, 74% sensitivity, and
86% specificity (AUC = 0.91). In the validation set, the model had an average accuracy
of 71% (Std Dev 12%). Considering NASH, conventional HUQ2 (OR 0.52, CI = 0.31–0.87
p = 0.009) was confirmed as independent predictor, with a 94% accuracy, 93% sensitivity
and 94% specificity (AUC = 0.99). In the validation set, the model had an average accuracy
of 85% (Std Dev 10%).

4. Discussion

An accurate non-invasive diagnosis of NASH and CALI is a relevant unmet need for
clinicians. Standard imaging modalities provide a reliable diagnosis of steatosis, but not of
NASH and CALI [25,26]. Some radiological signs of sinusoidal dilatation and NRH have
been depicted, such as liver parenchyma heterogeneity and focal hyperintensities at mag-
netic resonance imaging, liver atrophy after chemotherapy at CT scan, and splenomegaly,
but their assessment is not standardized [25,49–52]. Also a percutaneous liver biopsy
has low reliability in identifying liver injuries other than steatosis because of their het-
erogeneous distribution and the small amount of sampled tissue available [27]. To date,
CALI prediction relies on patients’ history, i.e., chemotherapy regimen and the number of
administered cycles, and on some liver function tests, such as APRI score or ICG test, even
if the results of these tools are misleading in up to one-third of patients [10,11,16,19,22–24].

Recently, image mining and analysis have presented new perspectives. During the
past decades, several approaches - statistical, geometrical, structural, and model-based
methods to transform-based techniques - have been explored to extract quantitative in-
formation from images and develop potential non-invasive biomarkers to detect and
characterize diseases [53]. Above all, the use of grey level co-occurrence and higher-order
matrices has rooted in clinical research as texture descriptors, although their adoption has
generally turned into automatic feature extraction tools, namely radiomics [54]. Radiomics
involve the definition of mathematical features able to capture data on the grey-scale pat-
terns, interpixel relationships, shape, and spectral properties within regions of interest on
radiological images [55]. This technique allows researchers to access standardized texture
information about images and to carry out informed inference, aiding traditional clinical
investigations. To date, radiomics effectively predict biological characteristics and out-
comes of several diseases [28,56,57]. In CLM patients, evidence is preliminary, but texture
analysis not only improves prediction of survival compared to standard prognosticators
but also provides earlier and more accurate prediction of response to chemotherapy than
RECIST criteria [29]. Radiomics also accurately identifies fibrosis when applied to liver
parenchyma analysis [30–33]. However, no study analyzed the association of textural
features with CALI.

Radiomics are expected to detect CALI-related tissue heterogeneity and alterations,
as confirmed by the present analysis. Considering sinusoidal dilatation and NRH, ra-
diomic signatures improved the diagnosis of liver injuries achieved by standard clinical
and laboratory parameters: the inclusion of radiomic predictors in the multivariate model
increased the AUC by 0.10 for sinusoidal dilatation (overall AUC 0.87) and by 0.06 for
NRH (AUC 0.91). Soubrane et al. reported similar performances of the APRI score for
the prediction of sinusoidal dilatation (AUC 0.85) [19], but such good results were not
confirmed by other series. The present study demonstrated that radiomic features inte-
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grate the “traditional” predictors, i.e., APRI score, anti-VEGF therapies, and chemotherapy
duration [10,12,16,19]. The performances of the combined model were promising for sinu-
soidal dilatation (64% sensitivity, 82% accuracy), and very good for NRH (81% and 85%,
respectively). The adoption of a decision tree further improved the diagnosis of sinusoidal
dilatation (92% sensitivity), better exploiting potential nonlinear associations of the ra-
diomic predictors with the outcome. Split-oriented decision steps in tree-based models
not only optimized results but also provided an easy-to-handle tool that substantiates the
clinical applicability of radiomics. Radiomic features associated with sinusoidal dilatation
and NRH (derived from NGLDM, GLRLM, GLZLM, and GLCM matrices) catch the tissue
heterogeneity, expressed as grey-level variability between one voxel and its neighbors in
the three-dimensions and the homogeneity of runs of voxels in two or three dimensions.
This is in line with pathology data that depict irregular sinusoidal congestion and nodular
area, and with data of magnetic resonance imaging that show some irregular parenchymal
enhancement [8,49].

Significant data were also obtained for NASH. The Hounsfield Q2 values (HUQ2,
i.e., the Hounsfield value of the second quartile, median value) led to a highly reliable
diagnosis of steatohepatitis (86% sensitivity, 92% specificity). The addition of radiomic
features to standard clinical predictors increased the AUC by 0.10 with the identified cut-off
value associated with extremely high performances (93% sensitivity, 86% accuracy). HUQ2
measures the intensity of tissue signal within a certain attenuation range that is coherent
with the presence of steatosis, the most relevant component of NASH [26]. This parameter
is more a statistical measure rather than a higher order textural feature. Nonetheless, the
present analysis provided a cut-off value of HUQ2 that made it a usable tool for NASH
diagnosis. We obtained the same results and performances (HUQ2, accuracy 94%) when
the textural features extracted from unenhanced CT scans were considered, suggesting that
radiomics may adequately capture these tissue characteristics even without the need for
contrast enhancement.

The present study also proposed a virtual biopsy of the non-tumoral liver, an easy-
to-collect standardized VOI with a large tissue sample (25 × 10 mm, approximatively
2 cm3 of liver tissue), much larger than actual liver biopsies and enough to catch the
heterogeneous distribution of CALI. It is true that a radiomic analysis of the entire liver
could be more exhaustive but this would require a much more complex segmentation
with a time-consuming exclusion of intrahepatic vessels and tumors and significantly
greater computational power. In the future, the implementation of AI-driven segmentation
protocols and the advent of quantum computing will probably overcome these limitations.
The present virtual biopsy is highly reproducible and the adoption of software with
automatic extraction of radiomic features (LifeX®) increases the potential diffusion of this
approach, even if the interpretability and explainability of radiomic data are still debated.

A reliable assessment of NASH and CALI could have a consistent impact on clinical
practice. Sinusoidal dilatation, NRH, and steatohepatitis are associated with an increased
risk of intraoperative bleeding, postoperative liver failure, and mortality. The surgical
strategy could be adapted to the characteristics of the non-tumoral liver [21]. Higher cut-off
volume values of the future liver remnant could be pursued in the presence of CALI or
NASH, leading to extended indications to preoperative portal vein occlusion [58]. The pres-
ence of portal hypertension should be excluded in patients with NASH and NRH [10,15,59].
Further clinical applications of the proposed virtual biopsy can be anticipated. CALI have
some correlations with the effectiveness of chemotherapy (the higher the grade of sinu-
soidal injury, the lower the pathological response rate) and their identification is essential
to further understand this association [11,60]. An accurate diagnosis of CALI is needed
in case of CLM recurrence to evaluate the liver tolerance to new chemotherapy lines and
repeat surgery [61]. Steatosis and NASH have an increasing incidence in Western countries
because of their close relationship with obesity and metabolic syndrome and may lead
to liver dysfunction and tumors in the long term [14,15,62]. The virtual biopsy could be
helpful to monitor liver injuries and identify patients at risk for complications. Similarly,
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some chronic medications may lead to steatohepatitis [46]. Steatosis and NASH have
shown some reversibility with lifestyle modifications, correction of metabolic disorders,
and bariatric surgery [14,63,64], but non-invasive diagnosis of CALI is mandatory to verify
the effectiveness of any treatment.

The present analysis has some limitations to address. First, it is an exploratory
retrospective study with a limited number of patients. Data are preliminary and require
an external validation but it is important to note that they are based on some robust
foundations: CALI had a standardized and prospective evaluation, patients were treated
over a short two-year period with homogeneous schedules, standard predictors of CALI
were confirmed together with the new contribution of radiomic signatures, and internal
validation provided encouraging confirmation of good performances. A second limitation
is that some predictors of CALI were not tested, such as the ICG test or LiMax test,
but they are not standard in clinical practice and are expected to give a contribution
similar to the APRI score. A third is related to the reproducibility of data that could
be reduced by the heterogeneity of imaging techniques among institutions, even if the
CT scan is the most standardized imaging modality. Finally, the usability of radiomic
features remains an issue. Our explorative analysis provided intriguing data, but we are
still far from accomplishing a real clinical application of radiomics, which remains the
challenge of research in the near future. Radiomics does indeed suffer from closed-source
nature, unharmonized acquisition settings, discordant reconstruction parameters, lack
of interpretability, redundancy, and methodological bias [54,65,66]. A wide and active
research area is growing around grey-level quantization and pre-processing, aiming at
informative rather than descriptive statistics from images. Such studies could open new
perspectives in clinical applications of medical imaging analysis.

5. Conclusions

In conclusion, it was observed that a radiomic signature based on the texture analysis
of liver parenchyma might improve diagnosis of sinusoidal dilatation, NRH, and steatohep-
atitis. Although the application of radiomics to clinical practice is still to be accomplished,
our preliminary data can provide a basis for an innovative precision medicine approach to
patients at risk for liver injuries.
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Supplementary Materials.
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