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1. Introduction and state of the art 

 

Mathematical and numerical modeling can be used to better understand the 

physics of earthquakes, enhance seismic-risk maps and improve the design of site-

strategic structures and facilities. There are two main approaches to estimate 

ground motion in seismic hazard analysis: 

i. Ground motion prediction equations (GMPE), which are empirical 

relations predicting the level of ground shaking at a given site/location 

based on a small set of evaluation criteria such as earthquake magnitude, 

soil properties, source-to-site distance, and fault mechanisms; 

ii. Deterministic-based numerical simulations; 

As pointed out in [1], different GMPE models may lead to very different results, 

even if a common database is used. Moreover, GMPE strongly relies on the 

availability of historical earthquake records, which may be very poor for extreme 

earthquakes (moment magnitude bigger than 7/8 on the Richter scale) and short 

distance from the epicenter location. For these reasons, deterministic models have 

become increasingly popular because they are able to provide accurate and 

reliable ground-motion predictions in an affordable computational cost. By 

simulating a number of realistic earthquake scenarios, it is possible to obtain 

reliable estimates of the severity of seismic events, to quantify their possible 

effects on large urban areas, and establish collapse-prevention strategies for 

structures located in the proximity of a fault.  For the above mentioned reasons, in 

the past twenty years, there has been an intensive research on numerical methods 

for linear and non-linear seismic wave propagation problems in highly 

heterogeneous media.  
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Spectral Element (SE) methods have emerged as a powerful tool and have shown 

to be much more effective compared to other numerical techniques such as Finite 

Difference, Finite Element and Boundary Element methods. The main idea behind 

SE methods is that the finite dimensional space is made by high order (piecewise) 

polynomials sampled at Gaussian integration points. Therefore, SE methods retain 

the geometrical flexibility of low-order finite elements while featuring the 

accuracy typical of high order methods. Indeed, one of the key points of the SE 

method is the capability of providing an arbitrarily accurate numerical solution by 

simply increasing the local polynomial degree [2],[3]. In particular, for wave 

propagation problems, SE methods feature a very low dispersion error, yielding 

therefore negligible phase errors. The capabilities of SE methods have been 

proved successful in a wide range of phenomena governed by the elastodynamics 

equation, namely: i) ground and structural vibrations induced by train passage [4], 

[5],[6]; ii) seismic wave propagation problems [7], [8]; iii) dynamic soil-structure 

interaction effects related to the dynamic response of large infrastructures, such as 

dams and viaducts [9]. In all the above mentioned applications a key point that 

often represents a bottleneck for the whole simulation is the design of the 

computational grid that must be able to i) correctly describe the (possibly very) 

complex three-dimensional geometry; ii) respect the heterogeneity of the media; 

ii) capture all the different spatial scales that characterize the phenomenon. 

For these reasons flexible strategies in modern elastodynamics codes are 

nowadays mandatory. In this respect, the capability of SE methods has been 

further improved and Discontinuous Galerkin (DGSE) methods have been 

recently developed and analyzed in the context of elastodynamics equations 

[10],[11]. The DGSE methods proposed and analyzed in [10] are based on the 

following domain decomposition paradigm: the computational domain is firstly 

partitioned into a number of nonoverlapping substructures (coherently with the –

known- medium properties), then within each subdomain (continuous) spectral 

elements are employed, whereas across interfaces the discrete solution is 

discontinuous and (weak) continuity is imposed according to the DG philosophy, 

i.e., by penalizing the jump of the discrete displacement. Such a domain 

decomposition approach has been proved to be competitive for practical three-

dimensional applications since the proliferation of unknowns, which is the main 

drawback of classical DG schemes (where the discrete space is made of 

elementwise discontinuous polynomials), is kept under control. Moreover, the 

DGSE methods proposed in [10] preserve the same accuracy of SE methods and 

feature low dissipation and dispersion errors, and therefore guarantee an accurate 

approximation of amplitudes and phases of the wave fields, which provide 

important information on the interior structure and consistency of soil layers. On 
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the other hand, DGSE methods are much more flexible than SE methods, since 

they can handle subdomainwise non-matching grids and variable polynomial 

approximation degrees, making such schemes well suited for simulations with 

adaptive choice of discretisation parameters. More precisely, the spatial 

discretization and/or the local polynomial degree can be tailored to the region of 

interest (e.g., buildings or civil engineering structures). Furthermore, DGSE 

methods enjoy a high level of intrinsic parallelism, making such a discretization 

technique well suited for massively parallel computations.  

The DGSE methods introduced in [10] have been implemented in SPEED, a 

certified open-source code for the prediction of the near-fault ground motion and 

the seismic response of three-dimensional structures, see [12], and 

http://mox.polimi.it/it/progetti/speed. SPEED is developed at Politecnico di 

Milano by MOX (the Laboratory for Modeling and Scientific Computing) within 

the Department of Mathematics, jointly with the Department of Civil and 

Environmental Engineering. SPEED has been successfully tested in a number of 

realistic seismic events, including the earthquakes in L’Aquila, Italy (2009), Chile 

(2010), Christchurch in New Zealand (2011), and Northern Italy (2012), see [12]. 

In the framework of elementwise DG approximations of elastic and acoustic wave 

propagation problems in primal form, Interior Penalty DG methods have been 

proposed and analyzed in [13], [14]. These schemes have been extended to 

viscoelastic models in [15] and to nonlinear elastodynamics in [16]. Velocity-

stress DG formulations have been proposed in [17] and [18]. A coupled elastic-

acoustic wave problem approximated by DG methods has been studied in [19]. 

Recently, a unified framework for analyzing the stability and convergence 

properties of semi-discrete displacement and displacement-stress DG 

approximations of a general elastodynamics problem has been proposed in [20]. 

 

The rest of this paper is organized as follows. In the next section we report the 

governing equation modeling a visco-elastic material and its DGSEM 

approximation. In Section 3 we report some realistic earthquakes scenario 

obtained using the computational code SPEED. 

 

 

2. Governing equations and DGSE discretization 

 

We consider a visco-elastic heterogeneous medium with mass density ρ occupying 

an open, bounded three-dimensional region Ω with smooth boundary, and denote 

by u the medium displacement and by σ(u) the Cauchy stress tensor. Given a 

density of body forces f , the governing equation we consider is the following  
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Here, ξ is a suitable decay factor (that scales as the inverse of time) that is used to 

model approximately the visco-elastic response of the medium. Notice, that a fully 

visco-elastic model would require in general a convolution integral between the 

stress and strain tensors: such an approach would be quite challenging from the 

computational point of view. For this reason, approximate models relying on 

suitable modification of the equation of motion are usually employed to model 

visco-elastic materials. Model (1) considered here has been proposed in [21], and 

in [22] it has been demonstrated that, for seismic applications, it is a sufficiently 

accurate approximation of the fully visco-elastic model. Equation (1) is then 

supplemented by suitable boundary and initial conditions. To prevent reflections 

at artificial boundaries, suitable absorbing boundary conditions are considered. 

Here, we adopt a variant of the first order approximation proposed in [23], which 

have been proved to be effective for seismic applications. We mention that other 

(and more accurate) techniques as the (Convolution) Perfectly Matched Layer, 

[24], [25] for example, are available to prevent spurious reflections.  

 

To balance flexibility and computational costs, problem (1) is discretized with the 

DGSE method [10]. The computational domain Ω is firstly decomposed into M 

nonoverlapping polyhedral subdomains Ωk, k=1,..., M, and we denote by Γs, 

s=1,....Ms, the interfaces between subdomains, cf. Fig. 1 for a representative 

example. Such decomposition is usually provided by Seismic Engineers or 

Geologists since it accounts for the material properties/soil layers. Then, within 

each subdomain Ωk, we construct a grid Th
k made of hexahedral elements and 

assign a polynomial approximation degree Nk≥1, cf. Fig. 1. Notice that mesh 

generation is performed independently on each subdomain and also the local 

polynomial degree Nk can vary subdomainwise. We collect all the faces (here a 

face is the non empty interior of the intersection of two-neighboring elements) of 

the partition Th
k  that lie on the interface Γs, s=1,2... Ms, in the set Fs and adopt the 

following notation 

   

for (regular enough) functions w and z. Problem (1) is then discretized on each 

subdomain Ωk with a SEM of degree Nk and at the interfaces Γs the DG paradigm 

is employed. Then, denoting by Vh the discrete space of function that are 

piecewise continuous polynomials of degree Nk on each subdomain, the semi-

discrete DGSEM reads as follows: for any t ∈[0,T], find uh≡uh(t) in Vh such that  

 

 
 

(w, z)Fs
=

X

F∈Fs

(w, z)F
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where L(.) is a suitable linear functional containing all the external loads acting on 

the system and (.,.)Ω denotes the standard L2 inner product in Ω. The bilinear form 

A(.,.) appearing in (2) is defined as follows 

 

where the average {{.}} and jump [[.]] trace operators are defined as in [26], while 

γs is a suitable stabilization function, cf. [10]. 

 

 

 
Fig. 1 Example of the partition of the computational domain Ω into M=4 nonoverlapping 

polyhedral subdomains and computational hexahedral grids built independently on each 

subdomain. The interfaces between subdomains are denoted by Γk, k=1,...,M.  

Problem (2) reduces to a system of ordinary differential equations that we 

discretize by the leap-frog method.!

 

3.  Earthquakes scenarios  
In the framework of earthquake scenarios SPEED has been employed for the 

generation of both deterministic and hybrid deterministic-stochastic ground 

shaking maps [27] in the following  strategic  areas: (i) Santiago de Chile; (ii) 

Christchurch, New Zealand; (iii) Wellington, New Zealand; (iv) Po Plain, North 

Eastern Italy.  Besides a relevant interest from the economic loss exposure 

viewpoint, all of these sites were chosen because of sufficiently detailed 

information on the active faults surrounding the sites and on the shallow and deep 

geological structures were available. Moreover, in the Christchurch and Po Plain 

cases a significant amount of records were also available.  Here, we focus our 
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attention on the generation of seismic scenarios for the Wellington area; for a 

detailed description of seismic hazard analysis in the other mentioned locations 

see [27] and [28].  

 

Fig. 2 Main active faults in Wellington region (courtesy of GNS institute 

http://www.gns.cri.nz/) 

 
 

 

Seismic hazard in the metropolitan area of Wellington is dominated by several 

major active fault systems, i.e., from West to East, the Ohariu, Wellington-Hutt 

and Wairarapa faults, as indicated in Figure 2. The first set of seismic scenarios 

have been produced considering only the Wellington–Hutt fault, which is a 75-km 

long strike-slip fault characterized by a return period between 420 and 780 years 

for a magnitude between Mw 7.0 and Mw 7.8, cf. [28]. The numerical model also 

takes into account the most important geological features of the area, i.e., the 3D 

basin bedrock topography, the 3D irregular soil layers deposited over the bedrock, 

free-surface topography. All these features have been integrated taking into 

account the available geological and geophysical data (borehole, bathymetry, 

gravity, seismic) down to about 800 m depth [29]. To better describe such 

geological discontinuities, non-conforming grids have been employed to model 

the Wellington Valley, as depicted in Fig. 3. The computational domain is of size 
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80 x 50 x 45km3 and consists of 335496 spectral elements, yielding approximately 

to 30 millions of unknowns for a local polynomial approximation degree equal to 

3. With such a computational grid it is possible to correctly propagate signals up 

to about 2 Hz. A set of 30 seismic scenarios has been generated by considering 

different ruptures along the Wellington-Hutt Fault. These scenarios are 

characterized by magnitudes ranging from 6 Mw to 7 Mw, a focal depth D varying 

from 5.2 Km to 10 km and several nucleations. It is relevant to underline that for 

these numerical simulations a linear viscoelastic soil behavior has been assumed 

according to equation (2).  

 

 

Fig. 3 Computational domain for the Wellington Valley. Zoom on the non-conforming 

mesh adopted for modeling the alluvial deposits (approximately 30 millions of unknowns). 

 

As an illustrative example, Fig. 4 depicts the ground shaking maps (geometric 

mean of horizontal components) in terms of the Peak Ground Displacement (PGD, 

Fig. 4, left) and the Peak Ground Velocity (PGV, Fig. 4, right). These sets of results 

have been obtained for a hypothetical MW 7 earthquake rupturing. The simulations 

have been performed on the FERMI BlueGene/Q cluster located at CINECA 

(www.hpc.cineca.it/). 
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