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Abstract

In this paper we propose a reduced basis hybrid method (RBHM) for the approximation of
partial differential equations in domains represented by complex networks where topologi-
cal features are recurrent. The RBHM is applied to Stokes equations in domains which are
decomposable into smaller similar blocks that are properly coupled.
The RBHM is built upon the reduced basis element method (RBEM) and it takes advan-
tage from both the reduced basis methods (RB) and the domain decomposition method.
We move from the consideration that the blocks composing the computational domain are
topologically similar to a few reference shapes. On the latter, representative solutions, cor-
responding to the same governing partial differential equations, are computed for different
values of some parameters of interest, representing, for example, the deformation of the
blocks. A generalized transfinite mapping is used in order to produce a global map from
the reference shapes of each block to any deformed configuration.
The desired solution on the given original computational domain is recovered as projection
of the previously precomputed solutions and then glued across sub-domain interfaces by
suitable coupling conditions.
The geometrical parametrization of the domain, by transfinite mapping, induces non-affine
parameter dependence: an empirical interpolation technique is used to recover an approx-
imate affine parameter dependence and a sub–sequent offline/online decomposition of the
reduced basis procedure. This computational decomposition yields a considerable reduction
of the problem complexity. Results computed on some combinations of 2D and 3D geome-
tries representing cardiovascular networks show the advantage of the method in terms of
reduced computational costs and the quality of the coupling to guarantee continuity of both
stresses, pressure and velocity at sub-domain interfaces.

1 Introduction

During the last decades a growing importance was given to cardiovascular fluid-dynamics
as a key factor in describing some pathologies affecting the cardiovascular system [10, 2].



1 Introduction 2

Being able to perform simulations almost in real time and in many query context with a
reasonable level of accuracy may increase the importance of cardiovascular simulations in
daily diagnosis or risk evaluation procedure. In this range of applications, a big challenge
is to speed up the computational time with rapid and efficient strategies that allow to ap-
proximate numerically fluid flows in complex and realistic configurations where topology
features are recurrent and similar.
The reduced basis method is crucial to find the solution of parametrized problems as pro-
jection of previously precomputed solutions for certain instances of the parameters [24].
Thanks to the reduced basis method [33, 19, 20], reduced order strategies have been de-
veloped dealing with parametrized complex geometries and in order to take advantage of
repetitive geometries occurring in the computational domain.
The reduced basis method applied to incompressible viscous flows in parametrized domain
has been developed for Stokes equations in [31, 35, 30], and more recently in [21], and for
Navier-Stokes equations in [27, 7, 9, 34, 23, 36, 13, 8, 22]. Domain decomposition tech-
niques are important to enable the use of parallel architectures in order to speed up the
computational time, compared to a global approach, and also to face geometric complexity
by dealing with independent smaller tasks on each sub–domain, [29]. The treatment of the
domain decomposed into several blocks and the reduced basis approach applied locally in
each block has already been investigated for Stokes problem in [17, 16], where the so-called
reduced basis element method has been presented, and in [6] dealing with Maxwell’s equa-
tions. A recent application of RBEM as a static condensation method in heat transfer and
solid mechanics problems is proposed in [12].
In this paper, some extensions of the reduced basis method are combined with decomposed
domains to solve incompressible fluid flows problems modeled by steady Stokes equations.
In particular our goal is to guarantee the continuity of velocity and stresses at the interfaces
by proper coupling and gluing conditions, by the help of a coarse finite element solution.
The construction of the map from the reference sub–domain to each reference block of the
computational domain is carried out, as in [17], by the generalized transfinite map [18].
The empirical interpolation procedure proposed in [3] has been applied to the geometrical
non-affine transformation terms to recover affine properties for the decomposed operator.
In this work we start revisiting some previous ideas about the reduced basis element method
by considering the computational domain as an arbitrary union of non overlapping sub–
domains (blocks) which can be obtained as deformations of reference domains (reference
blocks) [17]. Then, we present the reduced basis hybrid method by maintaining an offline
and online computational splitting of the problem.
As in the reduced basis element method, the velocity continuity across block interfaces is
guaranteed through the introduction of Lagrangian multipliers [16]. The original concept
behind the reduced basis hybrid method is that the global solution, found by solving the
Stokes problem, ensures not only the velocity continuity but also the continuity of normal
stresses across block interfaces. Indeed, the final solution is a projection of local reduced
basis with zero normal stress along the interfaces and a finite element solution computed in
the whole computational domain with a very coarse grid, in order to guarantee the normal
stress continuity at the interfaces. The coarse solution is computed by using an automatic
assembling blocks algorithm, which is inexpensive and fast due to the small structures of
the coarse meshes in the global network. This work is motivated by the fact that in several
application (microfluidics and cardiovascular problems) also the pressure is a quantity of
interest.
We provide here the outline of the paper. In Section 2 we recall the state equations rep-
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resented by incompressible fluid flows modeled with steady Stokes equations, in Section 3
we introduce the parametrized formulation dealing with a multiple sub–domains case. In
Section 4 we recall the reduced basis formulation for a single sub-domain and in Section 5 we
extend the methodology with a reduced basis hybrid formulation of the problem (by com-
bining reduced basis method and coarse finite element solution) for a multi-domain case. In
Section 6 the transfinite map setting is introduced and finally in Section 7 we present some
numerical results based on a series of multiply stenosed domains, an “heterogeneous” net-
work configuration in a 2D setting, followed by some consideration on computational costs
in Section 8. Then, an analysis of the computational complexity in the case of a geometry
composed by an increasing number of blocks is considered in Section 9. Section 10 contains
a test case dealing with a 3D parametrized stenosed configuration. Some considerations
and conclusions follow in Section 11.

2 Problem definition

We consider the following steady Stokes problem in a domain Ω ⊂ R
2 with mixed boundary

conditions on Γ = Γin ∪ Γout ∪ Γw:







































−ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γw,

ν
∂u

∂n
− p · n = σ̄in

n on Γin,

ν
∂u

∂n
− p · n = σ̄out

n on Γout,

(1)

for a fluid of constant density; u is the fluid velocity, p the pressure, f a force field, ν a
kinematic viscosity and n the normal unit vector to the domain boundary; Γin and Γout

represent the inflow and outflow, respectively, while Γw is a boundary-wall. Here σ̄in
n and

σ̄out
n represent imposed stresses on inflow and outflow, respectively.

On Ω we introduce the velocity space and the pressure space, respectively, as:

Y =
{

v ∈ (H1(Ω))2 : v |Γw= 0
}

, M = L2(Ω).

Problem (1) in weak formulation reads: find u ∈ Y , p ∈M :

{

a(u,v) + b(v, p) = F (v) ∀v ∈ Y,

b(u, q) = 0 ∀q ∈M,
(2)

where

a(v,w) = ν

∫

Ω
∇v · ∇w dΩ = ν

2
∑

i,j=1

∫

Ω

∂vi

∂xj

∂wi

∂xj
dΩ, (3)

b(v, q) = −

∫

Ω
q(∇ · v)dΩ = −

2
∑

i=1

∫

Ω
q
∂vi

∂xi
dΩ, (4)

F (v) =

∫

Ω
f · vdΩ +

∫

Γin

σ̄in
n vdΓ +

∫

Γout

σ̄out
n vdΓ. (5)
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The continuity of the bilinear forms a(·, ·) and b(·, ·), the coercivity condition on a(·, ·)

a(w,w) ≥ α||w||2H1(Ω), ∀w ∈ Y, α > 0,

and the inf-sup condition on b(·, ·)

β = inf
q∈M

sup
v∈Y

b(v, q)

||q||L2(Ω)||v||H1(Ω)
> 0,

allows to have the well posedness of problem (2) and ensure, thanks to the Brezzi theorem,
the existence and uniqueness of the solution, see [28, 25].

3 The parametrized Stokes problem in a sub-domain

We assume that the domain Ω can be partitioned into a non-overlapping union of R sub-
domains Ωr and that each Ωr is a deformation of a reference domain Ω̂k(r) through a regular

enough, non-affine, map T
k(r)
µr : Ω̂k(r) → Ωr so that:

Ω =

R
⋃

r=1

Ωr =

R
⋃

r=1

T
k(r)
µr (Ω̂k(r)).

See Figure 1 for an example. A possible choice of these maps will be introduced in Section
6. The number of reference domain is K ≤ R (otherwise said, the map k : N → N, r → k(r)
is not necessarily injective). The same reference domain can serve the purpose for different
sub-domains, thanks to different choices of the parameter µr ∈ D ⊂ R

P (P ≥ 1), so that
we can characterize different deformations of the same reference domain. In this sense we
define a parametric map for each reference domain.

Figure 1: Scheme for a geometrical transformation from a reference domain.

For instance, on the example shown in Figure 3, we need only two reference domains, Ω̂1

and Ω̂2 and therefore only two parametric maps, T 1
µr

and T 2
µr

. Then for any x̂ ∈ Ω̂1 its
image can define the five deformed bifurcations in Ω, which are Ω4, Ω5, Ω6 and Ω7, through
different choices of the parameter, respectively, µ4, µ5, µ6 and µ7. Any x ∈ Ω4 is given by
T 1
µ4

(x̂) := T 1(x̂, µ4), ∀x̂ ∈ Ω̂1, while through T 2
µr

(x̂) we can map the straight pipe reference

domain Ω̂2 in the deformed pipes Ω1,Ω2, Ω3 and Ω8, for suitable choices of the parameter
µr, i.e. µ1, µ2, µ3, µ8 respectively.
For every Ωr we denote by Γr

in its inflow boundary and by Γr
out its outflow boundary, see

Figure 1. We call Ωr an “inflow” element if Γr
in ⊂ Γin, “outflow” element if Γr

out ⊂ Γout, and
“central” element when Γr ∩Γ = Γr

w, here Γin,Γout and Γ denote the global inflow, outflow
and the boundaries walls of Ω. In the example illustrated in Figure 2, Ω1 is an “inflow”
element, Ωr, with r = 2, 3, 4, 6 are “central” elements and Ω8, Ω7 ,Ω5 are “outflow” elements.
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We can express (6) and (7) as

ak(r)(v̂, ŵ, µr) = ν

∫

Ω̂k(r)

νk(r)(x̂, µr)∇v̂ · ∇ŵ dΩ̂k(r), (11)

bk(r)(v̂, q̂, µr) =

∫

Ω̂k(r)

χk(r)(x̂, µr)q̂∇ · v̂ dΩ̂k(r). (12)

Since the tensors νk(r)(x̂, µ), χk(r)(x̂, µ) and the determinant |Jk(r)(x̂, µ)| are non-affine
for k(r) = 1, · · · ,K, we apply the empirical interpolation procedure [3] to decompose each
component of these tensors in parameter dependent contribution and other parts depending
only on spatial coordinates [31]. The idea is to approximate the parameter dependent com-
ponents [νk(r)(x̂, µ)]ij , [χ

k(r)(x̂, µ)]ij as well as the determinant |Jk(r)(x̂, µ)|, as linear com-

bination of a few “basis” functions, ν̃
k(r)m
ij (x̂) = [νk(r)(x̂, µm)]ij , χ̃

k(r)n
ij (x̂) = [χk(r)(x̂, µn)]ij

and J̃k(r)s(x̂) = |Jk(r)(x̂, µs)|, where µm, µn and µs are properly selected within a predefined
set of sampling parameters, as introduced in [3].
We can decouple parameter dependent coefficients from a parameter independent part
thanks to the following expansions (no summation on repeated indices here):

[νk(r)(x̂, µ)]ij =

M
ak(r)
ij
∑

m=1

Θ
k(r)m
ij (µ)ν̃

k(r)m
ij (x̂) + ǫ

ak(r)
ij (x̂, µ),

[χk(r)(x̂, µ)]ij =

M
bk(r)
ij
∑

n=1

Φ
k(r)n
ij (µ)χ̃

k(r)n
ij (x̂) + ǫ

bk(r)
ij (x̂, µ),

|Jk(x̂, µ)| =

Msk(r)
∑

s=1

Ψk(r)s(µ)J̃k(r)s(x̂) + ǫsk(r)(x̂, µ).

In the previous expressions Θ
k(r)m
ij , Φ

k(r)n
ij , Ψk(r)s : D → R are weighing quantities depending

on the parameters; ν̃
k(r)m
ij , χ̃

k(r)n
ij , J̃k(r)s are interpolation functions used as basis, M refers

to the number of interpolation functions we use for each form and it is related with the
maximum interpolation error ǫEIM

tol , such that:

||ǫ
ak(r)
ij (·, ·)||∞ ≤ ǫEIM

tol , i, j = 1, 2,

||ǫ
bk(r)
ij (·, ·)||∞ ≤ ǫEIM

tol , i, j = 1, 2,

||ǫsk(r)(·, ·)||∞ ≤ ǫEIM
tol , i, j = 1, 2.

By applying this affine decomposition to the terms (8), (11) and (12) we define the following
linear and bilinear forms as their respective approximations:

Fk(r)(v̂, µ, σ̂k(r)
n ) =

Msk(r)
∑

s=1

Ψk(r)s(µ)Fk(r)s(v̂, σ̂k(r)
n ), (13)

Ak(r)(v̂, ŵ, µ) = ν

2
∑

i=1

2
∑

j=1

M
ak(r)
ij
∑

m=1

Θ
k(r)m
ij (µ)A

k(r)m
ij (v̂, ŵ), (14)
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Bk(r)(v̂, q̂, µ) =
2

∑

i=1

2
∑

j=1

M
bk(r)
ij
∑

n=1

Φ
k(r)n
ij (µ)B

k(r)n
ij (v̂, q̂), (15)

where

Fk(r)m(v̂, σ̂k(r)
n ) =

∫

Ω̂k(r)

J̃k(r)m(x̂)f̂ · v̂dΩ̂k(r) +

∫

Γ̂
k(r)
in ∪Γ̂

k(r)
out

J̃km(x̂)σ̂k(r)
n v̂dΓ̂Ω̂k(r)

,

A
k(r)m
ij (v̂, ŵ) =

∫

Ω̂k(r)

ν̃
k(r)m
ij (x̂)

∂v̂

∂x̂i

∂ŵ

∂x̂j
dΩ̂k(r),

B
k(r)m
ij (v̂, q̂) = −

∫

Ω̂k(r)

χ̃
k(r)m
ij (x̂)q̂

∂v̂i

∂x̂j
dΩ̂k(r).

This affine decomposition will be useful in the reduced basis method to split all the heavy
computation involving high resolution (concerning discretization) in an offline stage and,
then during an online stage, to solve efficiently the problem for each new choice of the
parameters and for each sub–domain that we want to consider in the network configuration.
For a new µ and for the proper reference domain Ω̂k(r) the Stokes problem can be rewritten

as: find (û(µ), p̂(µ)) ∈ Y k(r) ×Mk(r) such that

{

Ak(r)(û(µ), ŵ, µ) + Bk(r)(ŵ, p̂(µ), µ) = Fk(r)(ŵ, µ, σ̂k(r)
n ) ∀ŵ ∈ Y k(r),

Bk(r)(û(µ), q̂, µ) = 0 ∀q̂ ∈Mk(r),
(16)

where

Y k(r) =
{

v̂ ∈ (H1(Ω̂k(r)))
2 : v̂ |

Γ̂
k(r)
w

= 0
}

, Γ̂k(r)
w = T k(r)−1

µ (Γw∩∂Ωr), Mk(r) = L2(Ω̂k(r)).

The solution of this problem satisfies the inf-sup condition [28], expressed by the following
inequality:

∃β
k(r)
0 > 0 : βk(r)(µ) := inf

q̂∈Mk(r)
sup

ŵ∈Y k(r)

Bk(r)(ŵ, q̂, µ)

||ŵ||Y k(r) ||q̂||Mk(r)

≥ β
k(r)
0 , ∀µ ∈ D, ∀k(r) = 1, · · · ,K.

(17)
In particular, starting from some reference domains, problem (16) represents a (local) well-
posed Stokes problem in each deformed block of the computational domain, which accounts
for imposing proper Neumann boundary conditions that are dictated by the relative “posi-
tion” of the deformed sub-domain (inflow, outflow or central).
Once we have the local Stokes formulations, we can find the Stokes solution in the global
domain Ω through suitable assumptions that will be introduced in the next sections together
with the reduced basis formulation.

4 The reduced basis formulation

First, we recall the reduced basis formulation for a single domain case and then we extend it
to a multi-domain case. Since we are considering only one reference domain Ω̂, we can omit
the k index and, from now we omit the “hat” to further simplify the notations, however
we warn the reader that we are always referring to the reference sub-domain. For given
Neumann boundary condition, we look for a reduced basis formulation of problem (16).
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With this aim we build a set of parameter samples Sµ
N =

{

µ1, · · · , µN
}

and correspond-
ingly a set of pairs (uh(µi), ph(µi)) which are approximate solutions of the Stokes problem
using Galerkin Finite Element method on an accurate fine mesh Th, where as customary h
indicates the maximum edge size of Th. The choice of the parameter set Sµ

N has been done
using a greedy algorithm, like those proposed in [31, 30].
Following [31, 35, 30], an approximation of problem (16) is computed as a Galerkin projec-
tion onto the following low dimensional subspaces ZN and MN for velocity and pressure,
respectively:

ZN =span
{

uh(µi), i = 1, ..., N
}

, (18)

MN =span
{

ph(µi), i = 1, ..., N
}

. (19)

In order to guarantee the approximation stability of the reduced basis method for Stokes
problem, we fulfill the inf-sup condition (17) by enriching the velocity basis as follows. For
every pressure solution ph(µi) spanning MN , we define:

vh(µi) = arg sup
w∈Z

B(w, ph(µi), µi)

||w||Z
, (20)

and then

XN = span
{

vh(µi), i = 1, ..., N
}

.

Finally, the enriched velocity space is defined by:

YN = ZN ⊕XN . (21)

By setting

βN (µ) := inf
q∈MN

sup
w∈YN

B(w, q, µ)

||w||Y ||q||M
≥ β0 > 0 ∀µ ∈ D (22)

as shown in [35] and more recently in [32], the following condition, binding (17) and (22),
is fulfilled:

βN (µ) ≥ β(µ) ≥ β0 > 0 ∀µ ∈ D,

where β(µ) is the inf-sup constant (17) related to the Galerkin Finite Element method.
The reduced basis approximation of problem (16) reads: find (uN (µ), pN (µ)) ∈ (YN ×MN )
such that

{

A(uN (µ),w, µ) + B(w, pN (µ), µ) = F(w,σn) ∀w ∈ YN

B(uN (µ), q, µ) = 0 ∀q ∈MN .
(23)

Note that this represents the generic RB formulation of the Stokes problem (16), with σn

representing the proper imposed stress on the inflow and on the outflow. By writing:

uN (µ) =
N
∑

i=1

uNi(µ)uh(µi) +

2N
∑

i=N+1

uNi(µ)vh(µi)

pN (µ) =

N
∑

i=1

pNi(µ)ph(µi),
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we find that the coefficients uNi and pNi are obtained by solving the following linear system:
{

∑2N
i=1A

µ
jiuNi(µ) +

∑N
i=1B

µ
jipNi(µ) = F

µ
j 1 ≤ j ≤ 2N

∑2N
i=1B

µ
ijuNi(µ) = 0 1 ≤ j ≤ N

(24)

where

A
µ
ij = A(wi,wj , µ), B

µ
il = B(wi, pl, µ), F

µ
j = F(wj , µ,σn),

1 ≤ i, j ≤ 2N, 1 ≤ l ≤ N, wi,wj ∈ YN , pk ∈MN .

Since the bilinear forms are now affinely parametrized (after the empirical interpolation
treatment), in an offline expensive stage we can compute the parameter independent parts
of the matrices Aµ, Bµ and the vector Fµ (that include FE matrices, basis functions and pre
and post multiplication procedures of the FE matrices for the basis functions computed).
Then in an online stage, for each new parameter value the parametric coefficients of the
system can be quickly evaluated. Finally, a small linear system can be solved efficiently
during the online stage many times to find the coefficients uNi and pNi that will give the
final reduced basis solution for each new value of µ [32].

5 The reduced basis hybrid method

In this section we formulate the reduced basis hybrid method (RBHM) for computational
domains with rigid boundaries. Before providing a general description of the method and
its computationally efficient realization, we illustrate the basic concept on a simplified case.

5.1 Two domains with single interface

We consider a domain Ω parametrized through µ = (µ1, µ2) and its sub-domain decomposi-
tion in Ω1, parametrized through µ1, and Ω2 parametrized through µ2. Γ12 is the common
interface.
We want to solve the following Stokes problem on Ω: find (u(µ), p) such that

{

A(u(µ),w, µ) + B(w, p(µ), µ) = F(w, µ) ∀w ∈ Y,

B(u(µ), q, µ) = 0 ∀q ∈M,
(25)

by imposing the normal stresses σ̄in
n on Γin and σ̄out

n on Γout, i.e. on the inflow and the
outflow, respectively. We denote (25) as StΩ(u, p) = 0.
We consider the restriction of (25) to Ω1 and Ω2 by maintaining the boundary condition
in Γin, included in Ω1, and in Γout, included in Ω2. We impose zero normal stress on the
boundary Γ12 for both problems. We denote the two independent Stokes problems with
StΩ1(u, p) = 0 and StΩ2(u, p) = 0.
For both problems we consider, in the framework of the reduced basis method, the following
set of basis functions:

{u1
j ,v

1
j , p

1
j , j = 1, · · · , N1} on Ω1, {u2

j ,v
2
j , p

2
j , j = 1, · · · , N2} on Ω2.

We can observe that if we define (uN , pN ) such that StΩ1(uN |Ω1
, pN |Ω1

) = 0, StΩ2(uN |Ω2
, pN |Ω2

) =
0 and

uN |Ω1
=

N1
∑

j=1

(α1
ju

1
j + β1jv

1
j ), pN |Ω1

=

N1
∑

j=1

γ1j p
1
j
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uN |Ω2
=

N2
∑

j=1

(α2
ju

2
j + β2jv

2
j ), pN |Ω2

=

N2
∑

j=1

γ2j p
2
j

the jump of the normal stress of (uN , pN ) along Γ12 is zero, but the continuity of the velocity
is not guaranteed, JσN |Γ12

K = 0 and JuN |Γ12
K 6= 0.

We consider the FEM coarse solution of the problem (25) and the corresponding supremizer,
uH , pH and vH . We have StΩ(uH , pH) = 0 and JσH|Γ12

K = 0 and JuH|Γ12
K 6= 0. We restrict

the coarse solutions to Ω1 and Ω2, denoted by ui
H ,v

i
H , p

i
H , i = 1, 2, and we define

uN |Ω1
=

N1
∑

j=1

(α1
ju

1
j + β1j v

1
j ) + η1u1

H + δ1v1
H , pN |Ω1

=

N1
∑

j=1

γ1j p
1
j + ǫ1p1H ,

uN |Ω2
=

N2
∑

j=1

(α2
ju

2
j + β2j v

2
j ) + η2u2

H + δ2v2
H , pN |Ω2

=

N2
∑

j=1

γ2j p
2
j + ǫ2p2H ,

such that StΩ1(uN |Ω1
, pN |Ω1

) = 0 and StΩ2(uN |Ω2
, pN |Ω2

) = 0. The solution (uN , pN ) would
have still JσN |Γ12

K = 0 and JuN |Γ12
K 6= 0 and a velocity correction through Lagrange

multipliers is required as introduced in [16] . We define the following bilinear form:

L(v,ψ) =

∫

Γ12

vψds, v ∈ Y,ψ ∈W12

where W12 is a low order polynomial space defined on Γ12.
The reduced basis hybrid solution is finally found by the solution of the following problem:
find (uN , pN , λN ) such that











StΩ1(uN |Ω1
, pN |Ω1

) + L(v, λN |Ω1
) = 0 ∀v ∈ YN1 , ∀p ∈MN1

StΩ2(uN |Ω2
, pN |Ω2

) − L(v, λN |Ω2
) = 0 ∀v ∈ YN2 , ∀p ∈MN2

L(uN |Ω1
− uN |Ω2

,ψ) = 0 ∀ψ ∈W12,

(26)

where YN1 = span{u1
j ,v

1
j ,u

1
H ,v

1
H , j = 1, · · · , N1}, YN2 = span{u2

j ,v
2
j ,u

2
H ,v

2
H , j = 1, · · · , N2},

MN1 = span{p1j , p
1
H , j = 1, · · · , N1} and MN2 = span{p2j , p

2
H , j = 1, · · · , N2}.

The problem (26) can be written in compact form as:
(

S L

LT 0

)

·

(

U

λ

)

=

(

F

0

)

(27)

where:

S =









A1 0 B1 0
0 A2 0 B2

B1 0 0 0
0 B2 0 0









, L =

(

L1
12

−L2
12

)

, F =

(

F 1

F 2

)

,U =









u1
N

u2
N

p1N
p2N









,

Ak
ij = A(wk

i ,w
k
j , µk), Bk

il = B(wk
i , p

k
l , µk), F k

j = F(wk
j , µk,σ

k
n), (28)

(Lk
12)qi =

∫

Γ12

wk
i ψqds, 1 ≤ q ≤ Q12,

1 ≤ i, j ≤ 2Nk, 1 ≤ l ≤ Nk, wi,wj ∈ YNk
, pl ∈MNk

, k = 1, 2,

here Q12 is the number of nodes on Γ12.
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5.2 Several sub-domains with many interfaces

In the most general case, we now consider a computational domain Ω to be decomposed
in a non-overlapping union of R sub-domains Ωr, as showed in Figure 2. We make the as-
sumption that each inflow boundary is included in one sub–domain, each outflow boundary
in another one, so that any other sub–domain Ωr has two internal interfaces. Our proposed
methodology can however be extended to more general domain partitions.
We want to find the solution of the Stokes problem (1) in Ω, taking advantage of the de-
composition in sub-domains Ωr and of the fact that each Ωr is a deformation of a reference
domain Ω̂k(r), for a suitable k(r) ∈ {1, · · · ,K}, being K the number of reference shapes.

Due to the latter assumption, for every sub-domain Ωr = T
k(r)
µr (Ω̂k(r)) we can formulate a

Stokes problem in the form (16) in the correspondent reference domain Ω̂k(r) and its reduced
basis formulation is: find (uN (µr), pN (µr)) ∈ (Y r

N ×M r
N ) such that

{

Ak(r)(uN (µr),w, µr) + Bk(r)(w, pN (µr), µr) = Fk(r)(w,σ
k(r)
n ) ∀w ∈ Y r

N ,

Bk(r)(uN (µr), q, µr) = 0 ∀q ∈M r
N .

(29)

The solution of these R independent problems obviously provides a non-continuous global
solution on Ω for both velocity and stresses at the interfaces. As proposed for the two sub-
domains example, each basis function in each reference sub-domain is computed imposing
zero-stress condition at the internal interfaces (so we have continuous zero stresses at the
interfaces), so that the continuity of the (non-zero) stresses at the interfaces is then recovered
by a coarse finite element solution on the global domain Ω and the continuity of velocities
will be guaranteed by minimizing the jump across all the interfaces of the sub-domains by
Lagrange multipliers.
We focus now on computational strategy: also the reduced basis hybrid method is split
in two main stages. The offline stage involves the references blocks and it consists in the
computation of independent reduced basis structures, i. e. the reduced basis spaces and
matrices (by using an accurate fine mesh Th). During the online stage we use the results of
the previous stage by adding some computations in a coarse mesh TH

1 and proper gluing
conditions through the internal interfaces, in order to find a continuous global solution in
the domain Ω. The final goal is to have a fine solution at the cost of a coarse one, after
proper pre-calculation (performed offline).
More precisely in the offline stage:

• for every reference domain Ω̂k(r) we build three velocity spaces and three pressure
spaces, one for each possible position of the deformed sub-domain Ωr (inflow, central,
outflow element), as defined in (18),(19) and (21). We have for r = 1, · · · , R the indices
k(r) ∈ {1, · · · ,K} and pos(r) ∈ {c, in, out} such that we can define the spaces:

Y
pos(r)
k(r) =span

{

u
k(r)
h (µi),v

k(r)
h (µi), i = 1, ..., N

pos(r)
k(r)

}

,

M
pos(r)
k(r) =span

{

p
k(r)
h (µi), i = 1, ..., N

pos(r)
k(r)

}

,

where µi are the samples chosen by the greedy algorithm in Ω̂k(r); N
pos(r)
k(r) represents

the number of these samples and also of the precomputed basis functions: in general it

1The coarse solution is inexpensive from a computational point of view and also from practical point of
view since it is computed on a combination and repetition of only reference sub-domains which are easily
constructed by translation starting by the reference sub-blocks.
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may be different for each reference domain and for each Neumann boundary condition
set.

The online stage, by considering Ω as a generic combination of deformed sub-domains Ωr,
consists in the following steps.

• For every Ωr, we select the proper corresponding precomputed reduced basis spaces,
depending on k(r) and on the “position” of Ωr (inflow, central or outflow element).
We denote with ur

h(µi),vr

h(µi) and prh(µi) the reduced basis functions (snapshots) of

the corresponding spaces Y
pos(r)
k(r) and M

pos(r)
k(r) computed in the domain Ω̂k(r), where the

index r is a couple of integers k(r) and the position index pos(r), r = (k(r), pos(r)).
By using the functions ur

h(µi),vr

h(µi) and prh(µi) as basis functions, we have a local
free-stress problem that guarantees just the continuity of the normal stresses and no
stresses jumps along the internal interfaces Γlm, l,m ∈ {1, · · · , R} (Jσh|Γlm

K = 0).

The velocity continuity is not guaranteed ( Juh|Γlm
K 6= 0).

• A Galerkin Finite Element solution (uH , pH) of the Stokes problem (1) in Ω is
computed in a fast way by using a coarse mesh TH for the whole domain Ω. To-
gether with the associated supremizer solution vH , we restrict these functions to
each sub–domain Ωr, we map them in the corresponding reference domain Ω̂k(r),
then we interpolate them in the corresponding fine mesh Th and we denote them as
uH |Ω̂k(r)

,vH |Ω̂k(r)
, pH |Ω̂k(r)

. These functions are obviously continuous along the inter-

nal interfaces, so that JuH|Γlm
K = 0 and JσH|Γlm

K = 0.

• We define in Ω̂k the following spaces:

Y r =span
{

uH |Ω̂k(r)
,vH |Ω̂k(r)

,ur

h(µi),vr

h(µi), i = 1, ..., Nr

}

,

Mr =span
{

pH |Ω̂k(r)
, prh(µi), i = 1, ..., Nr

}

,

where r = (k(r), pos(r)), r = 1, · · · , R, k ∈ {1, · · · ,K}, pos(r) ∈ {in, c, out} and

Nr = N
pos(r)
k(r) . By using these spaces for the reduced basis problem we maintain

the continuity of the normal stresses (Jσh|Γlm
+ σH|Γlm

K = 0) but still the velocities

continuity is not guaranteed (Juh|Γlm
+ uH|Γlm

K 6= 0). In the next step, by using the
Lagrange multipliers, we add a velocity correction to the method in order to recover
also the velocities continuity.

• If we denote µ the selection of the parameters µr, r = 1, · · · , R which define the
computational domain Ω(µ) =

⋃R
r=1 Ω(µr), the global reduced basis “hybrid” solution

is defined by the local reduced solution (uN (µr), pN (µr)) on each sub-domain Ωr as
follows: uN (µ)|Ωr = uN (µr),

pN (µ)|Ωr = pN (µr),

where

uN (µr) =

2Nr+2
∑

i=1

urNi(µr)u
r

i , ur

i ∈ Y r,

pN (µr) =
Nr+1
∑

i=1

prNi(µr)p
r

i , pri ∈Mr.

(30)
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Here the maximum allowed value for index i is augmented by one (pressure) or two
(velocity and supremizer) in order to keep into consideration also the contribution
given by the coarse FEM solution, guaranteeing the continuity of stresses at the
interfaces and considered as additional basis functions. The coefficients urNi(µr) and
prNi(µr) are determined by solving the local reduced problems (29) associated to Ωr

(properly enriched with the coarse basis functions) and such that the jumps across the
interfaces are minimized through Lagrange multipliers (Mortar or other polynomial
spaces options are admissible). We impose that:

∫

Γml

(uN (µ)|Ωm − uN (µ)|Ωl
)ψds = 0, ∀ψ ∈Wm,l, m, l ∈ {1, · · · , R}, (31)

where Γml is the interface between two adjacent sub-domains denoted with the indices
m and l respectively and Wm,l is a low order polynomial space defined on this interface,
see [20, 5]. A basis for Wm,l is provided by the characteristic Lagrange polynomials
ψq, q = 1, · · · , Qml associated with the Qml nodes of Γml. Therefore the coefficients
urNi(µr) and prNi(µr) in (30) are obtained by solving the linear system composed by
the R local linear systems (24) associated to each Ωr, that define the global ”block”
system, and the gluing linear equations (31), i. e.

2Nm

∑

i=1

(Lm
ml)qiu

m
Ni(µm) −

2N l

∑

i=1

(Ll
ml)qiu

l
Ni(µl) = 0, m, l ∈ {1, · · · , R}, 1 ≤ q ≤ Qml,

(32)

where (Lm
ml)qi =

∫

Γml

umi ψqds, m, l ∈ {1, · · · , R}, 1 ≤ q ≤ Qml, 1 ≤ i ≤ 2Nm.

The solution obtained includes both the coarse correction, that recovers the normal
stress continuity, and the velocity correction that guarantees the velocity continuity
(Ju(µ)N |Γlm

K = 0 and Jσ(µ)N |Γlm
K = 0).

In order to illustrate and build the final linear system that has to be solved we consider
another example made up by three sub-domains:

Ω(µ) = Ω1 ∪ Ω2 ∪ Ω3 = T 1
µ1

(Ω̂1) ∪ T 1
µ2

(Ω̂1) ∪ T 2
µ3

(Ω̂2), Ω1 ∩ Ω2 ∩ Ω3 = ∅,

Γ12 = Ω̄1 ∩ Ω̄2, Γ23 = Ω̄2 ∩ Ω̄3.

Figure 3: Geometrical scheme for a domain composed by R=3 deformations of K=2 reference domains.

In this case the three sub-domains can be obtained as deformations of two different reference
domains Ω̂1 and Ω̂2 and the reduced basis spaces that is sufficient to solve this configuration
are:

Y in
1 =span

{

u1in
h (µi),v1in

h (µi), i = 1, ..., N in
1

}

, M in
1 = span

{

p1inh (µi), i = 1, ..., N in
1

}

,

Y c
1 =span

{

u1c
h (µi),v1c

h (µi), i = 1, ..., N c
1

}

, M c
1 = span

{

p1ch (µi), i = 1, ..., N c
1

}

,

Y out
2 =span

{

u2out
h (µi),v2out

h (µi), i = 1, ..., Nout
2

}

, Mout
2 = span

{

p2outh (µi), i = 1, ..., Nout
2

}

.
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In order to solve many possible configurations in the online step we may have to compute
also the spaces Y out

1 ,Mout
1 , Y in

2 ,M in
2 , Y

c
2 ,M

c
2 .

Finally, for a generic µ, we compute the coarse global solution, we interpolate it in the fine
mesh and we add the restrictions to the reduced spaces, by defining:

Y 1 = span
{

uH |Ω̂1
,vH |Ω̂1

,u1

h(µi),v1

h(µi), i = 1, ..., N1

}

,

M1 = span
{

pH |Ω̂1
, p1h(µi), i = 1, ..., N1

}

,

Y 2 = span
{

uH |Ω̂1
,vH |Ω̂1

,u2

h(µi),v2

h(µi), i = 1, ..., N2

}

,

M2 = span
{

pH |Ω̂1
, p2h(µi), i = 1, ..., N2

}

,

Y 3 = span
{

uH |Ω̂2
,vH |Ω̂2

,u3

h(µi),v3

h(µi), i = 1, ..., N3

}

,

M3 = span
{

pH |Ω̂2
, p3h(µi), i = 1, ..., N3

}

.

Here the index r = 1 refers to pos(1) = in and k(1) = 1, the index r = 2 to pos(2) = c and
k(2) = 1 and the index r = 3 to pos(3) = out and k(3) = 2.
The reduced basis hybrid problem, that includes three problems in the form (24) (with
the matrices Ar and Br and the vectors F r, r = 1, 2, 3 defined as (28)) and two matching
conditions described by (31) (involving the matrices Lr

lm, l = 1, 2,m = 2, 3 defined as (32)),
can be written in the following compact form:

























A1 0 0 B1 0 0 L1
12 0

0 A2 0 0 B2 0 −L2
12 L2

23

0 0 A3 0 0 B3 0 − L3
23

B1T 0 0 0 0 0 0 0
0 B2T 0 0 0 0 0 0
0 0 B3T 0 0 0 0 0
L1T
12 −L2T

12 0 0 0 0 0 0
0 L2T

23 −L3T
23 0 0 0 0 0

























·

























u1
N

u2
N

u3
N

p1N
p2N
p3N
λ1
λ2

























=

























F 1

F 2

F 3

0
0
0
0
0

























(33)

where the unknowns are the coefficients ur
N and pr

N , r = 1, 2, 3, of the linear combination
of previously computed offline solution in each sub-domain.
We note that in the example at hand reported in Figure 3, the dimension of the linear
system is determined by two quantities: the dimensions of the reduced basis spaces, N1

and N2, the corresponding dimensions of A1, A2, A3 (respectively 2N1 × 2N1, 2N1 × 2N1

and 2N2 × 2N2) and B1, B2, B3 (respectively 2N1 ×N1, 2N1 ×N1 and 2N2 ×N2); the
number of nodes Krm on the internal interfaces Γrm affects the dimension of L1

12, L
2
12, L

2
23

and L3
23 (given respectively by N1 ×K12, N

2 ×K12, N
2 ×K23 and N3 ×K23).

6 Trasfinite maps

In this section we recall the method to generate parametrized transfinite maps proposed
in [16], which is a generalization of the Gordon-Hall transfinite interpolation approach for
quadrilaterals [11]. As seen above, these maps can be used to deform the sub-domains of
the computational domain in which we want to solve the local Stokes problem. A transfinite
map induces non-affine geometrical parametrization and, as presented in Section 3, on this
map the empirical interpolation method is applied to recover the affinity of the linear and



6 Trasfinite maps 15

bilinear forms of the studied problem. Other options to parametrize the domains by a global
map are proposed in [21, 18, 14, 22].
We assume a general domain Ω and a general reference domain Ω̂, we suppose that both
are curved polygons with the same number n of curved edges. Γi denotes the generic edge
in Ω, Γ̂i denotes the corresponding edge in Ω̂; the edges are numbered clockwise.
We associate a weight function ϕi to each side Γ̂i, i = 1, ..., n of a reference domain Ω̂ with
n-side. To define ϕi on Γ̂i, we impose ϕi = 1 on Γ̂i, and solve the Laplace problem:

∆ϕi = 0 in Ω̂, (34)

with homogeneous Neumann boundary conditions on the two sides of Ω̂ adjacent to Γ̂i, and
homogeneous Dirichlet boundary conditions on the remaining sides (Figure 4).

Figure 4: Graphical representation of the boundary conditions for weight functions problem in a reference
bifurcated domain.

To define the transfinite map on a general reference domain, we also need the projection of
the internal part onto each side Γ̂i. We compute the projection function πi onto the side
Γ̂i, by solving the Laplace problem:

∆πi = 0 in Ω̂, (35)

with a Dirichlet boundary condition along Γ̂i being a linear function of the arc-length t

ranging 0 to 1. On the sides adjacent to Γ̂i we set πi equal to either 0 or 1, and on the
remaining sides we impose homogeneous Neumann boundary conditions (Figure 5).

Figure 5: Graphical representation of the boundary condition for the projection functions problem in a
reference bifurcated domain.

For each side of the reference domain, we have associated one weight function and one
projection function by solving the problems (34) and (35) respectively (Figure 6 and 8). For
a domain with n sides, we have to solve 2n elliptic problems, however these computations
are independent on the deformation (and on the parameter) and can be included in the
offline stage of the reduced basis method.
We assume that each edge is parametrized through the parameter µ ∈ D by a bijective map
ψi from [0, 1] × D into Γi, so that ψi(1, µ) = xi, where xi denotes the vertex shared by Γi

and Γi+1 and ψi(0, µ) = xi−1. We denote by x̂ a generic point of the reference domain Ω̂
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and by x a generic point of the deformed domain Ω. The transfinite map is then defined as
follows:

T (x̂, µ) =

n
∑

i=1

{ϕi(x̂)ψi(πi(x̂), µ) − ϕi(x̂)ϕi+1(x̂)xi} . (36)

We show the deformations of two domains, used as sub-domain blocks for numerical tests
of RBHM, obtained through the transfinite map.
A deformed pipe, with parametrized upper and lower walls, is used to simulate a stenosis
in an artery of the cardiovascular system. The parameters µ1 and µ2 ∈ [−1, 1] represent
the dilatation and the contraction of the pipe. Figure 6 shows the weight functions ϕi and
projection functions πi for the reference rectangle, while Figure 7 shows some possible pipe
deformations.

Figure 6: Weight functions ϕi, solutions of (34) (on the left) and projection functions πi, solutions
of (35)(on the right) for a reference rectangle; 1 ≤ i ≤ 4.

Figure 7: Different pipe deformations.

Figure 8: Weight functions ϕi, solutions of (34) (on the left) and projection functions πi, solutions
of (35)(on the right) for a reference bifurcation; 1 ≤ i ≤ 6.

We consider a bifurcation described by three different parameters: µ1 represents the length
of the bifurcation, µ2 the thickness and µ3 the span between the branches. Figure 8 shows
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We consider a parametrized Stokes problem (23) for each sub-domain. For the inflow sub-
domain, we compute the reduced basis imposing zero Dirichlet condition on the wall, Neu-

mann boundary conditions given by imposing σn = σ ·n = ν
∂u

∂n
−pn to be σin

n = [1, 0]T on

Γin and σout
n = 0 on the internal interface Γ12. For the outflow sub-domain, we compute the

reduced basis imposing zero Dirichlet condition on the wall, Neumann boundary conditions
imposing σin

n = 0 on the internal interface Γ23 and σout
n = [−1, 0]T on the outflow interface

Γout. When we consider the internal sub-domain, we impose zero Dirichlet condition on the
walls and homogeneous Neumann boundary conditions on Γ12 and Γ23.
We apply the transfinite map to transform the problem in terms of reference coordinates.
By referring to a single stenosed block we expand each geometrical component in order to
deal with an affine decomposition. We use the empirical interpolation to decompose the
terms (8), (11) and (12). The maximum interpolation error is set to ǫEIM

tol = 10−6.
By applying the offline stage of the reduced basis method to the single stenosis block, a
set of N = 40 combinations of parameters is selected by the greedy algorithm [30] using a
tolerance ǫgreedy = 10−7 . Figure 12 shows the clustered distribution of these parameters
used to store the basis functions [35]. Note that all the previous contribution concerning a
posteriori error bounds are still valid in the single block [32].

Figure 12: Parameter distribution representing the parameters combinations selected to generate the basis
functions in a single block.

Coarse and fine grids have been chosen in order to deal with respectively 200 and 1583
nodes in the whole domain Ω.
Figure 13 shows an example of a representative flow solution, found with the reduced
basis hybrid method, for certain parameters combination (µ1 = (0.1, 2), µ2 = (0.1, 2),
µ3 = (2, 0.1)), to be compared with the finite element solution. The same comparison,
regarding the pressure solutions, is shown in Figure 14.

Figure 15 shows the reduction of the H1 and L2 relative errors on velocity and pressure,
respectively, for the configuration of Figures 13 and 14, increasing the number N of basis
functions.
Figures 16 and 17 show the pressure profiles on the internal interfaces Γ12 and Γ23 obtained
solving the Stokes problem by using the Lagrange multipliers but not including the coarse
correction to the reduced spaces (so without guaranteeing the continuity of stresses), then,
as second option, including the coarse correction and not using the Lagrange multipliers cor-
rection (not guaranteeing the continuity of velocity) and finally by using the RBHM method
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Figure 13: Velocity intensity [ms−1] representative solutions using RBHM (with N1 = N2 = N3 = 10)
(top) and solving a global FEM (bottom), (µ1 = (0.1, 2), µ2 = (0.1, 2), µ3 = (2, 0.1)).

Figure 14: Pressure [Nm−2] representative solutions using RBHM (with N1 = N2 = N3 = 10) (top) and
solving a global FEM (bottom), (µ1 = (0.1, 2), µ2 = (0.1, 2), µ3 = (2, 0.1)).

(that includes both velocity and coarse corrections). The profiles of the corresponding fine
FEM solution computed in the whole network has been plotted in the same figure in order
to compare the quality of the solutions.
The same comparison on the velocity profiles is shown in Figure 18 and 19, while in Figures
20, 22 and 23 is shown the comparison on the normal and tangential component profiles of
the normal stress, defined respectively as σn · n = ν

∂(u·n)
∂n

− p and σn · t = ν
∂(u·t)
∂n

.
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Figure 15: H1 and L2 relative error on velocity and pressure.

Figure 16: Pressure profiles along the internal interface Γ12 using velocity correction (left), using the coarse
correction (center) and solving the RBHM problem (right).

Figure 17: Pressure profiles along the internal interface Γ23 using velocity correction (left), using the coarse
correction (center) and solving the RBHM problem (right).

Figure 18: Velocity profiles along the internal interface Γ12 using velocity correction (left), using the coarse
correction (center) and solving the RBHM problem (right).

In the figures shown, it is evident that the imposition of continuity of the velocities at



7 Numerical tests on 2D domains 21

Figure 19: Velocity profiles along the internal interface Γ23 using velocity correction (left), using the coarse
correction (center) and solving the RBHM problem (right).

Figure 20: Tangential component of normal stress profiles along the internal interface Γ12 using velocity
correction (left), using the coarse correction (center) and solving the RBHM problem (right).

Figure 21: Tangential component of normal stress profiles along the internal interface Γ23 using velocity
correction (left), using the coarse correction (center) and solving the RBHM problem (right).

Figure 22: Normal component of normal stress profiles along the internal interface Γ12 using velocity
correction (left), using the coarse correction (center) and solving the RBHM problem (right).

the interfaces by Lagrange multipliers guarantees, by construction, the continuity of the
tangential component of the normal stresses too, while that of the normal component of
the normal stresses is indeed satisfied thanks to the coarse correction. The RBHM, by
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Figure 23: Normal component of normal stress profiles along the internal interface Γ23 using velocity
correction (left), using the coarse correction (center) and solving the RBHM problem (right).

including the correction by Lagrange multipliers and the coarse correction, provides an
approximation of the solution that recovers the continuity of velocity and that of both
components of normal stresses at the interfaces.

7.2 A portion of a network with heterogeneous block domains

In the second test case, the RBHM has been applied to the solution of the Stokes problem
in a configuration that can be referred as a union of two sub-domains, see Figure 24, that
simulate respectively a bifurcation and a stenosis.

Figure 24: Geometrical scheme for the computational domain.

The two sub-domains (see Figure 25) are obtained from non-affine transfinite maps de-
pending on a set of three parameters: the bifurcation span µ1 ∈ [0.8, 3.5], the amplitudes:
µ2 ∈ [−1, 1] and µ3 ∈ [−1, 1], on the upper and lower walls representing the dilatation and
the contraction of the pipe. This configuration can be used, for example, to model a carotid
artery bifurcation, [10].

Figure 25: Geometrical scheme for the two blocks.

We consider the bifurcation as the inflow sub-domain in which we set homogeneous Dirichlet
condition on the wall and on the lower branch of the bifurcation, Neumann boundary
conditions given by imposing σin

n = [10, 0]T on Γin and σout
n = 0 on the internal interface

Γ12. We assume that the stenosis block is the outflow domain and we set zero Dirichlet
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condition on the wall, while we impose Neumann boundary conditions imposing σin
n = 0

on the internal interface Γ12 and σout
n = [−10, 0]T on the outflow interface Γout.

We apply the transfinite map to transform the problem in terms of reference coordinates.
By referring to a single block we expand each geometrical component in order to deal
with an affine decomposition, as seen in Section 3. The terms (8), (11) and (12) are
treated by the empirical interpolation method (EIM). The maximum interpolation error is
set ǫEIM

tol = 10−6.
By applying the Greedy algorithm, we select N1 = 13 parameters for µ1 and N2 = 15
parameter combinations for µ2 and µ3. Figure 26 shows the distribution of these parameters
used to generate the basis functions.

Figure 26: Parameter distribution representing the parameters combinations selected to generate the basis
functions in the two blocks by greedy algorithm.

Coarse and fine grids have been chosen in order to deal with respectively 269 and 1006
nodes in the whole domain Ω.
Figures 27 and 28 show an example of flow solution, obtained using the reduced basis hybrid
method, for a certain parameters combination (µ1 = (µ1) = (2.5), µ2 = (µ2, µ3) = (1, 0.9)),
which can be compared with the solutions obtained with finite element method.
As in the previous example, Figures 29 and 30 show the comparison regarding the velocity
and pressure profiles on the internal interface obtained by using, first, the velocity correction,
then the coarse correction and finally the RBHM. The profiles of the correspondig fine FEM
global solution has been plotted in order to compare the quality of the solution. The same
comparison is shown in Figures 31 and 32 for the normal and tangential component profiles
of the normal stress.

8 Computational costs

As already anticipated, the main feature of RBHM (as well as RBEM) is its capability
to perform, thanks to the heavy computation done once in an offline stage, simulations
on different combinations of the block domains by guaranteeing a certain versatility in
combining several configurations and networks. The goal is to provide a method with
lower complexity and lower computational times than the finite element method but able to
guarantee an accurate solution and a certain physical reliability for velocity, pressure and
stresses.
In Figure 33 the computational time required by the complete finite elements solutions and
that of the online stage of the RBHM are represented by increasing the number of stenosis
blocks of Section 7.1 in the computational domain. The CPU time of RBHM breaks down
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Figure 27: Velocity intensity [ms−1] representative solutions using RBHM (with N1 = N2 = 10) (top) and
by a global computed FEM solution (bottom), (µ1 = (2.5), µ2 = (1, 0.9)).

Figure 28: Pressure [Nm−2] representative solutions using RBHM (with N1 = N2 = 10) (top) and by a
global computed FEM solution (bottom), (µ1 = (2.5), µ2 = (1, 0.9)).
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Figure 29: Velocity profiles along the internal interface Γ12 using velocity correction (left), using the coarse
correction (center) and solving the RBHM problem (right).

Figure 30: Pressure profiles along the internal interface Γ12 using velocity correction (left), using the coarse
correction (center) and solving the RBHM problem (right).

Figure 31: Tangential component of normal stress profiles along the internal interface Γ12 using velocity
correction (left), using the coarse correction (center) and solving the RBHM problem (right).

Figure 32: Normal component of normal stress profiles along the internal interface Γ12 using velocity
correction (left), using the coarse correction (center) and solving the RBHM problem (right).

into three components, respectively due to: the FEM coarse solution, the matrix assembling
for each block, and the resolution of the reduced basis linear system. The second part can
be computed independently for each block (on a parallel computational architecture), in
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Figure 33 we can observe that if we treat each block by using parallel computation, the
CPU time is mostly due to the FEM coarse solution. Thus we can obtain an online solution
with an accuracy comparable with the one of the fine finite element solution at the cost of a
coarse finite element solution. This achievement is gotten by reduced basis techniques and
proper coupling conditions, where the coarse FEM solution is playing a crucial role (i.e. a
lift) in guaranteeing the continuity of stresses. We also underline that the computational
advantages are more evident for extended networks and an increasing number of blocks.
In order to visualize the different computational loads and the advantage of the reduced
model proposed, we report in Table 1 the values of the CPU times in details for different
number K of sub-domains, the computational time for the matrix assembling is 0.76s for
each of the sub-domains considered. The last column underlines the computational costs of
RBHM compared with the fine FEM solution. We can see that, in terms of computational
cost, the fine solution computed with RBHM is comparable to the one obtained on the
coarser grid with standard FEM, and in general the computational savings are of two orders
of magnitude with RBHM compared with FEM. Moreover the CPU time spent for a FEM
simulation with 5 blocks is on par with RBHM simulation dealing with a domain defined
by 27 blocks, still retaining the continuity of velocities and stresses at the interfaces.

K Fine FEM Coarse FEM Reduced Linear RBHM RBHM vs Fine FEM
solution solution System solution %

5 31.13 1.73 0.06 2.72 8.76
10 132.18 4.86 0.14 5.68 4.30
15 311.44 10.18 0.23 11.08 3.56
20 557.57 16.77 0.28 17.81 3.19
25 880.54 23.86 0.60 25.22 2.86
30 1183.5 34.81 0.78 36.35 3.07
35 1895.7 49.74 1.02 51.52 2.71
40 2484.6 70.44 1.56 72.76 2.92

Table 1: Computational times (in seconds) of FEM and RBHM for different number of subdomains K.

9 Comparison with classical Reduced Basis Method

The classical reduced basis method is used when we want to solve rapidly a large number
of problems governed by the same partial differential equation that depends on parame-
ters [35, 31, 21]. It has been developed in a mono-domain case and it is highly efficient
when we deal with geometry endowed with topological similarities [21, 22]. If we want to
consider repetitive and heterogeneous geometries composing a network, an offline computa-
tion for each new combination of domain configuration has to be performed. The reduced
basis element method RBEM avoids this problem and allows dealing with every kind of
combinations of a certain number of blocks, for which few offline stages can be computed
independently. The proposed hybrid version, RBHM, combines the previous approach with
a FEM coarse solution to guarantee the continuity of both velocity and stresses solutions
across interfaces.
We want now to consider a three stenoses configuration for a comparative analysis between
the reduced basis method (RBM) and the reduced basis hybrid method (RBHM).
Using RBM we have to perform the offline stage in the whole domain characterized by six
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Figure 33: Computational times (in seconds) of FEM and RBHM

parameters (two for each stenoses), coupling conditions are automatically satisfied. During
this step, the empirical interpolation generates 90 terms for the affine decomposition of the
bilinear forms and the greedy algorithm needs 49 basis functions in order to reach an error
with 10−4 of tolerance.
Using the proposed RBHM we compute the offline stage in a single stenosed domain, we
consider smaller number of parameters (only two) allowing to deal with just 29 terms for
the affine decomposition of the bilinear forms representing the problems (always carried out
by the empirical interpolation) and 14 basis functions to reach an error of order 10−3. The
comparison between the features of the two methods is shown in Table 2. The complexity
reduction is very important also for the offline step.
Figure 48 shows how the number of parameters affects the choice of basis functions. We
can observe that, during the greedy RB spaces assembling, in the case of three stenosed
domains (6 parameters), we need more than three times the number of basis functions com-
pared with the number we need in the case of a single stenosis in order to reach the same
convergence relative error (2 parameters). In the single domain case, for a tolerance on the
greedy algorithm of ǫ = 10−3 we need just N = 7, in the three stenosis domain N = 26,
while for ǫ = 10−4, respectively, N = 11 and N = 45. In both cases we can conclude that
three times the number of basis for the single domain case is less than the number of basis
that we have in the three stenosis domain3, 3N = 21 < 26 and 3N = 33 < 45 . With the
application of RBHM we can reduce also the complexity of the operators representing the
problem (Mka and Mkb of (14) and (15) ) and the dimension of the RB spaces. This is
useful also for a good performance of a posteriori error bounds [32].

3Of course we have to take into account the further costs and effort of the coupling condition in the use
of RBHM, but the proposed method still keeps reasonable computational advantages.
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Figure 35: Reference pipe

Figure 36: Deformed pipes (µ = 20, µ = 10, µ = 5): stenosis configuration.

Figure 37: Deformed pipes (µ = −20, µ = −10, µ = −5): aneurysm configuration.

The RBHM has been applied to solve the Stokes equations in a computational domain Ω
composed by two stenosed blocks Ωµ1 and Ωµ2 (Figure 38). We consider a parametrized

Figure 38: Computational domain (µ1, µ2) = (7, 10).

Stokes problem for each sub-domain. For the inflow sub-domain, we compute the reduced
basis imposing zero Dirichlet condition on the wall, Neumann boundary conditions given

by imposing σn = σ · n = ν
∂u

∂n
− pn to be σin

n = [0, 0, 5]T on Γin and σout
n = 0 on the

internal interface Γ12. For the outflow sub-domain, we compute the reduced basis imposing
zero Dirichlet condition on the wall, Neumann boundary conditions imposing σin

n = 0 on
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the internal interface Γ23 and σout
n = [0, 0,−1]T on the outflow interface Γout.

Figure 39 shows the distribution of the parameter values selected by the greedy algorithm,
by applying the offline stage of the reduced basis method to the single stenosis block. By
taking into account that the range [−5, 5] is not admitted, we can see that the higher
concentration of values is in the intervals [−10,−5] and [5, 10] in correspondence of larger
deformation of the pipe.

Figure 39: Distribution of the selected parameter values by the greedy algorithm used to generate the
basis functions in a single block.

Coarse and fine grids have been chosen in order to deal with respectively 155 and 2714
nodes in a single block domain.
Figure 40 shows a representative flow solution in Ω, found with the reduced basis hybrid
method, to be compared with the finite element solution. The same comparison, regarding
the pressure solutions, is shown in Figure 41. Figure 42 shows the reduction of the H1 rel-

Figure 40: Representative solutions of velocity [ms−1] using RBHM (with N1 = N2 = 19) (left) and using
FEM as a global solution (right), (µ1, µ2) = (7, 10).

ative errors on velocity and L2 relative errors on pressure, respectively, for the configuration
of Figures 40 and 41, versus the number N of basis functions.
As in the 2D case, we show in Figure 43 a comparison regarding the velocity profiles on
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Figure 41: Representative solutions pressure [Nm−2] using RBHM (with N1 = N2 = 19) (left) and using
FEM as a global solution (right), (µ1, µ2) = (7, 10).

Figure 42: H1 and L2 relative errors on velocity and pressure.

the internal interface obtained by using the RBHM (that includes both velocity and coarse
corrections). The profiles of the correspondig fine FEM global solution has been plotted in
order to compare the quality of the solution.
Figure 44 shows the velocity profiles on the internal interface Γ12 obtained solving the Stokes
problem by using the Lagrange multipliers but not including the coarse correction to the
reduced spaces (so without guaranteeing the continuity of stresses). Figure 45, shows the
velocity profiles on the internal interface Γ12 obtained including the coarse correction and
not using the Lagrange multipliers correction (not guaranteeing the continuity of velocity).
The profiles of the corresponding fine FEM solution computed in the whole network has
been plotted as well in order to compare the quality of the solutions. The solutions on Ω
for both options are shown in Figures 46 and 47 in order to compare the pressure as well.

The reduced basis hybrid method RBHM allows dealing with every kind of combinations
of a certain number of blocks, for which few offline stages can be computed independently.
Using RBM we have to perform the offline stage in the whole domain characterized by two
parameters, coupling conditions are automatically satisfied. Using the proposed RBHM,
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Figure 43: Velocity profiles along the internal interface Γ12 by solving the RBHM problem plotted from
the first block (left), from the second block (center), compared with the velocity profile obtained by using
the global FEM solution along the same internal interface (right).

Figure 44: Velocity profiles along the internal interface Γ12 by using the velocity correction and not using
the coarse correction plotted from the first block (left), from the second block (center), compared with the
velocity profile obtained by using the global FEM solution along the same internal interface (right).

Figure 45: Velocity profiles along the internal interface Γ12 by not using the velocity correction and
including the coarse correction plotted from the first block (left), from the second block (center), compared
with the velocity profile obtained by using the global FEM solution along the same internal interface (right).

the greedy algorithm is computed during the offline stage in a single stenosed domain.
Figures 48 and 49 show how the number of parameters affects the choice of basis functions.
We can observe that, during the greedy RB spaces assembling, in the case of two stenosed
domains (2 parameters), we need more than two times the number of basis functions com-
pared with the number we need in the case of a single stenosis in order to reach the same
convergence relative error (1 parameter). In the single domain case, for a tolerance on the
greedy algorithm of ǫ = 10−7 we need just N = 9, in the two stenosed domain N = 22,
while for ǫ = 10−11, respectively, N = 12 and N = 45. In both cases we can conclude
that two times the number of basis for the single domain case (that we need for RBHM)
is less than the number of basis that we have in the two stenosis domain (that we need for
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Figure 46: Representative solutions of velocity [ms−1] and pressure [Nm−2] using only the velocity
correction but not using the coarse correction (with N1 = N2 = 19), (µ1, µ2) = (7, 10).

Figure 47: Representative solutions of velocity [ms−1] and pressure [Nm−2] using the coarse correction
but not the velocity correction (with N1 = N2 = 19), (µ1, µ2) = (7, 10).

RBM)4, 2N = 18 < 22 and 2N = 24 < 45 . With the application of RBHM we can reduce
efficiently also the complexity and the dimension of the RB spaces.

4Of course we have to take into account the further costs and effort of the coupling condition in the use
of RBHM, but the proposed method still keeps computational advantages and gives continuous pressure and
stresses.
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Figure 48: Relative H1 velocity errors during the greedy RB spaces assembling dealing with 1 block and
2 blocks.

Figure 49: Relative L2 pressure errors during the greedy RB spaces assembling dealing with 1 block and
2 blocks.
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11 Conclusions and perspectives

In this work we have proposed an extension of the reduced basis element method [17] in
a multi-domain flow network by introducing a reduced basis hybrid method (RBHM). The
latter allows solving the fluid flow problems in more complex geometries, to deal with a
computational domain decomposed by several combinations of repetitive blocks on which
the solution can be computed locally and quickly thanks to the classical RB method, and
then properly coupled and glued guaranteeing the continuity of velocity and stresses at the
sub-domains interfaces.
The geometrical deformations are computed through a non-affine transfinite map and an
empirical interpolation method has been used to perform a complete offline/online com-
putational decoupling of the reduced basis problem. Results dealing with the complexity
reduction and computational performances have been provided in comparison with classical
finite element techniques and classical reduced basis method on two test cases of interest.
Future developments will include geometrical deformations to apply the methodology in a
more complex three-dimensional setting, such that we may increase the geometrical com-
plexity. In particular the reduced basis hybrid method will be exploited for nonlinear
Navier-Stokes equations in parametrized domains. The interest is to apply this methodol-
ogy to three-dimensional relevant configurations in cardiovascular problems in an efficient,
accurate and real-time framework by keeping all the previous advances in the development
of reduced basis method [22].
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