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Abstract

In the framework of Object Oriented Data Analysis, a permutation approach
to the two-sample testing problem for network-valued data is proposed. In
details, the present framework proceeds in four steps: (i) matrix representa-
tion of the networks, (ii) computation of the matrix of pairwise (inter-point)
distances, (iii) computation of test statistics based on inter-point distances
and (iv) embedding of the test statistics within a permutation test. The pro-
posed testing procedures are proven to be exact for every finite sample size
and consistent. Two new test statistics based on inter-point distances (i.e.,
IP-Student and IP-Fisher) are defined and a method to combine them to get
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a further inferential tool (i.e., IP-StudentFisher) is introduced. Simulated
data shows that tests with our statistic exhibit a statistical power that is ei-
ther the best or second-best but very close to the best on a variety of possible
alternatives hypotheses and other statistics. A second simulation study that
aims at better understanding which features are captured by specific combi-
nations of matrix representations and distances is presented. Finally, a case
study on mobility networks in the city of Milan is carried out. The proposed
framework is fully implemented in the R package nevada (NEtwork-VAlued
Data Analysis).

Keywords: Network-valued data, Null-hypothesis testing, Object-oriented
data analysis, Permutation test, Shared mobility

1. Introduction

Object Oriented Data Analysis (OODA) is a field of growing interest that
emerged from the seminal paper of Wang and Marron (2007). It aims at con-
ducting statistical analyses of complex data that cannot be embedded in the
standard Euclidean framework (see Marron and Alonso, 2014, with discus-5

sion), by contrast with more traditional data sets composed of numbers or
vectors of numbers that naturally lie in a Euclidean space in which standard
statistical methods can be applied. Shapes (Dryden and Mardia, 1998), im-
ages (Locantore et al., 1999; Wei et al., 2016), manifold-valued data such as
directional data (Mardia, 1972), trees (Wang and Marron, 2007), covariance10

matrices and operators (Dryden et al., 2009; Pigoli et al., 2014), density func-
tions (Menafoglio and Secchi, 2017) are examples of so-called object data.
Investigating the relationships between these complex objects requires the
development of appropriate statistical tools that can be either generaliza-
tions of existing Euclidean methods or novel non-standard approaches (see15

Sangalli et al., 2014).
In this work, we focus on a specific type of object data, namely networks.

In recent years, networks have indeed become more and more popular in
many different areas of scientific investigation, ranging from micro-scale net-
works such as protein-protein interaction networks, gene regulatory networks20

or cerebral networks, to macro-scale networks such as social networks, orga-
nizational networks, mobility and transport networks (see, for example, New-
man, 2010, chap. 2–5, for possible applications). The nature of the vertices
as well as the role of the edges of the network are application-specific. From
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the above-cited examples, vertices would be for instance proteins, molecu-25

lar regulators, regions of the brain, users of a social network, working roles
or geographical areas. Edges can be either binary or quantitative with cor-
responding networks called unweighted and weighted respectively. Binary
edges usually encode the presence or absence of a relationship between two
vertices. They could be physical interaction of proteins, molecular reactions,30

structural or functional connections between areas of the brain, friendship
on a social network, collaborations between people on a firm or mobility
connections between two geographical areas. Differently, quantitative edges
measure the strength of the connection between the two vertices, such as the
number of structural fibers between two areas of the brain or the amount of35

vehicles connecting two geographical areas for instance. Moreover, edges can
also be directional: for example, in a social network, one might use edges to
connect people on the basis of who follows who.

There is a large body of past and current literature on network analysis
and its many applications. Yet, a vast majority of that literature has put40

the attention on the use of a network as an efficient way to represent and
analyse data sets in which the interest is on exploring “interactions between
entities, whether those entities are individuals in a school (Moody, 2001),
species in a food web (Krause et al., 2003), nodes on a computer network
(Pastor-Satorras and Vespignani, 2001), or proteins in metabolic pathways45

(Guimerá and Nunes Amaral, 2005). Network analysis is used to explore the
mathematical, statistical and structural properties of a set of items (nodes)
and the connections between them (edges; Newman (2003))” (Barberán et al.,
2012). Consequently, the scientific effort has then been in the development
of tools for constructing, describing and modeling a single network. From50

the point of view of OODA, these research goals can be framed among the
so-called first generation problems of OODA in which the effort is spent in
the proper construction of object data (S. Marron, keynote talk at the 6th
Nordic-Baltic Biometric Conference, June 19-21, 2017, Copenhagen, DK),
which, in the present case, are networks. In this work, we instead focus on55

the second generation problems in OODA which pertains to the statistical
analysis of samples of networks. In this setting, networks are considered as
the units of the statistical analysis, hence the name of network-valued data.
As a result, we have to deal with samples of networks that we model as
i.i.d. realizations of network-valued random variables. The growing amount60

of available network-valued data urges the need for quantitative statistical
tools to face this challenge which, at the moment, has been mostly tackled
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in a purely heuristic way (Simpson et al., 2014).
Only recently, some proposals have been made in this direction. The first

papers on statistical methodologies that investigate network-valued data ap-65

peared as a response to neuroimaging problems. Specifically, Wang and
Marron (2007) and Aydin et al. (2009) developed a Principal Component
Analysis analog for a special type of networks coined tree-structured objects.
This first OODA for trees is based on the concept of tree lines and the under-
lying optimization problem is solved in a linear computation time. A dataset70

of 73 vascular brain trees modeled as acyclic networks with vessels playing
the role of edges and bifurcations playing the role of vertices is analysed.
More recently, Nye et al. (2017) proposed a Principal Component Analysis
approach in the space of phylogenetic trees.

When comparing samples of object data, the traditional approach per-75

tains to transforming the individual object data into a multivariate collec-
tions of indicators characterizing the original object data. In the context of
network-valued data, this translates into replacing a network by a multivari-
ate vector of graph summary measures such as characteristic path length,
clustering coefficient, modularity, global efficiency, betweenness centrality,80

degree distribution, degree centrality and so on (see Rubinov and Sporns
(2010) for a detailed list of graph summary measures). The comparison be-
tween networks is then framed as a classical multivariate data analysis rather
than a network-valued data analysis. Despite the high interest coming from
the interpretation of these summary measures, their dependence on the net-85

work size, the reliance of the resulting inference on the chosen measure and
the need for information about the entire structure of networks have encour-
aged the formulation of new methodologies that do not rely on summary
features.

The first attempt to account for the entire network structures when apply-90

ing null hypothesis significance testing procedures can be found in Simpson
et al. (2013). The authors define a first statistic based on the Jaccard index
to quantify similarity in key vertex locations between groups of networks.
Next, they propose a second statistic as the ratio between the means of
Kolmogorov-Smirnov statistics to compare the degree distributions of each95

vertex within and between groups.
In our opinion, the paper by Ginestet et al. (2017) is a cornerstone paper

moving in the direction of network-valued data. Motivated by a problem of
functional neuroimaging investigation, the authors model the Human brain
as a network and derive a sound asymptotic theory for parametric null hy-100
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pothesis significance testing of network-valued data represented by means
of graph Laplacian matrices. In details, they characterize the geometry of
the space of graph Laplacian matrices as a manifold with corners, generalize
results from Bhattacharya and Lin (2017) to propose a Central Limit The-
orem for the Frobenius-based Fréchet mean which allow them to naturally105

extend classical asymptotic results from textbooks to network-valued data
analysis, including k-sample null hypothesis significance testing. They apply
the proposed approach to the 1000 Functional Connectomes Project Data
Set. Asymptotic theory unfortunately only yields approximate inference,
null hypothesis significance testing procedures lack exactness and perform in110

an unreliable fashion when the sample size is small. Moreover, the proposed
procedure requires the computation of the inverse of a covariance matrix
which can become very challenging from a numerical point of view when the
dimensionality of networks (number of vertices) is large, as stated by the
authors themselves.115

In a recent paper, Durante et al. (2017) introduce a Bayesian framework
that can deal with samples of large networks. In details, the authors pro-
pose a probabilistic generative model for a network-valued random variable
via a flexible Bayesian non-parametric approach. Dimensionality is reduced
using a finite mixture model to define the joint distribution of the edges.120

See also the interesting discussion on Durante et al. (2017) recently pub-
lished on JASA. Durante and Dunson (2018) further generalize this model
for allowing the generative mechanism to change across groups and develop
a general Bayesian procedure for inference and testing of group differences
in the network structure.125

Recently, Chen and Friedman (2017) propose a new graph-based two-
sample test for multivariate and object data that is able to detect difference
both in location and in scale and that can be applied if a similarity mea-
sure between observations can be defined. This paper has its root in the
paper of Friedman and Rafsky (1979), where the authors proposed a non-130

parametric two-sample test based on a minimum spanning tree constructed
using the pairwise distances among the pooled observations. The test is then
based on a count statistic on the number of edges that connect observations
from different samples. Other similarity graphs can be used in this frame-
work: minimum spanning tree with higher density (Friedman and Rafsky,135

1979), k−nearest neighbour graphs (Schilling, 1986; Henze, 1988), minimum
distance non-bipartite pairing tree (Rosenbaum, 2005). See Chen and Fried-
man (2017) for a complete and exhaustive literature review. From a practical

5



point of view, none of these test is sensitive to differences both in location
and in scale. To overcome this limit, Chen and Friedman (2017) propose a140

new test statistic that works better than other tests for both location and
scale alternatives and for location-scale alternative, while the power of the
test is still dependent from the chosen similarity graph and its density.

In this work, we propose a finite-sample exact and consistent permutation-
based two-sample test for making inference on distributions of network-145

valued data. The permutation framework has the advantage of not relying
on distributional assumptions about the underlying generative models, which
comes in handy when these models are complex and/or no simple paramet-
ric approximation is available. Moreover, the proposed framework is very
flexible: it is indeed possible to choose (i) an appropriate matrix represen-150

tation for the networks, (ii) a suitable distance between networks and (iii)
one or more test statistics for capturing relevant distributional differences.
In this paper, we detail a number of possible representations, distances and
statistics. It is straightforward to add more of them into the framework as
well.155

The paper is organized as follows. Section 2 presents the statistical frame-
work for network-valued data. It focuses on possible matrix representations
of networks for mathematical tractability and proposes a non-exhaustive col-
lection of distances between networks. We discuss possible interpretation of
pairs of representations and distances as well. Next, we introduce the concept160

of test statistics based on inter-point distances for carrying out null hypothe-
sis significance testing. We review existing test statistics based on inter-point
distances and propose two new such statistics which, when used together
within the non-parametric combination framework (Pesarin and Salmaso,
2010, chap. 4), exhibit the best performances in testing equality of distribu-165

tions of networks. The two novel test statistics we introduce target specific
moments of the distribution – thus are easily interpretable – and, when jointly
used through non-parametric combination, make the test more sensitive to
global differences in distributions. We then prove exactness and consistency
of the permutation-based tests associated to the proposed statistics and the170

non-parametric combination approach is briefly summarized as well for self-
content. Finally, in Section 3 and 4, we report results from simulation studies
and an application to real data pertaining to the bike sharing service in Mi-
lan, respectively. Our statistical framework for inference on network-valued
data has been implemented in the R (R Core Team, 2016) package nevada,175

available on GitHub (https://github.com/astamm/nevada).
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2. Statistical framework for network-valued data

2.1. Network representations

The first step of our procedure is based on a proper selection of a math-
ematical representation of each network. Recall that a network G = (V,E)180

consists of a set V of vertices whose connections are defined within the edge
set E. In the literature, three possible matrix representations of networks
are mostly used, namely adjacency, Laplacian and modularity matrices, each
describing specific aspects of a network.

Adjacency Matrix. The adjacency matrix, often denoted byW , reports185

at entry wij the strength of the edge between vertices i and j. Its elements
must therefore be non-negative (wij ≥ 0). This is the starting point of all
matrix representations. If the network is unweighted, the strength of the
connection boils down to its presence or absence (wij = 1 if (i, j) ∈ E). If
the network is undirected, the adjacency matrix is symmetric (wij = wji).190

If there is no self-loop at vertex i (edge connecting vertex i with itself),
the corresponding diagonal entry is equal to zero (wii = 0). A network is
said simple if it is both undirected and without self-loops. In this case, the
adjacency matrix W has a null diagonal and is symmetric.

Laplacian Matrix. By definition, the graph Laplacian matrix L can be195

derived from the adjacency matrix W as L = D(W ) −W where D(W ) is
a diagonal matrix whose diagonal elements are the degrees di of the corre-
sponding vertices:

`ij = δijdi − wij, with di =
∑
k

wik,

where δij is the Kronecker symbol (δij = 1 if i = j or 0 otherwise). This
matrix takes its name from the so-called heat equation which reads ∂u/∂t−200

α∇2u, where ∇2 is the Laplacian operator. Indeed, the Laplacian matrix is
nothing but the discretized version of ∇2 on the set of vertices (see New-
man, 2010, Chapt. 6). As a result, similar networks in their Laplacian
representation will exhibit configurations of vertices and edges that lead to
similar diffusion patterns. Moreover, the Laplacian matrix has some impor-205

tant properties. For example, if there are no self-loops, its eigenvalues are all
non-negative, the number of eigenvalues which are zero matches the number
of connected components (i.e. subnetworks where any couple of vertices is
connected by paths) and the space of simple networks is in bijection with the
space of Laplacian matrices.210
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Modularity matrix. The third matrix representation that we discuss in
this paper is the modularity matrix B, whose elements are defined as follows:

bij = wij −
didj
2m

,

where di and dj are the degrees of vertices i and j, respectively, and m =
1/2

∑
i di is the total strength of the edges in the network. We can give

a nice interpretation of the modularity matrix in the case of unweighted
networks. The element bij is the difference between the actual weight of edge
(i, j) and the expected number of edges between vertices i and j if edges215

were placed at random. Hence, the presence of non-zero elements in the
modularity matrix provides evidence of structure within the network. For
this reason, the modularity has been widely used for community detection in
networks (Newman, 2006).

The three above-mentioned representations can be straightforwardly adapted220

to the simpler case of unweighted network by dichotomization. The easiest
way consists in assigning 1 to edges with non-zero weight and 0 to the others.
A finer dichotimization can be performed via a user-defined threshold above
which an edge is assumed to exist.

2.2. Distances between networks225

Comparing distributions of networks requires a mathematical tool for
quantifying how far two networks are from each other. One of the first
distances between two networks appeared in the 70’s and is defined as the
difference between their common number of vertices and the number of ver-
tices in the largest common induced subnetwork (Zelinka, 1975). Then, in230

the 90’s, a number of statistics emerged around the concepts of edge rotation
or slide (Chartrand et al., 1985; Zelinka, 1992; Jarret, 1997). In essence, an
edge rotation pertains to replacing one of the two end-vertices of an edge
by another vertex, keeping the other end-vertex fixed. An edge slide is a
particular type of edge rotation: the moving end-vertex of the edge can be235

replaced only by adjacent vertices. Distances between two networks can then
be defined as the smallest number of such operations required to transform
one network into the other. However, such distances suffer from two ma-
jor drawbacks: (i) they do not convey an easy interpretation and (ii) their
computation is prohibitively time consuming.240

In this paper we instead take advantage of the matrix representation of
a network and consider instead distances that have been recently proposed
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either on network matrices (Comellas and Diaz-Lopez, 2008) or on covariance
matrices (Dryden et al., 2009), which are not computationally intense and
easily interpretable. Let G1 and G2 be two networks sharing the same set of245

vertices V of cardinality N and X and Y be the chosen matrix representation
for G1 and G2, respectively. We focus on the following distances:

Hamming distance. The Hamming distance between G1 and G2 is
defined as:

ρHA(G1, G2) =
N∑
i 6=j

|Xij − Yij| ,

This distance takes its name after Richard Hamming who needed a way to
detect errors in systems (Hamming, 1950). It is easier to grasp its interpre-
tation from unweighted networks. It basically counts “matching errors”, i.e.250

edges that are present in one network but not in the other.
Frobenius distance. The Frobenius distance between G1 and G2 is

defined as:

ρFR(G1, G2) =

(
N∑
i 6=j

(Xij − Yij)2
)1/2

.

This distance is the most frequently used distance in the scientific literature
as it is nothing but the Euclidean distance on the vectorized chosen matrix
representation. Interestingly, in the case of unweighted networks represented
by the adjacency matrix, it coincides with the Hamming distance.255

Spectral distance. The spectral distance between G1 and G2 is defined
as:

ρSP(G1, G2) =

(
N∑
i=1

(
ΛX

i − ΛY
i

)2)1/2

,

where ΛX and ΛY are vectors storing the (ordered) eigenvalues of X and
Y , respectively. This distance only accounts for the eigenvalue structure of
a network matrix representation, which captures topological features only,
leaving aside the eigenvectors. Under this distance, two networks are consid-
ered equal if they differ only by a relabeling of the vertex set. Technically,260

the spectral distance is defined on the classes of equivalence; otherwise it is
a semi-distance since the identity of indiscernibles does not hold in general.

Root-Euclidean distance. It is the Frobenius distance on the squared
root of the network matrices:

ρRE(G1, G2) = ρFR
(
X1/2, Y 1/2

)
.
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This distance can be particularly useful in the case of few large eigenvalues
that could have a leverage effect on the comparison which is greatly reduced
by the square root transform. This distance is used in the context of matrix-265

valued data (Dryden et al., 2009; Pigoli et al., 2014; Cabassi et al., 2017),
where it has been shown to yield high empirical power in group comparisons.
It is defined only for positive definite matrices, which, among the represen-
tations proposed in Section 2.1, reduces to the Laplacian matrix.

2.3. Test statistics based on inter-point distances270

Let G1 and G2 be two samples of networks with the same set of vertices
V governed by probability distributions F1 and F2, respectively. We aim at
performing the following two-sample test for equality in distributions:

H0 : F1 = F2 against H1 : F1 6= F2. (2.1)

Let G11, . . . , G1n1 ∼ F1 be a sample of n1 independent and identically dis-
tributed network-valued random variables following distribution F1 andG21, . . . , G2n2 ∼275

F2 be a sample of n2 independent and identically distributed network-valued
random variables following distribution F2. For conciseness, let us also in-
troduce the compact notation Gk = {Gk1, . . . , Gknk

} for k = 1, 2.
The most frequent approach to the two-sample testing problem pertains

to (i) defining a concept of mean element for a given distribution and (ii) using280

some appropriate distance between the two sample means as statistic for test-
ing equality in distribution. Typically, the sample mean is computed as the
element that minimizes its sum of squared distances with each sample unit.
It is known as the sample Fréchet mean. This approach however presents a
number of drawbacks that are non-trivial to solve. First, the sample Fréchet285

mean in general metric spaces is not always a consistent estimator of the theo-
retical Fréchet mean, as stated in 2013 by C. E. Ginestet (arXiv:1204.3183v4).
Next, object data are often embedded in complex spaces into which there is
no closed-form expression of the sample Fréchet mean (Pigoli et al., 2014).
It is possible to circumvent this problem either by computing it numerically290

or by resorting to restricted sample Fréchet means as done by Fournel et al.
(2013) in the context of self-organizing maps. The first solution becomes
rapidly prohibitively time-consuming from a computational standpoint. The
second solution restricts the search for the minimum to the sample units
themselves, which introduces large biases for small sample sizes. Lastly,295

comparing distributions on the basis of how far their sample means are from
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each other is too limited since differences in distributions might show up only
in higher-order moments.

An alternative approach, that we adopt and promote for general metric
spaces, is to define statistics using exclusively distances (denoted by ρ in the300

following definitions) between the pooled observations (inter-point distances),
referred to as inter-point statistics or IP-statistics for short in the rest of the
manuscript. Most of the state-of-the-art IP-statistics can be classified into
two categories.

Characteristic-Based Statistics. These statistics combine inter-point305

distances in such a way that they can be seen as weighted L2 distances
between characteristic functions of the probability distributions to be com-
pared. They are known in the literature as energy statistics (Székely and
Rizzo, 2013) and have been generalized to separable Hilbert spaces (Lyons,
2013). The test based on the energy distance statistic is a special case of the310

kernel-based two-sample tests proposed in Gretton et al. (2012). The latter
relies on a test statistic called maximum mean discrepancy which measures
the distance between two probability distributions embedded in a topological
(possibly infinite-dimensional) space. The original energy statistic reads:

TSR :=
n1n2

n1 + n2

[
2

n1n2

n1,n2∑
i,j=1

ρ(G1i, G2j)−
1

n2
1

n1∑
i,j=1

ρ(G1i, G1j)

− 1

n2
2

n2∑
i,j=1

ρ(G2i, G2j)

]
.

(2.2)

Density-Based Statistics. These statistics combine inter-point dis-315

tances in such a way to compare the density functions of the probability dis-
tributions of within-sample and between-sample inter-point distances, which
has been shown to be equivalent to comparing density functions of the two
original probability distributions (Maa et al., 1996). The easiest statistic
along those lines has been proposed by Biswas and Ghosh (2014) and reads:320

TBG :=
2∑

k=1

(nk

2

)−1 nk∑
i=1
j>i

ρ(Gki, Gkj)−
1

n1n2

n1,n2∑
i,j=1

ρ(G1i, G2j)


2

. (2.3)

Other statistics that exploit the same result first interpret the matrix of inter-
point distances of the pooled sample as the adjacency matrix of a network and

11



then design statistics based on a suitable similarity graph derived from this
network. For example, Friedman and Rafsky (1979) uses the minimum span-325

ning tree while Rosenbaum (2005) uses the minimum distance non-bipartite
pairing tree. Chen and Friedman (2017) nicely reviews statistics based on
similarity graphs and proposes a generalized edge-count statistic TCF that is
able to identify both mean and variance differences.

Other more complex IP-statistics (not included in this work) exist in330

the literature (Hall and Tajvidi, 2002; Liu and Modarres, 2011) but require
further modelling assumptions and are not easy to implement.

Inspired by the above-mentioned literature on IP-statistics and motivated
by the observation that it might be relevant to detect higher-moment dif-
ferences between distributions, we hereby introduce two novel IP-statistics,335

which read:

TIP−Student :=

1

n1n2

n1∑
i=1

n2∑
j=1

ρ2(G1i, G2j)−
(
σ̂2
1 + σ̂2

2

)
σ̂2
1

n1

+
σ̂2
2

n2

and

TIP−Fisher := max

(
σ̂2
1

σ̂2
2

,
σ̂2
2

σ̂2
1

)
,

(2.4)

where σ̂2
1 and σ̂2

2 are unbiased estimators of the within-sample variances given
by:

σ̂2
1 :=

1

n1(n1 − 1)

n1∑
i=1

n1∑
j>i

ρ2(G1i, G1j) and

σ̂2
2 :=

1

n2(n2 − 1)

n2∑
i=1

n2∑
j>i

ρ2(G2i, G2j).

The first one is a Student–like statistic in the sense that it mimics the squared
Student-Welch statistic, which nicely captures mean differences even under
unequal variances, and the second one is a Fisher–like statistic in that it
mimics Fisher variance ratio statistic and is useful in detecting differences in340

variances. We use a mechanism called Non-Parametric Combination (NPC)
that uses both statistics for designing a test that captures both mean and
variance differences with high statistical power. The proposed test and the
NPC are detailed in the next section.
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2.4. The permutation framework for hypothesis testing345

Given a test statistic, one can design statistical tests in either a para-
metric or a non-parametric fashion. In the case of network-valued random
variables, the generative probabilistic models can be quite complex, making
the parametric way almost impractical. Asymptotic results can be achieved
as in Ginestet et al. (2017) but suffer from unreliability when sample sizes350

are small or when network sizes are large. In this section, we instead formal-
ize a non-parametric statistical test using permutation theory (Pesarin and
Salmaso, 2010), which yields exact and consistent inference with minimal
distributional assumptions at the cost of increased computational burden.

Permutation Test. Recall that we aim at designing a permutation two-355

sample test for equality in distributions as specified by Eq. (2.1). Let T be
a generic test statistic that grasps – with large positive values – possible dif-
ferences between F1 and F2. Assume that the distributions F1 and F2 are
continuous. This assumption guarantees that - with probability 1 - indepen-
dent data observations are all distinct. Let tobs be the value of T obtained360

from the observed networks. Under the null hypothesis, networks in the two
samples are exchangeable. Hence, it is possible to estimate the null distribu-
tion of T by randomly permuting the group labels of the observed networks.
For each permutation, we obtain a value of the “permuted” test statistic, say
tperm. The set of all tperm values is called permutation distribution and defines365

a discrete approximation of the null distribution of the test statistic. The
total number mt of possible permutations is equal to mt = (n1 +n2)!/n1!/n2!
and if the test is two-sided and n1 = n2, it is further divided by a factor of
two. In any event, the number of possible permutations mt grows very fast
with the sample sizes. For example, when n1 = n2 = 16, which are not in370

general considered as large sample sizes, we should enumerate mt > 3 · 108

permutations, which, in fact, makes the exhaustive computation of the per-
mutation distribution prohibitively time-consuming. Hence, it is common
practice to randomly sample a subset of m permutations with replacement
among the mt possible ones. Given a random set of permutations, there are375

different ways of estimating the p-value out of the mechanics of permutations.
The most common approach pertains to counting the number of times the
value of tperm is equal or exceed the observed value tobs out of the m sampled
permutations (Pesarin and Salmaso, 2010). This approach, while providing
an unbiased estimate of the p-value, fails to provide exact testing procedures380

in the usual sense of the term because it does not account for the variability
introduced by sampling the permutations. In this work, we instead rely on
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the definition proposed by Phipson and Smyth (2010), which takes its roots
in randomization tests. We opt for this choice because it always provides an
exact test (i.e. PH0 [p ≤ α] = α) regardless of the sample sizes, the number385

m of sampled permutations and the value of α (Phipson and Smyth, 2010).
Hence, the choice of m only impacts the power of the test, as expected. This
p-value is computed as follows (Dwass, 1957; Phipson and Smyth, 2010):

p(T ) =
1

mt + 1

mt∑
bt=0

F

(
b(T );m,

bt + 1

mt + 1

)

' b(T ) + 1

m+ 1
−
∫ 0.5/(mt+1)

0

F (b(T );m, pt)dpt,

(2.5)

where F is the cumulative probability function of the binomial distribution,
b(T ) is the number of tperm greater than tobs, m is the number of randomly390

sampled permutations, mt is the total number of possible permutations and bt
is the index of summation. In practice, the exact computation via summation
is performed when mt < 10, 000. Otherwise, the integral approximation
is used. This estimated p-value allows for a fair power comparison in the
simulations presented in Section 3. In addition to the exactness of the test,395

it can be shown that a permutation test based on our new test statistics (i.e.
TIP−Student and TIP−Fisher) is consistent. The following theorems hold:

Theorem 2.1. Let G1 and G′1 be two network-valued random variables fol-
lowing distribution F1 and G2 and G′2 be two network-valued random vari-
ables following distribution F2. If E[ρ2(G1, G

′
1)] < +∞ and E[ρ2(G2, G

′
2)] <400

+∞, the permutation test based on the IP-Student statistic involving Frobe-
nius, Spectral or Root-Euclidean distance is consistent under the alternative
hypothesis of unequal Fréchet means (with respect to distance ρ), namely
PH1 [p(TIP−Student) ≤ α] −→ 1 as n1 + n2 →∞.

Theorem 2.2. Let G1 and G′1 be two network-valued random variables fol-405

lowing distribution F1 and G2 and G′2 be two network-valued random variables
following distribution F2. If E[ρ2(G1, G

′
1)] < +∞ and E[ρ2(G2, G

′
2)] < +∞,

the permutation test based on the IP-Fisher statistic is consistent under the
alternative hypothesis of unequal Fréchet variances (with respect to distance
ρ), namely PH1 [p(TIP−Fisher) ≤ α] −→ 1 as n1 + n2 →∞.410

Proofs of Theorem 2.1 and Theorem 2.2 are reported in Appendix A.
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Non-Parametric Combination. The IP-statistics proposed in Eq.
(2.4) are designed to detect differences in mean – for TIP−Student – and variance
– for TIP−Fisher – independently. In order to make the test sensitive to both
mean and variance, we propose to combine the two statistics by means of the415

Non-Parametric Combination (NPC) methodology (Brombin and Salmaso,
2009; Pesarin and Salmaso, 2010).

Given a set of B randomly chosen permutations, we first compute the
value tobs and values tperm of the two test statistics and concatenate them
into two vectors (one for each statistic) of size B + 1, say TIP−Student and420

TIP−Fisher. We then transform these two vectors by replacing the compo-
nent values by their rank (sorting the values in decreasing order) divided by
B + 1. This boils down to computing, for each component of the concate-
nated vectors, the permutational p-value where the corresponding permuted
data is considered as the observed one. This effectively produces two vectors425

πIP−Student and πIP−Fisher of “intermediate p-values”, which are hence on the
same scale and thus comparable. Next, we combine πIP−Student and πIP−Fisher
into a single vector TIP−StudentFisher of size B+1, the entries of which are then
interpreted as the observed value and permuted values of a new combined
statistic TIP−StudentFisher. There are a number of possible combining func-430

tions (Pesarin and Salmaso, 2010). One important property is that large
combined values should be in favor of the alternative hypothesis. In our
framework, we use Tippett’s combining function ψ(x, y) = 1−min(x, y) (Tip-
pett, 1931) which guarantees that the null hypothesis is rejected when at least
one of the two independent tests rejects it. The p-value of the combined test435

is then computed applying Eq. (2.5) using the values in TIP−StudentFisher.
The non-parametric combination methodology yields consistent tests if the
“intermediate” tests based on the individual statistics are marginally unbi-
ased (i.e. PH1 [p(T ) ≤ α] ≥ PH0 [p(T ) ≤ α] = α) and at least one of them is
consistent (see Pesarin and Salmaso, 2010, chap. 4). Specifically, we have440

the following result:

Corollary 2.1. The permutation test based on the statistics TIP−Student and
TIP−Fisher combined through the NPC methodology is consistent under the al-
ternative hypothesis of unequal means or variances, namely PH1 [p(TIP−StudentFisher) ≤ α] −→
1 as n = n1 + n2 →∞.445

Furthermore, the combined test is exact because the “partial” tests based
on TIP−Student and TIP−Fisher are exact (see Pesarin and Salmaso, 2010, chap.
4).
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3. Simulation studies

3.1. Impact of different test statistics450

The goal of this simulation is to draw a comparison between the proposed
IP-statistics (2.4) and the state-of-the-art IP-statistics TSR (2.2), TBG (2.3)
and TCF that we compute using a minimal spanning tree of density 5, as sug-
gested by the authors. For this purpose, we generate two samples of networks
with 25 vertices. Each network is generated by sampling independent and455

identically distributed edge weights from a binomial distribution B(n, p). We
simulate three different scenarios to generate distributions that differ only in
their means, only in their variances or in both (see Table Simulation 1 in
Appendix B for details on the specific parameters that have been used to
that effect). The parameters n and p of the binomial distribution are set460

accordingly. In details, we have:
Scenario 1: Unequal means, equal variances. The two samples are

generated using an edge weight distribution with different means such that
∆ = µ1−µ2 = 0·000, 0·125, 0·250, 0·375, 0·500 but equal variances σ2

1 = σ2
2 =

2·50.465

Scenario 2: Equal means, unequal variances. The two samples
are generated using an edge weight distribution with different variances such
that ∆ = σ2

2/σ
2
1 = 1·00, 1·05, 1·10, 1·15, 1·20 but equal means µ1 = µ2 = 60.

Scenario 3: Unequal means, unequal variances. The two samples
are generated using an edge weight distribution with different means such470

that ∆ = µ2 − µ1 = 0·0, 0·1, 0·2, 0·3, 0·4 and different variances such that
σ2
2/σ

2
1 = 1·00, 1·05, 1·10, 1·15, 1·20.

The three scenarios are evaluated both under equal sample sizes (n1 =
n2 = 20) and under unequal sample sizes (n1 = 30 and n2 = 10). The
balanced sample sizes are typical from many real-life data sets. The unbal-475

anced sample sizes are representative of studies of neurological disorders for
instance. For all scenarios and statistics, we use the adjacency matrix repre-
sentation and the Frobenius distance as done in Chen and Friedman (2017).
The p-value is calculated using Eq. (2.5) and the significance level is set to
α = 0·05. The comparison between statistics is drawn in terms of statisti-480

cal power, estimated as probability of rejection via Monte-Carlo simulations
using a total of 100,000 replicates.

Figure 1 reports the estimated probability of rejection as the difference
between the two samples increases (∆ = 0 yields the nominal level of the test;
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Figure 1: Power of the test using different test statistics: TSR (2.2) in red, TBG (2.3)
in brown, TCF in green, TIP−Student (2.4) in light black, TIP−Fisher (2.4) in black and
TIP−StudentFisher in pink. The largest Monte Carlo standard error is 0.00158. If two curves
coincide, the dots of one curve and the line of the other curve are shown.

∆ > 0 yields power estimates). First, we can observe that the effect of unbal-485

anced sample sizes (second row), independently from the statistics and type
of differences, almost always generates a slight loss of statistical power. The
ranking of the statistics in terms of statistical power is however identical in
the balanced and unbalanced cases. The statistics TSR and TIP−Student outper-
forms other statistics for detecting mean-only differences (first column). On490

the other hand, they feature the worst performances for detecting variance-
only differences (second column). The reciprocal holds for the statistics TBG

and TIP−Fisher, which feature the best performances for detecting variance-
only differences but are the worst for detecting mean-only differences. Their
comparison under both mean and variance differences (third column) is less495

helpful because it depends on the relative magnitudes of mean and variance
differences. The statistics TCF and TIP−StudentFisher lead to statistical powers
that are insensitive to the type of differences to be detected. Our combined
statistic TIP−StudentFisher features however uniformly better performances than
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TCF. In fact, TIP−StudentFisher is the best statistic for detecting simultaneous500

mean and variance differences and always second-best for detecting mean-
only or variance-only differences.

3.2. Impact of representations and distances

The goal of this second simulation study is two-fold: (i) to highlight some
of the properties of the representations/distances enumerated in this work505

(Scenarios A, B, C) and (ii) to emphasize that it is critical, when compar-
ing network samples, to focus on the entire network structure and not only
on summary indicators (Scenario D). Specifically, we report simulation re-
sults pertaining to all three matrix representations (adjacency, Laplacian and
modularity) but, for simplicity, only to two out of the four introduced dis-510

tances, namely the Frobenius and spectral distances. In effect, simulations
showed that, at equal matrix representation, the results with the Hamming
and Root-Euclidean distances were similar to those with the Frobenius dis-
tance. Similarly to the previous simulation setting, sampled networks are
composed of 25 vertices. In all simulations, we assessed the effect of increas-515

ing sample size by generating samples S1 and S2 of sizes n1 = n2 = 4, 8, 12,
16. We designed a total of four scenarios, each with a specific aim, that we
hereby describe:

Scenario A. Trivial differences: different edge strengths. The
goal is to assess the performances of our test procedures when the proba-520

bilistic generative models governing the two samples are different but close.
To this end, we defined the two samples using their edge weight distribu-
tions. Specifically, we drew the edge weight distribution of S1 from a Poisson
distribution with mean λ = 5 and the edge weight distribution of S1 from
a Poisson distribution with mean λ = 6. This yields an absolute difference525

of 1 between means and 0·21 between standard deviations of edge weight
distributions. The edge weights are i.i.d. sampled.

Scenario B. Non-trivial differences: different vertex labelling.
The goal is to show that using a relabelling-invariant distance such as the
spectral distance to compare network samples coming from distributions that530

only differ up to a relabelling of the vertices fails to detect differences while
other types of distances succeed. To this end, we drew both S1 and S2 from
the stochastic block model (Holland et al., 1983) with different preference
matrices. In details, for drawing S1, we used a 3×3 block matrix of edge
probabilities with 0·8 in block 1, 0·2 in other blocks and block sizes of 12×12,535

12×1, 12×12, 1×12, 1×1, 1×12, 12×12, 12×1 and 12×12, where blocks are
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enumerated rowwise. For drawing S2, we also used a 3×3 block matrix of
edge probabilities with same block sizes but we input the probability of 0·8
to block 9 instead of block 1. These two stochastic block models split the
vertices into high- and low-connectivity groups and the two samples differ540

only from a block swap.
Scenario C. Non-trivial differences: different diffusion patterns.

The goal of this scenario is to go deeper into the interpretation of the Lapla-
cian representation. By analogy with the Laplacian operator that plays a
central role in the diffusion equation, we hypothesize that the Laplacian rep-545

resentation captures differences in the way a substance can diffuse along the
edges of a network. To verify this claim, we drew S1 from the k-regular model
(see Bollobas, 2001, sec. 2.4) that generates random networks in which all
vertices have the same degree and we drew S2 from the G(n, p) Erdős-Renyi
model (Erdös and Rényi, 1959) in which every possible edge is created with550

the same constant probability. In details, each vertex in networks from S1
is connected to other 8 (out of 24) vertices while we set the probability for
drawing an edge between two arbitrary vertices in S2 to p = 1/3 such that
the edge weight distribution share the same mean in the two samples. The
Laplacian structure should be key to capture differences between the two555

samples because that difference lies in the diffusion patterns induced by the
networks.

Scenario D. Matrix representation versus summary indicators.
The goal is to demonstrate that using summary indicators (e.g. clustering
coefficient) to compare samples of networks, which is the most popular ap-560

proach (e.g. Airoldi et al., 2011), could yield less powerful test procedures
with respect to using the entire network structures. To this end, we propose
to generate small-world networks (characterized by a high clustering coef-
ficient) in both samples and add the scale-free property (power-law degree
distribution) to networks in S2. We aim at comparing test procedures based565

on either clustering coefficient (whose high value characterizes small world
networks) or whole network representations, respectively. In details, we drew
S1 from the Watts & Strogatz model (Watts and Strogatz, 1998) with start-
ing lattice of dimension 1, size of the neighborhood within which the vertices
of the lattice will be connected equal to 4 and rewiring probability of 0·15;570

and we drew S2 from the Barabási-Albert model (Barabási and Albert, 1999)
with quadratic preferential attachment and 4 edges added at each time step.

For each scenario, we computed a Monte-Carlo estimate of the probability
of rejection of H0, which can be interpreted as the power of the test. In all
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simulations, we set the significance level at α = 0·05 and we performed a575

total of 100,000 Monte-Carlo runs. For each run, we performed the test with
the statistic TIP−StudentFisher using m = 1,000 permutations sampled with
replacement and we estimated the p-value according to Eq. (2.5). For a
fair comparison, we used the same samples and the same permutations for
each combination of representation and distance. Modeling details of the580

generated scenarios are summarized in Appendix B.

Figure 2: Power of the test under different representations (adjacency in red, Laplacian in
green, modularity in black), different distances (rows) and different scenarios (columns).
The test is conducted under the combined test statistic TIP−StudentFisher. The dashed grey
curve in Scenario D (last column) represents the statistical power achieved by considering
only the clustering coefficient. The largest Monte Carlo standard error is 0.00158.

Figure 2 reports the estimated power, as the sample size increases and for
different combinations of matrix representations and distances between net-
works. The first column of Fig. 2 reports estimated probability of rejection
for Scenario A. It reveals that the power of the test is already close to one for585

sample sizes as small as n1 = n2 = 4, despite the fact that the edge weights
of the networks in the two samples are drawn from Poisson distributions
with close rate parameters. The second column in Fig. 2 reports results for
Scenario B. They clearly emphasize that the spectral distance fails to rec-
ognize differences for this particular simulated data set, independently from590

the matrix representations. The spectral distance indeed focuses only on
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the (ordered) eigenvalues of the matrix representation and therefore it is not
sensitive to differences pertaining to vertex relabelling. Fig. 2 displays the
results for Scenario C which stress the combined role of representation and
distance. First, the test fails to reject the null hypothesis with the Frobenius595

distance on adjacency matrices for any sample size. This makes sense be-
cause the Frobenius distance on the adjacency matrix focuses on differences
in edge weight distributions, while samples generated in this scenario differ in
the distribution of their nodes. Next, we can see that the power is increasing
with the sample size when using the spectral distance on adjacency matrices,600

reaching values close to 1 from sample sizes as small as 8. This is due to
a unique property of the spectrum of adjacency matrix for regular networks
that is concentrated on the first eigenvalue equal to k. Finally, tests based
on the Laplacian representation succeed in identifying the difference between
the two samples, independently from the chosen distance. This is because605

the feature that discriminates the two samples lies in the fashion a substance
can flow through the network, which is exactly what the Laplacian represen-
tation captures as shown by the R package diffusr (Dirmeier, 2017) that
nicely shows that diffusion along the networks is different in the two samples.
The fourth column in Fig. 2 shows that our test is able to distinguish the two610

samples generated in Scenario D. The IP-StudentFisher statistic reaches a
statistical power of 1, for sample sizes as small as n1 = n2 = 4, whereas the
same test but based only on the clustering coefficient of the networks goes to
1 with a much lower convergence rate, making it practical only for very large
samples. This simulation shows that considering the entire network in the615

two-sample testing problem allows to achieve a given statistical power with
much smaller samples compared to using graph summary measures.

Remark 3.1. Scenario A shows the performance of our test when the edge
weights are i.i.d. sampled from a discrete distribution. We performed a sim-620

ilar simulation study (not reported in the paper) drawing the edge weights
i.i.d. from the Exponential distribution to see how the test perform on a con-
tinuous edge weight distribution. The results are similar to those of Scenario
A.

Remark 3.2. One may want to use more combinations of representations625

and distances. This can be done but it is necessary to correct for multiplicity,
e.g. by means of Bonferroni-like methods, on the corresponding p-values.
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4. Application to bike-sharing data

We chose to demonstrate the usefulness of our approach by applying it
to a sharing mobility data set, a case where the test results can be immedi-630

ately interpreted. Indeed we want to quantitatively answer the question if
the sharing mobility shows differences between days of the week. Despite the
simplicity of the question, this data presents features which make the para-
metric approach out of reach: the sample sizes are very small (n1 = n2 = 6)
and the probabilistic generative model of the data is likely to be a mixture635

distribution accounting for various environmental factors (e.g. precipitation).
In the city of Milan a bike sharing service (bikeMi, https://www.bikemi.com)
is active since 2008. Milan is divided into 88 neighbourhoods, called Nuclei di
Identitá Locale (NILs, http://dati.comune.milano.it/dataset/ds61 infogeo nil localizzazione ),
and 263 stations are distributed in 39 of these NILs. We are interested in640

studying the daily bike mobility between the neighbourhoods of the city.
Each day is associated to a mobility network which vertices represent neigh-
bourhoods equipped with at least one dock station and edge weights cor-
respond to the number of travels between two neighbourhoods. The data
has been collected between January, 25th, 2016 and March, 6th, 2016 where645

each day starts at 3 a.m.. Since we are interested in the mobility between
neighbourhoods, we keep about 300.000 travels of 350.000, excluding trav-
els within the same neighbourhood. In the end, we have a data set of 42
undirected mobility networks (7 days of the week over 6 weeks) to which it
is possible to apply all representations and distances presented in the pre-650

vious sections. Figure 3 shows a glimpse at the data set by displaying the
restricted sample Fréchet means of each day of the week, using the Frobenius
distance between Laplacian representations. The colours and the widths of
the edges are related to the edge weights: the wider and darker the edge,
the larger its weight. We performed pairwise comparisons between days of655

the week based on samples with sample size n1 = n2 = 6. The tests have
been carried out with the IP-StudentFisher statistic and under all repre-
sentations and distances discussed in Sections 2.1 and 2.2. Figure 4 shows
part of the results. In details, the Frobenius distance on adjacency matrix
and the spectral distance on Laplacian matrix are considered in the left and660

right panels, respectively. In the top row, we plotted a multi-dimensional
scaling representation of the 42 networks of our data set. Different colours
and shapes correspond to different days of the week. The nevada package,
attached to this work, provides a plot function that allows one to visualize
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Figure 3: Restricted sample Fréchet means of each day of the week and, in the last
thumbnail (bottom right), the map of the NILs of Milan with a point in the neighbourhoods
having at least one dock station.

multidimensional scaling projections of samples of networks. This is a great665

supporting tool for picking the best pair of representation/distance with the
scope of highlighting differences between the samples. The second row shows
the p-values of each pairwise comparison between different days of the week.
The results highlight no significant differences when comparing pairs of week
days or Saturday with Sunday. The null hypothesis is instead rejected when670
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comparing week days against weekend days. Results related to the other
combinations of representations and distances are similar to those reported
in Fig. 4. These quantitative results are qualitatively visible in both the
plots of the entire data set in supplementary material and the multidimen-
sional scaling plots, where there is a separation between working days and675

non-working days.
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Figure 4: Results of the application to the bikeMi data set using different matrix repre-
sentations and distances.

5. Discussion

Flexibility in choosing representation, distance and test statistics is a
strength of our proposed comprehensive framework. In effect, different choices
of the pair representation/distance allow to analyze the data set under differ-680

ent angles, focusing therefore on different types of differences. For example,
the difference between two samples of networks may be in the intensity of
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the weights of the networks – in which case using the adjacency matrix rep-
resentation is preferable – or in the way a substance can diffuse along the
nodes of the networks – in which case the Laplacian matrix representation685

shall be used. For the choice of distances, similar arguments can be made.
For example, while the Frobenius distance is the natural Euclidean distance
for matrices, we might want to be insensitive to differences that are only due
to a relabelling of the nodes – in which case the spectral distance should be
considered. In definitive, the practical user who knows the type of differ-690

ence (s)he expects can target specific representations and distances. If, on
the contrary, the practical user is conducting a purely exploratory investi-
gation, we strongly believe it is still a strength of the framework to allow
testing for differences under different angles to make new discoveries about
the phenomenon under investigation from the data set at hand. Depending695

on the results that are obtained using the different representations and dis-
tances, the user can obtain a clear idea of what type of differences (if any)
are present.

Tackling the two-sample testing problem from the perspective of the per-
mutation framework assumes as null hypothesis that the entire distribution700

of the two samples is the same (so that, under such an assumption, data in
the two samples are exchangeable) while the alternative hypothesis would be
that their distribution is different. The choice of the test statistic is then
critical because it makes the test sensitive to specific features of the distri-
bution. Therefore, there is no uniformly better statistic for testing equality705

in distribution but rather many statistics that look at the distribution under
different angles. We advocate in favor of the permutation non-parametric
combination approach which allows to integrate multiple test statistics in
the estimation of the p-value. Along these lines, we define and propose a set
of novel test statistics based on inter-point distances only that individually710

target each moment of the distribution. In the nevada package available
freely on GitHub, we thus set this approach as the default for the test statis-
tic(s). For the sake of completeness and because many other statistics exist
and might be used, we also give in the package flexibility to the practical
user to use other statistics taken from the literature or even to implement715

her own preferred statistic(s).
Starting from standard results on U–statistics, it could be possible to

find the asymptotic distributions of TIP−Student and TIP−Fisher. Besides the
theoretical interest, the asymptotic distributions might be helpful in reducing
the computation time in the case of large sample sizes or large networks.720
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However, permutation tests implemented in our R package nevada run the
test within seconds for sample sizes around 20 and networks with 25 nodes.

Furthermore, our proposed method relies only on inter-point distances.
This means that all we need is a metric between networks to perform two-
sample testing. Hence, we believe that our proposal could be a valid approach725

not only for network-valued data analysis, but, in a broader context, for
Object Oriented Data Analysis, provided that the object data used as sample
unit can be embedded into a metric space.

Appendix A. Proof of the theorems

Theorem 1. In this proof we partially follow Székely and Rizzo (2004). For730

the law of large numbers, we have that for n = n1 + n2 →∞

1

n1n2

n1∑
i=1

n2∑
j=1

ρ2(G1i, G2j)→ E[ρ2(G1, G2)],

1

n1(n1 − 1)

n1∑
i=1

n1∑
j>i

ρ2(G1i, G1j) =
1

2

1

n1(n1 − 1)

n1∑
i=1

n1∑
j 6=i

ρ2(G1i, G1j)

→ 1

2
E[ρ2(G1, G

′
1)],

1

n2(n2 − 1)

n2∑
i=1

n2∑
j>i

ρ2(G2i, G2j) =
1

2

1

n2(n2 − 1)

n2∑
i=1

n2∑
j 6=i

ρ2(G2i, G2j)

→ 1

2
E[ρ2(G2, G

′
2)].

Therefore, for n = n1 + n2 →∞ the numerator of TIP−Student tends to

E[ρ2(G1, G2)]−
1

2
E[ρ2(G1, G

′
1)]−

1

2
E[ρ2(G2, G

′
2)], (A.1)

where G1, G
′
1, G2, G

′
2 are independent random variables, G1 and G′1 are

independent and identical distributed from F1 and G2 and G′2 are indepen-
dent and identical distributed from F2. If ρ is one of the distances between
Frobenius, Spectral, and Root-Euclidean described in Subsection 2.2, apply-
ing Székely and Rizzo (2005a)[Theorem 2], it is possible to prove that the
expression in A.1 is always non–negative and it is equal to zero if and only
if E[G1] = E[G2] (where the expectation is defined in the Fréchet sense).
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In effect, the representation of a network by means of a matrix allows to
trace it back to the vectorization of the representation matrix. Hence, all
considered distances can be seen as Euclidean distances between properly
defined vectors. Indeed: the Frobenius distance is nothing but the Euclidean
distance on the vectorized matrix representation; The Spectral distance is
the Euclidean distance between the vectors of the eigenvalues of the repre-
sentation matrix; and the Root-Euclidean distances is an Euclidean distance
between the vectorization of the square roots of the matrix representations.
Therefore Székely and Rizzo (2005a)[Theorem 2] can be applied for the three
distances mentioned above, yielding the following inequality under the alter-
native hypothesis H1 of unequal means:

E[ρ2(G1, G2)]−
1

2
E[ρ2(G1, G

′
1)]−

1

2
E[ρ2(G2, G

′
2)] > 0.

As a result, the numerator of TIP−Student tends to a strictly positive con-

stant under H1 when n = n1 + n2 → ∞. The denominator σ̂2
1/n1 + σ̂2

2/n2

tends instead to zero (recall that for hypothesis E[ρ2(G1, G
′
1)] < +∞ and735

E[ρ2(G2, G
′
2)] < +∞). Eventually, TIP−Student → +∞ when n = n1 + n2 →

∞, and hence the permutation test based on TIP−Student is consistent for the
three distances mentioned above.

Moreover, observing that the Hamming distance is a `1 distance on the
vectorized matrix representation, one could think of following the same line740

of the proof for Frobenius, Spectral, and Root-Euclidean distance. In effect,
Székely and Rizzo (2005b)[Theorem 1] guarantees a similar result to that of
Székely and Rizzo (2005a)[Theorem 2], but for a general function, instead
for a power of the Euclidean distance. This general result is based on the
hypothesis that the function must be of strictly negative type. It is well745

known that `1 metric space is of negative type but it fulfills the condition of
being of strict negative type only in a weaker sense (Li and Wenston, 2010)
that is not sufficient for our aim. Therefore, the numerator of TIP−Student
with the Hamming distance could be zero even when E[G1] 6= E[G2] and so
the consistency is not guaranteed in this case.750

Theorem 2. The following limits in probability under H0 and H1 hold, re-
spectively:

TIP−Fisher(n) −→ c0 TIP−Fisher(n) −→ c1 as n = n1 + n2 →∞,
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Simulation 1: Parameters of the independent Binomial distributions and corresponding 
location and scale alternatives.

n1 p1 n2 p2 μ1 μ2 σ12 σ22 || μ1 - μ2 || σ22 / σ12

10 0.50000 10 0.50000 5.00000 5.00000 2.50000 2.50000 0.00000 1.00000

10 0.50625 10 0.49375 5.06250 4.93750 2.50000 2.50000 0.12500 1.00000

10 0.51250 10 0.48750 5.12500 4.87500 2.50000 2.50000 0.25000 1.00000

10 0.51875 10 0.48125 5.18750 4.81250 2.50000 2.50000 0.37500 1.00000

10 0.52500 10 0.47500 5.25000 4.75000 2.50000 2.50000 0.50000 1.00000

300 0.20000 300 0.20000 60.00000 60.00000 48.00000 48.00000 0.00000 1.00000

300 0.20000 375 0.16000 60.00000 60.00000 48.00000 50.40000 0.00000 1.05000

300 0.20000 500 0.12000 60.00000 60.00000 48.00000 52.80000 0.00000 1.10000

300 0.20000 750 0.08000 60.00000 60.00000 48.00000 55.20000 0.00000 1.15000

300 0.20000 1500 0.04000 60.00000 60.00000 48.00000 57.60000 0.00000 1.20000

20 0.10000 20 0.10000 2.00000 2.00000 1.80000 1.80000 0.00000 1.00000

20 0.10000 21 0.10000 2.00000 2.10000 1.80000 1.89000 0.10000 1.05000

20 0.10000 22 0.10000 2.00000 2.20000 1.80000 1.98000 0.20000 1.10000

20 0.10000 23 0.10000 2.00000 2.30000 1.80000 2.07000 0.30000 1.15000

20 0.10000 24 0.10000 2.00000 2.40000 1.80000 2.16000 0.40000 1.20000
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where c0 = 1 and c1 > 1. Therefore, it is immediate to prove by contradiction
that there exists n̄ such that for all n ≥ n̄

PH1 [TIP−Fisher(n) ≥ x] ≥ PH0 [TIP−Fisher(n) ≥ x] for all x

and the strict inequality holds for some x. This concludes the proof since the
stochastic dominance of TIP−Fisher under H1 on TIP−Fisher under H0 guarantees
the consistency of the permutation test (Pesarin and Salmaso, 2010).

Appendix B. Modeling details of the generated scenarios755

Table Simulation 1 on page 28 reports all the parameters used to generate
the simulated scenarios in Subsection 3.1.

Table B.1 on page 29 reports all the parameters used to generate the
simulated scenarios in Subsection 3.2. Scopes, models and their parameters
for the two samples S1 and S2 are summarized. All networks are made of 25760

vertices. The Bernoulli rate matrices in scenario C are p1 = matrix(c(0.8,

28



Table B.1: Summary table of the simulated scenarios

Scenario Scope S1 S2
A Edge strengths Poisson model:

lambda = 5 lambda = 6

B Vertex relabelling Stochastic block model:
pref.matrix = p1 pref.matrix = p2

block.sizes = c(12L, 1L, 12L)

C Diffusion patterns k-regular model: Erdős-Rényi model:
k = 8L p = 1/3

D Network VS Indicators Watts & Strogatz model: Barabási-Albert model:
dim = 1L power = 2L

nei = 4L m = 4L

p = 0.15 directed = FALSE

rep(0.2, 3L)), 2L, 2L) and p2 = matrix(c(rep(0.2, 3L), 0.8), 2L,

2L).
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