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ABSTRACT

In the framework of efficient partitioned numerical schemes for simulating multiphysics PDE prob-
lems, we propose using intergrid transfer operators based on radial basis functions to exchange
accurately information between different PDEs defined in the same computational domain. Different
(potentially non-nested) meshes can be used for the space discretization of the PDEs. The projection
of the (primary) variables that are shared by the different PDEs (through the coupling terms) is
carried out with Rescaled Localized Radial Basis Functions (RL-RBF). We validate our approach
with a numerical test for which we also show the scalability of the intergrid transfer operator in the
framework of high performance computing. Then, we apply it to the electromechanical model for
the human heart function, and simulate a physiological heartbeat of an idealized left ventricle. We
show that our approach enables the solution of large-scale multiphysics problems, especially when
the individual models exhibit very different spatial scales.
Keywords: intergrid operators, radial basis functions, partitioned schemes, electromechanics, heart
modeling

1 Introduction

Intergrid transfer operators between different grids defined over the same computational domain or accross different
geometries are employed in a variety of applications [17], whereas radial basis functions (RBF) are used in several
fields in both computer science and applied mathematics, such as neural networks [31] and mesh free methods for
solving PDEs [30, 87, 88]. The application of RBF as intergrid transfer operators is documented in [29] with the aim
of exchanging information on a fluid-structure interface between non-conforming meshes defined on two different
computational domains. Here we aim at constructing a new appropriate intergrid transfer operator based on RBF that
has the capability to interpolate in a fast and accurate way both scalar and vectorial fields between different meshes
defined on the same computational domain. We deal with systems of PDEs whose solution components represent
different physical variables, and we want to use non-nested grids on the same computational domain to represent these
different numerical variables. For the sake of illustration we will first introduce and verify our method on a simple



elliptic system with two variables u1 and u2 that will be approximated on two different grids. Then we will address our
target application in the framework of cardiac electromechanics.

Cardiovascular diseases are indeed one of the most common causes of death globally [48] and several pathologies
are still not completely understood. Mathematical modeling of the heart and numerical simulations allow a better
understanding of the phenomena occurring both in physiological and pathological conditions [36, 50, 59, 83, 85].
Several types of processes occur in the human heart, such as propagation of an action potential in the myocardium,
which contracts, together with the blood flowing in the four chambers (atria and ventricles) and through the valves [27,
56, 78, 79, 80]. This problem is challenging from the numerical standpoint [15, 19, 28, 42] as it involves different
temporal and spatial scales. Cardiac electrophysiology, blood fluid dynamics and myocardial mechanics require a
different numerical resolution in space and time, going from a really detailed one for what concerns the electric part,
moving towards a bigger one for the mechanical behaviour [61, 62]. For this reason the application of multi-mesh and
staggered methods is strongly justified from a physical viewpoint, and permits to solve in a really efficient way this
multiphysics problem without loosing the details of the phenomena that we want to model.

In this work we focus on the electromechanical modeling of the left ventricle, which has been extensively studied
over the past years [16, 21, 32], but still needs further investigations both from theoretical and numerical perspectives.
For the electric part we consider the monodomain and Bueno-Orovio models [10, 58, 73]. For the mechanical part we
use the Holzapfel-Ogden model [40] together with the active strain formulation [2, 3], combined with a model for the
transmural heterogeneous thickening of the myocardium [7]. Myocardial fibers contraction defines the bridge between
electrophysiology and mechanics [70]. From the numerical viewpoint, the Finite Element Method (FEM) is used in
order to discretize in space the continuous single core models (i.e. electrophysiology, activation and mechanics) by
means of piecewise linear elements, whereas time discretization is carried on using Backward Differentiation Formulas
(BDFs) of order 1 [60]. As already done in literature [5, 6, 16, 36, 44], the integration of the discrete core models
leads to the formulation of segregated (i.e. which are all solved separately and sequentially) and staggered (i.e. using
with different timesteps) algebraic equations. The timestep changes according to the time scale of the single problem.
Semi-implicit or implicit time discretizations are considered depending on the stiffness of the models. Moreover,
according to the required space resolution, we use different independent (i.e. non-nested) meshes and we perform
intergrid fields transfer by means of RL-RBF. We use different simplified Cauchy models to describe the blood flow
inside the left ventricle. In this way we can compute how pressure and volume evolve along the heartbeat [26, 67, 85].
We also consider a prestress technique, which is applied in the pre-processing phase, to estimate the internal stresses of
the myocardium at the initial time of the simulation [41, 81].

As observed before, electrophysiology and mechanics are solved separately, in a segregated fashion. We use different
meshes and timesteps (staggered approach) for the two fields. After space and time discretization we solve each block
linear system by means of GMRES iterations. We use our partitioned and staggered electromechanics solver to carry
out a numerical simulation in the High Performance Computing framework of the whole cardiac cycle for an idealized
LV geometry, and we analyze the numerical results in terms of clinically relevant indicators: specifically, we produce
the so-called pressure-volume loops in order to assess the left ventricle function and its properties.

The paper is organized as follows: in Section 2 we present the interpolant based on radial basis functions that will act
as intergrid transfer operator. In Section 3 we propose a test case with known exact solution to show the accuracy and
the reliability of the operator introduced in Section 2. In Section 4 we apply the methodology that we have developed
and tested to cardiac electromechanics, a complex framework in which different physics (electrophysiology, mechanical
activation and mechanical deformation of the myocardium) and different space scales are present. We also propose
a novel partitioned scheme for the time discretization of the single core models related to cardiac electromechanics,
carrying out the numerical simulation of one heartbeat of an idealized left ventricle in physiological conditions. We
finally draw our conclusions in Section 5.

2 Intergrid transfer operator

Our aim is to transfer the values of a certain function from one mesh to another one. However we present in this
section our intergrid transfer operator in the most general framework. We exploit several properties of RBF to perform
the interpolation task considering a general function f , following the idea developed in [22].

Let f : R3 → Rd be a scalar (d = 1) or possibly vector field (d > 1) in the 3D setting. Given a set of M nodes
Ξ = {ξm}Mm=1 in R3, we define an interpolant Πf (x) (with x ∈ R3) of the general field f by means of radial basis
functions in the following way:

Πf (x) =

M∑
m=1

γfmπ(||x− ξm||, r), (1)
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with {γfm}Mm=1 set of the interpolation weights. The radial basis function is denoted by π(·, r), which can be either
globally or locally supported according to the choice of the radius r. We use Beckert & Wendland radial basis

functions π(||x||, r) =

(
1− ||x||

r

)4(
1 + 4

||x||
r

)
, which are locally supported. Other options, involving also

globally supported basis functions, are available as well [11, 25]. We introduce an interpolation matrix Φint ∈ RM×M
such that Φint

i,j = π(||ξi−ξj ||, r) with i, j = 1, ...,M . We call fΞ the evaluation of the field f in all theM interpolation
nodes that belong to the set Ξ. The interpolation constraint is algebraically expressed as follows:

Φintγf = fΞ, (2)

with γf = {γfm}Mm=1 solution of linear system (2).

Both fields f and Πf (x) have the same value at the interpolation nodes, i.e. Πf (ξm) = f(ξm) with m = 1, ...,M .
The choice of local radial basis functions leads to a sparse pattern of the matrix Φint. At this point, once Πf (x) is
determined, we can evaluate the interpolant on a set Λ = {λn}Nn=1 ofN different points with respect to the interpolation
nodes contained in Ξ:

Πf (λn) =

M∑
m=1

γfmπ(||λn − ξm||, r). (3)

In our application Ξ and Λ will be two different sets of nodes of two independent triangulations of the computational
domain Ω ⊂ R3 where the interpolant Πf (·) is defined.

We introduce a matrix Φeval ∈ RN×M such that Φeval
i,j = π(||λi− ξj ||, r) with i = 1, ..., N and j = 1, ...,M . This

sparse matrix is used to determine fΛ, i.e. the evaluation of the RBF interpolant Πf on Λ:

fΛ = Φevalγf = Φeval(Φint)−1fΞ. (4)

In order to obtain a smoother interpolant that is able to interpolate exactly any constant field and that is accurate for
small values of the radius r [22], we rescale Πf (x) by the interpolant Πg(x) of the constant function g(x) = 1, which
assumes a value equal to one at each interpolation point:

Π̄f (x) =
Πf (x)

Πg(x)
=

∑M
m=1 γ

f
mπ(||x− ξm||, r)∑M

l=1 γ
g
l π(||x− ξl||, r)

. (5)

We formulate in this way Rescaled Localized Radial Basis Functions (RL-RBF).
From the algebraic perspective, the interpolation problem associated with (5) can be written in the following form:

Φintγf = fΞ, (6)

Φintγg = 1Ξ, (7)
where γg = {γgm}Mm=1 and 1Ξ vector of ones on the interpolation nodes defined in Ξ. Linear systems (6) and (7) are
solved separately. The evaluation of interpolant Π̄f in a specific point x is:

Π̄f (x) =
Φeval(Φint)−1fΞ

Φeval(Φint)−11Ξ

, (8)

where (Φeval)T ∈ RM such that (Φeval)Tj = π(||x− ξj ||, r).

3 Elliptic numerical test

We want to illustrate the properties of our intergrid transfer operator in terms of scalability and convergence for both
the L2 and H1 norms in a given domain Ω ⊂ Rd. With this aim, we propose the following test case:


−∆u1 = f1 in Ω,

−∆u2 + u1 +∇u1 · v = f2 in Ω,

u1 = u2 = 0 on ∂Ω,

(9)

with Ω = (−1, 1)3 and v = 1. The forcing terms are:

f1 = 3π2sin(πx)sin(πy)sin(πz),
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Figure 1: Comparison between numerical and analytical solution for u1 and u2 (both volumetric and cut views are
shown). 4



Figure 2: Lateral view of an example of non-nested unstructured meshes comprised of 10’632 elements for u1 (left)
and 247’030 elements for u2 (right).

Figure 3: Choice of the support of the RBF by means of the number of links (left) and a fixed radius (right) over an
unstructured grid.

f2 = (1− 3π2)sin(πx)sin(πy)sin(πz) + πcos(πx)sin(πy)sin(πz)

+ πsin(πx)cos(πy)sin(πz) + πsin(πx)sin(πy)cos(πz).

This one-way 2-field coupled system involving Laplace and diffusion-advection-reaction PDEs is well posed and
is endowed with an exact solution, u1 = sin(πx)sin(πy)sin(πz) and u2 = −sin(πx)sin(πy)sin(πz). We use the
Finite Element method to solve numerically this test case. We provide two different meshes Th1 and Th2 of the
computational domain made by tetrahedrons, with h1 and h2 representing the maximum size of the element K in terms
of maximum mean diameter of the circumscribed circumference, with ∪K∈Th1K = ∪K∈Th2K = Ω. Both structured
and unstructured meshes can be potentially employed, either in a nested or a non-nested fashion. We denote Nu1

and Nu2
the number of degrees of freedom for u1 and u2 respectively (these are the internal finite element nodes).

We also introduce two finite dimensional spaces X rh1
= {v ∈ C0(Ω̄) : v|K ∈ Pr(K) ∀K ∈ Th1

}, X rh2
= {v ∈

C0(Ω̄) : v|K ∈ Pr(K) ∀K ∈ Th2
}, for r ≥ 1. The set of basis functions of X rh1

with Nu1
= dim(X rh1

) is defined by

{φi}
Nu1
i=1 , whereas the ones of X rh2

with Nu2
= dim(X rh2

) are defined by {ψi}
Nu2
i=1 . We call u1,h1

=
∑Nu1
j=1 u1,jφj and

u2,h2
=
∑Nu2
j=1 u2,jψj the finite element solutions in V rh1

= X rh1
∩H1

0 (Ω) and V rh2
= X rh2

∩H1
0 (Ω), respectively.
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Figure 4: Interpolation CPU time (in seconds) vs. number of processors for different choices of the mesh and the
number of elements.

The discretized formulation of (9) reads: find u1,h1
∈ V rh1

and u2,h2
∈ V rh2

such that{∑Nu1
j=1 u1,j

∫
Ω
∇φj∇φi =

∫
Ω
f1φi ∀i = 1, ..., Nu1

,∑Nu2
j=1 u2,j

∫
Ω
∇ψj∇ψi =

∫
Ω

(f2 − u1,h2
−∇u1,h2

· v)ψi ∀i = 1, ..., Nu2
,

(10)

where u1,h2 =
∑Nu2
j=1 u1,jψj is the interpolation of u1,h1 on the second mesh, and again v = 1. For this purpose,

we use the RL-RBF introduced in Section 2, so that, at a continuous level, u1,h2
(x) = Π̄u1

(x). In order to take into
account the distribution of mesh points of Th1

and Th2
, we define an adaptive strategy to select the radius of the support

of Beckert & Wendland basis functions by means of the number of links that a certain vertex of the mesh has with the
surrounding neighborhood. In this way we exploit the structure of the mesh to build a variable and local support of the
RBF that keeps into account the level of refinement of the mesh in each region of the computational domain. For more
details about this technique we refer to [22]. A number of links equal to 1, as shown in Figure 3, is sufficient to obtain a
good interpolated solution. The derivatives of u1,h2

with respect to x, y and z are calculated using the Zienkiewicz-Zhu
gradient recovery method [91, 92], which is known to be efficient and superconvergent.

We have performed strong scalability tests and convergence analysis of both L2 and H1 errors for u1,h1
and u2,h2

,
considering structured, nested unstructured and non-nested unstructured grids. P1 finite elements are used in all
simulations. In Figure 1 we show a comparison over the entire computational domain and over a cross-section of u1,h1

vs. u1 and u2,h2
vs. u2, considering, as depicted in Figure 2, two different unstructured grids that are non-nested and

providing in both cases a good match of the numerical and analytical solutions. We see that our approach based on
a RBF interpolant whose support is chosen by the number of links is able to pass properly the information of u1,h1

inside the equation of u2,h2 . This is confirmed by the fact that the exact solutions u1 and u2 match really well the
corresponding numerical solutions u1,h1 and u2,h2 . We also test the scalability of our RL-RBF operator, as shown in
Figure 4, where we see that the time that we need to interpolate u1,h1

inside the equation for u2,h2
decreases with the

number of CPUs with all types of grids. We want to underline that this behaviour is observed in the case the coarse
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Figure 5: Convergence analysis for L2 and H1 errors vs. hu1,mean with hu2,mean fixed (left) and viceversa (right).

mesh is used for u1,h1
and the fine one for u2,h2

, and viceversa. Moreover, due to the generality that we want to obtain
with our intergrid operator, it seems that, independently of the value of the mesh size, the interpolation process scales
better with non-nested unstructured grids.

Grid h1,mean h2,mean eu1,L2 eu1,H1 eu2,L2 eu2,H1

Unstructured 0.32 0.19 0.2469 2.7113 0.1171 1.7207
Unstructured 0.16 0.10 0.0901 1.5778 0.0471 1.0401
Unstructured 0.08 0.05 0.0325 0.9253 0.0255 0.6835
Unstructured 0.19 0.32 0.1008 1.6967 0.2571 2.7302
Unstructured 0.10 0.16 0.0347 0.9739 0.1326 1.8995
Unstructured 0.05 0.08 0.0124 0.5700 0.0763 0.8553

Structured 0.28 0.09 0.1590 2.1149 0.0306 0.7416
Structured 0.14 0.07 0.0440 1.0921 0.0141 0.5527
Structured 0.09 0.06 0.0199 0.7323 0.0086 0.4413
Structured 0.09 0.28 0.0199 0.7323 0.1640 2.1227
Structured 0.07 0.14 0.0113 0.5503 0.0459 1.0939
Structured 0.06 0.09 0.0072 0.4407 0.0210 0.7330

Table 1: Convergence analysis with hmean for u1,h1 and u2,h2 (both unstructured and structured grids are non-nested).
eu1,L2 = ||u1,h1

− u1||L2 , eu1,H1 = ||u1,h1
− u1||H1 , eu2,L2 = ||u2,h2

− u2||L2 , eu2,H1 = ||u2,h2
− u2||H1 .

In Figure 5 we show a convergence analysis of L2 and H1 errors where we consider a fixed grid for u2,h2
, with

a certain mean diameter of the elements hu2
= h2,mean, and we gradually reduce the hu1

= h1,mean value, and
viceversa. Table 1 reports the results in case we make a progressive increment of the number of mesh elements for both
u1,h1

and u2,h2
in parallel: we start from a certain couple of non-nested unstructured/structured meshes with specific

values of h1,mean and h2,mean, and then we halve these values and analyse the behaviour of both L2 and H1 errors.
We highlight that the order of convergence that we expect theoretically (i.e 1 for the H1 norm error and 2 for the L2

norm error) is always recovered for every mesh used.

4 Cardiac electromechanics

Now we apply the approach developed and tested in Sections 2 and 3 to solve the cardiac electromechanics problem.
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4.1 Mathematical model

Heart tissue is made of cardiomyocytes, which determines the orthotropic structure of the left ventricle through
the organization in fibers and laminar collagen sheets [76]. In this section, we review the model governing the
electromechanical behaviour of the left ventricle by accounting the characteristics of myocardium [26].

4.1.1 Electrophysiology

The contraction of a single cardiac cell is initiated by an electric activation due to an action potential, a depolarizing
phase that raises the so called transmembrane potential of an excitable cell from its resting value ranging between -90 and
-80 mV to slightly positive values, followed by a peak, a plateau, and a repolarization, that returns the transmembrane
potential to its resting value [19, 20]. The electric activity of the heart starts at the so called sinoatrial (SA) node and
propagates throughout the right atrium [20]. Thanks to the Bachmann’s bundle and some other preferential lines of
trasmission, the electric signal reaches the left atrium [19]. Then, the activation front arrives at the atrioventricular (AV)
node, which conducts the action potential through the nonexcitable atrioventricular septum, activating the specialized
fibers of the bundle of His and the Purkinje network, that spreads as a tree-like left and right bundle branches ending on
the endocardial surface of the ventricles. These Purkinje terminations transmit the action potentials to the ventricular
walls and cardiac excitation then propagates throughout the ventricles [47, 75].

The monodomain model is a diffusion-reaction PDE system able to describe the electric properties of cardiac muscle
cells, assuming the same anisotropy ratios between the intracellular and extracellular spaces [58, 73]. It is a continuum
model, which means that it is used to capture average properties of many cardiomyocytes, and not the behaviour of
single cells. In physiological conditions, the monodomain model reads:

χ
[
Cm

∂u

∂t
+ Iion(u, z)

]
= ∇ · (JF−1DMF

−T∇u) + Iapp(t) in Ω0 × (0, T ),(
JF−1DMF

−T∇u
)
·N = 0 on ∂Ω0 × (0, T ),

u = u0 in Ω0 × {0}.

(11)

Ω0 ⊂ R3 is the domain in the reference configuration, represented in our case by an idealized left ventricle at the end of
the diastolic phase. T > 0 is the final time. Cm is the total membrane capacitance and χ is the area of cell membrane
per tissue volume. u is the dimensionless transmembrane potential, whereas the vector z = {z1, z2, ..., zk} expresses
k recovery (or gating) variables, which play the role of probability density functions and model the fraction of open
ionic channels across the membrane of a single cell. DM = σtI + (σl − σt)f0 ⊗ f0 refers to the diffusion tensor,
being f0 the vector field expressing the fibers direction and σl, σt ∈ R+ the longitudinal and transversal conductivities
respectively [71]. By defining X and x as the reference and deformed coordinates, we introduce the deformation

tensor F = I +
∂ds
∂X

(with J = det(F ) > 0), keeping into account the effect of the mechanical displacement ds on

the electrophysiology. Iapp(t) is an external applied current, which should simulate in our case the behaviour of the
Purkinje network. Indeed we use it to trigger the action potential in specific points of the myocardium. Iion(u, z) is
the feedback from the cellular scale into the tissue one, and strictly depends on the chosen ionic model. A Neumann
boundary condition is applied all over the boundary and defines the condition of electrically isolated domain.

In literature there are several possible choices of ionic models [1, 46, 84]. We present here the monodomain equation
supplemented by the Bueno-Orovio minimal ionic model, which is specifically designed for the human left ventricle to
describe from a phenomenological perspective the microscopical details of each single cardiomyocyte [10]:

∂u

∂t
+ Iion(u, z) = ∇ · (JF−1DMF

−T∇u) + Iapp(t) in Ω0 × (0, T ),

∂v

∂t
=

(1−H(u− θv))(v∞ − v)

τ−v
− H(u− θv)v

τ+
v

in Ω0 × (0, T ),

∂w

∂t
=

(1−H(u− θw))(w∞ − w)

τ−w
− H(u− θw)w

τ+
w

in Ω0 × (0, T ),

∂s

∂t
=

1

τs

(
1 + tanh(ks(u− us))

2
− s
)

in Ω0 × (0, T ),(
JF−1DMF

−T∇u
)
·N = 0 on ∂Ω0 × (0, T ),

u = u0, v = v0, w = w0, s = s0 in Ω0 × {0},

(12)

where Cm = χ = 1, H(x− x0) is an Heaviside function centered at x0, z = {v, w, s} is the vector of gating variables
and evolves over the time thanks to a system of 3 ODEs, which are solved at each point of the reference domain. The
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Figure 6: Geometry of the prolate ellipsoidal. Lateral view (left) and view from above (right).

ionic current Iion(u, z) is given by:

Iion(u, z) =− vH(u− θv)(u− θv)(uu − u)

τfi

+
(u− u0)(1−H(u− θw))

τ0
+
H(u− θw)

τso
− H(u− θw)ws

τsi
.

4.1.2 Mechanical activation

The mechanical activation bridges electrophysiology and passive mechanics. We consider a phenomenological model
that keeps into account the local shortening of the fibers γf at the macroscopical level [33, 67, 70]. In this way we are
able to describe the behaviour of the fibers in a faster but more approximated way, with respect to more complex and
accurate models that are able to describe the dynamic of sarcomeres [64]. Myocardial displacement feedback ds and
concentration of calcium ions Ca2+ play an important role in the time evolution of γf . As already done in literature
[33, 67, 68], the gating variable s substitutes the concentration of Ca2+, due to the fact that they have a pointwise
similar time pattern, even if the order of magnitude is different. The formulation is the following:

∂γf
∂t
− ε

g(s)
∆γf =

1

g(s)
Φ(s, γf ,ds) in Ω0 × (0, T ),

∇γf ·N = 0 on ∂Ω0 × (0, T ),

γf = 0 in Ω0 × {0},

(13)

where g(s) = µAs
2, Φ(s, γf ,ds) = αHs0(s)(s − s0)2RFL(I4f ) +

∑5
j=1(−1)j(j + 1)(j + 2)I4fγ

j
f is the active

force, RFL(x) = χ[SLmin,SLmax](
√
xl0)

{
d0
2 +

∑3
n=1[dnsin(

√
xl0) + encos(

√
xl0)]

}
is a truncated Fourier series

expressing the sarcomere force-length relationship [37]. Both α and µA should be calibrated according to the specific
case under investigation. The active deformation is calculated exploiting the following orthotropic form [2]:

FA = I + γff0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0, (14)
where s0 and n0 represent the sheets and their normal direction respectively, with γs and γn corresponding local
shortening or elongation [7, 52]:

γn = k̄′
(
k̄endo

λ− λepi
λendo − λepi

+ k̄epi
λ− λendo
λepi − λendo

)(
1√

1 + γf
− 1

)
, (15)

γs =
1

(1 + γf )(1 + γn)
− 1. (16)

Here λ represents a transmural coordinate, varying from λendo at the endocardium to λepi at the epicardium, which
permits to have a transversely non-homogeneous thickening of the left ventricular wall. γs is set like (16) yield to
det(FA) = 1.
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4.1.3 Active and passive mechanics

In order to describe the displacement of the myocardium along the entire heartbeat, we model the properties of the
tissue by means of fibers f0, sheets s0 and their normals n0, which permit to obtain highly anisotropic internal stresses
associated with a prescribed deformation [39]. We use a nearly-incompressible formulation by weakly penalizing large
volumetric variations [77]. Moreover, the dimensionless variable γf provides a link between electrophysiology and
mechanics. The momentum conservation equation with boundary and initial conditions reads [51]:

ρs
∂2ds
∂t2

−∇ · P (ds, γf ) = 0 in Ω0 × (0, T ),

(N ⊗N)

(
Kepi
⊥ ds + Cepi⊥

∂ds
∂t

)
+ (I −N ⊗N)

(
Kepi
‖ ds + Cepi‖

∂ds
∂t

)
+ P (ds, γf )N = 0 on Γepi0 × (0, T ),

P (ds, γf )N = 0 on Γbase0 × (0, T ),

P (ds, γf )N = −pendo(t)N on Γendo0 × (0, T ),

ds = ds,0,
∂ds
∂t

= ˙ds,0 in Ω0 × {0}.

(17)

A Robin boundary condition is prescribed at the epicardium to account for the action of the pericardial sac, so that the
presence of the pericardium is also addressed and modelled [57]. Kepi

⊥ , Kepi
‖ , Cepi⊥ , Cepi‖ ∈ R+ are respectively local

values of stiffness and viscosity constants of the epicardial tissue in the normal or tangential directions. A Neumann
boundary condition is defined at the base and acts as a free contraction condition. pendo(t) is the internal pressure of the
ventricular chamber and is modelled through a 0D model, as will be detailed in subsection 4.1.5. The Piola-Kirchhoff
strain tensor P = P (ds, γf ) incorporates both the passive and active mechanical properties of the tissue. After defining
the symmetric positive definite right Cauchy-Green tensor C = F TF , with F = I +∇ds deformation tensor, the
strain energy functionW : R3x3 −→ R provides a link between the strain and the energy of the material. Under the
hyperelasticity assumption, the strain energy function can be differentiated with respect to the deformation tensor F in
order to obtain P :

P (ds, γf ) =
∂W(C)

∂F
. (18)

There are several models in literature which are able to describe the anisotropic nature of the tissue, such as the Guccione
[38] or the Holzapfel-Ogden laws [40]. We use the second one, which formulates the following additive decomposition
of the strain energy function:

W(C) =W1(I1) +W4f (I4f ) +W4s(I4s) +W8fs(I8fs)

=
a

2b
eb(I1−3) +

af
2bf

[
ebf<I4f−1>2

− 1
]

+
as
2bs

[
ebs<I4s−1>2

− 1
]

+
afs
2bfs

[
ebfsI

2
8fs − 1

]
,

(19)

where I1 = tr(C), I4f = C : f0 ⊗ f0, I4s = C : s0 ⊗ s0, I8fs = C : f0 ⊗ s0 are the invariants of the right
Cauchy-Green tensor. ak, bk coefficients are fitted from experimental data [40]. The function < y >= yH0(y), with
H0(y) Heaviside function centered in 0, indicates the positive part of y and permits to switch off the effects of both fibers

and sheets when they are under compression. We introduce a convex termWvol(J) =
B

2
(J − 1)log(J) into the strain

energy functionW such that J = 1 is its global minimum. In this way, we are able to set the nearly-incompressible
constraint [18, 23, 90]. B ∈ R+ is the bulk modulus, which has a role both in the torsion mechanism of the ventricle
and incompressibility constraint [33]. Following [74], we model the evaluation of the isotropic termW1 in J−

2
3 I1 and

not directly in the first invariant.

We now move towards the active part, which is due to the electrical impulse and is formulated in the active strain
framework [2, 3, 49, 67]. In addition to the reference configuration Ω0 and the deformed one Ω, we introduce an
intermediate state Ω̂, which represents the active part of the deformation. By means of the 2nd order tensor FA, we
map Ω0 into Ω̂, whereas the FE tensor takes the role to finally transform Ω̂ into Ω. We finally reach, the multiplicative
decomposition of F = FEFA. The first Piola-Kirchhoff strain tensor P reads:

P = det(FA)PEFA
−T , PE =

∂W(CE , J)

∂FE
. (20)

For additional details on the final form of tensor P , we refer the reader to [33].
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4.1.4 The multifield coupled problem

The fully coupled multifield electromechanical problem is presented here below:

χ
[
Cm

∂u

∂t
+ Iion(u, v, w, s)

]
= ∇ · (JF−1DMF

−T∇u) + Iapp(t) in Ω0 × (0, T ),

∂v

∂t
=

(1−H(u− θv))(v∞ − v)

τ−v
− H(u− θv)v

τ+
v

in Ω0 × (0, T ),

∂w

∂t
=

(1−H(u− θw))(w∞ − w)

τ−w
− H(u− θw)w

τ+
w

in Ω0 × (0, T ),

∂s

∂t
=

1

τs

(
1 + tanh(ks(u− us))

2
− s
)

in Ω0 × (0, T ),

∂γf
∂t
− ε

g(s)
∆γf =

1

g(s)
Φ(s, γf ,ds) in Ω0 × (0, T ),

ρs
∂2ds
∂t2

−∇ · P (ds, γf ) = 0 in Ω0 × (0, T ),(
JF−1DMF

−T∇u
)
·N = 0 on ∂Ω0 × (0, T ),

∇γf ·N = 0 on ∂Ω0 × (0, T ),

(N ⊗N)

(
Kepi
⊥ ds + Cepi⊥

∂ds
∂t

)
+ (I −N ⊗N)

(
Kepi
‖ ds + Cepi‖

∂ds
∂t

)
+ P (ds, γf )N = 0 on Γepi0 × (0, T ),

P (ds, γf )N = 0 on Γbase0 × (0, T ),

P (ds, γf )N = −pendo(t)N on Γendo0 × (0, T ),

u = u0, v = v0, w = w0, s = s0 in Ω0 × {0},
γf = γf,0 in Ω0 × {0},

ds = ds,0,
∂ds
∂t

= ˙ds,0 in Ω0 × {0},

(21)

where pendo(t) is the unknown of a 0D fluid problem that changes over the time with the different phases that involve
a physiological heartbeat.

4.1.5 Cardiac cycle

We model the evolution of both endocardial pressure and volume along the heartbeat, considering a total duration
T = 0.8 s. With this aim, we consider ordinary differential equations to model the fluid in the left ventricle chamber,
where we assume that the endocardial pressure is uniform over the domain. The heartbeat is conventionally split into
four phases, in which we solve four different ODEs [33]:

• Isovolumetric contraction: increase of pendo from the End Diastolic Pressure (EDP, about 10 mmHg) to the
aortic pressure (about 85 mmHg) while the volume V endo remains almost constant, according to the following
equation:

dV endo

dt
(pendo) = 0 t ∈ (0, T1], (22)

where V endo is set to the initial volume, and T1 = T1(pendo) is the earliest occurrence in time at which
pendo ≥ pao, that forces the aortic valve opening.

• Ejection: the left ventricle contracts and pushes blood to flow through the aortic valve, which closes itself at
the end of this phase (when pendo ≤ pao). V endo decreases following a two 0D element Windkessel model
[89]:

C
dpendo

dt
= −p

endo

R
− dV endo

dt
t ∈ (T1, T2], (23)

with pendo(T1) = pao, C,R > 0 are two parameters representing the capacitance and the resistance of the
electric circuit that mimics the blood flowing in the aorta. T2 = T2(V endo) is the first instant of time in which
dV endo

dt
≥ 0.
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• Isovolumetric relaxation: decrease of pendo with constant value of V endo, treated from the mathematical
perspective in the same way as the isovolumetric contraction. T3 = T3(pendo) is the first occurrence in time at
which pendo ≤ pendomin = 5 mmHg.
• Filling: the mitral valve opens due to the pressure drop, blood flows inside the left ventricle causing an

increment of V endo until both pendo and V endo attain the EDP values. We increase linearly pendo until it
reaches the initial value pendoEDP at T̄3 = 0.7 s and we keep it constant from T̄3 to the final time T = 0.8 s by
setting:

dpendo

dt
= ξ t ∈ (T3, T ), (24)

where ξ =
pendoEDP − pendo(T3)

T̄3 − T3
if t ∈ (T3, T̄3],

ξ = 0 otherwise.
(25)

The endocardial volume V endo(t) is computed exploiting the following formula:

V endo(t) =

∫
Γendo0

J(ds(t))ξ · F−T (ds(t))NdΓ0, (26)

which is derived in [66], with ξ vector directed in the normal direction of the LV base.

4.2 Numerical discretization

In this section we numerically discretize system (21) using the Finite Element Method in space and Backward
Differentiation Formula in time. Our numerical method permits to separate and manage properly the space and time
scales related to cardiac electromechanics. We try to reduce at maximum the number of interpolations of the fields
defined on different grids and the number of time advancements of the different physics while preserving accuracy and
stability.

4.2.1 Space discretization

We provide two meshes Th1
and Th2

of the computational domain made of tetrahedrons. h1 and h2 (with h1 <
h2) represent the maximum size of the element K, say the maximum of the mean diameter of the circumscribed
circumference. Th1

, which is the fine mesh, is used for electrophysiology. The coarser Th2
mesh is employed for

both activation and mechanics. This is motivated by the fact that we need a higher resolution for the electric part,
going down to the cellular level, whereas both cardiac mechanics and activation evolve on larger space scales. The
geometry for the LV is represented by a prolate ellipsoid (as often done in literature [26, 33, 38, 66]). We denote
by Nu, Nz , Nγf and Nds the number of degrees of freedom (DOFs) for dimensionless transmembrane potential,
gating variables, mechanical activation and displacement respectively. We define the set of polynomials with degree
smaller than or equal to r over an element K of the mesh with Pr(K), and we introduce the finite dimensional spaces
X rh1

= {v ∈ C0(Ω̄0) : v|K ∈ Pr(K) ∀K ∈ Th1} and X rh2
= {v ∈ C0(Ω̄0) : v|K ∈ Pr(K) ∀K ∈ Th2}, for r ≥ 1.

Monodomain model The set of basis functions of X rh1
with Nu =dim(X rh1

) is defined by {φi}Nui=1. The semidis-
cretized formulation of the Monodomain equation reads: find uh1

(t) ∈ X rh1
∀t ∈ (0, T ) such that∫

Ω0

u̇h1φidΩ0 +

∫
Ω0

(JF−1
h1

(ds,h1)DmF
−T
h1

(ds,h1)∇uh1) · ∇φidΩ0

+

∫
Ω0

Iion(uh1 , zh1)φidΩ0 =

∫
Ω0

Iapp(t)φidΩ0 ∀i = 1, ..., Nu,

(27)

with uh1
(0) =

∑Nu
j=1(u0, φj)L2(Ω0)φj . zh1

= zh1
(t) and F h1

are the semidiscretized versions of the gating variables

and the interpolated deformation tensor respectively, whereas uh1
= uh1

(t) =
∑Nu
j=1 uj(t)φj is the finite element

solution that approximates u=u(t).

F h1 is obtained with the following procedure:

• RL-RBF are employed for the interpolation of ds,h2 , which is obtained from (17). The interpolant Π̄ds(x) is
built on Th2

and it is used to obtain ds,h1
on Th1

following the procedure explained in Section 2 and exploiting
formula (5).
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• We get F h1 = I +∇ds,h1 through the adaptation of the Zienkiewicz-Zhu gradient recovery method [91, 92]
to the tensor case.

We can rewrite equation (27) as a system of non linear ODEs by setting uh1
(t) = {uj,h1

(t)}Nuj=1:{
Mu̇h1(t) +K(ds(t))uh1(t) + Iion(uh1(t), zh1(t)) = Iapp(t) ∀t ∈ (0, T ),

uh1
(0) = u0,h1

,
(28)

whereMij =
∫

Ω0
φjφidΩ0, Kij(ds(t)) =

∫
Ω0

(JF−1
h1
DmF

−T
h1
∇φj) · ∇φidΩ0 and:

(Iion(uh1
(t), zh1

(t)))i =

∫
Ω0

Iion(uh1
, zh1

)φidΩ0,

(Iapp(t))i =

∫
Ω0

Iapp(t)φidΩ0.

In order to avoid numerical instabilities, we use a lumpedML approximation of the mass matrixM [12]. There are
several strategies in literature for the treatment of the non linear term Iion(uh1

(t), zh1
(t)) [33, 43, 53, 54, 55]. We

use the so-called state variable interpolation (SVI) approach. By denoting with {xKs }
Nq
s=1 and {ωKs }

Nq
s=1 the quadrature

nodes and weights of a generic element of the mesh K ∈ Th1
, both uh1

and zh1
are evaluated at the quadrature nodes

as follows: ∫
Ω0

Iion(uh1 , zh1)φidΩ0

≈
∑

K∈Th1

 Nq∑
s=1

Iion

Nu∑
j=1

uj(t)φj(x
K
s ),

Nu∑
j=1

zj(t)φj(x
K
s )

φi(x
K
s )ωKs

 .

(29)

Bueno-Orovio ionic model The ionic model is a system of ODEs which indirectly depends on the space variable
through the transmembrane potential u. The set of degrees of freedom (DOFs) is denoted by {xj}Nz

j=1. The vector of
gating variables is rearranged as follows:

zh1(t) = {vh1(t),wh1(t), sh1(t)}, (30)

with vh1
(t) = {vj,h1

(t)}Nz
j=1, wh1

(t) = {wj,h1
(t)}Nz

j=1, sh1
(t) = {sj,h1

(t)}Nz
j=1. The semi-discrete formulation can

be written as follows: {
żh1

(t) = F (uh1
(t), zh1

(t)) ∀t ∈ (0, T ),

zh1
(0) = z0,h1

.
(31)

Activation model The Galerkin formulation related to the equation for γf reads: given ds,h2
= ds,h2

(t) and
sh2

= sh2
(t) = Π̄sh1

(x), find γf,h2
(t) ∈ X rh2

∀t ∈ (0, T ) such that∫
Ω0

∂γf,h2

∂t
φidΩ0 + ε

∫
Ω0

1

g(sh2)
∇γf,h2

· ∇φidΩ0

−
∫

Ω0

1

g(sh2)
Φ(sh2 , γf,h2 ,ds,h2)φidΩ0 = 0 ∀i = 1, ..., Nγf ,

(32)

with γf,h2
(0) =

∑Nγf
j=1 (γf,0, φj)L2(Ω0)φj and sh2

(t) interpolation of sh1
(t) by means of RL-RBF, i.e. formula (5). By

introducing the proper matrices, the following system of ODEs is obtained:{
Mγ̇f,h2

(t) + εK(sh2(t))γf,h2
(t) + Φ(sh2(t),γf,h2

(t),ds,h2)(t)) = 0 ∀t ∈ (0, T ),

γf,h2
(0) = γf,0,h2

.
(33)

Mechanical model We denote by [X rh2
]3 the finite dimensional subspace of vector valued functions and by {φi}

Nds
i=1

its basis. The semi-discretized version of (17) reads: given γf,h2
(t), find ds,h2

= ds,h2
(t) ∈ [X rh2

]3 ∀t ∈ (0, T ) such

13



that ∫
Ω0

ρs
∂2ds,h2

∂t2
· φidΩ0 +

∫
Ω0

P (ds,h2
, γf,h2

) : ∇φidΩ0

+

∫
Γepi0

[
(N ⊗N)

(
Kepi
⊥ ds,h2 + Cepi⊥

∂ds,h2

∂t

)

+ (I −N ⊗N)

(
Kepi
‖ ds,h2 + Cepi‖

∂ds,h2

∂t

)]
· φidΓ0

= −
∫

Γendo0

pendo(t)N · φidΓ0 ∀i = 1, ..., Nds ,

(34)

with ds,h2
(0) =

∑Nds
j=1 (ds,0,φj)[L2(Ω0)]3φj , ḋs,h2

(0) =
∑Nds
j=1 (ḋs,0,φj)[L2(Ω0)]3φj .

The algebraic formulation reads:{
ρsMd̈s,h2(t) + F ḋs,h2(t) + Gds,h2(t) + S(ds,h2(t),γf,h2

(t)) = pendo(t) in t ∈ (0, T ),

ds,h2
(0) = ds,0,h2

, ḋs,h2
(0) = ḋs,0,h2

,
(35)

with:

Si(ds,h2
(t),γf,h2

(t)) =

∫
Ω0

P (ds,h2
,γf,h2

) : ∇φidΩ0,

Fi,j =

∫
Γepi0

[
(N ⊗N)Cepi⊥ + (I −N ⊗N)Cepi‖

]
φj · φidΓ0,

Gi,j =

∫
Γepi0

[
(N ⊗N)Kepi

⊥ + (I −N ⊗N)Kepi
‖

]
φj · φidΓ0.

Equations (27), (31), (32) and (34) provide the semi-discretization of (21) in a splitted fashion ready for a partitioned
and staggered time discretization.

4.2.2 Time discretization

In order to fully discretize the electromechanical problem, we introduce a block vector y = {yz,yu,yγf ,yds
}

containing all the unknowns of the problem and we reformulate the semi-discrete problem as follows:

dyz(t)

dt
+ Tyz (y(t)) = Hyz (t) ∀t ∈ (0, T ),

Mdyu(t)

dt
+ Tyu(y(t)) = Hyu(t) ∀t ∈ (0, T ),

M
dyγf (t)

dt
+ Tyγf (y(t)) = Hyγf

(t) ∀t ∈ (0, T ),

ρsM
d2yds

(t)

dt2
+ Tyds

(y(t)) = Hyds
(t) ∀t ∈ (0, T ),

yz(0) = yz,0,

yu(0) = yu,0,

yγf (0) = yγf ,0,

yds
(0) = yds,0,

ẏds
(0) = 0,

(36)
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where T andH terms represent the core models. The time discretization performed with the BDF scheme of general
order σ [60] reads as follows:

dyz(tn+1)

dt
≈ 1

∆t

(
θI0y

n+1
z − yIz

)
, yIz =

σ∑
k=1

θIkyz
n−k+1,

dyu(tn+1)

dt
≈ 1

∆t

(
θI0y

n+1
u − yIu

)
, yIu =

σ∑
k=1

θIky
n−k+1
u ,

dyγf (tn+1)

dt
≈ 1

∆t

(
θI0y

n+1
γf
− yIγf

)
, yIγf =

σ∑
k=1

θIky
n−k+1
γf

,

d2yds
(tn+1)

dt2
≈ 1

(∆t)2

(
θII0 y

n+1
ds
− yIIds

)
, yIIds

=

σ+1∑
k=1

θIIk y
n−k+1
ds

,

(37)

where ∆t =
T

NT
is the timestep, NT is the total number of timesteps, and θIk, θIIk , k = 0, ..., σ/σ + 1 depend on the

order of the BDF scheme. We use σ = 1.

4.2.3 Segregated scheme

Implicit monolithic strategies are stable and lead to accurate results, as shown in [33]. However there are two
types of drawbacks connected with this approach. We are forced to use the same timestep for both electrical and
mechanical parts even if the timescale of electrophysiological phenomena is much smaller than the one of the myocardial
activation/mechanics. Moreover the calculation of the Jacobian matrix JEM is quite demanding and this matrix requires
a significant amount of RAM. In order to overcome these issues, we propose a segregated strategy based on the Godunov
splitting scheme [35]. This approach permits to advance in time faster and consuming less memory, at the expense
of introducing first order error on the solution [32, 34]. However, due to the fact that partitioned schemes do not
guarantee unconditional stability in general [13], we have to be careful in the choice of both timestep and number of
elements for each mesh. For both electrophysiology and activation we employ, as done in [32], a semi-implicit scheme.
Mechanics is instead numerically discretized in time implicitly, due to the fact that the highly non-linear (exponential)
terms of the strain energy function W would need a restrictive ∆t in both the semi-implicit and explicit contexts.
We refer from now on to (ISI)− (ESI)− (ASI) for the fully-segregated-semi-implicit scheme applied to the ionic,
monodomain and activation models, and toMI for the implicit scheme applied to the mechanical core. We employ a
staggered approach in which two different timesteps are used for (ISI)− (ESI) and (ASI)− (MI). We define ∆t
the timestep for both activation and mechanics. τ = ∆t

Nsub
is the timestep for electrophysiology (ionic and monodomain

models), with Nsub ∈ N number of intermediate substeps that must be done by (ISI)− (ESI) before a timestep ∆t of
(ASI)− (MI) is performed. The time advancement that has been just described is sketched in Figure 7.

We set tn+ m
Nsub = tn +mτ for m = 1, ..., Nsub.

Problem (ISI)− (ESI) from tn to tn+1 reads:

• Find z̄
n+ m

Nsub

h1
defined on Th1

by solving:

θI0
τ
z̄
n+ m

Nsub

h1
=

1

τ
z̄Ih1

+ F (ū∗h1
, z̄∗h1

). (38)

• Interpolate d̄∗s,h2
on the fine mesh Th1

only one time, at t = tn. Use z̄
n+ m

Nsub

h1
from (38) and d̄∗s,h1

to find

ū
n+ m

Nsub

h1
defined on Th1 by solving:(

θI0
τ
M+K(d̄

∗
s,h1

) + Iionu (ū∗h1
, z̄
n+ m

Nsub

h1
)

)
ū
n+ m

Nsub

h1
=

1

τ
MūIh1

+

Ĩion(ū∗h1
, z̄
n+ m

Nsub

h1
)− Iionz (ū∗h1

, z̄
n+ m

Nsub

h1
)z̄
n+ m

Nsub

h1
+MIapp(tn+ m

Nsub ),

(39)

for m = 1, ..., Nsub, where ūIh1
, z̄Ih1

are evaluated by using the variables on the fine mesh Th1
at times tn, tn −

τ, ..., tn − (σ − 1)τ , with σ = 1 in our case. After solving (38) and (39) for Nsub steps, treat (ASI)− (MI) at tn+1

in the following way:

15



Figure 7: Time advancement for (ISI)− (ESI)− (ASI)− (MI) scheme

• Interpolate z̄n+1
h1

from (38) on the coarse mesh Th2
, and use z̄n+1

h2
to find γ̄n+1

f ,h2
by solving:(

θI0
τ
M+ εK(z̄n+1

h2
) + Pγf (γ̄∗f ,h2

, d̄
∗
s,h2

, z̄n+1
h2

)

)
γ̄n+1
f ,h2

=
1

τ
Mγ̄If ,h2

+ Φ̃(γ̄∗f ,h2
, d̄
∗
s,h2

, z̄n+1
h2

).

(40)

• Finally, d̄n+1
s,h2

is obtained by solving:(
ρs

θII0

(∆t)2
M+

θ
′

0

∆t
F + G

)
d̄
n+1
s,h2

+ S(d̄
n+1
s,h2

, γ̄n+1
f ,h2

)

= ρs
1

(∆t)2
Md̄IIs,h2

+
1

∆t
Fd̄Is,h2

+ pendo(tn+1)− S0,

(41)

by means of the Newton method [60]. γ̄If ,h2
, d̄Is,h2

and d̄IIs,h2
are evaluated by using the variables on the

coarse mesh Th2
at previous timesteps.

z̄∗h1
, ū∗h1

, γ̄∗f ,h2
, d̄∗s,h1

and d̄∗s,h2
are extrapolations of all variables of the model using Newton-Gregory backward

polynomials [14].

4.3 Numerical results

In this subsection we present a numerical simulation of a full heartbeat lasting 0.8 s in the electromechanical
framework, by considering an idealized left ventricle in physiological conditions. We use LifeV [45], an open-source
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Figure 8: View from above of the prolate ellipsoidal meshes for electrophysiology (left), activation and mechanics
(right)

Figure 9: Cut front view of the prolate ellipsoidal meshes for electrophysiology (left) and activation+mechanics (right).

finite element library, for the resolution of the electromechanical problem in a High Performance Computing framework
and for the implementation of the numerical method. All the computations were carried out using a full node (32 Intel R©
Xeon R© E5-4610 v2 2.3GHz cores) of the HPC centre available at MOX.

Physics/Fields Number of elements Number of vertices hmean
Electrophysiology 1’002’886 170’009 1.2 mm

Activation and mechanics 119’419 21’928 3 mm

Table 2: Information about the two meshes of the idealized left ventricle with the corresponding number of elements,
number of vertices and average edge length.
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Figure 10: Evolution of transmembrane potential V = 85.7u− 84, γf and ds in the idealized left ventricle over the
time. The second and the third views of each picture are warped by the displacement magnitude.
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Figure 11: Evolution of transmembrane potential V = 85.7u− 84, γf and ds in the idealized left ventricle over the
time. The second and the third views of each picture are warped by the displacement magnitude.
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Figure 12: Ventricular volume and endocardial pressure over time (left) with pV-loop (right), for the idealized left
ventricle.

In Figures 8 and 9 we show the meshes that we have used. They have been generated using VMTK - the Vascular
Modelling Toolkit [4, 82], and their information are reported in Table 2. With VMTK we can choose a certain diameter
hmean and we can generate fine enough meshes featuring elements with similar aspect ratio. This toolkit is also used for
the tagging procedure to determine which elements belong to the base, the endocardium and the epicardium. Different
tags are assigned to these three different regions of the computational domain to apply in a proper way boundary
conditions. With our methodology we are also able to deal with different grids that are completely independent. We use
P1 finite elements in order to approximate monodomain, activation and mechanics equations, so that the unknowns are
actually calculated on the vertices of each tetrahedron. The ionic model evolves directly on the vertices of each element.
We employ a first order BDF scheme in time [60]. The timestep for electrophysiology is ∆t = 50 µs, whereas the one
for activation and mechanics is ∆t = 250 µs. We also have to solve several linear systems coming from:

• Interpolation of the gating variable s from the coarse mesh to the fine mesh;
• Interpolation of the displacement ds from the fine mesh to the coarse mesh;
• (ISI) evolution in time with a small timestep;
• (ESI) evolution in space and time with a small timestep;
• (ASI) evolution in space and time with a larger timestep;
• (MI) evolution in space and time with a larger timestep (inversion of the jacobian matrix at each Newton

iteration).

We perform these tasks using the GMRES method with a stopping criterion based on the relative residual and a tolerance
given by 10−8. We apply a current Iapp (term of the monodomain model) for 2 ms in three different points of the
myocardium to trigger the electrical signal in the left ventricle. Even if we do not keep into account precisely the
propagation of stimuli inside the Purkinje network [65, 86], the electrical activation of the tissue that we propose is
known to provide physically acceptable results [32].

In literature there are several rule-based techniques to generate fibers and sheets distribution [8, 24, 67] for both
idealized and patient-specific cases. We use the strategy proposed in [33], where fibers rotate transmurally from the
epicardium, with αepi = −60◦ to the endocardium, with αendo = +60◦. In order to properly take into account the
internal stresses of the myocardium at the beginning of the electromechanical simulation, we have to apply the so called
prestress to our computational domain. We compute a distribution of stresses such that the reference geometry is in
equilibrium with the blood pressure pendo at the end of the diastolic phase. An additive decomposition of the strain
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σt σl λepi λendo k̄epi k̄endo k̄
′

α c0 µ̂1
A µ̂2

A µ̂3
A

17.61 120.4 0.8 0.5 0.75 1.0 -7.0 -6.0 0.05 2.1 7.0 12
µ̂4
A ρ B Kepi

⊥ Kepi
‖ Cepi⊥ Cepi‖ CIp CIIp C R

500 10−3 50000 0.2 0.0 0.005 0.0 -5e-7 -5e-7 4500 3.5e-5

Table 3: Parameters used in the electromechanical model: transversal and longitudinal conductivities
(
mm2

s

)
;

transmurally heterogeneous wall thickening coefficients λepi, λendo, k̄epi, k̄endo and k̄
′
; activation model coefficients

α
(
µM−2

)
, c0, and µ̂A

(
µM2 · s

)
of the four cardiac phases expressed; density ρ

( g

mm3

)
; bulk modulus B (Pa);

Robin boundary condition coefficients
(
kPa

mm
,
kPa · s
mm

)
; relaxation parameters for the two isochoric phases CIp and

CIIp

(
kPa · s
mm3

)
; Windkessel model parameters C and R

(
mm3

kPa
,
kPa · s
mm3

)
.

tensor P̂ = P (ds) + P0 is operated, where the prestress tensor P0 is determine to ensure a null displacement ds,0 in
correspondance of the initial pressure at the endocardium. For more information about this technique we refer to [32,
33, 34].

In Figures 10 and 11 we observe the evolution in space and time of the transmembrane potential V , activation variable
γf and displacement ds over one entire heartbeat. The conduction velocity is overestimated due to the fact that, even if
the electrophysiogical mesh is fine, we should use a smaller value of hmean to describe properly all the space scales
and to have a convergent velocity of the wavefront [9, 33, 66]. The activation is slightly delayed with respect to the
propagation of the action potential because it is driven by the calcium concentration (here approximated with the gating
variable s), that evolves in time more slowly than the transmembrane potential. The myocardial tissue undergoes a
significant thickening, which is in accordance with experimental observations [63]. A high value of the bulk modulus B
permits to obtain a significant torsion of the left ventricle and to impose the quasi-incompressibility constraint. With the
choice of parameters for the Robin boundary condition at the epicardium in the mechanics problem (17), we are able to
properly keep into account the effect of the pericardium [57]: in this way we can reduce the movement of the apex and
increase the contraction of the base.

The pV-loop is reported in Figure 12. Even if a comparison with in-vivo measurements would be meaningless, due to
the fact that we are dealing with an idealized framework, we can say that the pV-loop developed over the simulation is
in accordance with those observed experimentally [69] both from the qualitative and quantitative perspective. Moreover,
both the range in pressure and volume during the systolic and the diastolic phases correspond to the physiological one
of average individuals [72].

Finally, with reference to [33], we have also performed this simulation in a monolithic fashion. In this case we
are forced to use the timestep ∆t of electrophysiology also for both activation and mechanics, due to the fact that
action potential and calcium dynamics need a higher resolution in time. For what concerns space discretization, we are
again forced to use only the mesh of electrophysiology, even if we do not need such a high number of elements for
the mechanical problem. For these reasons monolithic schemes are poorer in terms of performances with respect to
segregated ones. With the approach presented in this paper we observe a 10x speed-up in the final computational time
with respect to [33], describing also in a proper and accurate way both the time and space scales of this multiphysics
problem.

5 Conclusions

In this work, we propose a novel segregated solver, which makes use of an accurate and efficient intergrid transfer
operator based on radial basis functions to simulate the electromechanical activity of an idealized left ventricle. We
consider a coupling between the monodomain equation and the Bueno-Orovio minimal ionic model for the electric
part. Cardiac mechanics is modelled in the active strain formulation using the Holzapfel-Ogden constitutive law and a
transmurally variable activation. Electrophysiology and mechanics are linked by means of a phenomenological model
that reproduces fibers contraction. Prestress and additional 0D problems for the fluid permit to keep into account the
interaction of the myocardium with the blood inside the left ventricle. We solve this multifield coupled problem in
the High Performance Computing framework. The use of two different meshes is motivated by the fact that the level
of resolution required by the two physics is not the same, going from an element size with the order of 0.1 mm for
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electrophysiology, to 1 mm for mechanics. This allows to obtain a significant speed-up in the numerical simulation
with respect to the case in which we use one single mesh that could be forced to have the fine resolution of the electric
part. The same considerations lead to the choice of different timesteps and to solve the electromechanical problem in a
staggered fashion, which is again faster and less memory-demanding in comparison with the monolithic approach.

6 Acknowledgements

This research is funded by the ERC Advanced Grant iHEART, “An Integrated Heart Model for the simulation of the
cardiac function”, 2017-2022, P.I.A. Quarteroni (ERC-2016-ADG, project ID: 740132). We sincerely thank Dr. A.
Gerbi, Dr. M. Fedele, Dr. P. Africa, F. Regazzoni, and N. Barnafi for the useful discussions and their help with the use
of the LifeV library.

References

[1] R. R. Aliev and A. V. Panfilov. “A simple two-variable model of cardiac excitation”. In: Chaos, Solitons &
Fractals 7 (1996), pp. 293–301.

[2] D. Ambrosi and S. Pezzuto. “Active stress vs. active strain in mechanobiology: constitutive issues”. In: Journal
of Elasticity 107 (2012), pp. 199–212.

[3] D. Ambrosi et al. “Electromechanical coupling in cardiac dynamics: the active strain approach”. In: SIAM
Journal on Applied Mathematics 71 (2011), pp. 605–621.

[4] L. Antiga et al. “An image-based modeling framework for patient-specific computational hemodynamics”. In:
Medical and Biological Engineering and Computing 46 (2008), pp. 1097–1112.

[5] C. M. Augustin et al. “Anatomically accurate high resolution modeling of human whole heart electromechanics:
a strongly scalable algebraic multigrid solver method for nonlinear deformation”. In: Journal of Computational
Physics 305 (2016), pp. 622–646.

[6] B. Baillargeon et al. “The living heart project: a robust and integrative simulator for human heart function”. In:
European Journal of Mechanics - A/Solids 48 (2014), pp. 38–47.

[7] L. Barbarotta et al. “A transmurally heterogeneous orthotropic activation model for ventricular contraction and
its numerical validation”. In: Numerical Methods in Biomedical Engineering 34 (2018).

[8] J. D. Bayer et al. “A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart
models”. In: Annals of Biomedical Engineering 40 (2012), pp. 2243–2254.

[9] M. Bendahmane, R. Bürger, and R. Ruiz-Baier. “A finite volume scheme for cardiac propagation in media with
isotropic conductivities”. In: Mathematics and Computers in Simulation 80 (2010), pp. 1821–1840.

[10] A. Bueno-Orovio, E. M. Cherry, and F. H. Fenton. “Minimal model for human ventricular action potentials in
tissue”. In: Journal of Theoretical Biology 253 (2008), pp. 544–560.

[11] M. D. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge University Press, 2003.
[12] E. Burman and A. Ern. “The discrete maximum principle for stabilized finite element methods”. In: Numerical

Mathematics and Advanced Applications. Springer, 2003, pp. 557–566.
[13] P. Causin, J. F. Gerbeau, and F. Nobile. “Added-mass effect in the design of partitioned algorithms for fluid-

structure problems”. In: Computer Methods in Applied Mechanics and Engineering 194 (2005), pp. 4506–
4527.

[14] F. E. Cellier and E. Kofman. Continuous System Simulation. Springer, 2006.
[15] R. Chabiniok et al. “Multiphysics and multiscale modelling, data-model fusion and integration of organ physiol-

ogy in the clinic: ventricular cardiac mechanics”. In: Interface Focus 6 (2016), pp. 15–83.
[16] D. Chapelle et al. “Numerical simulation of the electromechanical activity of the heart”. In: International

Conference on Functional Imaging and Modeling of Heart 5528 (2009), pp. 357–365.
[17] X. Chen. “The analysis of intergrid transfer operators and multigrid methods for nonconforming finite elements”.

In: Electronic Transactions on Numerical Analysis 6 (1997), pp. 78–96.
[18] A. Cheng et al. “Transmural cardiac strains in the lateral wall of the ovine left ventricle”. In: American Journal

of Physiology. Heart and Circulatory Physiology 288 (2005), pp. 1546–1556.
[19] P. Colli Franzone, L. F. Pavarino, and G. Savaré. “Computational electrocardiology: mathematical and numerical

modeling”. In: Complex systems in Biomedicine. Springer, 2006, pp. 187–241.
[20] P. Colli Franzone, L. F. Pavarino, and S. Scacchi. Mathematical Cardiac Electrophysiology. Springer, 2014.
[21] F. S. Costabal et al. “The importance of mechano-electrical feedback and inertia in cardiac electromechanics”. In:

Computer Methods in Applied Mechanics and Engineering 320 (2017), pp. 352–368.

22



[22] S. Deparis, D. Forti, and A. Quarteroni. A rescaled localized radial basis functions interpolation on non-cartesian
and non-conforming grids. MATHICSE Technical Report. EPFL, 2013.

[23] S. Doll and K. Schweizerhof. “On the development of volumetric strain energy functions”. In: Journal of Applied
Mathematics 67 (2000), pp. 17–21.

[24] R. Doste, D. Soto-Iglesias, and G. Bernardino. “A rule-based method to model myocardial fiber orientation in
cardiac biventricular geometries with outflow tracts”. In: Numerical Methods in Biomedical Engineering 35
(2019).

[25] P. Duchon. “Splines minimizing rotation invariant semi-norms in sobolev spaces”. In: (1977), pp. 85–100.
[26] T. S. E. Eriksson et al. “Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction”.

In: Mathematics and Mechanics of Solids 18 (2013), pp. 592–606.
[27] M. Fedele, E. Faggiano, and A. Quarteroni. “A patient-specific aortic valve model based on moving resistive

immersed implicit surfaces”. In: Biomechanics and Modeling in Mechanobiology 16 (2017), pp. 1779–1803.
[28] L. Formaggia, A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the

Circulatory System. Springer Science & Business Media, 2010.
[29] D. Forti and L. Dede’. “Semi-implicit BDF time discretization of the Navier-Stokes equations with VMS-LES

modeling in a High Performance Computing framework”. In: Computers & Fluids 117 (2015), pp. 168–182.
[30] C. Franke and R. Schaback. “Solving partial differential equations by collocation using radial basis functions”.

In: Applied Mathematics and Computation 93 (1998), pp. 73–82.
[31] J. A. S. Freeman and D. Saad. “Learning and generalisation in radial basis function networks”. In: Neural

computation 7 (1995), pp. 1000–1020.
[32] A. Gerbi. “Numerical approximation of cardiac electro-fluid-mechanical models: coupling strategies for large-

scale simulation”. PhD thesis. EPFL, 2018.
[33] A. Gerbi, L. Dede’, and A. Quarteroni. “A monolithic algorithm for the simulation of cardiac electromechanics

in the human left ventricle”. In: Mathematics in Engineering 1 (2018), pp. 1–37.
[34] A. Gerbi, L. Dede’, and A. Quarteroni. Segregated algorithms for the numerical simulation of cardiac electrome-

chanics in the left human ventricle. MOX Report. Politecnico di Milano, 2018.
[35] S. Godunov. “A difference method for numerical calculation of discontinuous solutions of the equations of

hydrodynamics”. In: Matematicheskii Sbornik 89 (1959), pp. 271–306.
[36] S. Göktepe and E. Kuhl. “Electromechanics of the heart: a unified approach to the strongly coupled excitation-

contraction problem”. In: Computational Mechanics 45 (2010), pp. 227–243.
[37] A. M. Gordon, A. F. Huxley, and F. J. Julian. “The variation in isometric tension with sarcomere length in

vertebrate muscle fibres”. In: The Journal of Physiology 184 (1966), pp. 170–192.
[38] J. M. Guccione and A. D. McCulloch. “Finite element modeling of ventricular mechanics”. In: Theory of Heart.

Springer, 1991, pp. 121–144.
[39] J. M. Guccione, A. D. McCulloch, and L. K. Waldman. “Passive material properties of intact ventricular

myocardium determined from a cylindrical model”. In: Journal of Biomechanical Engineering 113 (1991),
pp. 42–55.

[40] G. A. Holzapfel and R. W. Ogden. “Constitutive modelling of passive myocardium: a structurally based framework
for material characterization”. In: Mathematical, Physical and Engineering Sciences 367 (2009), pp. 3445–3475.

[41] M. C. Hsu and Y. Bazilevs. “Blood vessel tissue prestress modeling for vascular fluid-structure interaction
simulation”. In: Finite Elements in Analysis and Design 47 (2011), pp. 593–599.

[42] D. Krause et al. “Hybrid Parallelization of a Large-Scale Heart Model”. In: Facing the Multicore-Challenge II.
Springer, 2012, pp. 120–132.

[43] S. Krishnamoorthi, M. Sarkar, and W. S. Klug. “Numerical quadrature and operator splitting in finite ele-
ment methods for cardiac electrophysiology”. In: International Journal for Numerical Methods in Biomedical
Engineering 29 (2003), pp. 1243–1266.

[44] S. Land, S. A. Niederer, and N. P. Smith. “Efficient computational methods for strongly coupled cardiac
electromechanics”. In: IEEE transaction on Bio-medical Engineering 59 (2012), pp. 1219–1228.

[45] LifeV finite element library. https://bitbucket.org/lifev-dev/lifev-release/wiki/Home.
[46] C. Luo and Y. Rudy. “A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic

currents and concentration changes”. In: Circulation Research 74 (1994), pp. 1071–1096.
[47] C. Luo and Y. Rudy. “A model of the ventricular cardiac action potential. Depolarization, repolarization, and

their interaction”. In: Circulation Research 68 (1991), pp. 1501–1526.

23

https://bitbucket.org/lifev-dev/lifev-release/wiki/Home


[48] C. J. L. Murray et al. “Global, regional, and national incidence and mortality for hiv, tuberculosis, and malaria
during 1990-2013: a systematic analysis for the global burden of disease study 2013”. In: The Lancet 384 (2014),
pp. 1005–1070.

[49] F. Nobile, A. Quarteroni, and R. Ruiz-Baier. “An active strain electromechanical model for cardiac tissue”. In:
International Journal for Numerical Methods in Biomedical Engineering 28 (2012), pp. 52–71.

[50] D. A. Nordsletten et al. “Coupling multi-physics models to cardiac mechanics”. In: Progress in Biophysics and
Molecular Biology 104 (2011), pp. 77–88.

[51] RW Ogden. Non-linear elastic deformations. Dover Publications, 1997.
[52] J. H. Omens, K. D. May, and A. D. McCulloch. “Transmural distribution of three-dimensional strain in the

isolated arrested canine left ventricle”. In: The American Journal of Physiology 261 (1991), pp. 918–928.
[53] A. S. Patelli et al. “Isogeometric approximation of cardiac electrophysiology models on surfaces: an accuracy

study with application to the human left atrium”. In: Computer Methods in Applied Mechanics and Engineering
317 (2017), pp. 248–273.

[54] P. Pathmanathan et al. “Computational modelling of cardiac electrophysiology: explanation of the variability
of results from different numerical solvers”. In: International Journal for Numerical Methods in Biomedical
Engineering 28 (2012), pp. 890–903.

[55] P. Pathmanathan et al. “The significant effect of the choice of ionic current integration method in cardiac
electro-physiological simulations”. In: International Journal for Numerical Methods in Biomedical Engineering
27 (2011), pp. 1751–1770.

[56] M. Pennacchio, G. Savaré, and P. Colli Franzone. “Multiscale modeling for the bioelectric activity of the heart”.
In: SIAM Journal on Mathematical Analysis 37 (2005), pp. 1333–1370.

[57] M. Pfaller et al. “The importance of the pericardium for cardiac biomechanics: from physiology to computational
modeling”. In: Biomechanics and modeling in mechanobiology 18 (2019), pp. 503–529.

[58] M. Potse et al. “A comparison of monodomain and bidomain reaction-diffusion models for action potential
propagation in the human heart”. In: IEEE Transactions on Biomedical Engineering 53 (2006), pp. 2425–2435.

[59] M. Potse et al. “Patient-specific modelling of cardiac electrophysiology in heart-failure patients”. In: Europace:
European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing,
arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2014.

[60] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, 2010.
[61] A. Quarteroni et al. “Integrated heart - coupling multiscale and multiphysics models for the simulation of the

cardiac function”. In: Computer Methods in Applied Mechanics and Engineering 314 (2017), pp. 345–407.
[62] A. Quarteroni et al. Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approxima-

tion, Clinical Applications. Cambridge University Press, 2019.
[63] T. A. Quinn and P. Kohl. “Combining wet and dry research: experience with model development for cardiac

mechano-electric structure-function studies”. In: Cardiovascular Research 97 (2013), pp. 601–611.
[64] F. Regazzoni, L. Dede’, and A. Quarteroni. “Active contraction of cardiac cells: a model for sarcomere dynamics

with cooperative interactions”. In: Biomechanics and modeling in mechanobiology 17 (2018), pp. 1663–1686.
[65] D. Romero et al. “Effects of the Purkinje system and cardiac geometry on biventricular pacing: a model study”.

In: Annals of Biomedical Engineering 38 (2010), pp. 1388–1398.
[66] S. Rossi. “Anisotropic modeling of cardiac mechanical activation”. PhD thesis. EPFL, 2014.
[67] S. Rossi et al. “Orthotropic active strain models for the numerical simulation of cardiac biomechanics”. In:

International journal for numerical methods in biomedical engineering 28 (2012), pp. 761–788.
[68] S. Rossi et al. “Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall

thickening in cardiac electromechanics”. In: European Journal of Mechanics - A/Solids 48 (2014), pp. 129–142.
[69] C. F. Royse and A. G. Royse. “The myocardial and vascular effects of bupivacaine, levobupivacaine, and

ropivacaine using pressure volume loops”. In: Anesthesia & Analgesia 101 (2005), pp. 679–687.
[70] R. Ruiz-Baier et al. “Mathematical modelling of active contraction in isolated cardiomyocytes”. In: Mathematical

Medicine and Biology: a Journal of the IMA 31 (2014), pp. 259–283.
[71] J. E. Saffitz et al. “Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular

myocardium”. In: Circulation Research 74 (1994), pp. 1065–1070.
[72] K. Sagawa. “The ventricular pressure-volume diagram revisited”. In: Circulation Research 43 (1978), pp. 677–

687.
[73] J. Sainte-Marie et al. “Modeling and estimation of the cardiac electromechanical activity”. In: Computers &

Structures 84 (2006), pp. 1743–1759.

24



[74] C. Sansour. “On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy”.
In: European Journal of Mechanics - A/Solids 27 (2008), pp. 28–39.

[75] A. M. Scher. “The sequence of ventricular excitation”. In: The American Journal of Cardiology 14 (1964),
pp. 287–293.

[76] P. P. Sengupta et al. “Left Ventricular Structure and Function: basic Science for Cardiac Imaging”. In: Journal of
the American College of Cardiology 48 (2006), pp. 1988–2001.

[77] J. C. Simo and R. L. Taylor. “Quasi-incompressible finite elasticity in principal stretches. continuum basis and
numerical algorithms”. In: Computer Methods in Applied Mechanics and Engineering 85 (1991), pp. 273–310.

[78] N. P. Smith et al. “Multiscale computational modelling of the heart”. In: Acta Numerica 13 (2004), pp. 371–431.
[79] A. Tagliabue, L. Dede’, and A. Quarteroni. “Complex blood flow patterns in an idealized left ventricle: a

numerical study”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (2017), pp. 93939–93964.
[80] A. Tagliabue, L. Dede’, and A. Quarteroni. “Fluid dynamics of an idealized left ventricle: the extended Nitsche’s

method for the treatment of heart valves as mixed time varying boundary conditions”. In: International Journal
for Numerical Methods in Fluids 85 (2017), pp. 135–164.

[81] K. Takizawa, Y. Bazilevs, and T. E. Tezduyar. “Space-time and ALE-VMS techniques for patient-specific
cardiovascular fluid-structure interaction modeling”. In: Mathematical Models and Methods in Applied Sciences
24 (2014), pp. 2437–2486.

[82] The Vascular Modeling Toolkit website. www.vmtk.org.
[83] N. A. Trayanova. “Whole-heart modeling applications to cardiac electrophysiology and electromechanics”. In:

Circulation Research 108 (2011), pp. 113–128.
[84] K. H. ten Tusscher and A. V. Panfilov. “Alternans and spiral breakup in a human ventricular tissue model”. In:

American Journal of Physiology. Heart and Circulatory Physiology 291 (2006), pp. 1088–1100.
[85] T. P. Usyk, I. J. LeGrice, and A. D. McCulloch. “Computational model of three-dimensional cardiac electrome-

chanics”. In: Computing and Visualization in Science 4 (2002), pp. 249–257.
[86] C. Vergara et al. “A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the

myocardium with detailed Purkinje network”. In: Journal of Computational Physics 308 (2016), pp. 218–238.
[87] J. G. Wang and G. R. Liu. “A point interpolation meshless method based on radial basis functions”. In:

International Journal for Numerical Methods in Engineering 54 (2002), pp. 1623–1648.
[88] H. Wendland. “Meshless galerkin methods using radial basis functions”. In: Mathematics of Computation 68

(1999), pp. 1521–1531.
[89] N. Westerhof, J. W. Lankhaar, and B. E. Westerhof. “The arterial Windkessel”. In: Medical & Biological

Engineering & Computing 47 (2009), pp. 131–141.
[90] F. C. Yin, C. C. Chan, and R. M. Judd. “Compressibility of perfused passive myocardium”. In: American Journal

of Physiology. Heart and Circulatory Physiology 271 (1996), pp. 1864–1870.
[91] O. C. Zienkiewicz and J. Z. Zhu. “The superconvergent patch recovery and a posteriori error estimates. Part 1: The

recovery technique”. In: International Journal for Numerical Methods in Engineering 33 (1992), pp. 1331–1364.
[92] O. C. Zienkiewicz and J. Z. Zhu. “The superconvergent patch recovery and a posteriori error estimates. Part

2: Error estimates and adaptivity”. In: International Journal for Numerical Methods in Engineering 33 (1992),
pp. 1365–1382.

25

www.vmtk.org


MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

34/2019 Antonietti, P. F.; Mazzieri, I.; Melas, L.; Paolucci, R.; Quarteroni, A.; Smerzini, C.; Stupazzini, M.
Three-dimensional physics-based earthquake ground motion simulations for
seismic risk assessment in densely populated urban areas

35/2019 Zancanaro, M.; Ballarin, F.; Perotto, S.; Rozza, G.
Hierarchical model reduction techniques for flow modeling in a parametrized
setting

33/2019 Regazzoni, F.; Dede', L.; Quarteroni, A.
Machine learning of multiscale active force generation models for the
efficient simulation of cardiac electromechanics

32/2019 Fedele, M.
Polygonal surface processing and mesh generation tools for numerical
simulations of the complete cardiac function.

31/2019 Pagani, S.; Vitulano, G.; De Blasi, G.; Frontera, A.
High density characterization of the atrial electrical substrate during sinus
rhythm in patients with atrial fibrillation

30/2019 Pagani, S.; Manzoni, A.; Quarteroni, A.
Forward uncertainty quantification in cardiac electrophysiology by reduced
order modeling and machine learning

29/2019 Dal Santo, N.; Manzoni, A.; Pagani, S.; Quarteroni, A.
Reduced order modeling for applications to the cardiovascular system

28/2019 Infantino, M.; Mazzieri, I.; Ozcebe, A.G.; Paolucci, R.; Stupazzini, M.
Physics-based probabilistic seismic hazard assessment in Istanbul

26/2019 Antonietti, P. F.; Bonaldi, F.; Mazzieri, I.
Simulation of 3D elasto-acoustic wave propagation based on a Discontinuous
Galerkin Spectral Element method

27/2019 Tantardini, M.; Ieva, F.; Tajoli, L.; Piccardi, C.
Comparing methods for comparing networks


	qmox36-copertina
	mox-2019930123726
	Introduction
	Intergrid transfer operator
	Elliptic numerical test
	Cardiac electromechanics
	Mathematical model
	Electrophysiology
	Mechanical activation
	Active and passive mechanics
	The multifield coupled problem
	Cardiac cycle

	Numerical discretization
	Space discretization
	Time discretization
	Segregated scheme

	Numerical results

	Conclusions
	Acknowledgements

	qmox36-terza_di_copertina

