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When living cells are observed at rest on a flat substrate, they can typically exhibit a rounded
(symmetric) or an elongated (polarized) shape. Although the cells are apparently at rest, the active
stress generated by the molecular motors continuously stretches and drifts the actin network, the
cytoskeleton of the cell. In this work we theoretically compare the energy stored and dissipated in
this active system in two geometric configurations of interest: symmetric and polarized. We find
that the stored energy is larger for a radially symmetric cell at low activation regime, while the
polar configuration has larger strain energy when the active stress is beyond a critical threshold.
Conversely, the dissipation of energy in a symmetric cell is always larger than that of a non-symmetric
one. By a combination of symmetry arguments and competition between surface and bulk stress,
we argue that radial symmetry is an energetically expensive metastable state that provides access
to an infinite number of lower energy states, the polarized configurations.

INTRODUCTION

Living cells at rest observed in vitro on a flat substrate
typically exhibit a rounded or an elongated shape. A
transition from the symmetric to the polar configuration
can be triggered by several factors [1], including an exter-
nally enforced strain [2] and a modulated myosin activity
[3, 4]. The polarization process can sometimes be instru-
mental towards initiation of migration, but a polarized
state at rest is likely observed too.
In a symmetric cell the cytoskeleton has no apparent
symmetry at a microstructural level: there is no array-
type organization at a sarcomere level like in striated
muscles. However several possible mechanism of trans-
mission of the forces [1] determine a tensional stress that
is essentially of radial direction in bulk, supplemented by
a hoop stress component near the membrane, produced
by the cortex [5]. Radially symmetric cells are said non
polarized; conversely, the shape of a polarized cell has
a symmetry axis, the actin fibers and the stress in the
cytoskeleton are largely aligned along the axial direction.
Even when a cell is apparently at rest, a continuous pro-
cess of material reorganization occurs inside. The active
stress generated by the myosin motors stretches and dis-
places the polymeric network and creates a tensional pat-
tern largely dictated by the fibres’ alignment. From an
energetic point of view, the active stress generates both
strain energy storage and dissipative mass flow [6].
The surface and volume stress sources in a cell reflect
the organization of the polymeric network in two archi-
tectures: actomyosin cortex along the membrane and the
molecular motors attached to the cytoskeleton. Surface
and bulk stress compete with the dendritic growth near
the membrane, that can generate destabilization of the
symmetric configuration. Tuning the amount of recruited
tensile units [4], when the active stress dominates the cell
is symmetric, while polarization (and migration) emerges

for weaker activity of myosin.
An investigation of the mechanical balances involved in
the two geometric configurations introduced above is in-
timately related to a precise statement of the rheological
properties of the cytoskeleton. The rheological properties
of the myosin cross-linked actin cytoskeleton, the basic
structural element of a living cell, are complex. In the
simplest approximation it can be represented as a vis-
coelastic Kelvin-type material, exhibiting solid–type be-
havior at short times and (∼ 10 s) and flowing like a
viscous fluid on a longer time scale [7]. The actual rhe-
ology is however more complex: cyclic loads of in vitro
cross-linked actin show a very nonlinear elastic behav-
ior that undergoes softening in time because of a plastic
reorganization [8, 9] likely due to a dynamic evolution
of the mutual bonds between polymers. An analogous
transition from elastic to viscoplastic regime is observed
in vivo for optically stretched cells [10].
The deep insight reached in the understanding of the
complex rheology of cross-linked actin networks is far
from being translated in the mechanics of living cells;
however a representation of the cell as a purely mechan-
ical system has been proven to be sufficient to reproduce
a number of observed behaviors. Most common mod-
els retain only the linear and nonlinear fluid-like proper-
ties of the active material [7, 11, 12]; this framework has
been particularly successful in producing non–symmetric
patterns of velocity field that account for the motion of
cell-like droplets. Nonlinear elastic properties of the cy-
toskeleton are often relegated to the linear regime, where
they account for transient behaviour, the focus being on
the flow at the steady state. Mean–stress arguments pro-
vide an inequality that relates the tension generated by
the actomyosin ring and the force per unit surface in the
body of the cell [13]. Kozlov and Mogilner [14] study the
polarization and bistability of a cell fragment on the basis
of surface vs. volumetric energy contributions at variance
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of the geometry of the domain. They sketch the cell as
a circle cut by an arc of variable length that represents
the rear of the lamellipodium in the polarized configura-
tion. While the free energy of the leading edge in the cy-
toskeleton and in the rear bundle grow linearly vs. radius,
area and length, respectively, their linear combination is
a complex function of the degree of polarization of the
cell. This interplay between energetic and geometrical
arguments can explain the existence of two equilibrium
configurations.
In this work we address a comparison of symmetric
vs. polarized cells from a purely mechanical point of view,
in a solid (energy preserving) and fluid (fully dissipative)
setting. We disregard the inner mechanisms that drive
the transition from one geometric configuration to the
other (see [1] for a discussion) and we focus on the en-
ergetic balance that characterizes each of them. Strain
energy storage is calculated on the basis of a hyperelas-
tic model, while energy dissipation is based on a purely
viscous one. This full decoupling between the physical
regimes corresponds to consider the mechanical system
at a long time scale, when both the stored elastic energy
and the dissipation rate are constant in time. The quan-
titative evaluation obtained by numerical integration of
the balance equations provides physical arguments for an
insight of the energetic peculiarities of the geometrical
configurations.

I. STRAIN ENERGY STORAGE: THE ELASTIC
MODEL

In this work we adopt a very simple nonlinear strain
energy density of compressible neo-Hookean material

W (F) =
E

2
(F · F− 2 log(detF)− 2) (1)

where E is an elastic modulus and F is the tensor gradi-
ent of deformation. The strain energy (1) corresponds,
in a small strain regime, to an isotropic linear material
with shear modulus E and infinite compressibility (zero
bulk modulus). Volume variation are only penalized log-
arithmically at large strains.
First variation of the strain energy density yields the Pi-
ola stress. The balance of forces is to be complemented,
for an active material, by the active component of the
Piola stress tensor yielding:

P(F) = E(F− F−T ) + α
det(F)√
Fao · Fao

Fao ⊗ ao. (2)

where ao is the reference direction of aligned actin fi-
bres or, more in general, the direction of the active stress
as emerging by a collective dynamics. The coefficient α
modulates the amplitude of the active stress. From (2)
it results a symmetric Cauchy active stress tensor which
is a linear function of the stretch, oriented according to
the direction of the actual direction of the unit vector ao;

pull back of the Cauchy stress to the material coordinates
yields the Piola stress in equation (2) [15].
In a similar way, the actin cortex tension generates a com-
pression at the boundary that acts as a constant pressure
κ; in material coordinates the Nanson formula gives the
boundary condition

P(F)n0 = −κ (detF)F−Tn0, (3)

where n0 is the outgoing normal to the boundary in the
reference configuration.
We remark that the generic functional dependence of the
active stress in a living cell on the deformation of the
material itself is well known when a sarcomeric organi-
zation is present: aligned fibres generate a stress that
grows linearly with the stretch when it is moderate, up
to a plateau. Analogous relationships are not yet es-
tablished when there is no alignment, like in the fibres
of the cytoskeleton. An analysis of the microscopic dy-
namics of polar actin filaments activated by molecular
motors points out the role of fibres’ deformation in the
emerging behavior for disordered networks too [16]; the
macroscopic stress is therefore expected to depend on
the deformation of the microstructure. Notwithstanding
the lack of an ordered structure in actin filaments, the
myosin contractility can produce very regular patterns in
displacement and stress [17]; the mechanism that orches-
trates such a regular dynamics starting from a random
orientation and its interplay with the cell membrane are a
very active area of research [1]. Here we shall adopt orien-
tation of the stress in precise direction not because we are
considering array-type organization of the microstructure
but because we assume an ordered tensional pattern gen-
erated from a small-scale dynamics which is immaterial
for our purposes.

We sketch the shape of a polarized cell as a square of

Figure 1. Cartoon of the geometrical configuration of a sym-
metric (left) and a polarized cell (right). The actin cortex
(green) is aligned with the membrane, while the result of the
active stress in the cytoskeleton is a tensional pattern (red)
radially oriented or along parallel lines. The light blue arrows
indicate the direction of the actin flow.

(reference) length Lo with all fibers aligned in the axial
direction, while a symmetric cell is represented as a cir-
cle of (reference) radius R0, all the fibres being aligned
in radial direction. We assume that a cell has the same
volume in the two geometrical configurations:

πR2
0 = L2

o. (4)
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A. Polarized cell

Consider an unloaded squared–like cell made of hy-
perelastic material, subject to bulk fibre–aligned active
stress and active cortex stress at the boundary, propor-
tional to the strain in the tangential direction. The re-
sulting deformation is homogeneous and the tensor gra-
dient of deformation reads

F = diag(λ1, λ2) (5)

where λ1, λ2 are the deformation in the X and Y direc-
tion, respectively.
The transverse balance of forces yields the homogeneous
stress

E(λ2 −
1

λ2
) = −κλ1, (6)

where κ is the active surface stress generated in the actin
cortex. The active surface stress is supposed to depend
linearly on the tangential strain.
Equation (6) is an algebraic equation with (admissible)
solution

λ2 = −κλ1

2E
+

√
1 +

(
κλ1

2E

)2
. (7)

The longitudinal balance of forces reads:

E(λ1 −
1

λ1
) + αλ1λ2 = −κλ2. (8)

Using (7), equation (8) rewrites as a nonlinear algebraic
equation that can be numerically solved by the Newton–
Raphson method.

B. Radially symmetric cell

The radial symmetry of the problem is exploited intro-
ducing the tensor gradient of deformation in polar coor-
dinates

F = diag(r′, r/R), (9)

where r(R) is the radial position as a function of the
reference coordinate. The balance of forces

d

dR
PRR +

1

R
(PRR − PΘΘ) = 0, (10)

rewrites

d

dR

(
E(r′ − 1

r′
) + αr′

r

R

)
+

1

R

(
E(r′ − 1

r′
− r

R
+
R

r
) + αr′

r

R

)
= 0,

(11)

to be solved with boundary conditions

r(0) = 0,

(
E(r′ − 1

r′
) + αr′

r

R

) ∣∣
R0

= −κ r
R

∣∣
R0
.

(12)

Equation (11) with boundary conditions (12) is a second
order boundary value nonlinear differential equation. It
can be numerically solved by finite differences.

II. ENERGY DISSIPATION: THE VISCOUS
MODEL

We represent the fluid-like behavior of the cytoskeleton
as an infinitely compressible Newtonian fluid undergoing
steady flow:

T =
µ

2

(
∇v + (∇v)T

)
+ α a⊗ a, (13)

−∇ · T = −βv, (14)

where v(x) is the spatial velocity field, x is the spatial co-
ordinate, T is the Cauchy stress tensor and β is a friction
coefficient. In accordance with the literature in the field
we assume that the active stress is independent of the
strain rate [7, 12, 18, 19]. The dissipative force at the
right hand side of equation (14) should be understood
as modelling the friction among cytosol and cytoskele-
ton, the fluid and solid phase contained in the lamel-
lipodium. From a structural point of view, the cell is
likely a porous medium, the cytosol flowing through the
pores of the actin network which continuously remodels
because of polymerization and depolymerization with a
strain modulated by the active stress generated by the
myosin motors [20, 21].

A. Polarized cell

For a polarized cell we assume that the velocity is
aligned with the direction of the active stress (see Figure
1), and the force balance equation reads

Txx = µ
dv

dx
+ α, (15)

− d

dx
Txx = −βv, (16)

with boundary conditions

v(0) = 0, Txx(L/2) = 0. (17)

We notice that, in general, the length of the cell (the
location of the free boundary) and the velocity of the
cytoskeleton are not independent: they must satisfy a
compatibility condition that stems after integration of
the mass balance equation [18]

d

dx
(ρv) = −Γρ (18)

yields

ρ0v
∣∣
L
2

= −Γ
L

2
ρ̄, (19)
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where ρ0 is the polymerization density at the edge and
L
2 ρ̄ is the total mass. Notably, the relation is independent
of the density pattern. In this framework the condition
(19) is immaterial because we have the freedom to fix to
the total mass so that L = 20 micrometers.
Integration of the momentum equation (14) with bound-
ary conditions (17) yields

v(x) = − α√
βµ

sinh
(√

β
µx
)

cosh
(√

β
µ
L
2

) . (20)

B. Radially symmetric cell

For a symmetric cell it is convenient to introduce po-
lar coordinates and the Cauchy stress tensor takes the
diagonal form

Trr = µ
dv

dr
+ α, (21)

Tθθ = µ
v

r
. (22)

Balance of forces reads

− d

dr
Trr −

1

r
(Trr − Tθθ) = −βv, (23)

with boundary conditions

v(0) = 0, Trr(r0) = 0. (24)

Analogously to the symmetric case, integration of the
mass balance equation

1

r

d

dr
(ρrv) = −Γρ (25)

yields the compatibility condition

ρ0v(r0) = −Γπr0ρ̄. (26)

The force balance equation (23), using the components
of the Cauchy stress (21) and (22) rewrites

(µv′ + α)
′
+

1

r

(
µv′ + α− µv

r

)
= βv. (27)

Equation (27) with boundary conditions (24) is a second
order boundary value linear differential equation. It can
be numerically solved by finite differences and fixed point
iterations.

III. ENERGY STORAGE AND ENERGY
DISSIPATION

The solution of the equation of balance of forces illus-
trated in the sections above allow a quantitative eval-
uation of the total energy stored and dissipated in the

system, depending on the geometrical configuration. At
equilibrium the total mechanical energy stored by the
material is equal to the work of (surface and bulk) active
forces. In a polarized cell it is

Wp = L2
o

E

2

(
λ2

1 + λ2
2 − 2 log(λ1λ2)− 2

)
, (28)

whereas for a symmetric cell it is

Ws = 2π

∫ R0

0

E

2

(
(r′)2 + (

r

R
)2 − 2 log(r′

r

R
)− 2

)
RdR.

(29)
The total mechanical energy dissipated by the material is∫
T ·D, where D is the strain rate tensor; the total energy

dissipated by the system includes the power spent by the
friction force plus (minus) the power of the internal active
forces. After multiplication of the momentum equation
times v and integration by parts [22] for a polarized cell
one gets

K̇p = 2L

∫ L/2

0

(
µ

(
dv

dx

)2

+ βv2 + α
dv

dx

)
dx, (30)

analogously, for a symmetric cell,

K̇s = 2π

∫ r0

0

(
µ

((
dv

dr

)2

+
(v
r

)2
)

+ βv2 + α
dv

dr

)
rdr.

(31)
In Equations (30) and (31) it should be noticed that the
power of active stress, the last term at the right hand
side, is a source of kinetic energy when the derivative
of the velocity versus the outward directed coordinate is
negative.

IV. NUMERICAL RESULTS

Numerical integrations have been performed using the
set of physical parameters listed in table 1.
In Figure 2 are plotted the stored energy, as calculated

Parameter Physical Meaning Value Source

L0, L cell length 20µm

α cytoskeleton active stress 1 · 103 pN/µm2 [19]

β friction coefficient 1 · 104 pN s/µm2 [19]

µ viscosity coefficient 5 · 105 pN s/µm2 [12]

E bulk elastic modulus 1 · 104 pN/µm2 [23]

κ cortex active stress 4 · 104 pN/µm [24]

Table I. Typical values of the physical parameters as taken
from the literature.

by numerical integration of equations (28) and (29), for a
squared (black) and circular (grey) cell versus the active
stress α. The plot exhibits an energy crossover around
1 ·103 pN/µm2: the minimum energy configuration is the



5

polarized configuration for small α, while the squared
configuration has smaller elastic storage for large α. A
possible interpretation of such a behavior is that for small
α the active stress in bulk plays a secondary role versus
the surface cortex tension: as a polarized cell has a longer
boundary, its corresponding energetic contribution domi-
nates. Conversely, for large activity the molecular motors
in a symmetric cell can strain the cytoskeleton without
the geometrical constraints intrinsic to the rounded ge-
ometry and the curve is essentially traced by the corre-
sponding elastic energy.

Figure 2. Plot of the total energy stored by the system vs. the
active stress α: polarized (black) and non-polarized (grey)
configuration.

Figure 3 shows the integral of dissipated kinetic en-
ergy in the system for a for a squared (black) and circu-
lar (grey) cell versus the active stress α. The polarized
configuration is always more dissipative for any α.

Figure 3. Plot of the total power spent by the internal and
external forces vs. the active stress α: polarized (black) and
non-polarized (grey) configurations.

V. DISCUSSION OF THE RESULTS AND
FINAL REMARKS

In this work we have addressed a quantitive compar-
ison between the energy stored and dissipated per unit
time by a living cell at rest, in its symmetric and polar-
ized configurations. The elastic energy is supposed to be
due to the strain of the actomyosin in bulk, while passive
contribution due to the strain of the actin cortex at the
surface of the cell is neglected. Conversely, both active
stress in the cytoskeleton (bulk) and in the cortex (sur-
face) are taken into account.
Bulk viscosity and cytosol–skeleton friction are responsi-
ble for the energy dissipation. The rationale behind this
decoupled analysis is that at the steady state a nonlin-
ear elastic model can account for the energy stored in
the material, while a viscous fluid model captures the
dissipation. Our physical intuition is the physical repre-
sentation of the cytoskeleton as a Kelvin–type material
lumped element: a spring and a dashpot in series. What-
ever (nonlinear) are the physical laws of the lumped el-
ements, at the long–time equilibrium the two contribu-
tions can be separately evaluated. It is worth to remark
that a purely fluid model with a pressure–like energetic
storage would not be sufficient to capture the full physics
of the cytoskeleton; even in an elastic solid with circular
symmetry the stress tensor is not spherical, radial and
hoop stress can be different.
Biophysical implications of the results illustrated in Sec-
tion IV are to be discussed versus the experimental obser-
vations. Cells with different geometrical configurations
and about the same area result in a similar amount of
mechanical (elastic) work performed on the environment
[25]. In the same vein, numerous experimental groups
have found that the strain energy is proportional to the
spread area for a wide range of cell types [26]. These ob-
servations suggest that cells usually span an activation
range not far from the critical one, corresponding to the
intersection between the two curves plotted in Figure 2.
The energetic gap that occurs for small α is due, in
the present theory, to geometric reasons only: a longer
perimeter generates a stronger contribution from the cor-
tex. There is however another physical effect that could
amplify such a difference: if the contraction of the myosin
motors across actin fibres favours parallel versus non par-
allel configuration, an extra term proportional to |∇a0|2
should be accounted for. Such a contribution, reminis-
cent of the distortion free energy of liquid crystals, in
our setting would be constant for a symmetric cell, while
vanishing for a polarized cell. In the absence of a clear
evidence of an energetic cost for fibres twist, we do not
include such a contribution in the model; we just notice
that it would further support and amplify our findings,
possibly displacing αcrit to the right in the α axis.
The crossover reported in Figure 2 tells us that polar-
ization gives the minimum energy configuration for low
activity of the motors (small α), while stronger activity
makes symmetry energetically convenient. Intriguingly,
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this result is in accordance with experiments, where the
polarization switch is interpreted as a competition be-
tween active stress and dendritic growth [4].
In the same vein, Figure 3 tells us that the symmetric sys-
tem is always more consuming (in terms of mechanical
energy) than the polarized one. A possible interpretation
of these results can be framed in a control perspective: a
cell is a mechanical system that places itself in a most dis-
sipative configuration, which is only locally of minimum
energy, because it allows to reach more easily other more
stable configurations among the many possible ones. In
a biophysical perspective, a rounded cell at rest, with a
randomly organized cytoskeleton, stores and spends more
energy, but this cost is rewarded by a cheaper and faster
accessibility to polarization according to a direction dic-
tated by external signals, possibly of chemotactic type.
In other words, our results suggest that a symmetric cell

is an energetically expensive metastable state that allow
the access to infinite lower energy stable configurations,
at variance of the direction of polarization.
The interpretation above is reminiscent of the maximum
dissipation principle [27], here recast as in a geometrical
setting. In this perspective, keeping the living cell with
an activity level around the critical α might purposely
allow to steer the system from the metastable to a stable
state. The maximum dissipation principle could also be
exploited to devise the dynamics from one stable config-
uration to another one [28]. The mechanism of transition
among metastable and stable states requires nonlinear-
ity; this is likely due to the positive feedback between the
transport of molecular motors and the active stress, pro-
duced by the molecules themselves [29]. This is a further
step to be investigated in 2D.
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