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Abstract

We investigate multilevel Schwarz domain decomposition preconditioners,
to efficiently solve linear systems arising from numerical discretizations of
elliptic Partial Differential Equations by the finite element method. In our
analysis we deal with unstructured mesh partitions and with subdomain
boundaries resulting from using the mesh partitioner. We start from two-
level preconditioners with either aggregative or interpolative coarse level
components, then we focus on a strategy to increase the number of lev-
els. For all preconditioners, we consider the additive residual update and
its multiplicative variants within and between levels. Moreover, we com-
pare the preconditioners behaviour, regarding scalability and rate of con-
vergence. Numerical results are provided for elliptic boundary-value prob-
lems, including a convection-diffusion problem when suitable stabilization
becomes necessary.

1 Introduction

Domain decomposition (DD) preconditioners are essential tools toward efficient
parallel implementation of finite dimensional discretization of partial differen-
tial equations (PDEs). For a general presentation, see the monographs [BS92],
[QV99] and [TW05].
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Ideal preconditioners are optimal and scalable. Optimality is achieved when
the condition number of the preconditioned matrix is independent of h (the
discretization grid-size). Scalability occurs when the same condition number is
independent of the number of subdomains. A necessary condition for scalability
is that the DD preconditioner include a coarse-level mechanism.

Two-level DD preconditioners are very commonly used in the DD community
to numerically solve elliptic PDEs since two decades. Multilevel (featuring more
than two levels) preconditioners have been used more seldom, see e.g. [CSZ96].

In this paper we address and investigate multilevel DD preconditioners of
Schwarz type. We start from two-level preconditioners with either aggregative
or interpolative coarse level components, then we focus on a strategy to increase
the number of levels.

Quite recently, analysis of domain decomposition methods applied on parti-
tions featuring low regularity has been carried out [DKW08], [KRW08]. More
precisely subdomain partitions with nonuniformly Lipschitz continuous bound-
aries were considered. This new framework is interesting because these partitions
are invariably generated by common mesh partitioners (like, e.g. Metis [KK98]).

In [DKW08] the behaviour of a nonstandard additive two-level Schwarz pre-
conditioner is investigated, for partitions where subdomains need only to be
domains of John type (see Def.2.4 in [DKW08]). In this paper we focus on
uniformly Lipschitz continuous boundaries. However, the number of patches re-
quired to cover the boundary of the region, in each of which the boundary is
the graph of a Lipschitz continuous function, still depends on the finite element
mesh size. The same kind of partitionings are employed in [DKW08, Figure 5.5],
but on structured meshes.

We analyze all combinations of two-level preconditioners, with either addi-
tive or multiplicative link among subdomains in the first level, or on the interface
between levels. In the literature (see e.g. [BS92]) these preconditioners are clas-
sified as two-level, pre-hybrid and post-hybrid. The coarse level can be the usual
interpolative preconditioner or a simple aggregative one (without smoothing).
Furthermore, we investigate how coarse parameters affect the speed of conver-
gence. We show scalability for all preconditioner variants, when the first mesh
level is refined and the number of subdomains increases properly. Numerical
results indicate that classical upper and lower convergence bounds proposed in
[Cai94], [Bre00] still hold in this general framework too.

Next we consider multilevel preconditioners. We restrict our analysis to
nested meshes and additive interfaces among levels. In a first instance, levels
are added from above to reach a five-level preconditioner, and a suitable choice of
partitioning and spacing in each level is given. Afterwards, we focus on different
alternative strategies to add levels.

In [CZ96] a convergence estimate is proposed, based on number of levels
and their spacing. We show that, when adding from above new coarser lev-
els, the number of iterations grows and that estimate is satisfied. Numerical
results on the multilevel behaviour, with regular partitioning were pointed out
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in [Zha92]. On the other hand, we can add new intermediate levels among the
older ones. Here the number of iterations decreases, because the preconditioner
must be faster at least, to justify its larger assembling cost. Apparently, this
may seem to contraddict previous statements. We show later that indeed there
is no contraddiction, since when adding new levels from above we are changing
partitioning and size of local problems.

Then, the behaviour of multilevel preconditioners is studied for a non-symmetric
convection-diffusion problem, and when using incomplete factorizations. The
last numerical test that we propose addresses a problem in a domain with a
complex shape, in which adapted meshes are employed.

2 Multilevel Schwarz preconditioner theory

Let us consider an elliptic operator L, provided with suitable boundary condi-
tions. The strong and weak formulation of the overlapping Schwarz method were
analyzed in [Lio88], when applied to the standard Poisson problem with Dirichlet
conditions. For a more general kind of operator L the analysis in the differential
framework is harder to achieve. Here we introduce the Schwarz method starting
from the discrete problem.

The weak formulation in the abstract functional space V for the boundary-
value problem associated to the operator L is:

find u ∈ V : a(u, v) = F (v) ∀v ∈ V,

where a : V × V → R is a bilinear form associated with L, while F ∈ V ′ is a
functional that depends on problem’s data. Approximating this problem by the
usual Galerkin method, gives the linear system

Au = f, (2.1)

where A is the stiffness matrix associated to the bilinear form a(·, ·) and f the
vector associated to the functional F (·) (see [QV99]). Now we can partition
the mesh underlying problem (2.1) in smaller local meshes. This operation
corresponds to partition at the differential level the global domain in local sub-
domains. We call local problem the original (global) problem appropriately
discretized on a subdomain. Each local problem can be described by a local pro-
jector acting on global problem (2.1). A detailed description of this procedure
can be found in [QV94], [TW05].

On the right of Figure 1 we display square domain partitioned in 16 local
subdomains. The mesh is partitioned in smaller local meshes, partially over-
lapped. The elements of the mesh that belong to the overlap are marked in red.
We consider only minimal overlaps, i.e. neighboring local meshes are extended
by just one strip of elements. Further details about partitioning will be provided
at a later stage.
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We adopt the following notatation for multilevel Schwarz methods. See
[QV94], [TW05] for a comprehensive description of the Schwarz method and
well-posedness issues.

Denote with l, 1 ≤ l ≤ L, the index that identifies the level. Then, in the
lth level, we denote by:

• hl the finite element gridsize parameter;

• Hl the characteristic subdomain dimension;

• Ml the number of subdomains;

• δl the fraction of the overlap.

We sort the levels in such a way that

h1 < . . . < hL.

Then, for brevity we may refer to the first and last level as the finest and coars-
est, respectively. The coarsest level (l = L) is not partitioned (ML = 1), con-
sequently HL is equal to the (non partitioned) original domain, and δL is not
defined. Figure 1 shows how this notation applies to describe an instance of a
three-level decomposition.

Figure 1: Graphical example: multilevel notation for a three-level precondi-
tioner.

In this example we have:

H2 '
H3

2
, h2 '

h3
2
, H1 '

H3

4
, h1 '

h3
4
.

We can associate gridsize parameters to the minimum or maximum element
edge (in each level). Regardless of the choice, we see from Tables 1 and Table
10 that gridsize parameters halves exactly when refining. Conversely, we are not
able to guarantee that subdomain characteristic dimension halves so precisely,
because subdomains can be very irregularly shaped. However, as indicated by
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the following figures, even when elongated shapes are generated, we may assume
that

Hl ∝
(
Ml

)−1/2
, (2.2)

for the generic lth level. The exponent would be −1/d when working in a d-
dimensional space.

From now on i will denote a generic index on subdomains. So in the lth level
i ranges from 1 to Ml.

Let us define the restriction (or extension, when transposed) operators Rli.
With l = 1 the operator R1i restricts the global residual on the ith subdomain
of the first level. For 2 ≤ l ≤ L an intralevel operator between first level mesh
and lth level mesh is also accomplished, and entries for Rli are

Rli(r, c) = ϕr(xc), (2.3)

whereas
{
ϕr

}
r

are finite element basis functions whose support belong to the

ith subdomain of the lth level, and
{
xc
}
c

are the nodes of first level mesh.
Only when l = L = 2 a particular kind of operator can be used, with unitary

constant basis functions over each subdomain. We name it as aggregating Ragg

and its entries are

Ragg(r, c) =

{
1, if the node xc belongs to the rth subdomain,
0, otherwise.

(2.4)

Restricting and extending the initial stiffness matrix A we obtain local ma-
trices:

Ali = RliAR
T
li , l = 1÷ L, i = 1÷Ml. (2.5)

When using Ragg we denote the local matrix with Aagg.

We introduce the additive projector P l
add on the lth level:

P l
add =

Ml∑

i=1

RT
liA
−1
li Rli, 1 ≤ l ≤ L− 1. (2.6)

This projector acts as in Algorithm 1. It takes a global residual and returns the
preconditioned (global) residual.

The multiplicative variant P l
mul acts as in Algorithm 2, where a colouring

among subdomains is required. Here Cj is the set of subdomains featuring
the jth color, and LU is the upper limit on the number of colours. In the
multiplicative variant, operations in the for -cycle are serial.

Projectors P l
add and P l

mul are defined for l = 1 ÷ L − 1. For the Lth level
(L ≥ 2) we need a monolithic aggregating projector

Pagg = RT
aggA

−1
aggRagg, (2.7)

as well as the interpolating projector

Pint = RT
L1A

−1
L1RL1. (2.8)
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Algorithm 1 The action of additive
projector P l

add on the global residual.

INPUT residual v
OUTPUT preconditioned residual z

z←
∑M

i=1R
T
liA
−1
li Rliv

Algorithm 2 The action of multiplica-
tive projector P l

mul on the global residual.

INPUT residual v
OUTPUT preconditioned residual z

z←
∑

i∈C1
RT

liA
−1
li Rliv

for 2 ≤ j ≤ LU do
z← z +

∑
i∈Cj

RT
liA
−1
li Rli(v−Az)

end for

Now we are ready to define generic Schwarz multilevel preconditioners. Say
Pl the generic projector on the lth level, with 1 ≤ l ≤ L. For instance, it might
be either Pl = P l

add or Pl = P l
mul for l = 1 ÷ L − 1, and either Pl = Pagg or

Pl = Pint for l = L.
We denote with PL the generic L-level preconditioner

PL =
( L∑

l=1

Pl
)−1

. (2.9)

Now, depending on the choice of projectors
{
Pl
}L
l=1

, we can build several
kind of multilevel preconditioners. The simplest is the one-level additive pre-
conditioner P1, which corresponds to taking L = 1 and P1 = P1

add in (2.9). To
obtain the one-level multiplicative preconditioner just take P1 = P1

mul.
For preconditioners composed of more than one level we can choose either a

parallel or a serial interface between levels. The serial interface differs from the
parallel for accomplishing a residual update interposed between level projectors.
Only for the case of two-level preconditioners (L = 2) we analyze all possibile
combinations of first level projectors, second level projectors and interfaces, as
shown in Figure 2.

We denote with P2 the two-level preconditioner with a parallel interface be-
tween levels, and with P pre

2hy , P
post
2hy hybrid variants obtained with a serial interface.

In pre-hybrid variant the first level projector is applied, then the residual is
updated and lastly the second level projector is applied. In post-hybrid variant
the order is reversed. Correct orders in which first and second level projectors
are applied are explicitly highlighted in Algorithms 3, 4, 5.

For preconditioners with more than two levels a serial interface becomes
unattractive, so for L ≥ 3 we build the multilevel preconditioner as shown in
Figure 3. We can choose projectors Pl = P l

add (for 1 ≤ l ≤ L−1) and PL = Pint
to obtain a multilevel preconditioner PL that is additive between and within
levels (Algorithm 6). Otherwise, choosing Pl = P l

mul (for 1 ≤ l ≤ L − 1) and
PL = Pint, we obtain PL that is additive between levels but multiplicative within
each level (Algorithm 7).
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Figure 2: Construction of two-level preconditioners. Choose the projector P1 for
the first level (either additive or multiplicative), then choose the projector P2 for
the second level (aggregative or interpolative), and finally choose the interface
between levels (parallel or serial). Choosing parallel interface yields the two-
levels preconditioners P2. The serial interface gives hybrid variants: pre-hybrid
P pre
2hy when applying first level projector followed by second level projector, post-

hybrid P post
2hy otherwise.

Algorithm 3 Two-level Schwarz precondi-
tioner P2 with projectors P1, P2 linked by
parallel interface.

INPUT residual v
OUTPUT preconditioned residual z

w← P1v
z← w + P2v

Algorithm 4 Pre-hybrid Schwarz pre-
conditioner P pre

2hy . Apply the first level
projector P1, then update residual and
apply second level projector P2.
INPUT residual v
OUTPUT preconditioned residual z

w← P1v
z← w + P2(v−Aw)

Algorithm 5 Post-hybrid Schwarz precon-
ditioner P post

2hy . Apply the second level pro-
jector P2, then update residual and apply
first level projector P1.
INPUT residual v
OUTPUT preconditioned residual z

w← P2v
z← w + P1(v−Aw)

2.1 Convergence estimates

We recall now classical estimates that hold for some preconditioners. We denote
with the lower or upper case letter C a generic positive constant independent of
other quantities figuring in each estimate. A preconditioner is said to be sym-
metric if the starting problem is symmetric. Nonsymmetric preconditioners can
be possibly symmetrized [HV97]. All the following estimates hold for the usual
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Figure 3: Multilevel preconditioners. Choose projectors Pl on levels l = 1 ÷
L − 1. These projectors can be additive or multiplicative in each level, but all
of the same type. The projector PL on the Lth level can only be interpolative.
The interface among all levels is always parallel. So we obtain a multilevel
preconditioner that is always additive among levels, whereas it can be either
additive or multiplicative in each level.

Algorithm 6 Multilevel Schwarz pre-
conditioner PL with additive projectors
Pl = P l

add, l = 1÷L− 1 and PL = Pint.
INPUT residual v
OUTPUT preconditioned residual z

z← RT
L1A

−1
L1RL1v

for 1 ≤ l ≤ L− 1 do
z← z +

∑M(l)
i=1 RT

liA
−1
li Rliv

end for

Algorithm 7 Multilevel Schwarz precon-
ditioner PL with multiplicative projectors
Pl = P l

mul, l = 1÷ L− 1 and PL = Pint.
INPUT residual v
OUTPUT preconditioned residual z

z← RT
L1A

−1
L1RL1v

for 1 ≤ l ≤ L− 1 do
zl ←

∑
i∈C1

RT
liA
−1
li Rliv

for 2 ≤ j ≤ LU do
zl ← zl +

∑
i∈Cj

RT
liA
−1
li Rli(v−Azl)

end for
z← z + zl

end for

symmetric elliptic problem with Dirichlet boundary counditions. Additional hy-
potheses are given, whenever required.

For the one-level additive (symmetric) preconditioner P1 given by P1 = P1
add

we have [QV99]

K(P−11 A) ≤ C 1

δ21H
2
1

. (2.10)

The dependence on 1/H2
1 was pointed out in [Wid88] and ”holds for any domain

decomposition method for which the interaction is only through next neighboring
subdomains, cf.[DW90]”. The estimate is sharp, then to improve the convergence
speed additional shrewdness is required.

In the two-level additive (symmetric) case, i.e. P2L with P1 = P1
add and

8



P2 = Pint the following estimate holds [Cai94]

K(P−12 A) ≤ C min
(

1 +
h22
δ21
, 1 +

H1

δ1
+
h2
δ1

h2
H1

)
. (2.11)

We remark that the first term does not depend on H1, allowing to employ
arbitrary shape domains. The second term reduces to H1/δ1 when H1 ∼ h2,
so its importance increases for small δ1. The importance of a small overlap has
been discussed in [DW94], [Wid92]. We focus on the minimal overlap choice,
i.e. subdomains in the lth level, with 1 ≤ l ≤ L − 1, are overlapped only by
an element strip, corresponding to take δl = hl. In the minimal overlap case a
lower bound holds too [Bre00], and combining this with (2.11) we obtain

c
(H1

h1

)
≤ K(P−12 A) ≤ C

(
1 +

H1

h1

)
. (2.12)

The upper bound in (2.12) is reported in [DW94], [Wid92], and both the
upper and lower bounds are recalled in [Bre00].

For multilevel additive preconditioner PL, with Pl = P l
add for l = 1 ÷ L − 1

and PL = Pint, the following convergence estimate holds [CZ96]

K(P−1L A) ≤ ρ2L2, (2.13)

with

ρ = max
1≤l≤L−1

hl + hl+1

δl
. (2.14)

The condition number worses at most quadratically when the number of levels
L increases. When convex domains are employed the dependence on L becomes
linear and this upper estimate is sharp [DW90].

Proposition 1 In the case of minimal overlap, i.e. δl = hl (1 ≤ l ≤ L − 1), ρ
is minimized if the ratio hl+1/hl is kept fixed among levels.

Proof. We show it for a three-level preconditioner. Let us denote with h1 and h3
two f.e.gridsizes such that h1 < h3. We look for h2 that satisfies

h2 = arg min
h1<x<h3

ρ(x). (2.15)

Rewriting (2.14) with the unknown h2 renamed to x, and dropping constant terms gives

ρ(x) = max
( x
h1
,
h3
x

)
. (2.16)

By equating the two terms we obtain:

x

h1
=
h3
x

⇒ x =
√
h1h3.

�
In the end, h2 is the geometric average between h1 and h3. Figure 4 resumes

graphically the whole proof.
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Figure 4: Geometrical solution for the problem (2.15), given h3 = 1/2 and
h1 = 1/8. Admissible values for x are between green lines. Blue lines plot terms
in (2.16) and their maximum ρ is highlighted in red. Then take the minimum
on ρ to obtain x = 1/4.

3 Two-level preconditioners for a symmetric problem

Let us start with a Poisson problem in Ω = (0, 1)× (0, 1):

{
−∆u = f, in Ω,
u = g, on ∂Ω,

(3.1)

with f and g chosen in such a way that the exact solution be u(x, y) = −x exp(y).
Given an initial mesh in Ω, we refine and create local partitions with Metis. Then
we discretize it by piecewise linear finite elements, see e.g. [Qua09]. We associate
every regular grid refinement with a color (Table 1).

gridsize nb. of nb. of maximum minimum
color

parameter h1 elements nodes elem. side elem. side

red h 5504 2833 0.0265 0.0133
blue h/2 22016 11169 0.0133 0.0067
green h/4 88064 44353 0.0066 0.0033

Table 1: Progressive refinement for first level meshes. Given h = 0.0265, we
start from the initial mesh (red) with f.e. gridsize h1 = h, and refining it we
obtain meshes with f.e. gridsize equal to h1 = h/2 (blue) and h1 = h/4 (green).

In the whole section we choose a Cholesky complete factorization, see e.g.
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[QSS07], to solve the linear algebraic system associated with the coarse problem
as well as each local problem.

In the following figures each star refers to a simulation, and the continuous
line highlights the upper part of their convex envelope.

If the problem is symmetric (as in the current case) we can solve the global
problem by CG iterations, preconditioned with one of the (symmetric) Schwarz
preconditioners previously introduced. For all numerical tests, those in following
sections too, in the iterative method we use a stopping criterion based on relative
residual error, with a tolerance fixed to tol = 1e− 6.

To start with, let us solve problem (3.1) with the one-level additive precondi-
tioner P1 and P1 = P1

add. As shown in Figure 5 the number of required iterations
grows when subdomains number M1 grows and h1 decreases, highlighting the
need for a second level to achieve scalability. We observe that the number of
iterations increases regularly, even if partitionings related to consecutive number
of subdomains may totally differ one from the other.

Figure 5: Results for one-level additive preconditioner P1 with P1 = P1
add, for

problem (3.1). Colors refer to the mesh in Table 1.

In Table 2, which contains data picked from Figure 5, we see that the estimate
(2.10) is sharply satisfied, i.e. if the product h1H1 is kept constant then the
number of iterations is constant too.

Let us mention two other features about these one-level results. Considering
that the number of CG iterations, say NCG, is proportional to the square root
of the condition number of the preconditioned matrix, the estimate (2.10) yields

NCG ≤
C

h1H1

, (3.2)

for a suitable constant C. This is confirmed from the results of Table 2. In
addition, the role of the overlap has been analyzed too: we obtain the same
results of Figure 5 with the red mesh by taking the blue mesh but with a doubled
overlap amplitude.
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h1
h h/2 h/4

H 34 50 70
H/2 50 69 96

H
1

H/4 66 94 132

Table 2: Number of CG iterations extracted from Figure 5. Values for h1 corre-
spond to mesh colors. Values for H1 are calculated by (2.2) taking the number
of subdomains M1 from Figure 5; here we took M1 equal to 4, 16, 64, so we have
H = 1/2 and H1 is equal to H, H/2, H/4. The number of iterations is constant
along secondary diagonals, corresponding to keep constant the product h1H1.

From Figure 6 we see that a second aggregative level (P2 with P1 = P1
add

and P2 = Pagg) is enough to start taking advantage of the subdomain number.
For low M1 the preconditioner efficacy decays, due to its artificial nature.

Figure 6: Results for two-level additive aggregative preconditioner P2 with P1 =
P1
add and P2 = Pagg, for problem (3.1). Colors refer to the mesh in Table 1.

The interpolative second level exhibits a better efficiency than the aggrega-
tive one. Let us consider the two-level preconditioner P2 with P1 = P1

add and
P2 = Pint. We choose a fixed coarse mesh composed of 344 elements, with
maximum diameter h2 = 0.1061. In this way we analyze only the effect due
to δ1 = h1 in the upper bound of (2.12). The number of iterations increases
when h1 is halved (Figure 7). The number of subdomains changes from 2 to
160, consequently their characteristic dimension decreases from 0.707 to 0.079.

Figure 7: Results for two-level additive interpolative preconditioner P2 with
P1 = P1

add and P2 = Pint, with a fixed coarse mesh for problem (3.1). Colors
refer to the mesh in Table 1.
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In another test the coarse mesh is changed, i.e. tuning the f.e.gridsize h2.
Meshes for first level are the same as those in Table 1 with h1 equal to h, h/2, h/4.
Coarse meshes (Table 3) are chosen so that the maximum element diameter
approximates the characteristic dimension of subdomains (Table 4). In Figures
8 and 9 some meshes with the coarse level (blue) are shown. In Table 5 we
see that the number of iterations remains constant if the ratio h2/h1 is kept
constant.

gridsize no. coarse maximum
parameter h2 elements elem. side

hC 86 0.2122
hC/2 344 0.1061
hC/4 1376 0.0531
hC/8 5504 0.0265

Table 3: Progressive refinement for second level meshes. Given hC = 0.2122,
we start from the initial coarse mesh with f.e. gridsize h2 = hC , and refining it
we obtain coarse meshes with f.e.gridsize equal to h2 = hC/2, h2 = hC/4 and
h2 = hC/8.

no. subdom. ratios among
M1

H1 =
√

1/M1 no. subdomains

16 0.250 M = 16
64 0.125 4 ·M
256 0.0625 16 ·M
1024 0.0312 64 ·M

Table 4: First level mesh partitions. In the first partition there are M1 = 16
subdomains. In the following partitions the number of subdomains is multiplied
by 4, so M1 takes 64, 256, 1024 values. For each partition the characteristic
dimension H1 related to subdomains is given.

M1 = 16 M1 = 64 M1 = 256 M1 = 1024
h2 = hC h2 = hC/2 h2 = hC/4 h2 = hC/8

h1 = h 21 16 - -

h1 = h/2 27 21 17 -

h1 = h/4 36 29 21 17

Table 5: Number of CG iterations for the two-level additive interpolative pre-
conditioner with coarse meshes shown in Table 3, for problem (3.1). Labels on
the left (h1) refer to 1st level f.e. gridsize. Labels on top (M1 and h2) refer to
the number of subdomains in 1st level and 2nd level f.e. gridsize. The number
of iterations is constant along principal diagonals; this means that the algorithm
is weakly scalable. Quantities h and hC refer to meshes in Table 1 and Table 3.
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Figure 8: A coarse mesh with 24 ele-
ments (in blue) superimposed on a fine
mesh (in green) with 1376 elements par-
titioned into 16 subdomains. Red ele-
ments are those belonging to the over-
lap.

Figure 9: A coarse mesh with 344 ele-
ments (in blue) superimposed on a fine
mesh (in green) with 88064 elements
partitioned into 128 subdomains. Red
elements are those belonging to the over-
lap.

4 Two-level preconditioners for a nonsymmetric prob-
lem

Let us consider the following problem in Ω = (0, 1)× (0, 1):

{
−∆u+ (1, 0) · ∇u = f, in Ω,
u = g, on ∂Ω,

(4.1)

with f and g chosen such that the exact solution is u(x, y) = x2+y2. We solve the
associated linear system by BiCGstab (because of lack of symmetry) with differ-
ent kind of preconditioners. The local problems (including the coarse problem)
are solved by the LU complete factorization. We use the same meshes displayed
in Table 1. The coarse meshes are those from Table 3. In Table 6 results with
an interpolative coarse level are shown. In all cases the number of iterations
decreases when the number of subdomains increases. If we keep fixed the ratio
h2/h1 (on principal diagonals) the number of iterations is constant (again, this
yields weak scalability). From simulations, there seem to be no advantages in
using the multiplicative interface, when the first level is multiplicative. In Table
7 some results for aggregative second level are shown.
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M1 = 16 M1 = 64 M1 = 256 M1 = 1024
h2 = hC h2 = hC/2 h2 = hC/4 h2 = hC/8

P2 h1 = h 13 11 - -
with P1 = P1

add h1 = h/2 18 14 10 -
and P2 = Pint h1 = h/4 23 17 13 10

P pre
2hy h1 = h 12 8 - -

with P1 = P1
add h1 = h/2 16 12 8 -

and P2 = Pint h1 = h/4 25 15 12 9

P post
2hy h1 = h 11 8 - -

with P1 = P1
add h1 = h/2 15 12 8 -

and P2 = Pint h1 = h/4 22 17 12 8
P2 h1 = h 7 5 - -
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with P1 = P1
mul h1 = h/2 9 6 - -

and P2 = Pint h1 = h/4 13 10 - -
P pre
2hy h1 = h 7 5 - -

with P1 = P1
mul h1 = h/2 9 6 - -

and P2 = Pint h1 = h/4 13 10 - -

Table 6: Number of BiCGstab iterations for several preconditioners with an
interpolative second level (i.e. P2 = Pint). The interface between levels is either
additive or multiplicative. The residual adjournment within the first level is
either additive or multiplicative (i.e. P1 = P1

add or P1 = P1
mul). Labels on the

left refer to preconditioners. In each row we specify the 1st level f.e. gridsize
(h1). Labels on top (M1 and h2) refer to the number of subdomains in 1st level
and 2nd level f.e. gridsize. The number of iterations is constant along principal
diagonals (yielding weak scalability). Quantities h and hC refer to meshes in
Table 1 and Table 3, respectively.

M1 = 16 M1 = 64 M1 = 256 M1 = 1024

P2 h1 = h 26 23 - -
with P1 = P1

add h1 = h/2 34 30 24 -
and P2 = Pagg h1 = h/4 55 39 33 26

P2 h1 = h 16 11 - -
with P1 = P1

mul h1 = h/2 18 15 - -
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and P2 = Pagg h1 = h/4 25 28 - -

Table 7: Number of BiCGstab iterations for several preconditioners with an ag-
gregative second level (i.e. P2 = Pagg). The interface between levels is additive.
The residual adjournment within the first level is either additive or multiplica-
tive (i.e. P1 = P1

add or P1 = P1
mul). Labels on the left refer to preconditioners.

In each row we specify the 1st level f.e. gridsize (h1). Labels on top (M1) refer
to the number of subdomains in 1st level. Quantities h and hC refer to meshes
in Table 1 and Table 3, respectively.
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5 Multilevel preconditioners for a symmetric prob-
lem

Let us consider again problem (3.1), which we now solve using several multilevel
variants, that differ in terms of residual adjournments. We want to analyze
preconditioner behaviours with respect to:

• number of levels;

• total degrees of freedom in the problem;

• additive versus multiplicative WITHIN levels (but always additive BE-
TWEEN levels).

First, there are several ways to change the number of levels, e.g. to add coarser
levels while the older are fixed, or to add properly new levels between older
levels.

Here we choose the former strategy, i.e. to keep the first level (the finer)
fixed and to add further levels by successive derefinement. In this way our
levels are nested, and the last level in the preconditioner will depend on the
number of total levels. In practice, we will start from the coarsest level and
build further levels by refinements, because this is much easier to handle from
the computational standpoint. Anyway, we will always obtain the finest level
with the same discretization and the same partitioning.

In Table 8 a five-level preconditioner is shown. We leave values of hi and
Hi expressed in symbolic notation to highlight their ratios. Ratios between
discretization parameters and characteristic dimensions of subdomains for con-
secutive domains are constant. Discretization parameters for each level are re-
coverable from Table 10, e.g. we obtain a first level with 39233 nodes (refinement
label equal to 5) starting from the fourth level with maximum element side of
length h = 0.0505 (refinement label equal to 2). Values for Hl are calculated by
(2.2) from the number of subdomains Ml. Here the initial mesh is the unitary
square, so when ML = 1 we have HL = H = 1. Below we refer to meshes in
Table 10 by refinement labels. Figures 10, 11, 12, 13, 14, 15 show meshes with
some refinement and partitions. Elements belonging to the overlap are marked
in red.

To decrease the number of levels we observe that, with nested meshes, the
set of admissible h is discrete (it is a geometric progression). Then, if we want
to keep the ratio Hl/hl fixed, we can only delete a given level, losing the uniform
spacing hl+1/hl among levels. It would be wrong to delete the finest level too,
because this would yield a dramatic change of the degrees of freedom in the
preconditioner. In the end, we are not able to keep constant the ratio Hl/hl
among levels.

Following these ideas we obtain the four-level preconditioner outlined in Ta-
ble 9.
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level nb. hl Hl Ml

l = 5 h H 1
l = 4 h/2 H/2 4
l = 3 h/4 H/4 16
l = 2 h/8 H/8 64
l = 1 h/16 H/16 256

Table 8: Five-level preconditioner: grid-
size parameter, characteristic subdomain
dimension, number of subdomains in each
level.

level nb. hl Hl Ml

l = 4 h/2 H 1
l = 3 h/4 H/2.5 6
l = 2 h/8 H/6 36
l = 1 h/16 H/16 256

Table 9: Four-level preconditioner: grid-
size parameter, characteristic subdomain
dimension, number of subdomains in each
level.

refinement lbl. no. nodes no. elements min. elem. side max elem. side

0 49 76 0.1093 0.2022
1 173 304 0.0547 0.1011
2 649 1216 0.0273 0.0505
3 2513 4864 0.0137 0.0253
4 9889 19456 0.0068 0.0126
5 39233 77284 0.0034 0.0063
6 156289 311296 0.0017 0.0032

Table 10: Mesh used to build multilevel preconditioners.

Figure 10: Mesh with a refinement la-
bel equal to 1. This mesh is the coars-
est level of our five-level preconditioner,
when we want a mesh with 39233 nodes
on the first level.

Figure 11: Mesh with a refinement la-
bel equal to 2 partitioned into 4 subdo-
mains.
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Figure 12: Mesh with a refinement la-
bel equal to 3 partitioned into 16 sub-
domains.

Figure 13: Mesh with a refinement la-
bel equal to 4 partitioned into 64 sub-
domains.

Figure 14: Mesh with a refinement label
equal to 5 partitioned into 256 subdo-
mains.

Figure 15: The same mesh of Figure 14 repre-
sented in terms of internal nodes, with subdo-
mains coloured by a greedy algorithm (sequen-
tial vertex coloring in Boost libraries, [CM83]).
When using a minimal overlap the representa-
tion with internal nodes avoids to overlap nodes
belonging to different subdomains.
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We have kept unchanged the discretization parameters of the finest level, and
we removed the coarsest level, so to minimize the variation in the total number
of elements of the preconditioner. The first (finest) level is completely identical.
In the following levels we reduce the number of subdomains. We interpolated
linearly the number of subdomains on intermediate levels, so that the coarsest
level always has only one domain.

With the same argument we obtain preconditioners with 3 levels (Table 11)
and with 2 levels (Table 12).

level nb. hl Hl Ml

l = 3 h/4 H 1
l = 2 h/8 H/4 16
l = 1 h/16 H/16 256

Table 11: Three-level preconditioner:
gridsize parameter, characteristic subdo-
main dimension, number of subdomains
in each level.

level nb. hl Hl Ml

l = 2 h/8 H 1
l = 1 h/16 H/16 256

Table 12: Two-level preconditioner: grid-
size parameter, characteristic subdomain
dimension, number of subdomains in each
level.

In Table 13 we report the numerical results obtained by using CG and several
kind of multilevel additive preconditioners. In the first row we use a simple CG
without the domain decomposition preconditioner. In following lines we use
Pl = P l

add for levels l = 1 ÷ L − 1, and PL = Pint. We pick L = 2 ÷ 5,
corresponding to test several multilevel additive preconditioners, with level going
from 2 to 5. In Tables 14 and 16 we report results obtained in the same way,
but using BiCGstab. We recall that the multiplicative preconditioner is not
symmetric, hence we would not be allowed to use CG. However, to combine
nonsymmetric preconditioners with symmetric problems and vice versa may be
beneficial [HV97]. Our multiplicative multilevel preconditioner performs well
with CG too (Table 15) and its behaviour with respect to the additive variant
is the same as with BiCGstab.

no. 1st level nodes
9889 39233 156289

CG monolithic 363 717 1417
five-level additive 32 29 28
four-level additive 29 27 26
three-level additive 26 25 24

p
re

co
n

d
it

.

two-level additive 23 22 -

Table 13: Number of iterations for several solvers, on progressively refined
meshes. CG with additive variant is used, i.e. Pl = P l

add for levels l = 1÷L−1,
and PL = Pint.
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no. 1st level nodes
9889 39233 156289

BiCGstab monolithic 273 511 1197
five-level additive 17 17 16
four-level additive 16 15 15
three-level additive 16 15 14

p
re

co
n

d
it

.

two-level additive 13 12 -

Table 14: Number of iterations for several solvers, on progressively refined
meshes. BiCGstab with additive variant is used, i.e. Pl = P l

add for levels
l = 1÷ L− 1, and PL = Pint.

no. 1st level nodes
9889 39233 156289

CG monolithic 363 717 1417
five-level multiplicative 24 25 26
four-level multiplicative 22 24 24
three-level multiplicative 19 20 20

p
re

co
n

d
it

.

two-level multiplicative 14 14 -

Table 15: Number of iterations for several solvers, on progressively refined
meshes. CG with mutliplicative variant is used, i.e. Pl = P l

mul for levels
l = 1÷ L− 1, and PL = Pint.

no. 1st level nodes
9889 39233 156289

BiCGstab monolithic 273 511 1197
five-level multiplicaitive 11 11 15
four-level multipicative 11 14 13

three-level multiplicative 11 12 11

p
re

co
n

d
it

.

two-level multiplicative 8 8 -

Table 16: Number of iterations for several solvers, on progressively refined
meshes. BiCGstab with multiplicative variant is used, i.e. Pl = P l

mul for levels
l = 1÷ L− 1, and PL = Pint.
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In all cases the number of iterations grows, when the number of levels grows.
This applies when the mesh is fixed, corresponding to read tables by columns.
If we read tables by rows we can investigate scalability properties with respect
to the discretization parameter. The number of iterations when preconditioning
decreases, while iterations for not preconditioned (we refer to this as monolithic)
grows proportionally to h−2.

Obiouvsly, multiplicative approach is always more efficient than additive,
even if iterations decrease so much that it is hard to distinguish contributions
due to partitioning from those due to not regular BiCGstab convergence.

Last, we point out the difference from additive to multiplicative variant:
when refining the mesh the number of iterations for the additive decreases,
whereas that for the multiplicative increases, because coloring becomes less sig-
nificant.

Let us now address a critical issue, that is: why are iterations rising when the
number of levels increases? Apparently, it would seem that the computational
work per iteration becomes larger when adding new levels, and at least the
number of iterations should decrease.

Figure 16: Data from Table 13. Number of iterations for CG with multilevel
preconditioner PL, L = 2, 3, 4, 5. Projectors are Pl = P l

add and PL = Pint. The
parameters of discretization vary according to Table 13. For the most refined
mesh the coarse problem in two-level preconditioner is too large to be factored.

Let us see what happens when a new level is added, e.g. if we want to switch
from two levels to three levels. When the coarse problem with two levels becomes
too large (because of progressive refinement), we divide it in subdomains and
build up the preconditioner as for the finer level. Then we add the third level,
whose problem will be much smaller than the previous coarse problem. So in
Figure 16, for a given mesh, we see that the number of iterations linearly grows
with levels but the coarse problem get smaller (and problems in intermediate
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levels too). In the end, multilevel preconditioners allow to refine the mesh and
keep bounded the size of local problems among all levels. This result is mentioned
in a less general framework in [SBG96], and is named h-scalability.

6 Multilevel preconditioners for stabilized problems

Let us consider the elliptic convection-diffusion problem in the domain Ω =
(0, 1)× (0, 1): {

−ν∆u+ β · ∇u = f, in Ω,
u = g, on ∂Ω,

(6.1)

with f and g choosen such that the exact solution is u(x, y) = cos(x) exp(2y).
As before, we use piecewise linear finite elements for the discretization. Charac-
teristic dimensions for domains and elements are named L and h, respectively.
We define local and global Péclet number respectively by:

Peloc =
|β|h
2ν

, Peglob =
|β|L
2ν

. (6.2)

Given ν = 1 and β = 105(y,−x) we have Peglob = 105/
√

2 and a stabilization is
needed. Thus we add the usual SUPG stabilization term in the weak formulation:

aS(u, v) = γ
∑

T

∫

∂T

hT
‖β‖

(
β · ∇u

)(
β · ∇v

)
dT, (6.3)

with γ = 1/3 (there are no constraints on γ for P1 finite elements, [QV94]).
Without either preconditioner and stabilization the finite element solution ex-
hibits oscillations. In addition, when solving with multilevel preconditioner the
stabilization is required to converge.

We discretize the problem (6.1) with the same meshes and partitionings of
the previous section (Table 8, 9, 10, 9, 11, 12, Figure 10, 11, 12, 13, 14, 15). The
preconditioner proved to be robust for a wide range of Péclet number (Peglob =
(105÷1011)/

√
2). In Table 17 we report results obtained when Peglob = 105/

√
2.

Table 18 indicates Peloc in each level. In Table 20 and Table 19 we report the
results when Peglob = 1011/

√
2. The overall performance of the preconditioners

for the stabilized problem (6.1) is completely identical to those for the model
problem (3.1) given in the previous section. A moderate enhancement in the
number of iterations is due to the increased stiffness of the problem. A graphical
resume of data in Table 20 is given in Figure 17.
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no. 1st level nodes
9889 39233 156289

BiCGstab monolithic 352 638 1186
five-level additive 92 91 77
four-level additive 69 67 68
three-level additive 48 43 37

p
re

co
n

d
it
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n

er

two-level additive 36 33 -
five-level mutliplicative 47 84 73
four-level mutliplicative 30 32 36
three-level mutliplicative 24 26 23
two-level mutliplicative 17 16 -

Table 17: Number of BiCGstab iterations for some
preconditioners with different number of levels,
on progressively refined meshes, with Peglob =
105/
√

2. Here we use additive (Pl = P l
add and

PL = Pint) and multiplicative (Pl = P l
mul and

PL = Pint) multilevel variants, with complete LU
factorizations.

preconditioner level Peloc
level 1 1096
level 2 2192
level 3 4377
level 4 8761
level 5 17522

Table 18: Local Péclet number in
all levels, when Peglob = 105/

√
2

and the first level mesh has 9889
nodes.

no. 1st level nodes
9889 39233 156289

BiCGstab monolithic 400 817 1652
five-level additive 95 94 83
four-level additive 69 68 67
three-level additive 49 45 40

p
re

co
n

d
it
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er

two-level additive 34 32 -
five-level mutliplicative 48 56 63
four-level mutliplicative 32 34 30
three-level mutliplicative 24 27 25
two-level mutliplicative 16 17 -

Table 19: Number of BiCGstab iterations for some
preconditioners with different number of levels,
on progressively refined meshes, with Peglob =
1011/

√
2. Here we use additive (Pl = P l

add and
PL = Pint) and multiplicative (Pl = P l

mul and
PL = Pint) multilevel variants, with complete LU
factorizations.

preconditioner level Peloc
level 1 276
level 2 544
level 3 1096
level 4 2192
level 5 4377

Table 20: Local Péclet number in
all levels, when Peglob = 105/

√
2

and the first level mesh has 156289
nodes.

23



Figure 17: Data from Table 17. Number of iterations for BiCGstab with multi-
level preconditioner PL, L = 2, 3, 4, 5. Projectors are Pl = P l

add and PL = Pint.

7 Incomplete local factorizations

In previous tests we may choose incomplete factorizations instead of complete
ones to solve the local problems, because former are faster and cheaper to com-
pute. Results show that, with a reasonable drop tolerance, convergence be-
haviour is not significantly affected. However, on the coarsest level we will
always use a complete factorization. In Table 21 we solve (3.1) with CG and
some five-level preconditioners, using different local factorizations.

solver local factorizations 9889 nodes 39233 nodes 156289 nodes

five-level additive LU 32 29 28

five-level additve ILU no fill in 32 30 28

five-level additive ILU drop tol= 0.1 33 30 29

five-level multiplicative LU 24 25 26

five-level multiplicative ILU no fill in 19 20 22

five-level multiplicative ILU drop tol= 0.1 19 19 21

Table 21: Problem (3.1). Number of CG iterations with five-level additive or
multiplicative preconditioner. Local factorizations may be complete or incom-
plete LU, without fill in or with a given drop tolerance (drop tol).

In Table 22 we solve (6.1) with Peglob = 108/
√

2. We change the drop
tolerance to reduce the number of total non-zero elements (in Table 23 we report
those associated to all local factorizations in fifth level).
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solver local factorizations 9889 nodes

five-level add. LU 93

five-level add. ILU drop tol= 0.001 93

five-level add. ILU drop tol= 0.01 92

five-level add. ILU drop tol= 0.05 97

five-level add. ILU drop tol= 0.1 120

five-level add. ILU no fill in ∞
five-level mult. LU 48

five-level mult. ILU drop tol= 0.001 48

five-level mult. ILU drop tol= 0.01 52

five-level mult. ILU drop tol= 0.05 81

five-level mult. ILU drop tol= 0.1 ∞
five-level mult. ILU no fill in ∞

Table 22: Problem (6.1) with Peglob = 108/
√

2. Number of iterations for
BiCGstab with five-level additive or multiplicative preconditioner. Local fac-
torizations may be complete or incomplete LU, without fill in or with a given
drop tol.

local factorizations nnz level 5

LU 350355

ILU drop tol= 0.001 349947

ILU drop tol= 0.01 188143

ILU drop tol= 0.05 135707

ILU drop tol= 0.1 108477

ILU no fill in 115542

Table 23: Number of non-zero elements in local factorizations of fifth level, refer
to Table 22.
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8 A computational domain with arbitrary shape

Let us consider a Poisson problem on the domain D ⊂ R2 whose (funny) geom-
etry is shown in Figure 18:

{
−∆u = f, in D,
u = g, on ∂D.

(8.1)

The physical boundary ∂D is uniformly Lipschitz continuous. Data g and f are
chosen such that exact solution is u(x, y) = x2 + y2.
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monolithic - 1 - - 405631 14591158

one-level additive 1024 LU - 405631 155 115

two-level additive 1/1024 LU/LU 4 2116/405631 39 22

two-level additive 1/1024 LU/LU 3 7331/405631 30 19

two-level additive 1/1024 LU/LU 2 27055/405631 27 17

three-level additive 1/64/1024 LU/LU/LU 2/2 2116/27055/405631 35 19

three-level additive 1/64/1024 LU/ILU/ILU∗ 2/2 2116/27055/405631 35 21

three-level additive 1/64/1024 LU/ILU/ILU∗∗ 2/2 2116/27055/405631 35 19

one-level multiplicative 1024 LU - 405631 77 46

two-level multiplicative 1/1024 LU/LU 4 2116/405631 23 14

two-level multiplicative 1/1024 LU/LU 3 7331/405631 18 10

two-level multiplicative 1/1024 LU/LU 2 27055/405631 19 11

three-level multiplicative 1/64/1024 LU/LU/LU 2/2 2116/27055/405631 22 13

three-level multiplicative 1/64/1024 LU/ILU/ILU∗ 2/2 2116/27055/405631 22 12

three-level multiplicative 1/64/1024 LU/ILU/ILU∗∗ 2/2 2116/27055/405631 22 13

Table 24: Problem (8.1). Number of CG/BiCGstab iterations for some precon-
ditioners. ∗drop tol = 1e− 3, ∗∗drop tol = 1e− 6.

In this test we have a domain with a complex shape, being meshed with adaptiv-
ity criteria. Therefore, subdomain dimensions may differ significantly. In Figure
18 we see that isolines match correctly through artificial interfaces. Figures 19
and 20 are levels used to build preconditioners in Table 24. Figure 21 shows the
finer level colouring used when solving with multiplicative variants.

The aim of this test is to show differences among strategies used to change
levels. In Table 24 we test many preconditioners. To build them all we just use
four progressively refined meshes, with 2116, 7331, 27055 and 405631 nodes. The

26



Figure 18: Isolines for the solution of prob-
lem (8.1) solved on the domain D with the
three-level additive preconditioner form Ta-
ble 24.

Figure 19: Mesh on D with 27055 nodes,
partitioned into 64 subdomains, with mini-
mal overlap.

Figure 20: Mesh on P with 103679
nodes, partitioned into 1024 subdo-
mains, with minimal overlap.

Figure 21: Mesh in Figure 18 with a
greedy colouring on the 1024 subdo-
mains.

27



last is always used (with the same partition) on the first level. For the second
level of the two-level preconditioner we can choose one of remaining meshes.
So we are able to test three different two-level preconditioners, and we observe
that a coarser second level is cheaper to compute, but requires more iterations
too. However, here the coarsest mesh is the best, because its coarse problem
dimension is the nearest to local problem dimension of the first level.

Now, let us build a three-level preconditioner with 2116, 27055, and 405631
node meshes. If we consider these three-level and two-level preconditioners, we
are able to compare different strategies to choose levels. We see that, when
adding an intermediate level (with 27055 nodes), the number of iterations for
CG decreases from 39 to 35. In this way we do not change partitioning in levels.
The same behaviour when adding intermediate levels was pointed out in [PS08,
Table 7.3].

If we add the level from above the number of iterations increases from 27 to
35, and we recover the standard theory behaviour. We remark once again that
to add levels from above requires to change partitions in levels. So the number of
iterations increases but local factorization cost decreases because local problems
get smaller.

Multiplicative variants perform likewise. Incomplete local factorizations on
finer levels still does not impact on performances.

9 Conclusion

In this paper we have introduced a broad class of multilevel Schwarz precon-
ditioners (with an arbitrary number of levels), for subdomains resulting from
mesh partitioners. When theoretical estimates exist (like in [DKW08] for two-
level preconditioners), our numerical results confirm scalability properties as
predicted by theory.

For multiple (greater than two) levels, several strategies can be adopted.
One possibility consists of starting from one (fine) level and then adding coarser
and coarser ones. In this paper we have shown that this strategy yields a linear
growth of the number of iterations.

Another strategy consists of proceeding in the dual way, namely to start from
one (coarse) level and then adding finer and finer ones. In this case the number
of iterations is bounded with respect to the number of levels (see e.g [PS08]).

A further strategy, that we have pursued in this paper, consists of starting
from two (one fine, one coarse) levels, and increasing the number of levels by
adding more and more intermediate ones. We show that also in this case the
number of iterations remains bounded.

Several numerical tests have been performed for classical Laplace equation,
for convection-diffusion problems with dominating convection, in complex shape
domains, and using inexact algebraic solvers for the local subproblems.
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