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Abstract

Applied sciences have witnessed an explosion of georeferenced data. Ob-
ject oriented spatial statistics (O2S2) is a recent system of ideas that pro-
vides a solid framework where the new challenges posed by the GeoData
revolution can be faced, by grounding the analysis on a powerful geometri-
cal and topological approach. We shall present a perspective on O2S2, as
a fruitful ground where novel computational approaches to geosciences can
be developed, at the very interface among varied �elds of applied sciences
� including mathematics, statistics, computer science and engineering.

Keywords: Object Oriented Data Analysis, Georeferenced data, Kriging, Com-
putational statistics

1 Introduction: O2S2 for Modern Applied Geosciences

The availability of large amounts of data is shaping a new era for applied geo-
sciences. Nowadays, �eld studies may not rely on small-scale datasets of scalar
variables only, but rather on a multitude of complex datasets from di�erent
sources, which provide direct and indirect observations of the phenomenon under
investigation. For instance, seismic monitoring relies on dense networks of mea-
surement instruments in-situ, which typically record signals at high-frequency
in time (i.e., functional data). Here, additional sources of information are rep-
resented by remote sensing data (e.g., satellite images), and soft data, such as
those provided by the resident population via crowdsourced platforms (smart-
phone applications, social networks or online surveys, see, e.g., [Finazzi, 2016]).

Data analyses in these settings cannot ignore the data heterogeneity and
complexity. Data streams, functional data, images, tensors, networks, and texts
are few paradigmatic examples of the di�erent types of data objects that may
represent the core of the geostatistical analysis. In the GeoData deluge, the con-
text where classical geostatistics was developed is rapidly disappearing, opening
a new frontier for GeoData Science.
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This framework is fostering a compelling need for innovative paradigms of
analysis. Object oriented spatial statistics (O2S2, [Menafoglio and Secchi, 2017])
is a recent system of ideas that provides a solid framework where these new and
revolutionary challenges can be faced, by grounding the analysis on a powerful
geometrical and topological approach. O2S2 embraces the philosophy of object
oriented data analysis (OODA, [Marron and Alonso, 2014]), and is rooted in the
interpretation of the data point (e.g., the curve, image, or network) as the atom

of the statistical analysis. The data points (also called data objects) are thus
modeled as points in a mathematical space � named feature space � that should
properly represent the data characteristics, particularly their dimensionality and
constraints.

In the context of O2S2, new challenging problems can be formulated and
tackled, and classical paradigms of analysis reinterpreted (e.g., those based on
variography, kriging and stochastic simulation), opening new venues for compu-
tational geostatistics. The intent of this paper is not to provide an exhaustive
review or deep mathematical treatment, but rather a perspective on O2S2 as a
paradigm for the development of new computational approaches to geosciences.
We shall also open views on the varied contexts that are being challenged by the
complexity of modern GeoData-driven problems, in areas of applied sciences well
beyond the classical �elds of application of geostatistics. The focus will be posed
not only on the complexity of the data, but also on the potential complexity of
the study domain (e.g., for its size or shape), with reference to the computational
methods and software developed in O2S2.

2 A key role for the feature space

Among the pillars of O2S2, the feature space plays a key role. For instance, the
operations (sum, product by a constant) de�ned in the feature space are key to
the de�nition of linear predictors such as kriging [Menafoglio and Secchi, 2017].
As an example, we consider a set of data objects (e.g., functional data), collected
at locations s1, ..., sn in a spatial domain D, and denoted by Xs1 , ...,Xsn . We
represent the data as elements of a Hilbert feature space F (e.g., the space L2),
with operations (+, ·), inner product 〈·, ·〉, and associated norm ‖ · ‖. Loosely
stated, in O2S2 for Hilbert data, the kriging predictor is de�ned as the linear

combination of the data
∑n

i=1 λ
∗
i ·Xsi with `optimal' scalar weights λ∗1, ..., λ

∗
n (see

[Menafoglio and Secchi, 2017]). Here, the form taken by the linear combination

is precisely determined by the operations (+, ·). On the other hand, the metric
induced by the inner product in F implies a notion of similarity between data
objects observed at nearby locations (‖Xsi − Xsj‖2, i, j = 1, ..., n), which is in-
strumental in de�ning the variogram and the associated notions of stationarity
(see [Menafoglio and Petris, 2016, Menafoglio and Secchi, 2017]). As a matter
of fact, the feature space F should be selected as to properly represent the data
characteristics that one is willing to account for in the analysis. In this perspec-
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tive, a feature space selected for unconstrained functional data (e.g., the space
L2 or a Sobolev space), most likely will be inappropriate to represent tensor data
or distributional data, such as probability density functions (PDFs). These latter
types of data are not uncommon in the geosciences. For instance, particle-size
fractions (PSFs) and particle-size densities (PSDs, i.e., the continuous counter-
part) are routinely used in hydrogeological studies and in all the areas of applied
science where �ow and transport phenomena are to be modeled, being related
to the porosity and permeability of the medium. The analysis of PSFs (PSDs)
requires to account for the fact that they are closed data, i.e., their sum (integral)
is one. It has been widely recognized [Aitchison, 1982, Pawlowsky-Glahn et al.,
2015, Buccianti and Grunsky, 2014] that an approach which neglects this aspect
and treats each component of a PSF separately (or �xed quantiles of a PSD) is
a�ected by spurious correlations. Furthermore, it leads to biased results and in-
appropriate estimates. For instance, embedding PSDs in L2 and building kriging
predictors through its geometry most likely leads to negative kriged densities or
totals di�erent from one (e.g., [Menafoglio et al., 2014], and references therein).
All these issues arise because an Euclidean space is not the appropriate feature
space for the analysis, as the data belong to a simplex. In the perspective of
O2S2, the analyst should �rst focus on these geometrical properties of the data
(positivity and closeness), and, on this basis, select an appropriate feature space �
a possible choice being, for PSFs, the Aitchison geometry for compositional data
in the simplex [CoDa Pawlowsky-Glahn et al., 2015] and, for PSDs, its continuous
counterpart [van den Boogaart et al., 2014, Menafoglio et al., 2014]. In this vein,
the feature space may not necessarily be �nite-dimensional and Euclidean �
the working assumptions of geostatistics � but could be an in�nite-dimensional
Hilbert space, a Riemannian manifold or a Banach space, if better representative
of the data objects [Menafoglio and Petris, 2016, Pigoli et al., 2016].

3 O2S2 in action

The areas of potential application of O2S2 are varied. O2S2 has been used
for the spatial prediction of particle-size distribution in heterogenous aquifers
[Menafoglio et al., 2014, 2016b], to model and forecast gas rate production curves
in shale reservoirs [Menafoglio et al., 2016a], and, more recently, for the analysis,
prediction and simulation of shaking �elds generated from earthquakes events
[Lentoni, 2018]. In fact, O2S2 can be used naturally in all those settings where
compositional, symbolic and functional data analysis [Pawlowsky-Glahn et al.,
2015, Billard and Diday, 2007, Ramsay and Silverman, 2005] approaches were al-
ready successfully introduced, such as geochemistry (see [Buccianti and Grunsky,
2014] and references therein), climatology [Delicado et al., 2010], oceanography
[Nerini et al., 2010], water quality [Menafoglio et al., 2018]. A short case study
on water quality will be presented at the end of Sect. 5.

O2S2 also allows for kriging meta-modeling [Kleijnen, 2009], enabling one to
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perform e�cient uncertainty assessment in numerical models where the response
is a complex object (e.g., a function of time or a �eld in space). This has found
application in models for �uid �ow in reservoirs [Bottazzi and Rossa, 2017, Grujic
et al., 2018], but also in di�usion-reaction PDE models [Pagani et al., 2017]. A
similar approach is currently used to provide a full uncertainty assessment on
a mathematical model for sediment transport in a mountain basin, within the
SMART-SED project [Brambilla et al., 2018].

In all these contexts, calibrating the model inherently requires to take advan-
tage of the rich but heterogenous set of information available at di�erent sources,
integrating the data collected in situ with those given at other open data repos-
itories (e.g., on region geology, soil composition, land use). Data fusion � i.e.,
the process of combining information from multiple data sources based on sound
statistical models � is still one of the most challenging yet compelling issues to
bring O2S2 into further action. A critical topic in this regard is de�nitely the
change of support for the data, particularly the problem of downscaling (i.e.,
of bringing the data support to a smaller spatial scale). Developing e�ective
downscaling methods in O2S2 will be the key to further broaden its potential in
modern applied geosciences.

4 A GeoData revolution beyond classical applications

The advent of modern low-cost technologies for data collection and storage is
fostering the GeoData revolution well-beyond Earth sciences. Smart cities are
equipped with huge networks of sensors, which provide real-time information on
various aspects of life in urban areas. Hot research topics in this �eld are those
related to urban mobility, particularly for the development and optimization of
shared approaches. In this context, urban dynamics of vehicles and people can
be then inferred from the integrated analysis of large amounts of georeferenced
digital `contrails' and weak signals left by the users, such as mobile phones traf-
�c data, social networks activity, or GPS locations collected from smartphone
applications [Secchi et al., 2015].

In our view, the GeoData revolution represents an incredible opportunity for
knowledge dissemination across very disparate areas of science and engineering.
For instance, GeoData are also widespread in the context of Industry 4.0, where
data-rich environments are feeding the 4th industrial revolution. Production
plants are becoming highly sensored, to allow for a real-time quality monitoring
of the produced parts. In this broad context, additive manufacturing (i.e., 3D
printing) is leading the industrial and statistical research, at the very frontier
of statistical process control. Monitoring of parts is interpreted in this context
as (real-time) analysis of data objects represented by complex shapes, often de-
scribed by manifold geometries [Zhao and del Castillo, 2019]. The challenge
to take on in this framework is to allow for data-driven semi-automatic prod-
uct and process monitoring, based on streams of high-frequency signals (e.g.,
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videos [Colosimo and Grasso, 2018]) or tomographic reconstructions [Zhao and
del Castillo, 2019], these data being naturally subject to spatial dependence (i.e.,
GeoData). Here, O2S2 has the clear potential to be successfully employed for
modeling the spatial structure of complex data, in the same varied industrial
settings were kriging and multi-�delity paradigms have been already successfully
introduced (see, e.g., [Del Castillo et al., 2015] in free-form surface monitoring).

5 Complex data or complex domains?

Historically, the analysis of spatial data has been dominated by the use of global
approaches to the �eld modeling, mostly based on the assumption that the gen-
erating process is stationary (or mildly non-stationary) and distributed over a
Euclidean domain. However, in vast areas of geosciences, the proximity between
data locations is naturally expressed through the shortest path (i.e., the geodesic)
induced by the physics of the phenomenon, which may well be non-Euclidean.
For instance, while measuring aquatic variables in a stream network system, the
closeness among monitoring sites should be represented through a water distance

� i.e., the shortest path within water, or a distance accounting for the �uid �ow
in the system � rather than the Euclidean shortest path, which may pass through
land.

The extensive availability of GeoData de�ned at large spatial scales, calls for
innovative methodological and computational approaches able to deal not only
with massive and complex data, but also with data distributed over general types
of study domains. This area is the focus of active research in geostatistics. In-
deed, whenever the metric on the spatial domain is non-Euclidean, widely-used
parametric covariance families may no longer be valid [Curriero, 2006]. In spe-
cial cases, �exible classes of valid covariance models have been developed; these
include the case of stream networks (e.g., [Asadi et al., 2015, Ver Hoef and Pe-
terson, 2010]) and spherical domains (e.g.,[Huang et al., 2011, Porcu et al., 2013,
Mikyoung and Stein, 2008]), which naturally arise when dealing with global cli-
mate data (see, e.g., [Castruccio and Genton, 2018]). However, strategies based
on the development of ad hoc valid models for the speci�c metric at hand seem
hardly applicable in general contexts. Recent literature has shown that overcom-
ing the issue is possible by using di�erent modeling or computational approaches
in the analysis. Relevant contributions in this sense are those encoding the spatial
dependence precisely through the physics of the phenomenon, described via par-
tial di�erential equations (PDEs, see, e.g., [Sangalli et al., 2013, Bernardi et al.,
2018]) or stochastic PDEs (SPDEs, see, e.g.,[Lindgren et al., 2011]). Although
these approaches are yet to be developed for general types of object data, their
modeling perspective is naturally suited to take full advantage of the possible
prior knowledge on the laws governing the phenomenon under study.

In the context of O2S2, we recently proposed [Menafoglio et al., 2018] a com-
putational approach able to deal jointly with the data and the domain complex-
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ities, by following a divide-et-impera strategy, in a bagging framework [Breiman,
1996]. The methodology is based on iterated random partitions of the study
domain (random domain decompositions, RDD, [Menafoglio et al., 2018, Secchi
et al., 2013]), that allow performing an ensemble of locally stationary and Eu-
clidean weak analyses � each conditioned to a realization of the RDD � to be
then aggregated into a �nal strong result. Natural �elds of application of the
approach are those of environmental monitoring within large estuarine systems,
where sensible data analysis should properly account for the complex topology
of the spatial domain. For instance, in [Menafoglio et al., 2018] we used Kriging
via RDDs to predict the PDFs of dissolved oxygen (DO) within the Chesapeake
Bay (US), a large estuarine system which is regularly monitored to assess the
impact of human activities on aquatic variables deemed critical for its ecosystem.
The feature space for the O2S2 analysis was set to the Bayes space of [van den
Boogaart et al., 2014], to properly account for the closed nature of PDF data
(see Sect. 2). The kriged PDFs are shown in Fig. 1a. Note that kriging the en-
tire PDFs, instead of, e.g., their summary statistics (mean, variance, or selected
quantiles), allows projecting the full information content embedded in PDFs to
unsampled locations in the system. In the context of our study, the kriged PDFs
were then used to support the identi�cation of the so-called dead zones, which
are areas of the estuary where the presence of oxygen in water is below 2 mg/l
hindering the life of most marine species. Figure 1b shows the predicted map
of probability P(DO < 2mg/l), obtained from the kriged PDFs. The spatial
patterns clearly follows the water dynamics within the system, and are indeed
insightful for the assessment of its critical areas. The correct identi�cation of
these latter areas is key to plan e�ective restoration and protection programs for
the Bay. More generally, developing sound mathematical frameworks for mod-
ern computational geosciences ultimately means providing valid decision making
support to the stakeholder (national and local agencies, administrators, �nal
users), with potential impacts on economy, environment and human health.

6 Computational challenges and software

Statistical methods taking on the challenge of the GeoData revolution cannot
neglect the computational feasibility of developed algorithms. GeoData scientists
will de�nitely need to take advantage of state-of-the-art numerical methods and
IT technologies. For instance, recent methods based on PDEs or SPDEs [Sangalli
et al., 2013, Lindgren et al., 2011] rely on advanced techniques of numerical
analysis and on statistical approximations (INLA [Rue et al., 2009]), leading
to highly sparse matrices. Localization through RDD leads to embarrassingly
parallel computer schemes (i.e., the structure of the algorithms is naturally suited
to code parallelization), allowing for highly e�cient implementations. Hardware
acceleration can provide further technological support to address the challenges
of computational geosciences, allowing to achieve higher degrees of e�ciency by
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Figure 1: O2S2 prediction results for the distribution of DO in the Chesapeake
Bay. (a) Kriged PDFs obtained via RDD; (b) map of probability of being a
Dead Zone (P(DO < 2mg/l)), obtained from the kriged PDFs (modi�ed from
[Menafoglio et al., 2018]). To enhance interpretation, the contour line of level
P(DO < 2mg/l) = 0.5 is marked with a thick red line in panel (b). Colors in
panels (a) and (b) are given consistently.

using hardware components on the system to perform pre-de�ned types of tasks
(see, e.g., [Zhang et al., 2018]). In all these cases, the availability of open, e�cient
and e�ective software packages will be crucial to knowledge dissemination. A
few R packages are already available for O2S2, allowing for spatial modeling and
kriging of Hilbert data (fdagstat [Grujic and Menafoglio, 2017]) and of manifold
data (Manifoldgstat [Sartori and Torriani, 2019]). These software packages take
advantage of scalable routines allowing for fast computations on relatively large
datasets, or for the use of bagging algorithms � whose backbone is the iterative
repetition of model estimates and kriging predictions.

The ultimate key to moving forward the frontier of GeoData Science will
de�nitely be a strong interplay among varied areas of applied sciences and engi-
neering � including mathematics, statistics, engineering and computer science.
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