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Abstract

The results of numerical simulations of 3D cardiac electromechanical models are typically
characterized by a long transient before reaching a periodic solution known as limit cycle.
Since the only clinically relevant output is the one associated with such limit cycle, a long
transient translates into a serious computational overhead. To accelerate the convergence to
the limit cycle, we propose a strategy based on a surrogate model, wherein the computationally
demanding 3D components are replaced by a 0D emulator. This emulator is built through an
automated data-driven algorithm on the basis of pressure-volume transients of as few as three
heartbeats simulated through the 3D model. The 0D emulator, consisting of a time-dependent
pressure-volume relationship, allows to accurately detect the location of the limit cycle in less
than one minute on a standard laptop. Then, using as an initial guess for the 3D model the
solution obtained with its 0D surrogate, it is possible to reach in just two heartbeats a solution
that is as close to the limit cycle as the one obtained after more than 20 heartbeats with the
full-order 3D model. In this manner, the proposed approach achieves an overall speedup in the
simulation of about an order of magnitude.

In practical applications, an electromechanical model needs to be coupled with a model
for the external circulation. The latter is typically represented by either a Windkessel-type
preload-afterload model, emulating the boundary conditions, or by a closed-loop model of the
entire circulatory network. The closed-loop model provides higher quality results in terms of
physiological soundness; however, reaching a limit cycle is more challenging in this setting. It
is in this context that our 0D emulator turns out to be particularly effective.

The 0D emulator is also recommended in many-query settings (e.g. when performing sensi-
tivity analysis, parameter estimation and uncertainty quantification), that call for the repeated
solution of the model for different values of the parameters. As a matter of fact, the emulator
does not depend on the circulation model to which it is coupled, hence its construction does
not have to be repeated when the parameters of the circulation model vary. Finally, should the
parameters of the 3D electromechanical model vary as well, we propose a parametric emulator,
obtained by interpolation of emulators constructed for given values of the parameters. In all
these cases, our numerical results show that the emulator is able to provide the 3D model with
an initial guess such that, after only two heartbeats, the solution is very close to the limit cycle.
This paper is accompanied by a Python library implementing the proposed algorithm, open to
the integration with existing cardiac solvers.
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1 Introduction

Computational models of the cardiac function represent a promising tool to quantitatively analyze
clinical data. Through numerical simulations of cardiac electromechanics and hemodynamics, it is
possible to reveal mechanistic links between the different components of this complex system, to
elucidate the relatioships between microscopic variations and macroscopic biomarkers, to perform
in silico investigations on the effects of drugs or therapies [3, 6, 7, 9, 10, 13, 21, 27, 28, 30, 32].
Despite their impressive developments in recent years, a major obstacles to the clinical exploitation of
computational models of cardiac electromechanics is their huge demand for computational resources.
The numerical simulation of a single heartbeat for a biophysically detailed and anatomically accurate
cardiac model, indeed, may require several hours (if not days) in terms of computational times on
supercomputer platforms.

This huge computational cost is exacerbated by the fact that, to obtain meaningful results,
simulating a single heartbeat might not even be sufficient. In fact, during the first heartbeats,
the numerical model typically goes through a transient, and then it settles down to a periodic
behavior. This periodic behavior represents the so–called limit cycle of the system of differential
equations that makes up the mathematical model. In the literature, it is also referred to as steady
solution or periodic orbit. A key point is that the only clinically meaningful quantities are those
computed from such limit cycle, while the solution obtained during the transient has no physical
meaning and it is only instrumental in reaching the periodic solution. However, unless all variables
in the mathematical model – including tissue displacement, electrophysiological, subcellular and
hemodynamical variables – are already along the periodic orbit at time t = 0, going through this
transient is unavoidable. This represents a serious computational burden.

Additionally, cardiac electromechanics models need to be closed with suitable relationships link-
ing the pressure inside the chambers with the blood flows through the valves. The two most widely
used approaches in the literature involve, on the one hand, the use of preload-afterload models (e.g.
Windkessel-type models) surrogating the boundary conditions [12, 16]; on the other hand, the cou-
pling with closed-loop 0D (i.e. lumped-parameter) models of the external circulation [2, 11, 14, 24,
33]. The models belonging to the second class provide more meaningful results from a physiological
perspective, because they take into account the mutual interactions between the cardiac and exter-
nal circulation. However, reaching the limit cycle with closed-loop models is particularly critical.
As a matter of fact, the variables of these 0D hemodynamics models must be suitably initialized
as well. Since, in closed-loop model, any change in the state variables affects the vascular network
downstream, thus creating circular dependencies, finding a periodic solution (i.e. a limit cycle) is
particularly delicate in this case. For this reason, in this paper we devote a special care to 3D
electromechanical models coupled with closed-loop circulation models.

Several expedients have been devised to find an initial guess for some of the variables of cardiac
electromechanical models, in such a way they are (hopefully) close to the limit cycle. For instance,
the subcellular variables of the ionic and activation models are typically initialized by running a large
number of heartbeats in a single-cell simulation. The final state of this 0D model is then employed
as initial state in each node of the 3D computational mesh. To initialize the tissue displacement,
instead, the cardiac chambers are usually inflated by applying at the endocardium the end-diastolic
pressure. The displacement obtained by solving this stationary elastic problem is then employed as
initial state for the electromechanical simulation. However, the endocardial pressure needed to solve
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the stationary problem is not typically known in advance, especially when the 3D electromechanical
model is coupled with a 0D circulation model.

In recent years, a number of approaches have been proposed to reduce the computational cost
associated with simulating the heartbeats required by electromechanical models to reach a limit
cycle, especially when coupled with circulations models. Since high accuracy is not required during
this transient phase, the simulation of these heartbeats can be conducted on a coarser computational
mesh. Alternatively, in [2], 18 heartbeats are carried out without letting the Newton solver reach
convergence for the mechanical subproblem (i.e. a single Newton iteration is performed for each time
step), and then two heartbeats are simulated with a fully converging Newton solver. In [11], a purely
mechanical simulation is done to find an initial condition for the circulation model that is close to
the periodic orbit. However, reaching the limit cycle remains challenging, due to the large number
of cycles that are typically required for convergence. As a matter of fact, depending on how far the
initial guess is from the limit cycle, many heartbeats could be necessary to get close to a limit cycle.
In practice, order of 20 beats are typically performed [2]. However, in [18] it is reported that order
of 100 beats could be necessary in certain circumstances. This is particularly critical in many-query
settings such as sensitivity analysis, parameter estimation and uncertainty quantification. In these
contexts, which already in themselves require to simulate a high number of heartbeats, very often
one renounces to achieve the limit cycle and simulates a single heartbeat, at the risk of obtaining a
physiologically inaccurate solution. In [17] and [16], for instance, a single heartbeat is simulated for
each choice of the parameters, even if the authors recognize that the validity of the results could be
compromised by this choice.

The above reasons call for the development of techniques to achieve the limit cycle at a low
computational cost, possibly without undergoing a full transient simulation with the 3D electrome-
chanical model. In this paper we propose a strategy aimed at this purpose, based on a 0D emulator
built on the basis of a few beats obtained with the 3D model. Once the model has been built, it
is used - at a very low computational cost - to obtain a limit cycle by means of a 0D simulation,
which provides an initial guess for the 3D model. This approach can be interpreted as a 3D-0D-3D
V-cycle, reminiscent of the multigrid method [34]. Having replaced the 3D multiscale model with a
0D surrogate during the simulation of a number of heartbeats, the computational cost is drastically
reduced. As a matter of fact, our approach allows to simulate with the full-order 3D model only a
small fraction of the heartbeats required to reach the limit cycle, surrogating the large part of the
heartbeats by means of the 0D emulator, at a negligible computational cost.

We propose an algorithm for the automated construction of such 0D emulator, starting from
a pressure-volume transient generated with the full-order electromechanical model. A Python im-
plementation is made publicly available in a GitHub repository1 accompanying this paper, thus
enabling for the integration with existing software.

This paper is structured as follows. In Sec. 2 we present the methods proposed in this paper.
Then, in Sec. 3 we present a complete electromechanical model, including the external circulation.
In Sec. 4 we show the results of several test cases, carried out with the above mentioned models, to
demonstrate the effectiveness of the proposed methods. Finally, we draw our conclusions and final
remarks in Sec. 5.

2 The 0D emulator

A mathematical model of cardiac electromechanics consists of a set of differential equations, de-
scribing the evolution of a set of variables within a 3D computational domain. These variables are

1https://github.com/FrancescoRegazzoni/cardioemulator
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associated with different physical processes pertaining to the cardiac function, including electro-
physiology, cellular contraction and tissue mechanics. In what follows, we will employ the symbol
M3D to refer to the 3D electromechanical model. TheM3D model may include a single or multiple
cardiac chambers. For simplicity, in this paper we will mainly focus on the single-chamber case, but
generalization to the multiple-chamber case will be provided as well. In all the cases, theM3D must
be supplemented with suitable closure relationships to link the fluxes of blood flowing through the
cardiac valves with the blood pressure inside the cardiac chamber (or chambers). We will use the
symbol C to denote these closure relationships, whether they are in the form of afterlead-preload
models, or closed-loop circulation models. Coupling the electromechanical model M3D with the
circulation model C, we then obtain the model M3D-C.

2.1 Building the 0D emulator

In this paper we propose a 0D emulator of the M3D model – that we will denote as M0D – derived
from a few heartbeats simulated with the 3D model itself. Our 0D emulator is based on the assump-
tion that, at each time t, the pressure p and volume V of a given cardiac chamber are linked through
a pressure-volume (PV) relationship in the form of p = Ψ(V, t). The main assumption under the 0D
emulator is that the pressure-volume relationship can be factorized as follows

Ψ(V, t) = (1− ϕact(t)) ΨED(V ) + ϕact(t) ΨES(V ), (1)

where ΨES represents the end-systolic pressure-volume relationship (ESPVR) and ΨED represents
the end-diastolic pressure-volume relationship (EDPVR). The function ϕact is a time-dependent
function encoding the activation kinetics. Ideally, ϕact = 0 at the end of diastole (the tissue is fully
relaxed), while ϕact = 1 at the end of systole (the tissue is fully contracted). Clearly, ϕact is periodic
in t with period THB, that is the duration of a heartbeat. Note that inertia and damping effects are
neglected within the 0D emulator.

We propose an algorithm to construct, in a reproducible manner, the functions defining the
emulator (i.e. ΨED, ΨES and ϕact) from the output of a simulation obtained with the M3D-C
model. The results of this simulation are referred to as sample PV loops. We remark that the latter
clearly do not need to be close to a limit cycle. On the contrary, the construction of the emulator is
facilitated when the sample simulation starts far from the limit cycle, as the transient would cover a
wider region of the pressure-volume plane. The algorithm to construct the 0D emulator is described
in detail in App. A. It envisages three steps, visually summarized in Fig. 1 and briefly described as
follows.

(a) First, we construct the EDPVR function ΨED(V ), following one of two alternative approaches
(simulated EDPVR or fitted EDPVR). The simulated EDPVR approach consists in solving a
sequence of elastostatic problems through the M3D model, for increasing values of pressure,
and then interpolating the resulting pressure-volume pairs. Conversely, the fitted EDPVR is
based on best-fit of the Klotz curve [15] on the end-diastolic segments of the sample PV loops.

(b) Then, we obtain the ESPVR function ΨES(V ) by fitting the points corresponding to the systolic
peaks with a straight line.

(c) Finally, we construct the activation kinetics function ϕact(t), inverting the relationship Eq. (1)
with respect to ϕact(t) on the data corresponding to the last cycle, and periodically extending
it outside the interval [0, THB).
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Figure 1: The algorithm to construct the 0D emulator comprises three steps: (a) construction
of the EDPVR (end-diastolic pressure-volume relationship) function ΨED(V ); (b) construction of
the ESPVR (end-systolic pressure-volume relationship) function ΨES(V ); (c) construction of the
activation kinetics function ϕact(t), accounting for the activation and relaxation times. The blue
lines represent the sample PV loops used to contruct the emulator.

2.2 3D-0D-3D V-cycle: reaching the limit cycle through the 0D emulator

The M0D model surrogates the pressure-volume relationship of the M3D model. Hence, similarly
to the M3D model, also the M0D model can be coupled with the closure relationships C, whether
they are in the form of preload-afterload laws or in the form of a closed-loop circulation model. The
resulting coupled model, that we denote byM0D-C, thus represents a surrogate of theM3D-C model.
We remark that, in case the M3D model includes more than one cardiac chamber, an independent
0D emulator should be built for each chamber, according to the algorithm of Sec. 2.1.

In fact, theM0D-C model can be exploited to accelerate the search for a limit cycle of theM3D-C
model itself. Our proposed procedure, named 3D-0D-3D V-cycle, is made of three steps, summarized
in Fig. 2.

(S1) First, a few sample PV loops are simulated with the M3D-C model.

(S2) Following Sec. 2.1, a 0D emulatorM0D is built for each cardiac chamber included in the model,
based on the sample PV loops. Then, a large number of heartbeats (say n0DHB) are simulated
by solving theM0D-C model, at a negligible computational cost, until a limit cycle is reached.

(S3) A second simulation is set up for the M3D-C model, based on the limit cycle obtained at the
previous step. Specifically, in case the C has some internal variables, these are set equal to
their final state obtained in step (S2). Moreover, also the M3D model is initialized according
to one of the following alternative strategies:

• pressure control: the tissue displacement is initialized by applying at the endocardial
surfaces the final pressures obtained with the M0D-C model simulation of step (S2).

• volume control: the tissue displacement is initialized by finding the equilibrium con-
figuration under the constraint that the volume of the chambers equal the final volumes
obtained in the M0D-C model simulation of step (S2). In this case, the endocardial
pressures are determined as Lagrange multipliers.

Both in (S1) and (S3), the state variables associated with the electrophysiology and active force
generation models can be initialized by means of standard strategies, according to the models at
hand. In Sec. 3.2 we will provide an example, related to the models we used to produce the results
presented in this paper.
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Figure 2: Graphical display of the 3D-0D-3D V-cycle, in the case of a left ventricle (LV) electrome-
chanical model. On the left, the high-fidelity 3D electromechanical model is compared with its 0D
surrogate. At the terminals of both models we have the chamber pressure (pLV) and the inflow and
outflow blood flux (in the case of LV, the flows through the mitral and aortic valves, respectively
denoted by QMV and QAV).
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2.3 Using the emulator in many-query settings

We remark that the M0D emulator surrogates the M3D model, independently of the C model it is
coupled with. This implies that, in case the parameters of the C model are changed, (S1) does not
need to be repeated. Therefore, the M0D-C model can be employed as a surrogate of M3D-C in
many-query contexts that involve the repeated solution of theM3D-C model for different choices of
the circulation parameters. It can be used, e.g. to accelerate sensitivity analysis or the calibration
the parameters of the circulation model.

In realistic scenarios, however, besides the hemodynamical parameters, also the ones of the
electromechanical model M3D may require calibration. In case the parameters of the C and of the
M3D models need to be simultaneously calibrated, we propose to build a parametric emulator of
the M3D model, by interpolating between emulators obtained for fixed values of the parameters of
the M3D model.

A typical case is when the active contractility (henceforth denoted by α) is to be determined. By
the Young-Laplace law [19], the pressure within a cavity is proportional to the wall tension, which
is given by the sum of a passive and an active part. Since the active part is in turn proportional to
the contractility, we expect an affine dependence of the PV relationship on α. That is, we expect
that the PV relationship for a generic contractility α is well approximated by

Ψ(V, t;α) =
α− αA

αB − αA
ΨB(V, t) +

α− αB

αA − αB
ΨA(V, t), (2)

where ΨA and ΨB represent the PV relationships for α = αA and α = αB , respectively. Hence,
let us suppose to generate two sample simulations for two contractility values, namely αA and αB .
Based on each sample simulation, we construct a different emulator, according to the algorithm of
Sec. 2.1. Denoting the two emulators by ΨA and ΨB , Eq. (2) defines a parametric emulator where
the contractility α can assume arbitrary values.

In case one needs to parameterize an emulator with respect to parameters whose dependency lacks
a physical intuition analogous to the case discussed above, one can still phenomenologically apply
formula (2). Alternatively, an interpolation formula with more than two points can be considered.

For illustrative purposes, let us consider a use case of the 0D emulator for parameter calibration
purposes in a LV electromechanical model. In a first stage (step (S1)), a simulation is performed
with theM3D-C model, for some choice of parameters of the C model. In case theM3D model is also
to be calibrated, then an additional simulation is performed, with a different value of α (to enable a
parametric emulator). Based on these sample PV loops, an emulator (or a parametric emulator) is
built. Now we pass to step (S2), in which the parameters of the model are varied (either manually or
through some automated procedure) until the distance between simulated and measured pressures
and volumes are minimized. This step is entirely performed resorting to theM0D-C only. Once the
calibration has been successfully completed, we move on to step (S3), in which we run a simulation
with the M3D-C model, directly with the calibrated parameters and with the initial state obtained
in step (S2). In this way, the computational cost of the entire calibration procedure is drastically
reduced, as the calibration procedure is performed in fully 0D manner.

3 A cardiac electromechanical model including external cir-
culation

In this section we show how the methods presented in Sec. 2 translate to a concrete use case.
Specifically, in Sec. 3.1 we consider the case where the closure relations C are represented by a
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closed-loop circulation model. Then, in Section 3.2, we present theM3D model used to produce the
numerical results presented in this paper.

3.1 Coupling the 0D emulator with closed-loop circulation models

Let us denote by y(t) a vector collecting the state variables of the M3D model. The state y may
contain variables describing the electrophysiological activity, the subcellular dynamics and the tissue
displacement. For the sake of generality, we introduce a (nonlinear) differential operator L, that
collectively encodes the mathematical models describing the different physical processes. These are
typically written in the form of Partial Differential Equations (PDEs), with suitable boundary and
initial conditions.

We consider then a lumped-parameter circulation model (denoted by C), whose state c(t) ∈ RN

is composed of N variables, describing pressures, volumes and blood fluxed in several compartments
of the cardiovascular network. Notice that the latter may possibly include also cardiac chambers
that are not represented in the M3D model. Examples are given in [1, 5, 14, 24].

We first consider the case in which the model M3D only includes the left ventricle (LV). In this
case, the coupled electromechanics-circulation model M3D-C reads as follows

∂y(t)

∂t
= L(y(t), pLV(t), t) for t ∈ (0, T ],

dc(t)

dt
= f(c(t), pLV(t), t) for t ∈ (0, T ],

VMLV (y(t)) = V CLV(c(t)) for t ∈ (0, T ],

y(0) = y0,

c(0) = c0.

(3)

The electromechanical and the circulation models are coupled through the volumetric consistency
constraint V CLV(c) = VMLV (y), where the left-hand and right-hand sides represent the LV volume
predicted, respectively, by the 0D circulation model (C) and by the 3D electromechanical model
(M3D). This coupling is enforced via a Lagrange multiplier, namely pLV, which represents the
blood pressure inside the LV. Note that the variable pLV appears at right-hand side of both the C
model and the M3D model (in the latter, e.g., it plays a role in the boundary conditions at the
endocardium). The M3D-C model is represented in Fig. 3 (top).

In this setting, the 0D emulator M0D can be coupled with the 0D circulation model C, leading
to the following M0D-C model

dc(t)

dt
= f(c(t), pLV(t), t) for t ∈ (0, T ],

pLV(t) = Ψ(V CLV(c(t)), t) for t ∈ (0, T ],

c(0) = c0.

(4)

ThisM0D-C model represents a fully 0D surrogate of theM3D-C model (see Fig. 3). In the former,
the LV pressure pLV is not a Lagrange multiplier enforcing the volumetric consistency – as in the
latter – rather, it can be directly obtained from the 0D emulator. We remark that in passing from
M3D-C to M0D-C we only replaced the computationally intensive part (that is the 3D electrome-
chanical model M3D) by the 0D surrogate M0D, while retaining the computationally lightweight
part (that is the 0D circulation model C) in its high-fidelity form. We will show that, in this way,
the M0D-C model achieves a very favorable trade-off between accuracy and computational cost.
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Figure 3: Comparison of the M3D-C (top) and the M0D-C (bottom) models. In the former, a 3D
electromechanical model (denoted by M3D) of one or multiple cardiac chambers is coupled with a
lumped-parameter model of blood circulation (denoted by C). In the latter, instead, the M3D is
replaced by a 0D emulator, denoted by M0D. The figure considers the case when only the LV is
included in the M3D model.
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In case the M3D model includes other chambers besides the LV, an independent 0D emulator
should be built for each chamber. Then, considering for instance the biventricular case, the M0D-C
model reads 

dc(t)

dt
= f(c(t), pLV(t), pRV(t), t) for t ∈ (0, T ],

pLV(t) = ΨLV(V CLV(c(t)), t) for t ∈ (0, T ],

pRV(t) = ΨRV(V CRV(c(t)), t) for t ∈ (0, T ],

c(0) = c0,

(5)

where ΨLV and ΨRV denote the 0D emulator of the left and right ventricles, respectively.

3.2 The electromechanical model

Before presenting the results obtained with the methods proposed in this paper, we briefly intro-
duce the electromechanics (M3D) and closed-loop circulation (C) models employed to produce these
results. Nonetheless, we emphasize that the above methods can be applied to different models too.

We model cardiac electrophysiology through the Monodomain equation [8], coupled with the
tenn Tusscher-Panfilov model [29]. Active force generation is described through the biophysically
detailed RDQ20-MF model [22]. To model the passive behavior of the cardiac tissue, we employ the
quasi-incompressible exponential Usyk constitutive law [31]. At the pericardium we impose spring-
damper boundary conditions in both normal and tangent direction, while at the ventricular base we
impose energy-consistent boundary conditions [23]. The geometry is taken from the Zygote Solid
3D heart model [35], for which the stress-free reference configuration is recovered by the algorithm
proposed in [24]. The distribution of cardiac fibers is generated by means of the rule based Bayer-
Blake-Plank-Trayanova algorithm [4, 20]. For blood circulation (i.e. C) we employ the closed-loop
lumped-parameter model of [24], that describes the systemic and pulmonary systemic and venous
networks by means of RLC (resistance, inductance, capacitance) circuits, cardiac chambers as time-
varying elastance elements and cardiac valves as diodes. Concerning the numerical approximation,
we use bilinear Finite Elements on a tetrahedral mesh for the space discretization, while for the
time discretization we employ the staggered scheme presented in [25]. Additionally, we adopt the
stabilized-staggered scheme of [26] to couple the active stress model with the passive mechanics one.
The simulation are obtained with the high-performance C++ library lifex (https://lifex.gitlab.
io/lifex), developed within the iHEART project2.

In (S1) and (S3), for the initialization of the state variables we proceed as follows.

• First, we run a single-cell simulation with the ionic model for 1000 heartbeats, to reach a
limit cycle. The ionic variables and the transmembrane potential obtained at the end of this
0D simulation are then employed to initialize the corresponding variables in each node of the
computational mesh.

• Then, we perform a single-cell simulation with the force generation model, considering a con-
stant calcium input equal to the final calcium concentration obtained in the 0D ionic simulation
(end-diastolic concentration) and a reference sarcomere length SL = 2.2 µm. The simulation
is stopped when a steady-state is reached.

• Finally, we initialize the tissue displacement, with the volume control approach, as described
in Sec. 2.2. In this step, we set a uniform active stress, corresponding to the end-diastolic
steady-state obtained at the previous step.

2iHEART - An Integrated Heart Model for the simulation of the cardiac function, European Research Council
(ERC) grant agreement No 740132, P.I. Prof. A. Quarteroni
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Figure 4: Representation of the 0D emulators obtained with the fitted EDPVR and with the sim-
ulated EDPVR approaches. Left: end-diastolic and end-systolic PV relationships. The black curve
represents the sample PV loops used to build the emulator. Rights: activation kinetics function
ϕact(t), obtained with the two approaches.

4 Results

This section is devoted to present some numerical results obtained by means of the methods proposed
in this paper.

4.1 Construction of the 0D emulator

By employing the M3D-C model described in Sec. 3.2, we run a simulation of NPV = 3 heartbeats,
thus obtaining the PV loops displayed in Fig. 4 (left, black line). Based on these sample PV loops,
we build two emulators, employing the fitted EDPVR and the simulated EDPVR approaches, as
described in App. A.1. We show in Fig. 4 the functions ΨED(V ), ΨES(V ) and ϕact(t) obtained
with the two different approaches. We remark that the two approaches provide the same function
ΨES(V ), while the function ϕact(t), being defined based on ΨED(V ), is slightly different in the two
cases.

The triplet (ΨED,ΨES, ϕact) unambiguously identifies the emulator. However, a more effective
representation is provided by Fig. 5, where we show how the emulated PV relationship evolves in the
different phases of the heartbeat. The figure is divided into two parts. In the upper-right region, the
PV curves corresponding to systole (i.e. the times t such that ϕ′act(t) > 0) are shown. The different
shades of red represent different instants of the heartbeat. Similarly, the lower left region shows -
with different shades of blue - the curves associated with diastole (when ϕ′act(t) < 0). These curves
are denser in the lower part, where ϕact varies more slowly. An alternative representation is shown
in Fig. 6, where Ψ is displayed in the (t, V, p) plane. The same graph also shows the three sample
PV loops used to build the emulator.

The construction of the 0D emulator is based on the assumption that the time-dependent PV
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Figure 5: Evolution of the PV relationships in the different phases of the heartbeat. See text for
more details. The figure refers to the emulator obtained with the simulated EDPVR approach.

relationship can be factorized as in Eq. (1). If this assumption was exact, than superimposing the
function

ϕ̃act(t) =
Ψ(V (t), t)−ΨED(V (t))

ΨES(V (t))−ΨED(V (t))
. (6)

for different heartbeats, all the curves would coincide. That is to say, the function ϕ̃act would be
periodic with period THB. In Fig. 7, we show the function ϕ̃act(t) obtained, with the two emulators,
for the three sample heartbeats (used for the construction of the emulator themselves) and two
additional heartbeats, for a total of five heartbeats. As shown in the figure, the overlap along the
different beats is very good. This supports the validity of assumption (1), and thus that of the
emulator itself in surrogating the behavior of the high-fidelity electromechanical model.

To test the ability of the M0D emulator to faithfully replicate the behavior of the M3D model
when coupled with the C model, we solve theM0D-C model starting from the same initial conditions
used for the M3D-C model to produce the sample PV loops. In Fig. 8, we compare the PV loops
obtained with the M3D-C model and with its fully 0D surrogate, the M0D-C model. In addition
to the three heartbeats used in the construction of the emulators, we consider two further beats,
in order to test the ability of the emulators to be predictive beyond the time horizon of the data
that forms their basis. The figures show how the curves obtained with the emulator trace with
excellent fidelity those of reference. Remarkably, the accuracy increases for the last beats, when the
model is approaching the limit cycle. This is a promising remark towards the use of the emulators
in 3D-0D-3D V-cycles as described in Sec. 2.2.
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EDPV Same parameters as sample PV loops
Circulation model Contractility

Test 1a fitted 3 3
Test 1b simulated 3 3
Test 2a fitted 7 3
Test 2b simulated 7 3
Test 3a fitted 3 7
Test 4a fitted 7 7

Table 1: List of the test cases considered in this paper. The third column indicates whether the test
case is performed with the same C model parameters used to produce the sample PV loops; similarly,
the fourth column indicates whether the same M3D model parameters (specifically, contractility)
are used in the sample PV loops and in the test case.

4.2 3D-0D-3D V-cycles

In this section we consider the use of the emulators constructed in Sec. 4.1 to speed up the conver-
gence to limit cycles in cardiac electromechanics simulations, as described in Sec. 2.2. We consider
several test cases, in which we employ emulators alternatively built using the fitted EDPVR and
simulated EDPVR approaches. The test cases are summarized in Tab. 1.

First, we consider the case in which we look for the limit cycle associated with the same parameter
setting used to produce the sample PV loops (Tests 1a, 1b). The results are shown in Figs. 9 and
10, respectively. In the figures, the n0DHB = 100 heartbeats performed in a fully 0D manner (that is,
through the M0D-C model) are shown in black. The last cycle, corresponding to the limit cycle of
the M0D-C model, is highlighted in orange. The M3D-C model is then initialized according to the
above results, and a five-heartbeat simulation is performed. The obtained PV loops are reported
in green. The figures show that the pressure and volume values obtained in this way follow very
closely those predicted by the emulators. As a matter of fact, the error is always below 2 mmHg
for the pressure and 2 mL for the volume. More importantly, the M3D-C model initialized in this
way is very close to a periodic regime: indeed, no significant drift in the PV loops obtained with
the M3D-C model is visible. In Sec. 4.3 we will provide a quantitative analysis of this aspect. We
observe that the emulator built by the simulated EDPVR approach (Test 1b) better predicts the
end-diastolic part of the PV loops than that build by the fitted EDPVR approach (Test 1a). This
is not surprising, as, while the former is built exploiting physical knowledge, the latter is only based
on an extrapolation of the sample PV loops.

We then evaluate the ability of the M0D emulator to effectively surrogate the M3D model still
in settings other than the one used to generate the PV loops samples. To this end, we increase the
active elastances of the atria, increase the systemic resistances, and decrease the total amount of
circulating blood. These changes are designed so that the regime PV loops significantly differ from
the ones obtained in Tests 1a and 1b. By using this setting, we perform steps (S2) and (S3) of the
3D-0D-3D V-cycle, with both emulators (fitted and simulated EDPVR), leading to Tests 2a and 2b,
respectively. The results, shown in Figs. 11 and 12, reveal that the M0D emulator can effectively
detect the position of the limit cycle associated with a setting even different from the one used to
build the emulator itself.

Finally, we consider the case where even the parameters of the electromechanical model are varied
between sample PV loop generation and limit cycle search. Specifically, we consider a parametric
emulator, as described in Sec. 2.3, build with respect to the contractility α. In the electromechanical
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Figure 9: Test 1a: results of the 3D-0D-3D V-cycle (fitted EDPVR approach).
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Figure 10: Test 1b: results of the 3D-0D-3D V-cycle (simulated EDPVR approach).
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Figure 11: Test 2a: results of the 3D-0D-3D V-cycle (fitted EDPVR approach).
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Figure 12: Test 2b: results of the 3D-0D-3D V-cycle (simulated EDPVR approach).
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Figure 13: Test 3a: results of the 3D-0D-3D V-cycle (fitted EDPVR approach).

model at hand, contractility is tuned through a parameter – denoted as aXB in the original paper [22]
– that collectively accounts for the stiffness of crossbridges and for the surface density of myofilaments
in the cardiac tissue. More precisely, we select two contractility values (namely αA = 160 MPa and
αA = 240 MPa) and, by means of the M3D-C model, we obtain three sample PV loops for each of
the two settings (step (S1)). Then, following the algorithm of Sec. 2.1, we build two emulators (one
for each contractility value), respectively denoted by ΨA and ΨB (for simplicity we only consider
the fitted EDPVR case). In this manner, we build a parametric emulator, according to Eq. (2). To
test the parametric emulator, we select an intermediate contractility value (namely α = 190 MPa),
and we simulate n0DHB = 100 heartbeats through the M0D-C model (step (S2)). Finally, we perform
step (S3) (by running simulations with theM3D-C model, initialized according to the results of the
M0D-C model). We consider two settings: first, we employ the same C model parameters as in the
sample PV loops (Test 3a); then, we employ different C model parameters (Test 3b). The results
show that the parametric emulator is effective in predicting the location of the limit cycle of the
M3D-C model even for a contractility value different than the ones used to build the parametric
emulator (see Figs. 13 and 14).

4.3 Quantitative assessment of PV loop convergence

In the previous section, we showed numerical solutions obtained by applying the 3D-0D-3D V-cycle
proposed in this paper. To quantitatively assess how close these solutions are to a limit cycle, we
adopt as a metric the difference between two consecutive PV loops. Specifically, we denote the
pressure and volume curves associated with the n-th cycle as

pnLV(t) = pLV(t+ (n− 1)THB), t ∈ (0, T ),

V n
LV(t) = VLV(t+ (n− 1)THB), t ∈ (0, T ).
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Figure 14: Test 4a: results of the 3D-0D-3D V-cycle (fitted EDPVR approach).

Then, we denote by en the overall normalized difference in volume and pressure between the n-th
and the (n+ 1)-th heartbeats:

en =
‖pnLV − p

n+1
LV ‖L2(0,T )

‖pn+1
LV ‖L2(0,T )

+
‖V n

LV − V
n+1
LV ‖L2(0,T )

‖V n+1
LV ‖L2(0,T )

.

The quantity en provides a metric for how close the solution is to the limit cycle. In fact, as we
approach the periodic solution, en progressively decreases. If the solution were perfectly periodic,
we would have en = 0.

In Fig. 15 we show the trend of en in the three phases of the 3D-0D-3D V-cycle for Test 1a.
During step (S1), en rapidly decreases (orange line). During step (S2) (blue line), en first decreases
following the values of step (S1) (as a further validation of the 0D surrogate), and then slows down
the decrease, settling along an exponential trend. In the final phase of the curve, en shows some
oscillations (due to the rounding errors becoming predominant). On the other hand, in this phase,
the very small values of en testify that the model is virtually moving along a periodic orbit. Finally,
the green line shows the quantity en obtained during step (S3). As shown in the figure, thanks to
the intermediate simulation performed through theM0D-C model, the second of the two simulations
obtained with theM3D-C model (i.e. step (S3)) starts much closer to a limit cycle than the first one
(step (S1)). Already the second of the five beats performed in step (S3) has a value of en that in the
simulation without educated guess would be obtained only after 23 beats. To emphasize the fact
that step (S3) is obtained by virtue of three heartbeats simulated during step (S1), the heartbeats
in step (S3) are represented in the figure starting with index four.

For the sake of brevity, for the other test cases besides Test 1a we only report the values of
en obtained in step (S3). As shown in Fig. 16, the 3D-0D-3D V-cycle based strategy is able to
bring the model very close to a periodic solution in all the considered cases. In particular, using
different parameters for the circulation model and/or for the electromechanical model itself (thus
using a parametric emulator) does not compromise the ability of the 3D-0D-3D V-cycle approach
to accurately detect the limit-cycle. In all cases, in fact, the value of en obtained after only two
heartbeats is as little as 2 · 10−3 ÷ 3 · 10−3.
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5 Conclusions

In this paper we proposed a 0D emulator of 3D cardiac electromechanical models, built following
a data-driven approach, i.e. based on some sample PV loops generated with the 3D model to be
surrogated. We then proposed a strategy, based on a 3D-0D-3D V-cycle, that allows to significantly
accelerate the convergence to a limit cycle in cardiac electromechanics simulations. Our approach
consists in surrogating the computationally demanding part (i.e. the 3D electromechanical model
M3D), while keeping the 0D circulation model C, characterized by a much lower computational cost,
in its high-fidelity form. Remarkably, the 0D emulator can also be used in conjunction with a circula-
tion model calibrated differently from the one used to generate the sample PV loops. Furthermore,
by interpolating between different emulators, it is possible to approximate the electromechanical
model even for wide sets of values of its parameters.

The results showed that our strategy allows to obtain an initial guess for theM3D-C model that
is very close to a periodic solution. In fact, in all the tests considered, by virtue of the simulation
performed with the M0D-C surrogate, after only two heartbeats the M3D-C model presents a nor-
malized increment between consecutive heartbeats lower than 3 · 10−3. We remark that, without
such educated guess, the same degree of convergence to the limit cycle would be reached in the same
setting after more than 20 cycles. Conversely, thanks to our approach, we only need to simulate
with the full-order M3D-C model a total of 5 heartbeats (namely three to build the emulator and
two starting from the educated guess). On the other hand, the cost associated with the 0D step of
the 3D-0D-3D V-cycle is negligible (less than one second to build the emulator, less than one minute
to run 100 heartbeats with the M0D-C model). Moreover, this phase can be fully automated, as
testified by the Python scripts publicly available with this publication.

We remark that the initialization strategy proposed in this paper is even more convenient in
many-query settings, such as sensitivity analysis, parameter estimation or uncertainty quantification
As a matter of fact, in these settings the emulator can be built offline, i.e. once for all, and in the
online phase only the final two heartbeats need to be simulated with the full-orderM3D-C model for
each parameter setting to evaluate. Furthermore, if the quantities of interest involve only variables
that can be derived from pressures and volumes, then the M0D-C model can entirely replace the
M3D-C model in such many-query settings. Therefore, we propose ourM0D-C model as a surrogate
for the full-order M3D-C model in sensitivity analysis and parameter calibration scenarios.
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Appendix A Algorithm for the automated construction of
the 0D emulator

In this appendix we present the three-step algorithm for the construction of the 0D emulator.

A.1 End-diastolic pressure-volume relationship

To build the EDPVR function ΨED we propose two alternative approaches (simulated EDPVR or
fitted EDPVR), depending on the available data.
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Simulated EDPVR. When possible, an accurate estimation of the EDPVR can be obtained
by means of the 3D mechanical model, by numerically finding the equilibrium configurations when
the chamber is loaded with a sequence of pressures (pED,i, for i = 1, . . . , NED), and recording the
corresponding volumes (VED,i). The active stress can be neglected, or – in case the force generation
model at hand features a residual active stress in end-diastolic conditions – it should be set equal to
this end-diastolic active stress magnitude (obtained through a 0D simulation of the cardiomyocyte
model) uniformly in the whole domain Ω0. We remark that the computational cost of this phase
can be significantly reduced by adopting a continuation approach, that is initializing the Newton
solver for a given pED,i with the solution obtained with the previous value pED,i−1. In this manner,
the numerical cost associated with this phase is, in our experience, negligible compared with that
required to obtain the sample PV loops.

We thus obtain a sequence of pressure and volume pairs (i.e. (pED,i, VED,i) for i = 1, . . . , NED).
Finally, we define the function p = ΨED(V ) as a piecewise linear interpolation of these points.
Outside the interval [VED,1, VED,NED

], we define ΨED through a linear extrapolation of the first and
last segments.

Fitted EDPVR. Alternatively, we propose to estimate EDPVR directly from the sample PV
loops, by fitting the points associated with the final parts of diastole with the Klotz curve [15]. These
points can be selected either manually or automatically, by monitoring some activation indicator. In
this paper, we employ the points associated with the last 0.1 s of each sample PV loop. Alternatively,
one could select the time instants in which the average active tension is, say, in the lowest 1% of
the range spanned during the whole sample simulation. The associated PV pairs are denoted as
(pED,i, VED,i) for i = 1, . . . , NED. These points are then fitted with the Klotz curve

ΨED(V ) = An

(
V − V ED

0

V ED
30 − V ED

0

)Bn

, (7)

where, according to [15], we set the universal constants An = 28.2 mmHg and Bn = 2.79, while
the patient-dependent constants V ED

0 and V ED
30 are obtained by a least-squares fitting of the points

(pED,i, VED,i), via the Levenberg-Marquardt optimization method.

A.2 End-systolic pressure-volume relationship

For the ESPVR we assume the linear relationship

ΨES(V ) = EES(V − V ES
0 ), (8)

where the end-systolic elastance EES and resting volume V ES
0 are obtained via a least-squares fitting

of a collection of points (denoted by (pES,i, VES,i) for i = 1, . . . , NES), corresponding to the systolic
peaks of the sample PV loops. These points are selected as the top-left corners of the sample PV
loops.

To identify the pairs (pES,i, VES,i), we propose the following algorithm. Ideally, PV loops are
located below the curve p = EES(V − V ES

0 ), intersecting such curve at the systolic peak. The
corresponding time instant can thus be identified as the time t that maximizes the quantity p(t)−
EESV (t). As the end-systolic elastance EES is not known a priori, we select a sequence of 10
elastance values E1 < E1 < · · · < E10, uniformly sampling the interval [2, 3] mmHg mL−1. Then,
we separately consider each sample heartbeat and we denote by In = [(n− 1)THB, n THB) the time
interval corresponding to the n-th cycle. For each heartbeat n, we select 10 points as

tnj = arg max
t∈In

{p(t)− EjV (t)} .
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Finally, the end-systolic pressure-volume pairs are obtained by collecting the values in the time
instants obtained above:

{(pES,i, VES,i) : 1 ≤ i ≤ NES} :=
{

(p(tnj ), V (tnj )) : 1 ≤ n ≤ nHB, 1 ≤ j ≤ 10
}
.

A.3 Activation kinetics function

From Eq. (1) it follows

ϕact(t) =
Ψ(V, t)−ΨED(V )

ΨES(V )−ΨED(V )
. (9)

Therefore, denoting by (ti, Vi, pi), for i = 1, . . . , NPV, the times, volumes and pressures composing
the sample PV loops dataset, we can define

ϕ̃act(ti) =
pi −ΨED(Vi)

ΨES(Vi)−ΨED(Vi)
, for i = 1, . . . , NPV, (10)

having defined the functions ΨED and ΨES as described above. For t in the intervals (ti, ti+1) we
employ a linear interpolation between ϕ̃act(ti) and ϕ̃act(ti+1). Finally, we select the last heartbeat of
the sample simulation – that is (nHB−1)THB ≤ t < nHB THB, where nHB is the number of heartbeats
in the sample simulation – and we periodically extend it outside this interval:

ϕact(t) = ϕ̃act ((nHB − 1)THB + mod(t, THB)) . (11)

This concludes our procedure to automatically build the 0D emulator M0D.
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[23] F. Regazzoni, L. Dedè, and A. Quarteroni. “Machine learning of multiscale active force gener-
ation models for the efficient simulation of cardiac electromechanics”. In: Computer Methods
in Applied Mechanics and Engineering 370 (2020), p. 113268.

[24] F. Regazzoni, M. Salvador, P. C. Africa, M Fedele, L. Dede’, and A. Quarteroni. “A car-
diac electromechanics model coupled with a lumped parameters model for closed-loop blood
circulation. Part I: model derivation”. In: arXiv preprint arXiv:2011.15040 (2020).

[25] F. Regazzoni, M. Salvador, P. C. Africa, M Fedele, L. Dede’, and A. Quarteroni. “A car-
diac electromechanics model coupled with a lumped parameters model for closed-loop blood
circulation. Part II: numerical approximation”. In: arXiv preprint arXiv:2011.15051 (2020).

[26] F. Regazzoni and A. Quarteroni. “An oscillation-free fully partitioned scheme for the numer-
ical modeling of cardiac active mechanics”. In: Computer Methods in Applied Mechanics and
Engineering 373 (2021), p. 113506.

[27] N. Smith, D. Nickerson, E. Crampin, and P. Hunter. “Multiscale computational modelling of
the heart”. In: Acta Numerica 13 (2004), pp. 371–431.

[28] S. Sugiura, T. Washio, A. Hatano, J. Okada, H. Watanabe, and T. Hisada. “Multi-scale sim-
ulations of cardiac electrophysiology and mechanics using the University of Tokyo heart sim-
ulator”. In: Progress in Biophysics and Molecular Biology 110.2 (2012), pp. 380–389.

[29] K. H. Ten Tusscher and A. V. Panfilov. “Alternans and spiral breakup in a human ventricular
tissue model”. In: American Journal of Physiology-Heart and Circulatory Physiology 291.3
(2006), H1088–H1100.

[30] N. A. Trayanova. “Whole-heart modeling applications to cardiac electrophysiology and elec-
tromechanics”. In: Circulation Research 108 (2011), pp. 113–128.

[31] T. P. Usyk, I. J. LeGrice, and A. D. McCulloch. “Computational model of three-dimensional
cardiac electromechanics”. In: Computing and Visualization in Science 4.4 (2002), pp. 249–
257.

[32] E. J. Vigmond, C. Clements, D. M. McQueen, and C. S. Peskin. “Effect of bundle branch block
on cardiac output: a whole heart simulation study”. In: Progress in biophysics and molecular
biology 97.2-3 (2008), pp. 520–542.

[33] T. Washio, K. Yoneda, J. Okada, T. Kariya, S. Sugiura, and T. Hisada. “Ventricular fiber op-
timization utilizing the branching structure”. In: International Journal for Numerical Methods
in Biomedical Engineering (2015), e02753.

[34] J. Xu. Theory of multilevel methods. Vol. 8924558. Cornell University Ithaca, NY, 1989.

[35] Zygote 3D models. 2019. url: https://www.zygote.com/.

25

https://www.zygote.com/


MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

34/2021 Bonaventura, L.;  Gatti F.; Menafoglio A.; Rossi D.; Brambilla D.; Papini M.; Longoni L.
An efficient and robust soil erosion model at the basin scale

33/2021 Lupo Pasini, M.; Gabbi, V.; Yin, J.; Perotto, S.; Laanait, N.
Scalable balanced training of conditional generative adversarial neural
networks on image data

32/2021 Sangalli, L.M.
Spatial regression with partial differential equation regularization

31/2021 Ferraccioli, F.; Arnone, E.; Finos, L.; Ramsay, J.O.; Sangalli, L.M.
Nonparametric density estimation over complicated domains

30/2021 Fumagalli, I.
A reduced 3D-0D FSI model of the aortic valve including leaflets curvature

29/2021 Fumagalli, I.; Vitullo, P.; Scrofani, R.; Vergara, C.
Image-based computational hemodynamics analysis of systolic obstruction in
hypertrophic cardiomyopathy

28/2021 Ferro, N.; Perotto, S.; Bianchi, D.; Ferrante, R.; Mannisi, M.
Design of cellular materials for multiscale topology optimization: application
to patient-specific orthopedic devices

26/2021 Vigano, L.; Sollini, M.; Ieva, F.; Fiz, F.; Torzilli, G.
Chemotherapy-Associated Liver Injuries: Unmet Needs and New Insights for
Surgical Oncologists

27/2021 Scimone, R.;  Menafoglio,  A.; Sangalli, L.M.; Secchi, P. 
A look at the spatio-temporal mortality patterns in Italy during the COVID-19
pandemic through the lens of mortality densities

24/2021 Regazzoni, F.; Chapelle, D.; Moireau, P.
Combining Data Assimilation and Machine Learning to build data-driven
models for unknown long time dynamics - Applications in cardiovascular
modeling


