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Abstract

The coupling between cardiac mechanics and electric signaling is ad-
dressed in a non–standard framework in which the electrical potential dic-
tates the active strain (not stress) of the muscle. The physiological and
mathematical motivations leading us to this choice are illustrated. The
propagation of the electric signal is assumed to be governed by the FitzHugh–
Nagumo equations, rewritten in material coordinates with a deforming sub-
strate; the solution is compared with the rigid case and differences in celerity
and width of a pulse are discussed. The role of visco-elasticity is pointed
out. We show that the stretching of coordinates is insufficient to originate
electromechanical feedback; nevertheless, it can increase the energy of a
perturbation enough to produce a traveling pulse: an energy estimate and
numerical evidence are reported. To support these conclusions, numerical
simulations in two dimensions show the interplay between electric propa-
gation and mechanical strain.

Introduction

The mathematical modeling of the cardiac activity is a longstanding research
field; at some extent it provides the paradigm of a complex system, as it incor-
porates several mathematical issues that are already challenging by themselves.

∗This work has been supported by the ERC Advanced Grant Mathcard (number 227058).
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Without even mentioning the social relevance of the problem, we resume below
a partial list of the issues that characterize the mathematical modeling of the
heart (see [20] for a review of the subject).

• The cardiac mechanics is non–linear: the heart tissue undergoes large de-
formations and viscoelasticity is relevant, as the time scale of a single heart
beat is of the order of the relaxation time of the material.

• Geometrical data, material parameters and boundary conditions are com-
plex and, at least in vivo, they are affected by a severe uncertainty.

• There is a complex fluid–solid interaction between the heart pump and
the blood, involving non–trivial matching of boundary conditions with the
global vascular network.

• The dynamics of the electric potential is non–linear, and more than one
equilibrium values exist.

• The cardiac deformation involves an active contribution, due to the fiber
contraction, and a passive one, mainly due to elastin and collagen.

• The mechanics as well as the electric signal propagation are anisotropic,
as they are dictated by the fibers orientation.

• Time scales span a large range: the time scale of the electric signal is
typically 50 ms., the mechanical wavelength is one order of magnitude
bigger. On long time scales (order of weeks) the heart remodels, i.e. it
has the ability to grow, resorb material, modify its shape according to its
functionality.

The theoretical modeling of the cardiac activity is both a longstanding topic
and a very active field of current research; in this paper we do not have the
ambition to face the mathematical modeling of a heart in toto, we rather focus
on the electromechanical coupling only. Our vein is to keep the mathematical
complexity of the finite elasticity and electric models at a minimum, while the
mutual coupling is addressed in quite a general way.
The application of the principles of force balance to living matter features a spe-
cific difficulty: living tissues do not only passively balance external loads (as in
rubber, for instance), but they actively deform. This ability of the living matter
is usually taken into account in mechanical models at the level of a prescribed
active stress that contributes to the overall tensional state. The constitutive
prescription of the active stress is then a delicate issue. In the relevant literature
it is usually addressed by an additive decomposition of the standard (passive)
stress and the active one; the latter is to be constitutively specified [20].
In this paper we follow the alternative idea proposed by Cherubini and cowork-
ers [3]: the fiber contraction driving the de-polarization of the cardiomyocytes
rewrites in the mechanical balance of forces as a prescribed active deformation,
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rather than as an additive contribution to the stress. This approach has its very
roots in plasticity and it has been already successfully exploited in biomechanics
to explain the emergence of residual stress in arteries and their stress-driven
remodeling ability [18]. The idea of a multiplicative decomposition of the ten-
sor gradient of deformation directly incorporates the micro-level information on
the fiber contraction in the kinematics, without the intermediate transcription
of their role in terms of stress. Conversely, the strain energy of the biological
material now depends at an inner level on the activation potential and the alge-
braic aspects of the theory result more complicated. This and other issues are
discussed in the paper.
The first section of the paper is devoted to a discussion of the pros and cons
to underlying an active strain approach to cardiomechanics. The model is then
derived in detail and a comparison with the well established model by Panfilov
et al. [15] is discussed at the end of Section 3. When neglecting viscoelasticity
effects and abstaining from introducing an additive stretch activated current in
the potential balance, the equations turn out to be simple enough that some
formal analysis can be carried out: explicit form, celerity and width of traveling
fronts is found in a 1D model problem and a sufficient condition for the emer-
gence of a pulse from a perturbation is derived.
Numerical simulations are collected in Section 6 and 7. The 1D simulations
exemplify the theory exposed above, while some two–dimensional results show
the potential ability of the model to approach more complex geometries.

1 Mechanics

We consider the heart as a hyperelastic body subject to external loads and active
deformation that originate a strain field. The motion of the point X at time t
is therefore defined by the vectorial map x = x(X, t) from the initial (relaxed)
configuration to the current one. The gradient of this function is a tensor (the
tensor gradient of deformation) indicated as follows:

F = Gradx, Fij =
∂xi

∂Xj
, 1 ≤ i, j ≤ 3. (1.1)

Here and in the following the symbols Grad and Div denote the gradient and
the divergence operators with respect to the X coordinates, respectively.
Following [3] we decompose the tensor gradient of deformation into two factors,
the micro (active) and the macro (passive) one:

F = FeFo. (1.2)

The rationale of this decomposition is the following: fibers inside the muscle
contract and become shorter. They form a kind of a watermark, defined in
every point of the body, and the kinematics of this microstructure is accounted
by Fo, a distortion that does not necessarily preserve compatibility of the body,
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but dictates the deformation at a fiber scale. The deformation at the macroscale
is measured by Fe, that accounts both for the deformation of the material needed
to ensure compatibility (possibly undermined by Fo) and the possible tension
due to external loads. Notice that, in general, neither Fe nor Fo are gradients
(they are not integrable) or, in other words, there not exists any real motion
that corresponds to fibers elongation without muscle contraction: indeed (1.2)
is a pure theoretical decoupling that associates the microscale dynamics to the
macroscale continuum mechanics.
The lack of integrability of Fe does not allow to introduce an intermediate global
configuration corresponding to a global motion; however such a meaning can be
retained in a local sense (see [13] for a detailed discussion of this issue).
We accordingly assume that the strain energy of the cardiac muscle depends
only on the deformation at the macroscale

W = W (Fe). (1.3)

In other words, the energy storage occurs only at macro-level. Of course, there
is a micro-force that dictates the sarcomere contraction and, as a matter of fact,
much is known about the energy spent in such a process, but this force balance
is immaterial in the present context because the kinematics is directly dictated.
One could then wonder about the energy balance hidden in the present context
and the corresponding nature of the forces that generate the contraction of the
muscle. Without entering into details, we want to mention that here the force
generated by sarcomere contraction is supposed to have a dissipative nature and
thermodynamic issues can be properly addressed [5, 19].
The bundles (the pathways of electric signals) cross the heart, transmitting the
signal in a short time (few milliseconds). The electric potential then travels in the
whole muscle body, in a time-scale of the order of one second; this propagation
mainly occurs along preferential directions dictated by the orientation of the
mechanical fibers, the same ones that primarily drive the mechanical contraction.
However, the charged ions also diffuse in the direction normal to the fibers and
the transverse velocity is about one half of the longitudinal one.
In a simple setting, one can assume that in any point X the fibers are oriented
according to one direction only, namely n. The unitary vector field n(X) denotes
the (unique) direction of the fibers in X in the relaxed state of the material. The
microscale part of the deformation tensor can take the simple form

Fo = 1 + γ(v)n ⊗ n, (1.4)

where v is the electrical potential. The activation function, to be constitutively
prescribed, must be such that γ > 0 denotes elongation, γ < 0 denotes contrac-
tion. Note that det(F0) = 1 + γ.
The Piola stress tensor P̃ in the locally intermediate configuration is obtained
by Frechet derivative of the strain energy (1.3)

P̃ =
∂W

∂Fe
, (1.5)

4



and it accounts for the tension due to the deformation Fe = FF−1
o . The cor-

responding force balance equation is conveniently written in the original ref-
erence configuration (spanned by the X coordinates) by a pull back (see, for
instance, [11]):

Div
(

JoP̃F−T
o

)

= 0, (1.6)

to be supplemented by suitable boundary conditions.
Summarizing, the present model for the mechanics of the cardiac activity re-
quires, from a constitutive viewpoint, a strain energy, a geometrical description
of the fiber vector field n and a constitutive law γ(v) relating the fiber con-
traction to the electric potential v. The strain energy can be also generalized
to depend on the fiber distribution n (an orthotropic material) without much
relevance for our purposes.

1.1 Active stress vs. active strain

The norm in biomechanics is to model the ability of living matter to reshape
itself adding an active component of the stress to the usual passive one. Although
such a standard approach has already been successfully applied to a number of
examples [7, 15, 20], the alternative choice of an active strain adopted in the
present work deserves to be explored.
As a starting remark, a simple example shows that the two approaches are not
equivalent, except in the linear case or when an explicit dependence of the active
stress on the strain is assumed to exist. In fact, consider a zero-th dimensional
spring of rest length ℓo and stiffness k that elongates actively to ℓa and is subject
to the force f . The spring then elongates to ℓ so that the force balance is satisfied.
Active stress and strain predict, respectively,

k(ℓ − ℓo) + fa = f, (1.7)

k(ℓ − ℓa) = f. (1.8)

It is easy to see that the two theories are equivalent provided that fa = −k(ℓa −
ℓo). On the other hand, for a cubic spring the two models rewrite

k(ℓ − ℓo)
3 + fa = f, (1.9)

k(ℓ − ℓa)
3 = f, (1.10)

and no simple relation for fa independent of ℓ can be provided. The same
comment applies in the three-dimensional case, in absence of residual stress [10]:
only when

||F − 1|| ≪ 1, ||Fo − 1|| ≪ 1, (1.11)

then

P(FF−1
o ) = P

(

(1 + (F − 1)) (1 + (Fo − 1))−1
)

(1.12)

∼ P ((1 + (F − 1)) (1 − (Fo − 1)))

∼ P (1 + (F − 1) − (Fo − 1)) ∼ P(F) − P(Fo).
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After assessing that the two approaches are not equivalent, it remains to be
understood their pro and cons in terms of physiological correctness, mathemat-
ical stability and numerical simplicity. From a physiological standpoint, the
zero–dimensional model illustrated above is too crude when the active stress fa

or/and the active strain ℓa are independent on any other field. A deeper physio-
logical insight is provided by experiments at a cell level. Accurate measurements
reported by Iribe et al. [8] show a definite evidence of linear dependence of the
active force produced by a cardiomyocyte versus its pre-stretch. This cellular
equivalent of the Frank–Starling effect has to be upscaled at a tissue level as-
suming that the active tension depends linearly on the macroscopic elongation ℓ
(see [20], for example). However, this physiological behavior can be reproduced
by both an active stress model(straightforwardly) and an active strain model.
The validity of different macroscopic approaches to tissue contraction, would be
enforced by evidence that myocytes control stress or strain: a clear result in this
respect would support either active stress or active strain macroscopic models.
In our opinion, the striking linearity of the experimental curves makes it impos-
sible to draw a conclusion in this respect, as all the plots can be understood
in two ways. An increase of preload (prestretch, respectively) yields a linear
increase in the ability to perform work (contraction, respectively).

A natural objection to the use of a multiplicative decomposition like in (1.2)
is that it yields an algebraic complication in the equations: a closer look at
Equation (3.24) reveals that cumbersome calculations with Fo occur. As a non–
minor practical consequence, standard finite elements codes for finite elasticity
cannot be easily adopted, because the active strain acts at an inner level in
the equations. Conversely, an additive active stress can be simply included in
standard codes and this may be one of the reasons that make this approach more
popular.

In principle, at least, the active strain approach is more satisfactory from
the modelling point of view, when the contraction of the observable fibers are
included in the equations, while the active stress needs to be tuned in order that
it can provide the observed deformation.

Finally, mathematical requirements of frame indifference and stability should
apply. Few results are known in this respect: a recent paper by Pathmanathan et

al. [16] shows that rank one ellipticity cannot be ensured when large deformations
occur for a specific active stress form. The same kind of problems are reported
and addressed, at a numerical level, in [14]. It remains to understood if active
strain models do not face the same problem.

2 Electric activity

The electrical signal in the cardiac muscle is actually a ionic flux generated by
a potential gap at a cellular or extra-cellular level. A broad literature exists on
the modeling aspects of this process; the classical book by Keener and Sneyd [9]
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is an excellent introduction in this respect. However, as the focus of this work
is on the electromechanical coupling, we restrict to the simplest equation that
provides a correct qualitative dynamics for the propagation of the electric signal
in a fixed domain, wherein the electric potential v satisfies a diffusion–reaction
equation of FitzHugh–Nagumo type coupled with a reaction–transport equation
for the gate variable w. The FitzHugh-Nagumo model written in coordinates
fixed in space reads:

∂v

∂t
+ ∇ · (ẋv) −∇ · (D∇v) = −Av(v − α)(v − 1) − Aw, (2.13)

∂w

∂t
+ ∇ · (ẋw) = v −

w

τ
. (2.14)

Here D is a second order positive definite diffusion tensor, A is a positive con-
stant [9] and both v and w are defined per unit volume. The symbols ∇ and
∇· denote the gradient and divergence operator in x coordinates. Typically
A ≃ ||D|| ≫ 1, for a suitably defined norm of D. Note that (2.13) is a bal-
ance equation for the potential, accounting for the dynamics between diffusion
and transmembrane currents of ionic species, whereas equation (2.14) does not
involve any spatial flow besides convection. The divergence term at the left
hand side represents the convective transport due to the displacement of the
material itself as it can be observed by using coordinates fixed in space (usually
called spatial coordinates or also Eulerian coordinates). These terms are usually
negligible and, in any case, they disappear when the equations are rewritten in
material coordinates.
As the interplay between active and passive tension originates a large deforma-
tion in the heart body and the elasticity equations are conveniently stated in a
material coordinates system, we rewrite equations (2.13) in X coordinates. To
this aim we first rewrite Equation (2.13) as a system of two first order equations
in divergence form

∂v

∂t
+ ∇ · (ẋv) −∇ · (Df) = −Av(v − α)(v − 1) − Aw, (2.15)

f = ∇ · (v1). (2.16)

In a material frame of reference these equations rewrite

∂

∂t
(Jv) − Div

(

J(Df)F−T
)

= −AJv(v − α)(v − 1) − AJw, (2.17)

Jf = Div (JvF−T ), (2.18)

where J = det(F). With an abuse of notation, in equations (2.17) and (2.18)
we denote by the same symbols functions that take the same values acting on
different domains. The domains are in one to one relation, spanned by the X

and x coordinates; the context clarifies the meaning. Direct substitution yields
the second order equation

∂

∂t
(Jv) − Div

(

F−1DDiv
(

JF−T v
))

= −AJv(v − α)(v − 1) − AJw, (2.19)
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or

∂

∂t
(Jv) − Div

(

JF−1DF−T Grad v
)

= −AJv(v − α)(v − 1) − AJw, (2.20)

where the relation Div (JF−T ) = 0 has been used (see, e.g., [11]). As a further
simplification, one may consider an isotropic homogeneous diffusion: the diffu-
sion tensor becomes just the identity one times the constant scalar coefficient
D, so that (2.20) simplifies

∂

∂t
(Jv) − DDiv

(

JC−1Grad v
)

= −AJv(v − α)(v − 1) − AJw, (2.21)

where C = FTF is the right Cauchy–Green tensor.
Note that equation (2.21) is obtained on the basis of a coordinates transformation
(from spatial to material ones), purely accounting for kinematics: the mapping
is encoded in the gradient of deformation F, that has to be provided by the
balance of mechanical forces Eq. (1.6).

3 Constitutive assumptions

The constitutive assumptions in this paper are kept at a minimum degree of com-
plexity and, in fact, the discussion of the section above remains unaltered when
applied to a reaction term at the right hand side of Equation (2.13) more com-
plicated than a cubic polynomial (i.e. more complex ionic models). Following
the same vein, we restrict to considering an isotropic Mooney–Rivlin material

W = W (Fe) =
µ

2
(I − 3) +

µ2

2
(II − 3) , (3.22)

where I and II are the first and second invariant of the left Cauchy–Green tensor
of Fe, respectively:

I = tr
(

FeF
T
e

)

, II =
1

2

(

(

tr
(

FeF
T
e

))2
− tr

(

FeF
T
e

)2
)

. (3.23)

We will consider only the case µ2 = 0, corresponding to a neo–Hookean ma-
terial. It is often assumed that biological materials can only undergo isochoric
motion under load. This assumption usually stems by observing that biological
materials are essentially made of water. In the present framework a material
is incompressible, if the visible deformation F satisfies the kinematic constraint
J = detF = 1. In this respect our approach differs from Cherubini et al. who
assume detFe = 1 [3]. After introducing the pressure p, the Lagrange multiplier
enforcing incompressibility, a pull-back to the initial fully relaxed configuration
for a neo-Hookean material, using the relation (1.6), yields the following form of
the Piola tensor

P = Jo
DW

DFe
F−T

o − JpF−T
e F−T

o = µJoFF−1
o F−T

o − JpF−T , (3.24)
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where Jo = detFo.
The function γ introduced in Equation (1.4) dictates the contraction of the car-
diac muscle depending on the value of the potential. This activation is actually
driven by the concentration of Calcium ions and is sometimes accounted for by
complicated dependencies. In this work we restrict ourselves to consider acti-
vation of the contraction proportional to the potential field, according to the
following simple rule:

γ = −βv. (3.25)

A typical muscle contraction involves a 30% strain and therefore we choose the
parameter β ≃ 0.3. According to this relation, γ is negative (contraction) for a
positive potential difference (the depolarization phase). We are aware that such
a crude coupling cannot account for well known spatio–temporal dynamics, as
the much longer relaxation time of the mechanical contraction with respect to
the width of the potential pulse (1.4); however we decide again not to include
such a delay for the time being in our model to keep the minimum degree of
complexity.

Equations (1.6), (2.21) and (2.14) supplemented by the constitutive assump-
tions (1.4), (3.24), (3.25) and the incompressibility constraint, together with
initial and boundary conditions provide a simple three dimensional framework
for the electromechanical cardiac coupling. Summarizing, the three–dimensional
model reads:

∂

∂t
(Jv) − Div

(

JF−1DF−T Grad v
)

= −AJv(v − α)(v − 1) − AJw, (3.26)

∂

∂t
(Jw) = Jv −

Jw

τ
, (3.27)

Div
(

µJoFF−1
o F−T

o − JpF−T
)

= 0, (3.28)

J = 1, (3.29)

to be supplemented by suitable initial and boundary conditions.
A comparison between the equations above and the model by Panfilov et

al. [15] may help to point out how mechanics is handled in a different way and
some physical and physiological mechanisms are neglected herein.
The first difference has been already discussed in depth: the potential here
dictates the active strain, not the stress. The second difference is that in the
system (3.26)–(3.28) there is neither delay nor difference in wavelength between
the electrical wave and the corresponding mechanical contraction; this effect is
physiologically well known and could be easily taken into account considering
a viscolastic behavior of the substrate. Alternatively, one could consider more
sophisticated models and relate the active contraction to calcium concentration,
which is known to be characterized by a slower dynamics than the overall electric
potential (see e.g. [1]). The last major difference is that no stretch activated
current is added at the right hand of equation (3.26) to account for the observed
ability of myocytes to get electrical activation by a mechanical stretch. This
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effect is obtained by Panfilov and coworkers adding a linear term in v at the
right hand side of the action potential equation (3.26), activated by a measure
of the elastic strain (namely the density, for a compressible material). Its effect is
to move to the right the zeros of the third order polynomial in v, to destabilize
possible spiral waves as a self–originated peacemaker. While aware of these
biophysical simplifications, the system (3.26)–(3.29) is simple enough to allow a
mathematical insight of the electromechanical coupling.

4 Pulse along a fiber: the one–dimensional case

In the limit of infinitesimal strain (F → 1) , the electro–mechanical coupling
vanishes in the equation for the action potential (3.26), and it is interesting to
understand to what extent the solution differs for a finite contraction of phys-
iological magnitude. In other words, we address the question whether such a
coupling involves a significant modification in a traveling wave, when compared
with the usual solution computed on fixed domains. To this aim consider the
one–dimensional displacement field x = x(X) along a fiber. For the sake of
simplicity we take A = 1 in the present section. The active deformation tensor
Fo simply reads

Fo = 1 + γ, (4.30)

and, assuming one–dimensional motion, the momentum equation reads

(

x′

1 + γ

)

′

= 0, (4.31)

which can be immediately integrated to give

x′ = 1 + γ, (4.32)

where possible constants (depending on time only) vanish because of the bound-
ary conditions at infinity. Back substitution into (2.20) yields

∂

∂t
((1 + γ)v) − D

∂

∂X

(

1

1 + γ

∂v

∂X

)

= −(1 + γ)v(v − α)(v − 1) − (1 + γ)w,

(4.33)

or, expanding the time derivative,

(1 + γ)
∂v

∂t
− D

∂

∂X

(

1

1 + γ

∂v

∂X

)

= −(1 + γ)v(v − α)(v − 1) − (1 + γ)w − v
∂γ

∂t
.

(4.34)

We start assuming that γ(v) is a smooth function. Whatever the constitutive
relation that provides γ in terms of v, some qualitative behaviors can be devised
in (4.34). The zero-th order terms at the right hand side are multiplied by
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a non-null factor and therefore the points of equilibrium are not modified by
the electromechanical coupling. Observing that a step in the potential always
produces a contraction (γ ≤ 0), it follows that the twitch rereads as a greater
effective diffusion in the second term at the left hand side of (4.34). Analogously,
the time derivative in the last term at the right hand side enhances the temporal
variation of the potential, since it is positive in contraction and negative in
relaxation.
If the activation function is linear in the potential we get the final problem

∂

∂t
((1 − βv)v) − D

∂

∂X

(

1

1 − βv

∂v

∂X

)

= −(1 − βv)v(v − α)(v − 1) − (1 − βv)w,

(4.35)

∂

∂t
((1 − βv)w) = (1 − βv)

(

v −
w

τ

)

. (4.36)

4.1 Traveling fronts

When neglecting the recovery phase (w = 0), one can look for steady reaction
fronts traveling at a constant speed and connecting the equilibrium states v = 0
and v = 1. In other words, we look for traveling wave solutions of the type
v = v(x − ct), where c is to be determined in terms of the physical parameters
of the problem (the diffusion D and the equilibrium value α). Using these
assumptions equation (4.35) rewrites as a second order boundary value problem

−c(1 − 2βv)v′ − D

(

1

1 − βv
v′

)

′

= −(1 − βv)v(v − α)(v − 1), (4.37)

supplemented by the asymptotic boundary conditions v(−∞) = 0 and v(+∞) =
1. We look for the solution of (4.37) in the one–parameter family of functions
satisfying the first order equation

v′ = av(1 − v)(1 − βv), (4.38)

with initial condition v(−∞) = 0. The parameter a represents the steepness
of the front and should be fixed using equation (4.37). Equation (4.38) can be
integrated by separation of variables, however a simple argument demonstrates
that a class of solutions is a front connecting the states v = 0 and v = 1. In fact,
for v < 1 it is monotonically increasing and it cannot overcome the threshold
v = 1 because the derivative becomes negative therein. Therefore, the solution
of the initial value problem (4.38) also satisfies the boundary conditions of the
boundary value problem (4.37).
We now show that, with a suitable choice of the parameter a, the front solution
of (4.38) is also a solution of the second order equation (4.37). We directly plug
the relation (4.38) in the original problem, thus finding a first order algebraic
polynomial in v that must be identically null. This is possible only if all the
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coefficients of the polynomial vanish, thus leading to the following relations:

a2 =
1 − 2αβ

1 − β

1

2D
, (4.39)

c =
1 − 2α

2

(

2D

(1 − β)(1 − 2αβ)

)1/2

. (4.40)

Note that in the case of β = 0 we recover the usual FitzHugh–Nagumo equation
and the celebrated explicit hyperbolic tangent solution. A traveling front solu-
tion exists only if αβ < 1/2, a condition that did not show up in the case of null
contraction (β = 0). As expected from the general discussion above, the front is
sharper and travels faster than in the case of fixed domain.
Note that the solution v(X, t) described above depends on the variable X span-
ning the fixed material domain; the representation of the “same” function in the
physical domain v(x(X, t), t) can be recovered integrating Equation (4.32):

x(X, t) = X − β

∫ X

−∞

v(X̂, t)dX̂. (4.41)

4.2 Viscoelasticity

This simple one–dimensional setting allows an easy extension of the theory pre-
sented above to viscoelastic materials. The simplest example of viscoelastic solid
is provided by the Voigt–Kelvin model, ideally represented by a spring and a
dashpot in parallel. In zero–dimensional linear elasticity the stress–strain σ − ǫ
relation is classically represented as

λǫ̇ + ǫ = σ, (4.42)

where λ is the relaxation time of the material and the upper dot denotes differ-
entiation with respect to time.
In the present framework there is no external load, the strain has to be mea-
sured from the intermediate configuration and therefore the constitutive equation
(4.42) rewrites as follows

λ
d

dt

(

x′ − 1

1 + γ

)

+
x′ − 1

1 + γ
= 0, (4.43)

that is a generalization of (4.32).
Comparing λ with τ , the typical time over which the signal is non–null, one can
understand the role of viscoelasticity and appreciate the dynamics of the system
at different regimes. For τ ≫ λ we recover the fully elastic case discussed above,
while for τ ≪ λ the material does not undergo any deformation in the relevant
time scale, and the limit of rigid substrate is recovered. For intermediate values,
the propagating signal has a velocity and width within those of the extreme
cases.
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5 Initial conditions and start–up of a pulse

In this section, we derive the condition that an initial perturbation in the po-
tential field must satisfy to start up a wave that eventually takes the form of a
traveling pulse of permanent shape.
A closer look at Equation (2.21) reveals that two mechanisms of opposite nature
dictate the evolution of the signal: the diffusion damps the perturbation while
the nonlinear term excites the field. It is therefore expected that a minimum
energy is needed to trigger a pulse in the material and we aim to evaluate it.
For the sake of generality, we assume here that the muscle is possibly deformed
at time t = 0 as measured by the gradient of deformation F. After some al-
gebraic manipulations, it is found that the energy of the solution satisfies the
equation

∂

∂t

∫

Ωo

(

v2

2
+ A

w2

2

)

dΩ = − D

∫

Ωo

|F−T Grad v|2dΩ

− A

∫

Ωo

v2(v − α)(v − 1)dΩ − A

∫

Ωo

w2

τ
dΩ.

(5.44)

At time t = 0 the energy of the solution starts growing, if the following condition
is satisfied:

A

∫

Ωo

v2(v − α)(1 − v)dΩ ≥ D

∫

Ωo

|F−T Grad v|2dΩ, (5.45)

where w = 0 at the initial time without loss of generality.
A question of clear interest is whether an electric signal can be triggered by
mechanical deformation only. According to the model discussed in the present
work, the answer is negative: a closer look at Equation (2.20) reveals that no
source term depends on strain only and therefore no contraction can rise a non–
zero potential.
However, for a given potential field v that does not satisfy the energy condition
(5.45), a mechanical strain can induce such a modification in the derivatives of
the displacement so as to originate a pulse. In fact, for a potential v(X, 0) too
weak or too steep to originate a traveling wave, we can supposedly apply exter-
nally a strain so that the stability condition (5.45) is satisfied. This requirement
takes a particularly simple form in case of homogeneous strain. Denoting by
λmin the minimum (positive) eigenvalue of C, we recall the inequality
∫

Ωo

|F−T Grad v|2dΩ = ||F−T Grad v||22 ≤ ||F−T ||22||Grad v||22 =
1

λmin(C)
||Grad v||22.

(5.46)
It is easy to see that in the case of an externally provided homogeneous strain,
a sufficient condition to originate a pulse is as follows

λmin(C) >
D

∫

Ωo

|Grad v|2dΩ

A
∫

Ωo

v2(v − α)(1 − v)dΩ
. (5.47)
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6 Numerical simulations

In this section we compare numerical results of pulse propagation in a fixed and
in a deformable material. In Figure 1 we show the results of a numerical ap-
proximation of the solution of equation (4.35). An initial perturbation v > α
in x = X = 0 gives rise to a traveling pulse here plotted at time t = 5. The
physical parameters are α = 0.1, τ = 0.2, D = A = 100. The reaction–diffusion
equation is discretized by an implicit finite difference scheme, with a time step
∆t = 0.001 and a spatial step ∆x = 1.
The dashed line corresponds to the solution of the standard FitzHugh–Nagumo
equation; the continuous line shows the solution corresponding to a coupled
propagation–contraction of the domain. Notice that both solutions are rep-
resented in spatial coordinates x, so that in the case of contracting domain,
i.e. when the dynamics of the potential is conveniently calculated in material
coordinates, the solution has been pulled back to the physical coordinates by
numerical integration.

The numerical results show that the coupling between electrical signal and

Figure 1: Comparison between the activation potential of a traveling pulse so-
lution of the standard FitzHugh–Nagumo equation in a fixed domain (dashed
line) or a domain contracting linearly with the potential itself (continuous line).
Both fields are represented versus spatial coordinates x.

mechanics is important: propagating a pulse in a fixed domain yields a non–
negligible error. The computed pulse in a contracting domain exhibits a shorter
width and travels faster, while preserving the same maximum and minimum
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values; this is in agreement with the qualitative discussion of Section 4. In this
specific case the difference in celerity is of order 10%, while the difference in
width is about 25%.

The simulations corresponding to the results shown in Figure 2 are the same
as in the previous case, except that here the initial datum is v = 0.6 for −1 <
x < 1. This initial potential does not satisfy the instability condition (5.45); the
numerical simulation obtained by numerical integration of the coupled electro–
mechanical system shows that, as the corresponding energy is not sufficient to
trigger a pulse, the diffusive damping prevails at initial time, thus pushing the
solution to the null stable point. Instead, if the strain is externally fixed to
x′ = 1 for a short initial time (0 < t < 0.01), nonlinearity prevails and the same
initial condition gives rise to a traveling wave (Figure 2b).

7 Two–dimensional electro–mechanical coupling

In this section some preliminary two–dimensional numerical simulations ob-
tained by the model discussed in the paper are illustrated. Collecting Equations
(2.14), (2.20) and (3.24), the two–dimensional problem for an incompressible
neo-Hook material rewrites

Div
(

µJoFF−1
o F−T

o − pF−T
)

= 0 (7.48)

∂v

∂t
− Div

(

F−1DF−T Grad v
)

= −Av(v − α)(v − 1) − Aw, (7.49)

∂w

∂t
= v −

w

τ
. (7.50)

With an abuse of notation, we denote by F the plane gradient of deformation
from now on.
In the simulations that follow we assume that muscle fibers are uniformly ori-
ented along the n = (nx, ny) direction, so that tensors rewrite

F =

( ∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y ,

)

Fo =

(

1 + γn2
x γnxny

γnxny 1 + γn2
y

)

. (7.51)

where it has been assumed that diffusion occurs along the fibers direction only.
It is convenient to rewrite equations (7.48–7.50) in weak form:

µ

∫

Ωo

JoFF−1
o F−T

o : Gradφ dΩ −

∫

Ωo

pF−T : Gradφ dΩ = −k

∫

∂Ωo

u · φ dΣ

(7.52)
∫

Ωo

∂v

∂t
φ dΩ − D

∫

Ωo

F−T Grad v · F−T Gradφ dΩ = (7.53)

−A

∫

Ωo

(v(v − α)(v − 1) − w)φ dΩ,

∫

Ωo

∂w

∂t
φ dΩ =

∫

Ωo

(

v −
w

τ

)

φ dΩ. (7.54)
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Figure 2: Plot of the solution of Equations (4.35), originated by the same initial
conditions with and without initial stretch of the domain. An imposed fixed
stretch of the boundary for a short time can give rise to a pulse (figure b) that
is instead damped by diffusion if no external strain applies (figure a).
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where φ and φ are vectorial and scalar test functions, respectively. The sur-
face integral at the right hand side of (7.52) follows from the Robin boundary
condition

PN = −ku on ∂Ω (7.55)

where u = x − X and N is the outgoing versor normal to the boundary. This
boundary condition physically corresponds to an elastic resistance of the sur-
rounding tissues proportional to the displacement with stiffness k.
The numerical simulation is carried out by a first order implicit discretization
in time with fixed-point treatment of nonlinearities and linear triangular finite
elements. Preliminary two–dimensional numerical simulations show the ability
of the model to capture the coupled interaction between mechanics and electric
signals. The computational domain we consider is a distorted ellipse, contained
in a triangle 130X180, approximately long L=100, to be discretized by nearly
12000 nodes connected to form about 24000 triangular linear elements. The
characteristic element size is chosen as the minimum spatial increment that in
one–dimensional calculations allows to capture the correct wave propagation
speed (∆x = 1). The fibers are supposed to be all aligned in the same direction,
parallel to the vector (nx, ny) = (1,−1). The active strain is oriented along the
fibers, while the diffusion is isotropic (see equation (7.51)). The latter assump-
tion is not very relevant: a physical anisotropic diffusion has a typical ratio of
4 in longitudinal vs. transverse direction. The results only differ in the velocity
of propagation.
The substrate is initially relaxed and a perturbation in the potential of value
v = 0.9 is located in the right bottom corner of the domain. The elastic modu-
lus is µ = 1 while all the other parameters appearing in the equations take the
same values used for 1D simulations. Robin boundary conditions and null flux
of action potential apply on the whole perimeter of the domain, with rigidity
constant k = 1 (see equation (7.55)).
The qualitative time evolution of the solution is as follows: in a few time steps, a
pulse self–organizes where the initial perturbation was located and starts travel-
ing across the domain. The results corresponding to t = 3 are plotted in Figures
3.
The traveling wave of the action potential, shown in Figure 3a, is similar to the

one–dimensional case; the curvature of the front is due to non cartesian geome-
try of the domain and the almost pointwise initial conditions. The displacement
of the substrate is relevant only where the action potential pulse is not small and
originates the stress shown in Figure 3b. It might be worth to recall that the
material we consider is incompressible and the vertical component of the strain
(not shown) plays here the role of a diagnostic variable.
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Figure 3: Two–dimensional plots of the activation potential (a) and trace of
the Cauchy stress (b) generated by an initial bump in a contractile domain. A
voltage perturbation is located at the right bottom of the domain at t = 0.
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Concluding remarks

The mathematical modeling of the electromechanical coupling on a contractile
substratum has been addressed with a careful separation between the balance
equations for the elastic momentum and the action potential on one side, and
the constitutive equations that prescribe their flux and sources on the other
side. A precise distinction in this respect allows to distinguish between the
balance equations and the assumptions that lead to specific functional forms.
Before providing any detail on the coupling between stress and electric field,
the system of equations for the action potential has been rewritten in material
coordinates, the most convenient ones to be used in nonlinear elasticity. This
form (see Equation (2.21)) immediately points out the feedback of strain on
electric activity.

The focus of this paper is on the electromechanical coupling; this is usually
addressed in the relevant literature by introducing an active component of stress,
depending on the electric potential, to be added to the standard one. In our
opinion, other approaches deserve to be explored, according to the arguments
exposed in Section 1.1. Here we have directly stated the kinematics, by impos-
ing an active deformation of the soft tissue on the basis of the observed fibers
direction and stretch. This idea rewrites in mathematical terms in the multi-
plicative decomposition of the gradient of deformation adopted in the numerical
modeling by Teresi et al. [3, 10]. The discussion of Section 1.1 points out the
difference in the two approaches and the advantages that one or the other could
have in some respect. A definite comparison both from a mathematical and
physiological points of view is however still lacking.

Although there is an evident interest in applying the theory to cardiac elec-
tromechanics modeling, this paper mainly has a mathematical perspective. The
physiological detail of the model is admittedly too poor, at least in two respects.

• The delay between potential upstroke and mechanical contraction is not
accounted for; the same remark holds for the difference between the typical
length of the action potential and the contraction, as the latter is known
to be much longer. This is due to the simplicity of the voltage–strain re-
lationship (1.4), here justified by the mathematical analysis that it allows.
The expected physiological behavior can be reproduced by introducing the
viscoelastic properties of the material, as discussed in Section 4.2, and will
be the subject of a forthcoming work.

• Despite its mathematical attractiveness, the Fitzhugh–Nagumo equation
cannot provide quantitative prediction of the shape of the voltage pulses.
Improvements in this respect can be obtained by including the time dy-
namics of ionic species. There are many models available in the literature:
some of them include a large number of ionic species and are more difficult
to analyze qualitatively [4, 12, 17], other phenomenological models of the
action potential [2, 6] are more attractive from this point of view as they
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are able to provide a quantitative prediction, while keeping a small number
of unknowns.

The simplicity of the assumed model allows however to analyze mathematically
the equations and draw some conclusions. Most of the discussion in the present
paper concerns the case of a 1D pulse along a fiber; however the statements
below are of general validity.

• The electromechanical coupling, as outlined in the present paper, does
not modify the stability landscape of the reaction–diffusion equation: this
model does not include an explicit term of stretch activated current (as
in [15]), the stretch of the domain does not affect the stability points of
the action potential.

• Under quite general assumptions, traveling solutions of the FitzHugh-
Nagumo equation that are well known to exist for propagation in a fixed
domain, still exist when introducing a coupling with the elastic strain. The
celerity and steepness of a traveling front have been explicitly calculated
and are generally bigger than for rigid substrates.

• Energy arguments allow to determine the minimum strain to be applied
on the substrate in order to originate a traveling wave starting from a too
weak initial signal. Here, this kind of electromechanical feedback is not
introduced by an explicit stretch activated current added to the equation
for the action potential, as in [15]. The physiological role of this mechanism
is however expected to be minor: the incompressibility of the material
composing the cardiac tissue does not allow large stretches so that the
eigenvalue at the left hand side of (5.47) cannot be much smaller than
one.

• Preliminary two–dimensional numerical simulations confirm the ability of
the model to predict at least qualitatively the electromechanical coupling.
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