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Abstract

In finite element formulations, transport dominated problems are often sta-
bilised through the Streamline-Upwind-Petrov-Galerkin(SUPG) method. Its ap-
plication is straightforward when the problem at hand is solved using Galerkin
methods. Applications of boundary integral formulations often resort to collo-
cation techniques which are computationally more tractable. In this framework,
the Galerkin method and the stabilisation may still be used to successfully ap-
ply boundary conditions and resolve instabilities that are frequently observed in
transport dominated problems.

We apply this technique to an adaptive collocation boundary element method
for the solution of stationary potential flows, where we solve a mixed Poisson prob-
lem in boundary integral form, with the addition of linearised free surface boundary
conditions. We use a mixed boundary element formulation to allow for different
finite dimensional spaces describing the flow potential and its normal derivative,
and we validate our method simulating the flow around both a submerged body
and a surface piercing body.

The coupling of mixed surface finite elements and strongly consistent stabil-
isation techniques with boundary elements opens up the possibility to use non
conformal unstructured grids with local refinement, without introducing the in-
consistencies of other stabilisation techniques based on up-winding and finite dif-
ference schemes.

Keywords: linearised free surface, submerged spheroid, Wigley hull, local
refinement, SUPG, BEM, high order elements, FEM BEM coupling
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1 Introduction

Given the constant increase of computing power, numerical simulations based
on mathematic models are nowadays becoming a growingly important tool for ship
performance prediction. In particular, models based upon the potential flow the-
ory are very often used in the early stages of ship design, as they are particulary
suitable for a quick estimation of the drag component resulting from the wave
generation of a ship hull advancing on the water surface. If the fluid is assumed
incompressible and the flow irrotational, Navier–Stokes equation can be simplified
into Laplace and Bernoulli equations. Despite the presence of a linear differential
operator, the equations have to be solved in the moving and a-priori unknown
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domain representing the portion of water surrounding the hull, producing a non-
linear boundary value problem. Such a problem is typically discretised by means
of a Mixed Eulerian–Lagrangian approach, which consists in splitting each time
step into an Eulerian and a Lagrangian sub-step. In the Eulerian sub-step, the
potential field equations are solved to obtain the fluid velocities. The flow field
obtained is then used in the Lagrangian sub-step to displace in a Lagrangian way
the free-surface, and compute the corresponding potential field values [25]. In
the most common practice, a boundary integral formulation is used to tackle the
boundary value problem for the free surface flow potential. In this framework,
Green’s second identity is used to reformulate the original Laplace Equation for
the flow potential into a Boundary Integral Equation (BIE). As the BIE only in-
volves points on the domain boundaries, it is discretised by means of a Boundary
Element Method (BEM), in which the computational grid needs to be generated
only on the boundaries. The application of BEM to ship wave drag prediction is
well documented in naval architecture [10, 17, 18, 23, 29].

Under the condition that only small waves are created (i.e., if we consider the
wave amplitude A and its wavelength λ we have that A≪ λ), it is possible to apply
a perturbation analysis to the fully nonlinear free surface boundary conditions, to
obtain a linearised free surface boundary condition for the flow potential [21, 14].
The importance of such linearised condition lies in the fact that in the linear case
it is possible to exploit the superposition principle to separately evaluate the flow
fields related to diffraction and radiation. In addition, since the linearised condition
is imposed on the undisturbed free surface, the computational grid does not need
to be deformed during the simulations, leading to an enormous computational
advantage with respect to the fully non-linear case. Yet, as pointed out in [24],
the linearisation process leads to a symmetric condition in the stream wise direction
which can possibly lead to unphysical results in presence of a main stream. It is
well known in fact, that the waves generated by the motion of the body propagate
mostly downstream, originating the so called Kelvin wake pattern.

For these reasons, several methods have been developed for the solution of
the linearised free surface potential problem. Among others, in [20] and [22], the
authors studied the possibility to employ ad hoc Green functions, called Kelvin
sources, which automatically satisfy the linearised condition and suppress unphys-
ical waves propagating upstream. Although this approach leads to good results, its
numerical implementation is rather cumbersome. In particular, Kelvin sources are
much more complex that the classic Rankine sources employed in standard BEM
implementations. Further studies on the expression of such Green functions can be
found in [8] and [15]). The behavior of such a Green function can in fact be highly
oscillatory (as described in [7] and [27]) which can make even more difficult the
—already critical— evaluation of the singular kernels in the BIE equation. A dif-
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ferent strategy, proposed by Dawson in [10], consists in suppressing the undesired
upstream waves at the numerical level, by employing an upwind finite difference
approximation of the second order derivatives of the potential which appear in the
linearised free surface boundary conditions.

In the numerical methodology proposed by Dawson the zeroth order term con-
sidered in the perturbation analysis expansion is the double body potential, which
is obtained by imposing homogeneous boundary conditions at the undisturbed
free surface. The free surface boundary condition (here linearised starting from
the double body solution) is discretised with an upwind finite difference scheme
once a structured grid is built exploiting the double body streamlines.

Dawson’s method leads to accurate results with a simpler implementation with
respect to Neumann–Kelvin method, however, it presents a two remarkable draw-
backs: i) it requires the preliminary solution of an additional BEM problem to
obtain the double body potential, and ii) the use of an upwind finite difference
scheme requires the generation of a structured computational grid, where the nodes
are aligned in the wind —or streamwise— direction. It is generally more difficult
to generate these grids with respect to unstructured meshes, which can adapt
more successfully to complex geometric configurations. Moreover, the upwind fi-
nite difference scheme is not easily compatible with a local adaptive refinement
strategy.

In this work, we present a modification of Dawson’s approach that allows the
use of unstructured non conformal grids. The second order derivatives appearing
in the linearised free surface boundary condition are here computed making use
of a Streamline Upwind Petrov Galerkin (SUPG) stabilisation strategy [2]. In
this framework, unphysical upstream waves are suppressed by the introduction of
additional terms in the discretised formulation of the BIE. Such additional terms
are independent of the grid employed, making it possible to use unstructured, non
conformal grids.

SUPG is a common stabilisation method in the field of finite elements dis-
cretisation methods. To the best of the authors’ knowledge, its application to the
numerical solution of fully nonlinear potential free surface problems through BEM
has been discussed for the first time in [17, 18]. This contribution describes the
application of SUPG to the linearised free surface potential model. Thanks to
the use of Telles’ [26] quadrature rule for the integration of singular kernels, the
methodology proposed allows for the use of arbitrary order boundary elements, and
is even compatible with isogeometric discretisations [5]. Both linear and quadratic
panels have been considered in this work, while the developement of an isogeomet-
ric solver is underway. The first test case considered is that of a fully submerged
spheroid advancing at constant speed in calm water. The results of the numerical
simulations are compared to analytic solutions proposed in [14] and to the nonlin-
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ear simulations proposed in [24]. To test the free surface model for the case of a
surface piercing body, the second test case considered is that of a Wigley hull ad-
vancing at constant speed in calm water. In this case, the results of the numerical
simulations will be compared with experimental data [16] and numerical solutions
obtained with different linear [23, 24] and nonlinear [18] potential models.

2 Free-Surface Flows

We are interested in studying the generation of gravitational waves around a
body advancing at constant speed in calm water. This type of waves presents
a typical pattern, called the Kelvin-wake pattern, which is characterised by a
strongly V-shaped system. In section 4.1 we will focus on the waves generated
by a fully submerged spheroid (Figure 1), while in section 4.2 we will study the
waves generated by a surface piercing body (Figure 2). Both problems are assessed
benchmarks in naval engineering (see, e.g., [21, 10, 23]).

Bottom

Free Surface

∂Ωbody

∂Ω∞

V∞

∂Ω∞

Figure 1: Vertical section of the domain for the simulation of the flow past a body
beneath the water free surface.
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Bottom

Free Surface

∂Ωbody

∂Ω∞

V∞

∂Ω∞

Figure 2: Vertical section of the domain for the simulation of the flow past a boat
located across the water free surface

In all simulations we consider a flow domain composed by the portion of water
surrounding the body, as depicted in Figures 1 or 2. The flow domain is bounded
by the free surface, by the body and by the bottom surfaces. The part of the
boundary Γ∞ represents the truncation surfaces of the numerical domain, which
is considered to be far enough from the body.

If the body pierces the free surface, as in Fig. 2, the domain includes only the
part of the body beneath the water surface, excluding its dry part.

2.1 Governing equations inside the domain

We consider the flow of an incompressible inviscid fluid past a body at rest,
or, equivalently, that of a body moving at constant speed in a fluid at rest, in a
frame of reference attached to the body. If we neglect viscous forces, the governing
equations reduce to the incompressible Euler equations of fluid dynamics:



















∂

∂t
v + (v · ∇)v = −1

ρ
∇p+ g in Ω

∇ · v = 0 in Ω

+ initial and boundary conditions

(1)

where ρ is the constant fluid density, v(x, t) is the fluid velocity, p(x, t) is the
pressure, and g is the gravity acceleration. We will drop the explicit dependence
of velocity and pressure fields on the position vector x = (x, y, z) ∈ Ω and on
the time variable t. System (1) is closed when we supply initial and boundary
conditions for the velocity field, as well as an evolution equation for the (moving)
free surface.

We start by considering a decomposition for the velocity as

v = v∞ + vp, (2)
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where v∞ ≡ (U∞, 0, 0) is a uniform background velocity field while vp is the
perturbation velocity field created by the body. In the chosen frame of reference
the x axis is directed as v∞, the z axis is vertical and pointing upwards, and the
y axis is chosen consequently.

If the flow is assumed irrotational, i.e., ∇ × v = 0 in Ω, the velocity can be
represented as the gradient of a scalar function. Namely,

v = v∞ + vp = ∇Φ = v∞ · x+∇φ.

This assumption is consistent with the hypothesis of inviscid flow since, in
absence of a viscous term, if the initial condition of undisturbed flow is irrotational,
it must remain irrotational at all times. Under these assumptions, the conservation
of mass, i.e. the second of equations (1) above, can be rewritten as a Laplace
equation

∆φ = 0, (3)

while the balance of momentum, i.e. the first of equations (1), reduces to Bernoulli’s
equation, which expresses the pressure P as a function of the potential φ, namely

∂φ

∂t
+

1

2
∇φ · ∇φ+ gz +

P

ρ
= C(t). (4)

A consequence of the irrotational flow assumption is that the conservation of
mass is decoupled from the momentum balance, and the two problems can be
solved one after the other.

2.2 Free surface boundary conditions

We now briefly discuss the boundary condition to be imposed on the free surface
following what is presented in [21]. We consider a main flow velocity v∞ defined
as v∞ = U∞ex where ex identifies the x axis of our domain. We assume, as in
[18, 21], that it is possible to represent the free surface elevation as a Cartesian
function (thus excluding breaking waves), in which the z coordinate is a single
valued function of the horizontal coordinates x, y:

σ(x, y, z, t) = z − η(x, y, t) = 0. (5)

By a kinematic stand point, one requires that fluid particles on the free surface
will remain on the free surface, and fullfill equation (5). By a dynamical point of
view instead, the water pressure on the free surface must always be equal to the
air atmospheric pressure Pa, which is assumed constant and uniform. These two
conditions can be expressed as

D

Dt
(σ) =

D

Dt
(z − η) = 0 (6)
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and
∂Φ

∂t
+

1

2
∇Φ · ∇Φ + gη = C(t). (7)

The first expression is the so-called kinematic boundary condition and it states
that the material derivative of the quantity z − η vanishes on the free surface
boundary. The second, dynamic, condition is obtained from Bernoulli equation
evaluated on the free surface. In the dynamic bernoulli equation, C(t) is an ar-
bitrary function of time, and can be fixed by imposing the atmospheric pressure
and evaluating (7) at infinity, where the flow is assumed uniform, and both the
perturbation potential φ, and the free surface elevation η vanish. We obtain

C(t) = lim
|x|→∞

(

∂Φ(x, t)

∂t
+

1

2
∇Φ(x, t) · ∇Φ(x, t) + gη(x, y)

)

=
1

2
U2
∞. (8)

A perturbation technique allows us to obtain a single, linearised, free surface
boundary condition from equations (6) and (7). In equation (7) there are two
unknown quantities, i.e., Φ and η. We consider small perturbations of Φ and η,
with respect to the undisturbed asymptotic flow given by Φ0 = v∞ ·x and η0 = 0.
The asymptotic expansions read

Φ = Φ0 + ǫΦ1 +O(ǫ2) (9)

η = η0 + ǫη1 +O(ǫ2). (10)

Plugging these expansions into equation (6) and equating terms of order ǫ, we
obtain

∂Φ1

∂z
−∇Φ0 · ∇η1 −∇Φ1 · ∇η0 = 0, (11)

∂Φ1

∂t
+∇Φ0 · ∇Φ1 + gη1 = 0. (12)

We can write ∇Φ0 = v∞, φ = ǫΦ1 and η = ǫη1, leading to

∂φ

∂z
− v∞ · ∇η = 0, (13)

∂φ

∂t
+ v∞ · ∇φ+ gη = 0. (14)

From equation (14) we see clearly that the imposition of the linearised boundary
condition requires the resolution of a transport problem. This kind of problem
often needs some kind of stabilisation. We will discuss this topic in section 3.3. If
we consider the steady state solution and if we assume that v∞ = exU∞, the two
linearised equations can be combined together as

U2
∞

∂2φ

∂x2
+ g

∂φ

∂z
= 0 at z = 0. (15)
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Following [21] we apply equation (15) to the perturbation potential φ. This is
a reasonable approximation if we assume that only small waves are generated, i.e.,
if the wave amplitude A is much smaller than its wavelength λ (A ≪ λ). If we
exploit the fact that the undisturbed free surface is flat, then taking the partial
derivative along the z direction is equivalent to taking the normal derivative, and
the final boundary condition we obtain is

U2
∞

∂2φ

∂x2
+ g

∂φ

∂n
= 0, (16)

which is what we impose on the undisturbed free surface. The free surface elevation
can be computed by postprocessing the flow potential through equation (14):

η = −U∞

g

∂φ

∂x
. (17)

2.3 Problem setup

We complete the problem by selecting the boundary conditions to be prescribed
on the remaining boundary regions. On the body boundary Γbody we impose a —
non-homogeneous Neumann— non penetration condition. Homogeneous Neumann
conditions are instead imposed on the lateral truncation surfaces Γtank of the nu-
merical tank. The same condition is imposed on the outflow boundary Γout, while
a homogeneous Dirichlet boundary condition is imposed on the inflow boundary
Γin. The latter condition is selected in order to avoid a pure Neumann bound-
ary problem, the solution of which would be defined only up to a constant. The
complete boundary value problem reads:

−∆φ = 0 in Ω (18a)

∂φ

∂n
= −v∞ · n on Γbody (18b)

∂φ

∂n
= −U

2
∞

g

∂2φ

∂x2
on Γfs (18c)

∂φ

∂n
= 0 on Γout ∪ Γtank (18d)

φ = 0 on Γin. (18e)

It must be pointed out that the homogeneous Neumann conditions prescribed
on the truncation surfaces might result in an undesired reflection of water waves
back in the flow domain (see [24]). To limit this problem, in this work we em-
ployed a computational domain of considerable dimensions. The lateral truncation
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boundaries Γtank are located in fact at a distance 15×L from the origin, while the
Γin and Γout surfaces are at distances 15×L and 15×L from the origin respectively,
where L is the length of the body.

2.4 Boundary integral formulation

Following [6], we exploit the second Green identity and reformulate Laplace
equation (18a) as

∫

Ω

(−∆φ)G dx =

∫

Ω

(−∆G)φ dx+

∫

Γ

∂φ

∂n
G ds−

∫

Γ

φ
∂G

∂n
ds = 0, (19)

where n is the outward normal to Γ while G is the so called free-space Green func-
tion, or fundamental solution of the Laplace equation, also known as the Rankine
source, namely:

G(x− y) =
1

4π

1

|x− y| . (20)

The Rankine source satisfies, in a distributional sense, the equation

−∆G(x− y) = δ(x− y). (21)

Exploiting this property, equation (19) can be rewritten as

φ(x) =

∫

Γ

G(x− y)
∂φ

∂n
(x) dsy −

∫

Γ

φ(x)
∂G

∂n
(x− y) dsy ∀x ∈ Ω. (22)

We point out that equation (22) allows for the computation of the potential
φ in any point x in the domain Ω if φ(x) and its normal derivative ∂φ

∂n
(x) are

known on the boundary Γ. If we move the point x towards the boundary Γ,
the kernels G(x − y) and ∂G

∂n
(x − y) become weakly singular (but integrable)

and singular respectively. Considering the Cauchy Principal Value (CPV) of the
singular integral, we can write the boundary integral form of the original problem
as

α(x)φ(x) =
∫

Γ
G(x− y)∂φ

∂n
(x) dsy −

∫ PV

Γ
φ(x)∂G

∂n
(x− y) dsy on Γ (23a)

∂φ

∂n
= −v∞ · n on Γbody (23b)

∂φ

∂n
= −U

2
∞

g

∂2φ

∂x2
on Γfs (23c)

∂φ

∂n
= 0 on Γout ∪ Γtank (23d)

φ = 0 on Γin, (23e)
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where the coefficient α(x) appearing in the left hand side of equation (23) is
obtained from the CPV evaluation of the singular integral on the right hand side,
and represents the fraction of solid angle with which the domain Ω is seen from the
boundary point x. Equation (23a) is also known as Boundary Integral Equation
(BIE).

3 Numerical approximation by boundary element

method

Boundary integral formulations only involve functions defined on the boundary
Γ of the computational domain Ω. In order to solve numerically such a problem, it
suffices to provide an approximation of the surfaces making Γ and to define finite
dimensional functional spaces on the boundary only.

We use standard Lagrangian finite element spaces on Γ to define both the
geometry and the basis functions for φ and ∂φ

∂n
. These basis functions are of

interpolatory type, in the sense that they are defined through a set of support
points xj where they may only be zero or one, and each basis function has value
one in a unique support point.

The two unknowns of our problem, namely φ and ∂φ
∂n
, have different mathemat-

ical characteristics. While the potential φ is a continuos function on Γ, ∂φ
∂n

depends
on the normal vector n which is discontinuos across the edges of Γ. In order to
provide an accurate numerical solution, it is crucial to choose a different numerical
representation for φ and ∂φ

∂n
. The approximation of the boundary Γ of the domain

should be continuos, and we represent it through the same basis functions that we
use for the potential φ. Our approximation is isoparametric in the first unknown
φ, and it allows for discontinuities across edges for ∂φ

∂n
. We refer to this type of

approximation as Mixed Isoparametric BEM. The unknowns of the problem are
the values of φ and ∂φ

∂n
on the respective set of support points.

The approximation of the geometry of Γ and the choice of the proper spaces
are exploited at the discrete level by an approximation procedure divided in five
main steps:

Computational mesh creation: introduce a computational mesh which is a
regular decomposition Γh of the boundary Γ made of quadrilateral cells (here
regular means that any two cells K,K ′ only intersects on common faces, edges or
vertices);
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Definition of the discrete spaces: introduce two (a priori independent) finite
dimensional spaces Vh and Qh,

1 defined on Γh, such that

Vh :=
{

φh ∈ C0(Γh) : φh|K ∈ Qr(K), K ∈ Γh

}

≡ span{ψi}NV

i=1 (25a)

Qh :=
{

γh ∈ L2(Γh) : γh|K ∈ Qs(K), K ∈ Γh

}

≡ span{ωi}NQ

i=1, (25b)

where on each cell K, located on the boundary, φh|K , γh|K are polynomial functions
of degree r and s respectively, in each coordinate direction. The corresponding La-
grangian basis functions of the spaces Vh andQh are denoted ψi and ωi respectively;

Collocation of the Boundary Integral Equations: replace the continuous
functions φ and ∂φ

∂n
by their numerical approximations φh and γh, which represent

the discretised potential and potential normal derivative respectively in Vh and
Qh, and collocate the BIE on the correct support ponts on the boundary Γh;

Imposition of the boundary conditions: compute the boundary condition
for φh and γh, by L

2 projection for the potential normal and second derivatives;

Solution of the linear system: the procedure above leads to a (dense) linear
system which is solved either directly or iteratively.

3.1 Geometry and variable representations

When the Lagrangian basis functions for Vh and Qh are given by ψi and ωi

respectively, a finite dimensional approximation of the unknowns φ and ∂φ
∂n

reads

φ
∣

∣

∣

Γ
(x) ∼ φh(xh) =

NV
∑

i=1

ψi(xh)φi x ∈ Γ, xh ∈ Γh (26)

∂φ

∂n

∣

∣

∣

Γ
(x) ∼ γh(xh) =

NQ
∑

i=1

ωi(xh)γi x ∈ Γ, xh ∈ Γh. (27)

1For the integrals in equation (23a) to be bounded, φ and ∂φ
∂n

must lie in the spaces V and
Q, defined as

V :=
{

φ ∈ H
1

2 (Γ)
}

(24a)

Q :=
{

γ ∈ H−

1

2 (Γ)
}

, (24b)

where Γ = ∂Ω. We recall that H
1

2 (Γ) can be defined as the space of traces on Γ of functions in

H1(Ω), while H−

1

2 (Γ) is its dual space. The spaces Vh and Qh are constructed as conforming
finite dimensional subspaces of V and Q respectively.
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Here {ψi} and {ωi} have the cardinality NV and NQ of the corresponding
finite element spaces, and are defined only on the approximated boundary Γh. In
particular, they can be conveniently expressed in terms of a local coordinate system
(u, v) on each element K, by introducing for both Vh and Qh, the set of local basis
functions, a mapping from a reference element to the real geometric element K
and a local to global numbering map ki (see Figure 3).

XK(u, v) =
∑3

i=0 ψ̂i(u, v)xi

K̂

u

v

1

1

K

x̂3

x3

x̂0

x0

x2

0

x1

x

y

z

x̂2

x̂1

Figure 3: Transformation from reference to real cell. In this example we have considered
a linear continuous approximation for the geometry, with support points on the vertices
of the quadrilateral. The BEM is isoparametric because the geometry is described by
the same finite element approximation of the potential φ.

In particular, we can define the approximation of the global basis functions
restricted on K ⊂ Γh as functions of the reference variables u and v on K:

XK(u, v) =
3

∑

m=0

ψ̂m(u, v)xim im ∈ {1, . . . , NV } (28a)

ψ̂m(u, v) = ψiKm
(XK(u, v)), iKm ∈ {1, . . . , NV }, m ∈ {0, 1, 2, 3} (28b)

ω̂m(u, v) = ωaKm
(XK(u, v)), aKm ∈ {1, . . . , NQ}, m ∈ {0, 1, 2, 3}. (28c)

3.2 BEM: collocation technique

A discrete form of the BIE (23a) is obtained by replacing the continuous solu-
tions φ and ∂φ

∂n
by their finite dimensional approximations φh and γh, and imposing

the original boundary integral equation at a sufficient number of collocation points.
Such collocation points are placed in correspondance with the NV support points
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of the Vh space and, with the NQ support points of the Qh space. Thus we obtain
a system of NV +NQ algebraic equations which reads respectively,

[

HV DV

HQ DQ

]{

φ

γ

}

=

{

0
0

}

, (29)

where
φ = {φ1, . . . , φNV

} ,γ =
{

γ1, . . . , γNQ

}

.

are the vectors containing the unknown values of the the approximated func-
tions φi and γi at each collocation point. In the block system (29), the matrix
rows in the top blocks are the ones obtained collocating the BIE on the NV sup-
port points corresponding to the potential degrees of freedom, while the matrix
rows in the bottom blocks are obtained using the NQ support points of the normal
derivative as collocation points.

All integrations are performed on a planar reference domain, i.e. we assume
that each element Ki of Γh as a transformation of the reference boundary element
K̂ := [0, 1]2, as depicted in Figure 3.The integrations are performed after a change
of variables from the real element Ki to the reference element K̂.
Given a collocation point Pi of the potential φ, the block matrix entries read

HV
ij =α(Pi) +

M
∑

K=1

∫ 1

0

∫ 1

0

∂G

∂n
(Pi −XK(u, v))ψ̂j(u, v)J

K(u, v) du dv, (30a)

DV
ib =

M
∑

K=1

∫ 1

0

∫ 1

0

G(Pi −XK(u, v))ω̂b(u, v)J
K(u, v) du dv, (30b)

while if Qa is a γ collocation point, we have

HQ
aj =α(Qa) +

M
∑

K=1

∫ 1

0

∫ 1

0

∂G

∂n
(Qa −XK(u, v))ψ̂j(u, v)J

K(u, v) du dv, (30c)

DQ
ab =

M
∑

K=1

∫ 1

0

∫ 1

0

G(Qa −XK(u, v))ω̂b(u, v)J
K(u, v) du dv, (30d)

where M is the total number of elements K of the triangulation Γh, J
K is the

Jacobian of the mapping XK in the K-th element and the indices i, j run from
one to NV , while the indices a, b run from one to NQ.

Due to the possible presence of singular kernels, the integrals in equations (30)
require special treatment. In this work, standard Gauss quadrature rules are used
for panels not containing singularities while for panels containing singular kernel
values, we use Telles’ quadrature rule [26].
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Block system (29) is ill posed and cannot be used to obtain a numerical solution
of problem (23), since i) it does not contain any information about boundary
conditions and ii), it might have identical rows if some support points of φ and
γ coincide. Notice that usually, on any given region of Γ, either φ is known and
γ = ∂φ

∂n
is unknown, or the opposite. The free surface condition (equation 23c)

is an exception to this rule, and can be seen as special case of Robin boundary
condition. On the free surface both φ and ∂φ

∂n
are unknown, but we impose a linear

relationship between ∂φ
∂n

and a differential operator on φ.
While at the continuous level this relationship is easily derived from the per-

turbation analysis of section 2.2, at the discrete level the application of this theory
is non trivial since the spaces Vh and Qh are in general different, and some care
should be taken if one wants to obtain a consistent approximation, with good
numerical properties.

To fix the ideas, consider the boundary Γ as the union of three disjoint sets,
consisting of the Neumann boundary portion ΓN = Γbody∪Γout∪Γtank, the Dirichlet
boundary portion ΓD = Γin and the Robin boundary portion ΓR = Γfs. Both
φ and γ can then be separated into their Neumann, Dirichlet and Robin parts
respectively, according to the location of the support points.

Assuming that φD is known on the Dirichlet portion ΓD, γN is known on the
Neumann portion ΓN and that we have a pair of linear operators D and M such
that DφR+MγR = cR, then system (29) can be solved explicitly by imposing the
boundary conditions instead of the boundary integral equations in the appropriate
lines of system (29):
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. (31)

Notice that the boundary integral equations in system (31) are evaluated only
once in each region, and that, in principle, one could solve Robin’s boundary
condition by either imposing φR and extracting γR from the linear combination,
or by imposing γR and extracting φR. This alternative approach would result in
line 6 of system (31) to be swapped with line 3, evaluating the boundary integral
equations on support points of Qh instead of Vh, i.e., replacing HV and DV by
HQ and DQ respectively.
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3.3 Imposition of boundary conditions

Dirichlet boundary conditions can be imposed directly by substituting the cor-
responding line of the matrix system (29) with a new line only composed by a
value of 1 on the matrix diagonal, and by the prescribed value of φ on the right
hand side vector, just as in system (31).

The imposition of the correct Neumann boundary condition is not so straight-
forward. If the field ∂φ

∂n
is directly available on the collocation points, the procedure

is identical to the Dirichlet boundary condition. This is for example the case for
condition (23d). In several practical cases, however, the value of ∂φ

∂n
may not be

available on all collocation points. An example of this situation is given by the
non penetration condition (23b). If the surface is approximated with the panel
patches illustrated in Figure 3, the surface boundary normal is not single valued in
correspondence of the collocation points which are located on the edges or vertices
of the panels.

In these cases, the prescribed potential normal derivative value −v∞ · n is in
principle not defined, and we need to make a choice on what it means to consider ∂φ

∂n

on that particular collocation point. This situation is not new to this method, and
it exists since the introduction of the Finite Element Method. However, when using
the Finite Element Method, weak forms of the equations are always written (and
not point evaluations), which ditch the issue by evaluating normals and normal
derivatives only on the interior of the quadrilaterals. Similarly, piecewise constant
approximations of φ and ∂φ

∂n
in boundary element methods, which are often referred

to as panel methods, allow the collocation of the support points on the center of
the cells, avoiding all places where ∂φ

∂n
might not be single valued, like edges and

vertices.
Higher order collocation BEMs must confront with these issues, one way or

another, since it is common for higher order finite dimensional spaces to have sup-
port points defined also on edges and vertices. In this work we exploit a common
technique used in the finite element community: the L2 projection. Multiplying
equation (23b) by a test function u ∈ Q, and integrating over Γ results in

∫

Γ

γu dΓ =

∫

Γ

−V∞ · nu dΓ ∀u ∈ Q (32)

which is a weak form of the original boundary condition. This problem is discre-
tised by means of the finite dimensional approximation Qh of the solution space Q.
In this framework, γ = ∂φ

∂n
is approximated as in equation (27). If equation (32)

must now hold for any function uh ∈ Qh, it will be sufficient to test such equation
for each of the NQ basis functions of Qh. This results in the linear system

MQ γ = b, (33)
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where the generic element of MQ is given by

MQ
ab =

∫

Γ

ωb(x)ωa(x) dΓ, a, b = {1, . . . , NQ} (34)

and each component of the right hand side vector b is assembled as follows

ba = −
∫

Γ

(V∞ · n(x))ωa(x) dΓ, a = {1, . . . , NQ}. (35)

The mass matrix MQ is sparse, since every basis function ωa has compact
support. In principle, this system could be solved separately to obtain the values
of γ = ∂φ

∂n
to be applied in BEM system (31). In practice, though, it is more

convenient to ”mix” system (31) and system (33). In this framework, the rows
of the BEM system corresponding to Neumann nodes are substituted with the
matching rows in system (33). So, in a way we are enriching the boundary element
method with techniques coming from a finite element approach, which are applied
only on the surface Γ, to preserve the dimensional reduction typical of BEM.

The BEM approach allows for the discretisation of the domain boundary only,
while treating boundary condition in weak form with a FEM approach helps deal-
ing with non-continuous boundary data. This is particularly important when
considering the linearised free surface boundary condition (23c).

3.4 Treatment of the linearised free surface condition

The discretisation of the linearised free surface boundary condition presents
the same problems discussed for Neumann conditions in section 3.3, since the
partial derivative on the right hand side of equation (23c) could be, in principle,
not single valued on the collocation points, when these are located on the edges
or on the vertices of the panels. We reformulate this condition in weak form, and
we discretise it by means of a FEM approach similar to the one described in the
previous section.

The presence of second order derivatives in the right hand side of the free
surface boundary condition requires a careful treatment. Consider, for example,
the case of linear finite dimensional spaces V and Q: in this case, the second order
derivatives on each panel would be identically zero.

A solution which is consistent with the approximation of the Neumann bound-
ary conditions, consists in introducing an additional variable β (which we assume
to be in the same space V of the potential φ), representing ∂φ

∂x
, and to recover both

the variable itself and its derivative using a weak formulation. Namely:
∫

Γ

βv dΓ =

∫

Γ

∂

∂x
φv dΓ ∀v ∈ V (36)
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∫

Γ

γu dΓ = −U
2
∞

g

∫

Γ

∂

∂x
βu dΓ ∀u ∈ Q. (37)

The function β appearing in equations (36) and (37) is approximated as

βh(x) =

NV
∑

i=1

ψi(x)βi. (38)

Using the finite dimensional spaces, equation (36) can be recast in the following
form

[MV]β − [BV]φ = 0, (39)

where

MV
ij =

∫

Γ

ψj(x)ψi(x) dΓ, i, j = {1, . . . , NV } (40a)

BV
ij =

∫

Γ

∂ψj(x)

∂x
ψi(x) dΓ, i, j = {1, . . . , NV }. (40b)

In the present work, we used the same approximation space for β and for the
potential φ, even though the spaces could in principle be different. The additional
variable β adds to the global algebraic system a set of NV sparse rows obtained
by the discretisation of equation (36). This system represents an additional block
in the complete BEM system. The three unknown vectors of the system are now
φ,γ,β. Along the same lines, the discretised form of equation (37) assumes the
form

[MQ]γ +
U2
∞

g
[BQV]β = 0, (41)

where MQ is given by equation (34), while the elements of BQV are given by

BQV
aj =

∫

Γ

∂ψj(x)

∂x
ωa(x) dΓ, a = {1, . . . , NQ}, j = {1, . . . , NV }. (42)

The lines of this system are substituted to the lines of the BEM subsystem cor-
responding to the collocation points of the normal derivative approximation that
are located on the free surface. Another derivation in weak form is applied to β,
which is then projected using an L2 projection in the space Qh to obtain a weak
form of the second derivative (∂2φ/∂x2) appearing in the right hand side of the
linearised free surface boundary condition (37), in the same space of the normal
derivative of the potential (Qh). The additional variable β can be easily eliminated
by inverting the mass matrix MV and setting

CQ :=
U2
∞

g
BQV(MV)−1BV. (43)
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[D]{φ} is a weak approximation of

(

U2
∞

g

∂2φ

∂x2

)

, i.e., it is its L2 projection on

the space Qh. The final system of equations can be written in compact form as
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, (44)

where only the H and D matrices are full, while all other matrices appearing in
system (44) are sparse.

3.5 Streamwise upwind Petrov Galerkin stabilisation

The numerical strategy presented in the previous sections generates an accu-
rate approximation of the second order derivative appearing in the linearised free
surface boundary condition. Yet, this is not sufficient to obtain a physically mean-
ingful approximation of problem (23e), due to two issues of different nature: i) the
boundary condition (23c) is symmetrical in the x direction and ii) the problem is
transport dominated.

If a physical wave propagating downstream with respect to the stream velocity
v∞ fulfils the linearised condition, also an unphysical wave propagating upstream
will satisfy such condition. Several different methodologies have been developed
over the years, to selectively suppress the nonphysical solution without affecting
the physical waves. In this work, we impose a homogeneous Dirichlet condition on
the inflow surface of the domain, and a homogeneous Neumann condition on the
outflow, as suggested in [24]. This setup satisfies a radiation condition and breaks
the symmetry of the solutions in the x direction, privileging only the physical
solution.

While in principle this should be sufficient, the problem at hand is transport
dominated, and instabilities occur whenever a non-negligible fluid velocity is con-
sidered. In [10], Dawson stabilised the transport problem, while at the same time
suppressing the unphysical upstream waves, using upwind finite differences for the
approximation of the second order derivative in (23c). Although this strategy
proved to be successfull, it presents two main drawbacks: i) it introduces a con-
siderable amount of numerical dissipation and, more importantly, ii) it forces the
use of structured meshes which do not allow for local refinement strategies.

The Streamline Upwind Petrov Galerkin (SUPG) method makes it possible to
maintain the accuracy of the L2 projection approach while evaluating the second
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order derivative in the linearised free surface boundary condition. This is a pow-
erful stabilisation technique which has been applied in a variety of frameworks,
however its application to meshless methods [28] and boundary elements [17, 18]
is very recent. A FEM-SUPG has already been coupled to a BEM problem in
[13], in the framework of magnetohydrodynamic flows through a circular pipe.
In that scenario a BEM tecnique is applied to recover the magnetic and velocity
field outside the pipe while the FEM-SUPG framework is used to compute the
fields inside the pipe. In the present work we used the FEM-SUPG technique to
properly project the boundary conditions for the boundary element technique. In
particular, the SUPG stabilisation is applied in a domain of codimension one. In
the framework of SUPG stabilisation [2], we modify the generic shape function
Hi(x), used for finite elements approximation, in the following way

HSUPG
i (x) = Hj(x) + δh∇sHi(x) ·

v(x)

||v(x)|| . (45)

Here the constant 0 ≤ δ ≤ 1 sets the local amount of upwind stabilisation
on each cell. Since we work only on the boundary of our domain, the full gradi-
ent is replaced by the surface gradient ∇s. The results in the present work are
obtained considering δ = 1/

√
2. As we worked with roughly square cells, and h

represents the cell diameter, δh represents a good approximation of the streamwise
cell dimension. Unfortunately, since the flow velocity is the main unknown of our
simulations, the local velocity direction is not available at the time of the matrix
assembling. However, the dominant component of the flow velocity is given by v∞

and we can write the SUPG correction in terms of the asymptotic flow direction,
namely

HSUPG
i (x) = Hi(x) +

1√
2
h∇sHi(x) ·

v∞

||v∞|| . (46)

This SUPG strategy is used in equations (39) and (41) to modify the test
functions ψi, ωa into ψSUPG

i and ωSUPG
a . In previous works, like [10] and [23], the

second derivative in (37) is obtained directly through a finite difference scheme,
requiring a structured grid and introducing consistency errors typical of finite
differences. Since we make use of the variable β to compute such second derivative
we have the possibility to enforce the SUPG stabilisation two times separately, i.e.
once for each derivation along x. The most important advantage given by the use
of the weak formulation combined with the SUPG stabilisation is that it allows
the use of unstructured grids. In particular, it is possible to employ a free surface
grid which is refined only near the body, or to adopt a local refinement strategy
based on a posteriori error estimates. In addition, SUPG is a strongly consistent
method and does not introduce numerical dissipation in the system.
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3.6 Local Refinement

Unstructured grids call for a local refinement strategy, in order to concentrate
the degrees of freedom where the solution has steeper gradients. We have chosen to
use a modification of a simple and well known error estimator, originally proposed
by Kelly, Gago, Zienkiewicz and Babuska, [1]. Such error estimator approximates
the error on each cell by considering the L2 norm of the jump of the surface gradient
of the approximated solution across the cell boundaries. On each cell, the error
indicator is computed as

ηK =

√

h

24

∫

∂K

[n∂K · ∇suh]
2 dσ. (47)

The operator [x] indicates the jump xin − xout, where xin and xout represent
the values of the field x inside and outside the cell boundary respectively, n∂K is
the outward unit normal to ∂K (laying on the same plane of K), and ∇suh is the
surface gradient of the field uh.

The local refinement strategy has been set so that at every step thirty percent
of cells with highest error estimator on the free surface are refined. We have chosen
to keep the mesh fixed on the moving body, so that the local refinement is only
active on the free surface. Once the refined mesh is available, a new simulation is
carried out, and the procedure is repeated for the specified number of refinement
cycles. When this iterative approach is used, the velocity field vold obtained at the
previous step is interpolated on the new grid and used to build the SUPG basis
functions, namely

Hj(x)
SUPG = Hj(x) + αh∇sHj(x) ·

vold(x)

||vold(x)|| . (48)

This correction become important where the streamlines on the free surface
are no more parallel to the x axis. In fact, if we consider a submerged body
the streamlines on the free surface are practically aligned with the x axis, but in
the case of surface piercing hull with rounded bow, this might not be the case.
Figure 4 depicts different stages of the adaptive refinement cycles for the case of a
fully submerged prolate spheroid. The pictures show that the cells tend to reach
higher refinement levels on a pattern that follows the V-shaped Kelvin wake past
the moving body. We remark that despite the additional cost of the refinement
iterations, the local refinement strategy might be very useful. A global refinement
strategy on structured mesh in fact, has an extremely high computational costs.
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Figure 4: On the left, the free surface mesh at the initial level of refinement. On the
right, the free surface mesh obtained after four refinement cycles

4 Numerical validation

To validate the behavior of our method in the treatment of free surface flows,
two different problems are considered. In the first test case we have treated the
motion of a fully submerged prolate spheroid at constant speed. In the second
problem we have considered the stationary motion of a surface piercing body, the
Wigley hull.

These flows are common benchmarks in the naval literature, so there are many
available references to evaluate the accuracy of the method we developed.

4.1 Submerged prolate spheroid

The purpose of this section is to study the flow field past a fully submerged
prolate spheroid advancing at constant speed in calm water. The domain we
have considered is a box of fluid surrounding the spheroid. The longest axis of
the spheroid is oriented along the x axis of the global frame of reference. The
spheroid has been placed at a prescribed depth, intended as the distance between
the main axis and the free surface. The free surface portion considered is repre-
sented by the upper face of the parallelepiped. The truncation faces of the domain,
Γin

⋃

Γout

⋃

Γtank in Fig. 5 are placed far enough from the spheroid, so as not to
influence the solution near it. The considered prolate spheroid has an axis of
length 5m along the x direction, of length 1 meter along y direction, axis of length
1 meter along z direction. So we compute Lsph = 10m.

The domain extends for L∞x = 15×Lsph along the x axis, for L∞y = 15×Lsph

along the y and for L∞z = 15×Lsph along the z axis. We chose a sufficient depth
of the spheroid main axis in order to avoid the presence of strong nonlinear effects.
A good depth is d = 1.25× 4m where 4 m is the diameter of the spheroid.
The overall height of the basin is enough to consider an infinite depth approxi-
mation. This will make possible a comparison between our data and the theory
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introduced by Havelock in 1931, and reported in [14], which will be used here as a
benchmark. Havelock derived an analytical expression for the the wave resistance
of a spheroid submerged in water.

x

y

z

Γbody

Γout

Γin

Γtank

Γfs

d

Lsph

L∞x

L∞z

L∞y

V∞

Figure 5: The spheroid is put under the free surface at a defined depth and it is possible
to see also the outer tank set with L∞x, L∞y, L∞z. The flow enters from Γin, Γtank are
the lateral surfaces and the bottom. The flow is considered at velocity V∞ directed as
the x axis.

The mesh on the spheroid is presented in Fig. 6. The grid is composed of
24 nodes along the longitudinal axis and of 4 nodes along the other two circular
section. The free surface mesh is refined adaptively during the simulations, while
the spheroid mesh is fixed.

Figure 6: The fixed mesh on the prolate submerged spheroid.
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4.1.1 Qualitative analysis of the wave pattern

We first want to highlight the importance of the SUPG method in the approx-
imation of the second derivative in the linearised free surface boundary condition(
see section 3.4). As example, we have chosen the flux with U∞ = 6m/sec and we
show the isolines of the wave elevation, both when SUPG is used and not used in
Fig. 7.

Figure 7: On the left, isolines representation of free surface elevation field for the
chosen velocity U∞ = 2m/sec without the SUPG stabilisation. On the right, isolines
representation of free surface elevation for U∞ = 2m/sec computed making use of the
SUPG stabilisation. The colors on the contour lines represent the free surface elevation.

Looking at the plots we can appreciate that the SUPG stabilisation plays a
key role in our model. As suggested in [10, 24] the addition of upwind terms
in eq. (18c) suppresses the non physical upward propagating waves. In facts,
we clearly see that without the SUPG there is a strong presence of waves which
propagates upstream and any physical meaning of the solution is lost. Instead
if we consider a SUPG stabilisation [2], the V-shaped Kelvin wake pattern is
recovered. The SUPG stabilisation is a strongly consistent way of introducing
upwinding in the linearised free surface condition. This is a first advantage because
we introduce, using a strongly consistent method, less numerical dissipation in
respect to a consistent method as an upwind finite difference stabilisation. Even
more importantly the SUPG strategy allows us not to use structured grids. The
purpose of the present section is to see whether the developed method leads to
solutions that are consistent with what can be found in literature about the waves
created by a submerged prolate spheroid.
In Fig. 8 we present contour plots of water elevation fields computed at different
velocities, and at the same depth. We see that both elevation fields present clear
V-shaped Kelvin wake patterns. Each wake is composed by a series of elevation
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peaks located on lines inclined of about 20 with respect to the main stream axis.
Between the two arms of the V-shaped pattern, we observe a series of transverse
waves. As expected, increasing the velocity of the flow, we observe a growth of
the wavelengths of both V-shaped and transverse waves. These two peculiarities
may be more or less evident depending on the velocity of the spheroid, which in
this section is commonly expressed in terms of Froude number, defined as

Fr =
U∞

√

gLspheroid

. (49)

The wave angle has been indicated in Fig. 8 for Fr = 0.5 and for the Fr = 0.7,
to confirm that the V-shape angle behaves consistently with the simple model
described in [9],.

α
α

Figure 8: On the left, isolines representation of free surface elevation field for Fr = 0.5.
On the right, isolines representation of free surface elevation for Fr = 0.7

At Fr = 0.5, an angle α = 16.11 is observed, while at Fr = 0.7 the angle is
of 18.02. This fact suggests that the developed method is able to reproduce one
of the most important features of a Kelvin wake. We see also that for the lowest
Froude number there is a clear presence of a transverse system which becomes less
important at high Froude numbers, and this is well recovered. At Fr = 0.7 we can
see that the peaks, called featherlets, are aligned on the V-shaped Kelvin wake.

4.1.2 Comparison with literature results

We extract the maximum absolute displacement of the free surface elevation
from the reference value z = η = 0. These values are compared to the ones
reported in [24]. In his work the authors employed a nonlinear steady potential

25



model. Even if the present method is based upon a linearised potential model, a
comparison is still interesting. The curves of the wave elevation peak as a function
of Fr number are presented in Fig. 9

0.4 0.45 0.5 0.55 0.6 0.65 0.7

2

3

4

5

·10−2

Fr

η m
a
x

Present Method

Scullen

Figure 9: Maximum free surface elevation as a function of Froude number. The red
line represents the results obtained using a non linear potential model, [24]. The blue
line represent the results obtained with the present linearised potential method

The plot shows that the expected behavior is recovered by the model devel-
oped. Yet the our linear method underestimates the elevation obtained with the
more general and accurate nonlinear method. This would be consistent with an
underestimation of the wave drag on the spheroid. It is therefore interesting to
analyze the drag induced by the wave generation. In [14] the authors managed to
compute an analytical formula to predict the drag of a submerged spheroid. To
obtain a closed form solution, the spheroid was approximated by a series of dou-
blets with a uniform volume distribution and their axis parallel to the spheroid
main axis which, in the present work, is the same direction as that of the external
flow velocity. Calling the major semiaxis length a and the minor semiaxis length
b:

ec =
√

1− b2/a2 (50)

A−1 =
4ec

1− e2c
− 2log

1 + ec
1− ec

(51)

Dw =128π2gρa3e3cA
2e−p

∫ ∞

0

e−pt2J3/2(k0aec
√
1 + t2) dt (52)
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Where J3/2 is the Bessel function with base 3/2, p = 2gf/u2, k0 = g/U∞ and f is
the depth of the spheroid major axis. Considering a spheroid withf = 0.25 it is
possible to compute the drag coefficient predicted by this theory for the present
test case. Introducing the spheroid length L and its diameter d, the drag coefficient
is defined as.

Cw =
Dw

π/6ρgLd2
(53)

Fig. 10 displays a comparison of wave drag coefficients between Havelock theory
and the present method, for several values of Froude numbers (or of flow velocity).
Recalling equation (8) we compute the pressure on the body as:

P = P∞ +
1

2
ρ
(

U2
∞ − U2

)

− ρgz,

where z states for the height of the point in the considered framework. The drag
coefficient can be obtained as the integral of the pressure coefficient as:

Cp =
P − P∞

1/2ρU2
∞

Cw =
1/2ρU2

∞

π/6ρgLd2

∫

S

Cp dS
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Figure 10: Wave drag coefficients of a fully submerged body as function of Froude
number. The red line represents the analytical results as predicted by Havelock theory,
[14]. The blue line represents the results of the present linearised potential model.
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Again, the two curves show a similar behavior. The linearised model appears
however to underestimate the drag, with respect to the analytical result. This
error seems to be dependent on the Froude number, since it increases with the
flow velocity. The same kind of error pattern has been observed also for different
values of the depth f . This problem appears to be linked with what pointed out
in Fig. 9. Since the our linearised model underestimates the height of the waves,
it also underestimates the energy dissipated in the wave creation process, which
leads to an underestimation of the drag force.

In the present work the wave coefficient only depends on the Froude number,
as reported in [21] (page 31), in agreement with the so-called Froude’s hypothe-

sis. Such hypothesis states that the wave drag coefficient only depends on the
Froude number, independently from the Reynolds number. Froude’s hypothesis is
confirmed by experimental data only when we are in presence of a thin boundary
layer (theoretically of negligible thickness). This is verified especially for very big
hulls, when the Reynolds number Re = ρU∞Lboat/µ is higher than 105, where µ is
the viscosity of the fluid. For our simulation, considered Lspheroid = 10 meters we
have Re values between 3.5 ·105 and 5.7 ·105 so we respect the Froude’s hypothesis.

4.1.3 Quadratic BEM

As a comparison with Higher Order BEM, we present the results obtained using
the same spheroid presented in the previous section at Froude number Fr = 0.7
when the finite dimensional spaces are both quadratic.

Quadratic elements should be able to better approximate the derivative of the
unknown φ appearing in the linearised free surface boundary condition. We have
chosen to use quadratic continuous elements for φ, ∂φ

∂n
and ∂φ/∂x. We note that

in order to obtain a meaningful results with quadratic elements we have used the
well known Telles quadrature formula [26].

We report the final mesh after 4 local refinements.

Figure 11: On the left the initial mesh. On the right the final mesh obtained in
the submerged spheroid test case after 4 refinement cycles. Every 4 neighboring cells
compose a single quadratic cell
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We highlight that in Fig. 11 every four cells represent one quadratic cell. We
can compare it with what we have previously obtained in the linear case, Fig. 4.

We report the comparison between what we have obtained in the linear case
and this results with the quadratic, still continuous, BEM.

Table 1: Comparison between the quadrature formulas in the quadratic case at Fr =
0.7.

Final Cw Max wave height
LinearBEM 0.02099683 0.04405

QuadraticBEM 0.02120950 0.04436

The overall number of degrees of freedom is comparable between the two cases.
So we have considered a less refined mesh for the higher order approximation.
We see that, as we expected, the quadratic leads to a better approximation of
the problem since the drag coefficient is increased and the wave pattern is better
recovered.

4.2 Wigley hull

This section will describe how our model behaves in presence of a surface pierc-
ing body. The geometry considered for this test case, is that of Wigley hull. Given
its simple analytic shape the Wigley hull is in fact a commonly used benchmark in
hydrodynamics simulations, and several experimental data for such geometry are
available in the literature.
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Figure 12: On the left, a three dimensional view of the Wigley hull used for the
simulations. On the right vertical sections of the Wigley hull used for the simulations,
generated by planes normal to the longitudinal axis of the hull.
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The Wigley Hull is analytically described by the following equation

y(x, z) =
B

2

[

1−
(

2x

L

)2
]

[

1−
( z

T

)2
]

(x, y) ∈ [−1, 1]2. (54)

Where y is the span of the hull, x its length and z its depth; in the present
calculations the hull length used is Lboat = 2.5m, the span of the whole hull B =
0.25m, and its total depth beneath the undisturbed free surface is T = 0.15625m.
Fig. 13 shows a sketch of the Wigley hull test case domain.

The domain is extremely similar to that used for the submerged spheroid. The
numerical tank has dimensions L∞x×L∞y×L∞z. While the free surface boundary
Γfs is located at z = 0. The hull is located at the center of Γfs.

Γbody

Γout

Γin

Γtank

Γfs

x

y

z

Lboat

L∞z

L∞y

L∞x

V∞

Figure 13: A sketch of the numerical domain. The wigley hull is placed in the center
of the free surface. In the picture it is possible to see also the outer tank set with
L∞x, L∞y, L∞z. The fluid enters from Γin, Γtank are the lateral surfaces and the bottom

This geometrical configuration coincides with that of a set of experiments per-
formed at the university of Tokyo [16], which will be used as a benchmark in this
test case. Six different velocities will be tested in order to compare them with the
experimental results in [16] . The Froude number is defined again as

Fr =
U∞√
gLboat

(55)

30



4.2.1 Local refinement strategy and flow inspection

We have employed the same local refinement strategy already described in the
submerged spheroid test case. On the boat, the grid is composed of 4 cells along
the height of the hull, and 32 cells along its length. On the free surface, the mesh is
set to be more refined around the hull and, to concentrate the degrees of freedom
where the waves are expected to be.
We have computed the results using 5 local refinements on the free surface. We
see the initial and final mesh for one of the cases considered in Fig. 14:

Figure 14: On the left, the free surface mesh at the initial level of refinement. On the
right, the free surface mesh obtained after five refinement cycles

For the Wigley hull at two of the Froude numbers considered in the local refine-
ment tests, we perform a qualitative comparison with the simple model described
in [9].
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α β α β

Figure 15: On the left, the Kelvin wave angle for Fr = 0.267 and on the right, the
Kelvin wave angle for Fr = 0.354

Table 2: Kelvin angle for the Wigley hull

Fr angle α angle β
0.267 21 20
0.354 19 18

The two angles remain almost constant varying the Froude of the simulation.
This fact agrees with what is reported in [9], and confirms that the present method
is able to reproduce one of the most important feature of a Kelvin wake.

The local refinement strategy, since we are using an a posteriori error estima-
tor, has a disadvantage in respect to what can be achieved using a prebuilt fixed
mesh. This strategy needs to solve many linear system to refine the grid where
the gradients of the unknowns are the highest. It also uses a large number of cell
in its latest cycle. This situation increases the computational costs of the present
method, the results of the local refinement strategy have been obtained in about
8 hours each. The major advantage is the possibility to concentrate the degrees
of freedom only where the solution is more rapidly changing. This leads to better
results.

Comparisons between the computed profiles on the hull surface, and corre-
sponding experimental results of the University of Tokyo are now presented in
Fig. 16
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Figure 16: Non dimensional free surface elevation 2gz/U2
∞ on the Wigley hull surface as

a function of non dimensional longitudinal coordinate x/L, at different Froude numbers.
The blue continuous line represents the result of the present method. The dots represent
the university of Tokyo measurements [16]
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The plots represent a comparison between experimental and computed wave
heights along the hull, for Fr = 0.250, 0.267, 0.289, 0.316, 0.354, 0.408. In agree-
ment with the experimental results the positive peaks on the hull are located just
after the bow and near the stern. The plots suggest that, from a quantitative point
of view, the model reproduces rather correctly the horizontal position of the peaks.
Also the wavelength along the hull is correctly reproduced. As the Froude number
increases the experimental water wave wavelength increases. The present method
is able to reproduce such behavior too, as the location of the peaks remains quan-
titatively correct for all the Froude numbers considered. Despite this, the present
model clearly underestimates the wave elevation. The problem is probably due
to the choice of linearised free surface conditions. A linearised model is in fact
not able to fully represent the wave generation process, as suggested in [23]. The
results of Fig. 16 have been obtained using a linear continuous approximation for
all the three unknowns φ, ∂φ/∂x and ∂φ/∂n. For the last unknown a particular
strategy was used to recover properly the derivative values on nodes belonging to
both water and hull (see [11, 12]). Without such treatment, the computed solu-
tion results extremely inaccurate, since the normal derivative approximation is an
average of the values on the boat and on the free surface, which are extremely
different.

4.2.2 Comparison with other models

In this section we want to compare the results of our linearised potential model
proposed with those obtained with different models. In the first case (see Fig. 17
on the left), we compare the present model solution with the established results
of other linearised methods, [23]. In a second case (see Fig. 17 on the right), the
present model will be compared to that obtained with an unsteady potential model
with fully non linear free surface boundary conditions, presented in [18]. For both
cases the test case considered is that of the Wigley Hull at Fr = 0.316.
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Figure 17: Non dimensional free surface elevation 2gz/U2
∞ on the Wigley hull surface

as a function of non dimensional longitudinal coordinate x/L, at Froude number 0.316.
On the left we compare the developed method with other linearised models. The blue
continuous line represents the waterline obtained in this work. The red dots represent
the experimental results as reported by Ikemata et alt. in [16]. The green line represent
the results of the Dawson method, [23]. The magenta line represents the result of the
Neumann–Kelvin method, implemented in [23]. On the right we compare our method
with a non linear BEM. The blue continuous line represents the waterline obtained
with our BEM. The red dots represent the experimental results [16]. The brown line
represents the result obtained using a non linear BEM presented in [18].

We first consider the plot showing the comparisonamong the wave profiles
on the Wigley hull obtained with the linearised models. As we can see all the
linearised methods considered underestimate the height of the peaks in the water
profile on the hull. Thus, it was correct to speculate that the underestimation of
wave elevation was mainly due to the choice of a linearised boundary condition on
the free surface.

It is interesting to point out that the present model has less numerical dissi-
pation than the other linearised strategies, as it employs the strongly consistent
SUPG stabilisation method. As a result, we see that the wave crest is roughly
30% higher with respect to other linearised methods.

From the hull wave profile plot on the right, we can appreciate that the non
linear potential model recovers the water elevations in a significantly more accurate
fashion. This confirms one more time that the error of our method is mainly due
to the free surface linearised model. Nonetheless we want to assess if the error can
be further reduced by the choice of different boundary elements.
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4.2.3 Quadratic BEM

Since we have proved the possibility of using a quadratic BEM in the submerged
spheroid test case we now see its application on the Wigley hull.

In this case the free surface interacts directly with the body since it pierces the
free surface. We remind that we are using an isoparametric BEM so we use the
same quadratic approximation even for the geometry. This should increase the
accuracy of the method because the hull has got a parabolic, therefore quadratic,
formulation.

For this comparison we use Fr = 0.316 as we have already done in section
4.2.2.
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Figure 18: Non dimensional free surface elevation 2gz/U2
∞ on the Wigley hull surface

as a function of non dimensional longitudinal coordinate, at Froude number 0.316. The
blue continuos line represents the waterline obtained with our linear BEM. The red
dots represent the experimental results as reported in [16]. The black continuous line
represents the waterline obtained with our quadratic BEM.

We have used a less refined mesh in the quadratic simulation. Thus the com-
putational time is the same in both the simulation. We see that the two waterline
almost overlap. Nevertheless the possibility of having non linear BEM approxi-
mation is very important. The calculation presented in the present paper state
that the quadratic BEM is able to recover the well known results both for the
submerged spheroid and the Wigley hull.

5 Conclusions

We have developed a mixed monolithic boundary element method to solve the
Laplace equation coupled with a free surface boundary condition.
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Following the idea presented in [10], our method relies on upwind projection
techniques to recover the derivatives in the linearised boundary condition and sup-
press unphysical upstream waves. We employ surface finite element projections
coupled with SUPG stabilisation techniques [2], to evaluate upwinded derivatives
even on unstructured non conformal meshes. Using this kind of grids plays a key
role in many of our simulations, where the solution gradients are concentrated in
small regions surrounding the hull, and have a huge impact on the final computa-
tional cost of the simulations.

The proposed numerical model has been implemented into C++ applications
which is based upon the OpenSOURCE library deal.II, [4, 3]. The numerical
results obtained have been compared with available analytical and experimental
results in naval literature, both on a fully submerged spheroid and on the Wigley
hull. We have obtained reasonable agreement especially in the submerged spheroid
case. On the Wigley hull we matched well established results of linearised methods,
even though comparison with experiments plays in favour of fully non-linear models
[18].

Our method can deal with boundary elements of arbitrary order, and with dif-
ferent approximation spaces for the flow potential and for its normal derivative. In
the present work this capability is exploited in the most simple way. Both the flow
potential and its normal derivative are approximated with a continuos functions,
and sharp edges are treated as discussed in [11, 12]. We are currently exploring
the application of mixed boundary element formulations on more elaborate models
where, for example, the flow potential is treated using continuous finite element
types, while its normal derivative is approximated using discontinuous Galerkin
approximation, which would allow for a more natural treatment of sharp edges. In
addiction we are studying the application of b-spline surface elements coupled with
standard CAD data structures, without requiring a full iso-geometric framework
in place, as done in [19].

Acknowledgements

This work was performed in the context of the projects OpenSHIP, “Simu-
lazioni di fluidodinamica computazionale (CFD) di alta qualita per le previsioni di
prestazioni idrodinamiche del sistema carena-elica in ambiente OpenSOURCE”,
supported by Regione Autonoma FVG - POR FESR 2007-2013 Obiettivo compet-
itivita regionale e occupazione, and of the project OpenViewSHIP, “Sviluppo di
un ecosistema computazionale per la progettazione idrodinamica del sistema elica-
carena”, supported by Regione Autonoma FVG - PAR FSC 2007-2013, Fondo per
lo Sviluppo e la Coesione.

37



References

[1] M. Ainsworth and J. Oden. A posteriori error estimation in finite element

analysis, volume 142. Hoepli, Mar. 1997.

[2] J. E. Akin. Finite Element Analysis with Error Estimators. Elsevier, 2005.

[3] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II - a General Pur-
pose Object Oriented Finite Element Library. ACM Trans. Math. Softw.,
33(4):24/1—-24/27, 2007.

[4] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,
B. Turcksin, and T. D. Young. The deal.II Library, Version 8.1. arXiv preprint
arxiv:1312.2266v3, Dec. 2013.

[5] K. A. Belibassakis, C. Feurer, T. P. Gerostathis, A. I. Ginnis, P. D. Kak-
lis, J. Karigiannis, K. V. Kostas, D. Mourkogiannis, C. G. Politis, and
A. Theodoulides. A BEM-Isogeometric Method with Application to the Wave-
making Resistance Problem of Ship at Constant Speed. In ASME 2011 30th

Conference on Ocean, Offshore and Arctic Engineering, 2011.

[6] C. A. Brebbia. The Boundary Element Method for Engineers. Pentech Press,
1978.

[7] X. Chen and G. X. Wu. On singular and highly oscillatory properties of the
Green function for ship motions. J. of Fluid Mech., 445:77–91, 2001.

[8] Z. M. Chen. Harmonic Function Expansion for Trans lating Green Functions
and Dissipative Free Surface Waves. Wave Motion, 50(2):282–294, 2013.

[9] F. S. Crawford. Elementary derivation of the wake pattern of a boat. Am. J.

Phys., 52:782–785, 1984.

[10] C. W. Dawson. A practical computer method for solving ship-wave problems.
In Second International Conference on Numerical Ship Hydrodynamics, pages
30–38, 1977.

[11] S. T. Grilli, P. Guyenne, and F. Dias. A fully non-linear model for three-
dimensional overturning waves over an arbitrary bottom. International Jour-
nal for Numerical Methods in Fluids, 35:829–867, 2001.

[12] S. T. Grilli and I. A. Svendsen. Corner problems and global accuracy in the
boundary element solution of nonlinear wave flows. Engineering Analysis with
Boundary Elements, pages 178–195, 1990.

38



[13] S. Han Aydin. FEM-BEM Coupling for the MHD Pipe Flow in an Exterior
Region. Open Journal of Fluid Dynamics, 3(3):184–190, 2013.

[14] T. H. Havelock. The Wave Resistance of a Spheroid. Proceedings of the Royal

Society, pages 275–285, 1931.

[15] R. Hein, M. Duran, and J. C. Nedelec. Explicit Representation for the Infinite
Depth Two Dimensional Free Surface Greens Function in Linear Water Wave
Theory. AIAN: Journal on Applied Mathematics, 70(7):2353–2372, 2010.

[16] M.Ikehata, H.Tanaka, H.Adachi, M.Namimatsu, and S.Ogiwara. The sum-
mary of the cooperative experiment on Wigley parabolic model in Japan,
1983.

[17] A. Mola, L. Heltai, and A. Desimone. A stable semi-lagrangian potential
method for the simulation of ship interaction with unsteady and nonlinear
waves. In 17th International Conference on Ships and Shipping Research,
2012.

[18] A. Mola, L. Heltai, and A. DeSimone. A stable and adaptive semi-Lagrangian
potential model for unsteady and nonlinear ship-wave interactions. Engineer-
ing Analysis with Boundary Elements, 37(1):128–143, Jan. 2013.

[19] A. Mola, L. Heltai, and A. DeSimone. A fully nonlinear potential model for
ship hydrodynamics directly interfaced with CAD data structures. In 24th

International Ocean and Polar Engineering Conference, 2014.

[20] J. N. Newman and J. M. Clarisse. Evaluation of the wave-resistence Green
function near the singular axis. J Ship Research, 38, 2004.

[21] J. N. Newmann. Marine Hydrodynamics. the MIT Press, 1977.

[22] F. Noblesse, F. Huang, and C. Yang. The Neumann-Michell theory of ship
waves . J Eng Math, 2012.

[23] H. C. Raven. A Solution Method for the Nonlinear Ship Wave Resistance

Problem. PhD thesis, Technische Universiteit Delft, 1996.

[24] D. C. Scullen. Accurate Computation of Steady Nonlinear Free-Surface Flows.
PhD thesis, University of Adelaide, 1998.

[25] K. Tanizawa. The state of the art on numerical wave tank. In Proceeding

of 4th Osaka Colloquium on Seakeeping Performance of Ships, Osaka, pages
95–114, 2000.

39



[26] J. C. F. Telles. A Self-Adaptive Co-ordinate Transformation For Efficient
Numerical Evaluation of General Boundary Element Integrals. International
Journal for Numerical Methods in Engineering, 24:959–973, 1987.

[27] X. Wang, C. Liu, Z. Sun, M. Wu, and S. Zhang. Inherent Properties of Two
Dimension Green Function with Linear Boundary Condition of Free Water
Surface. Applied Mathematics, 4:97–99, 2013.

[28] X.-H. Wu, Z.-J. Chang, Y.-L. Lu, W.-Q. Tao, and S.-P. Shen. An analysis
of the convectiondiffusion problems using meshless and meshbased methods.
Engineering Analysis with Boundary Elements, 36:1040, 2012.

[29] R. W. Yeung. Numerical methods in free-furface flows. Ann Rev. Fluid.

Mech., pages 395–442, 1982.

40



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

37/2014 Giuliani, N.; Mola, A.; Heltai, L.; Formaggia,L.

FEM SUPG stabilisation of mixed isoparametric BEMs: application to

linearised free surface flows

36/2014 Abb,A.;Bonaventura,L.; Nini, M.;Restelli,M.;

Anisotropic dynamic models for Large Eddy Simulation of compressible

flows with a high order DG method

35/2014 Tricerri, P.; Ded, L.; Deparis, S.; Quarteroni, A.; Robert-

son, A.M.; Sequeira, A.

Fluid-structure interaction simulations of cerebral arteries modeled by

isotropic and anisotropic constitutive laws

34/2014 Antonietti, P.F.; Pacciarini, P.; Quarteroni, A.

A discontinuous Galerkin Reduced Basis Element method for elliptic

problems

33/2014 Canuto, C.; Simoncini, V.; Verani, M.

Contraction and optimality properties of an adaptive Legendre-Galerkin

method: the multi-dimensional case

32/2014 Agosti, A.; Formaggia, L.;Scotti, A.

Analysis of a model for precipitation and dissolution coupled with a

Darcy flux

31/2014 Corno, J.; de Falco, C.; De Gersem, H.; Schps, S.

Isogeometric Simulation of Lorentz Detuning in Superconducting Accel-

erator Cavities

30/2014 Ferroni, A.; Formaggia, L.; Fumagalli, A.;

Numerical analysis of Darcy problem on surfaces

29/2014 Arioli, G.; Koch, H.

Some symmetric boundary value problems and non-symmetric solutions

Taffetani, M.; de Falco, C.; Penta, R.; Ambrosi, D.; Ciar-

letta, P.

Biomechanical modelling in nanomedicine: multiscale approaches and

future challenges


