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Abstract

In this paper we present a new reduced basis technique for parametrized
nonlinear scalar conservation laws in presence of shocks. The essential
ingredients are an efficient algorithm to approximate the shock curve, a
procedure to detect the smooth components of the solution at the two
sides of the shock, and a suitable interpolation strategy to reconstruct such
smooth components during the online stage. The approach we propose is
based on some theoretical properties of the solution to the problem. Some
numerical examples prove the effectiveness of the proposed strategy.

1 Introduction and motivations

The Reduced Basis (RB) method is a Model Order Reduction (MOR) strategy
for parametric Partial Differential Equations (PDEs), which is designed to be
particularly effective for both a real time and a many-query context.

Given the compact set D ⊂ RP of the parameters and the parametric PDEL(u(µ),µ) = 0 with µ ∈ D, the main goal of the RB approach is to provide a
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rapid and reliable approximation to the solution manifoldM ∶= {u(µ) ∶ µ ∈ D}
through a low dimensional space WRB

N . The approach is based on three distinct
components:

• Rapidly convergent approximations : effective sampling strategies for the
construction of the subspaces {WRB

N }N are obtained through suitable op-
timality criteria. Then, a convenient reduced problem, which is efficiently
solvable, is introduced.

• Rigorous a posteriori error estimations : the reliability of the reduced so-
lution is assessed through an a posteriori error estimator. The estimate of
the RB approximation error has to be obtained via an inexpensive (i.e.,
independent of the computational mesh), rigorous (i.e., the estimation has
to constitute an upper bound for the actual error) and possibly effective
(i.e., the ratio of the error bound to the true error is reasonably close to
one) way.

• Efficient computational offline/online procedures : the global algorithm is
divided into two stages: in the former, performed once, the generation of
the RB approximation and the computation and storing of all the struc-
tures needed for the reduced problem are addressed; in the latter, repeated
many times, only the solution of the reduced equation and the error esti-
mation are computed.

Since being first proposed and analyzed in 1970s (see, e.g., [11, 26, 24]), dur-
ing the last decade much effort has been devoted to develop this methodology for
certain classes of parametric PDEs; rigorous a posteriori error estimation proce-
dures and effective sampling strategies have made the RB method an extremely
attractive approach, especially in the case of elliptic and parabolic problems (see,
e.g., [25, 29, 22]).

This paper is related to the application of the RB method to one dimensional
scalar conservation laws depending on a set of parameters, µ ∈ D ⊂ RP , of the
form ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
u(µ) + ∂

∂x
f(u(µ),µ) = 0 (t, x) ∈ ΩT,(a,b)

u(µ,0, x) = u0(µ, x) x ∈ (a, b) (1)

completed with either periodic or inflow boundary conditions, where ΩT,(a,b) =(0, T ) × (a, b). The flux f(⋅,µ) ∈ C2(R) is assumed to be uniformly convex (or
uniformly concave) in the first argument (i.e., ∣f ′′(x,µ)∣ ≥ Θ > 0 for any x ∈ R
and for any µ ∈ D), whilst the initial datum u0(µ) ∶ (a, b)→ R is assumed to be
bounded.

Few papers are available in the literature dealing with MOR strategies for
parametric hyperbolic problems: in [7] the so-called Gauss-Newton with approx-
imated tensors (GNAT) method is applied to the parametric inviscid Burgers’
equation, whilst in [9, 15] the RB method has been suitably extended to linear
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and nonlinear hyperbolic problems. The main idea in these latter two papers
can be thus summarized.

Given δ = (∆t, h), let {tk = k∆t}
k=0,⋯,K ⊂ [0, T ] be a time partition of the

time window [0, T ] and let Xh, Yh ⊂ L2(a, b) be two truth spaces (for instance,
the ones induced by a finite element or finite volume discretization) equipped
with the inner product (⋅, ⋅)⋆. A generic numerical scheme for problem (1) can
be written in the following form:

find uδ(µ) = {ukδ(µ)}k ∈ [Xh]K+1 such that

⎧⎪⎪⎨⎪⎪⎩
(Lδ(uδ(µ),µ, k), v)⋆ = 0,
(u0h(µ) − u0(µ), v)⋆ = 0,

(2)

for any v ∈ Yh and k = 0,⋯,K, where Lδ is the discrete operator induced by the
selected numerical scheme. Then, at each time step tk, the reduction strategy
leads, on the one hand, to project equation (2) onto corresponding reduced basis
spaces (e.g., XRB

h ⊂ Xh and Y RB
h ⊂ Yh) and, on the other hand, to approximate

the discrete operator Lδ through a discrete operator LRB
δ , which guarantees an

efficient offline/online decomposition.
As we will see in the next section, both the projection of the equation and

the interpolation of the discrete operator are particularly problematic when ap-
plied to hyperbolic problems. This is the reason why in this work we propose a
different approach that, on the one hand, is specifically tailored to an efficient
treatment of the shocks and, on the other hand, does not require any approx-
imation of the discrete operator. In more details, first we identify the smooth
components of the solution through a domain partition strategy; then, instead of
projecting the equation onto a low dimensional subspace, we exploit the method
of characteristics (see, e.g., [10]) to efficiently compute the point-wise values
of the solution at a certain number of properly selected points. Finally, we
reconstruct the entire solution through a suitable interpolation.

The outline of the paper is as follows. In Section 2 we briefly analyze prob-
lem (1) and its resolution by reminding some notable results. In Section 3 we
introduce the domain partition strategy and we prove a result,extremely useful
for the successive interpolation approach. Motivated by this analysis, in Section
4 we introduce the main tools of our method and, finally, in Section 5 some
numerical results are presented to assess the proposed strategy. An a posteriori
error estimation for the problem at hand is addressed in Appendix A.

2 The analytical setting of the problem

We briefly remind some properties of the solution to problem (1). We refer to [1,
10] for an exhaustive overview of this topic. For simplicity, we consider problem
(1) on ΩT,∞ ≡ (0, T )×(−∞,∞). Throughout the paper, we use standard notation
to denote the Lebesgue and Sobolev function spaces and the corresponding norms
and seminorms ([10]).
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First, we provide a suitable definition of integral solution to problem (see,
e.g., 1).

Definition 2.1 If u0(µ) ∈ L∞(R), u(µ) ∈ L∞(ΩT,∞) is said to be an integral
solution to (1) if

∫
ΩT,∞

(u(µ)∂v
∂t
+ f(u(µ),µ)∂v

∂x
) dxdt + ∫

R

u0(µ)v∣t=0 dx = 0, (3)

for all v ∈ C1
0((−∞, T ) × R). Furthermore, u(µ) ∈ L∞(ΩT,∞) is said to be

entropic if it satisfies the following inequality:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(µ, t, x + z) − u(µ, t, x) ≤ C(µ)z if f ′′(s,µ) ≥ Θ > 0 ∀ s ∈ R,
u(µ, t, x − z) − u(µ, t, x) ≤ C(µ)z if f ′′(s,µ) ≤ −Θ < 0 ∀ s ∈ R, (4)

for some constant C(µ) ≥ 0 and for almost every x ∈ R and t, z ∈ R+.
Now we introduce two function spaces particularly relevant to study the

solution to (3). We refer to [2] for further details and comments.

Definition 2.2 Let ω ⊂ R
d be an open set and let u ∈ L1(ω). Then, u is a

function with bounded variation in ω if the distributional derivative of u can be
represented by a finite Radon measure in ω, i.e.,

∫
ω
u
∂φ

∂xi
dx = −∫

ω
φdDiu ∀φ ∈ C1

0(ω), (5)

for some R
d-valued measure Du = (D1u,⋯,Ddu) in ω. The vector space of

all the functions with bounded variation in ω is denoted by BV (ω). Similarly,
u ∈ BVloc(ω) if u ∈ BV (ω′) for all ω′ ⊂⊂ ω.

Definition 2.3 A function w ∈ BV (ω) is a special function with bounded varia-
tion, if it can be written as w = ws+wj, where ws ∈W 1,1(ω) is the smooth part of
w while wj is piecewise constant1. The set of the special functions with bounded
variation is denoted by SBV (ω). Similarly, u ∈ SBVloc(ω) if u ∈ SBV (ω′) for
all ω′ ⊂⊂ ω.

In the sequel, we refer to ws and wj as to the smooth and the jump component
of w, respectively. Next theorem collects four important results.

Theorem 2.1 Let u(µ) be the entropy solution to problem (3).

1For more details about the topological structure of the discontinuity set of wj , we refer to
[2].
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• Let xs(µ) ∶ (t0, t1) ⊂ (0, T ) → R be a curve of discontinuity for u(µ) (a
so-called shock) and let uleft(µ, t) and uright(µ, t) denote the limit of the
integral solution from the left and from the right, respectively. Then, the
following identity (known as the Rankine-Hugoniot condition) holds (see,
e.g., [10]):

ẋs(µ, t) = f(uright(µ, t),µ) − f(uleft(µ, t),µ)
uright(µ, t) − uleft(µ, t) ∀ t ∈ (t0, t1). (6)

• Let u0(µ) ∈ L∞(R) ∩ SBVloc(R) and let f(⋅,µ) ∈ C2(R) be a locally uni-
formly convex function. Then, there exists at most a countable subset
S ⊂ (0, T ) such that, for all τ ∈ R ∖ S, it holds:

u(µ, τ) ∈ SBVloc(R). (7)

As a consequence u(µ) ∈ SBVloc(ΩT,∞). ([1]).

• Let u0(µ) ∈ L∞(R)∩BV (R), then the following maximum principle holds
: ∥u(µ, t)∥L∞(R) ≤ ∥u0(µ)∥L∞(R). (8)

See [6].

• Let uǫ(µ) be the entropy integral solution to the problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
uǫ(µ) + ∂

∂x
fǫ(uǫ(µ),µ) = 0 (t, x) ∈ ΩT,∞

uǫ(µ,0, x) = u0(µ, x) x ∈ R, (9)

for a suitable flux fǫ ∈ C1(R). Then, the following estimate holds ([8]):

∥u(µ, t)−uǫ(µ, t)∥L1(R) ≤ ∥u0(µ)∥BV (R)∥f ′(⋅,µ)−f ′ǫ(⋅,µ)∥L∞(R)t ∀ t ∈ (0, T ),
(10)

where ∥u0(µ)∥BV (R) = sup{∫R u0(µ)divφdx ∶ φ ∈ C1
0(R), with ∥φ∥L∞(R) ≤ 1}.

Some comments are in order. Condition (6) provides a characterization of
the shock curve; in addition, by combining (6) and (8), we easily deduce that
each shock curve is Lipschitz-continuous. Moreover, since xs(µ) depends on the
solution behaviour in a neighbourhood of this curve, we expect to find a way to
compute the shock without knowing the whole solution.

Theorem 2.1 also shows why two crucial components of the classical RB ap-
proach (the approximation of the differential operator and the projection onto a
Lagrangian subspace of the linear space generated by the parametric manifold)
are extremely problematic for the problem at hand. In particular, inequality
(10) shows that it is crucial to provide a strict approximation of the flux f(⋅,µ)
with respect to the seminorm ∣ ⋅ ∣1,∞ to make negligible the difference between
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the solutions u(µ) and uǫ(µ). For this reason, the interpolation of the oper-
ator ([9]) may lead to very long affine expansion of the differential operator;
as a consequence, the computational gain that can be achieved online is lim-
ited. Concerning the projection step, thanks to (7), we can rewrite the solution
manifold in the following way:

M = {u(µ) = us(µ) +uj(µ) ∶ us(µ) ∈W 1,1
loc
(ΩT,∞) and uj(µ) = ∞∑

i=1
γi(µ)χωi(µ)},

(11)
where χω ∶ ΩT,∞ → {0,1} is the indicator function of the open set ω and{γi(µ)}∞i=1 ⊂ R. Thus, due to its intrinsic structure, the manifold M might
not be suited to be approximated through Lagrangian subspaces ([25]). The
following example is meant to show this issue.

Example 2.1 Let us consider the manifold

Mw = {w(µ) ∈ L2(−5,5) ∶ µ ∈ [0,1]} , where w(µ,x) = { 0 x ≤ µ
1 x > µ, (12)

and let WN = span{w(µj) ∶ µj ∈ [0,1], j = 1, . . . ,N} be the associated N -
dimensional Lagrangian approximation space. Then, if µj < µj+1 for all j, we
have

inf
v∈WN

∥w(µ)−v∥L2(−5,5) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
((µ − µj)(µj+1 − µ)

µj+1 − µj

)
1

2 if ∃ j ∈ {1, . . . ,N − 1} ∶
µj ≤ µ ≤ µj+1

min{∣µ − µ1∣ 12 , ∣µ − µN ∣ 12 } if µ ∈ [0, µ1) ∩ (µN ,1].
(13)

In particular, the optimal N -dimensional Lagrangian subspace is given by

W ⋆
N = arg inf

WN

⎛
⎝ sup
µ∈[0,1]

inf
v∈WN

∥w(µ) − v∥L2(−5,5)
⎞
⎠

= span{w(µj) ∶ µj = 4j − 3
4N − 2 , j = 1, . . . ,N} .,

(14a)

and

sup
µ∈[0,1]

inf
v∈W ⋆

N

∥w(µ) − v∥L2(−5,5) = 1√
4N − 2 , (14b)

i.e., the optimal convergence rate associated with Lagrangian subspaces is linear
with respect to 1/√N .

We observe that the reduced space WN can be obtained by applying other
data compression strategies, such as the Proper Orthogonal Decomposition (POD)
(see, e.g., [31, 14]), which has already been applied to non-smooth manifolds
([7]). To build the POD basis associated with the manifold (12), we define We
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define the matrix C ∈ Rntrain×ntrain such that Ci,j = 1

ntrain
(w(µj),w(µi))L2(0,1),

with {µj}ntrain

j=1 ⊂ [0,1] and ntrain ∈ N. Then, we consider the eigenproblem

CΨl = λlΨl where we assume λl ≥ λl+1, l = 1, . . . , ntrain − 1. The n-dimensional
POD space is thus given by:

Xn
ntrain

∶= span{ξPOD,ntrain

l
= ntrain∑

i=1
Ψl

iw(µi) ∶ l = 1, . . . , n ≤ ntrain} . (15)

It is straightforward to observe that Xntrain
ntrain

= span{w(µj)}ntrain

j=1 . Therefore,
because of (14b), we can deduce that:

sup
µ∈[0,1]

inf
v∈Xn

ntrain

∥w(µ) − v∥L2(−5,5) ≥ 1√
4ntrain − 2 , ∀n ∈ {1, . . . , ntrain}. (16)

As a consequence, the number ntrain of snapshots to be selected to guarantee a
sufficient accuracy could become extremely large, making the offline computa-
tional effort really prohibitive.

3 A decoupling strategy

Goal of this section is to provide a new theoretical criterion to tackle hyperbolic
problems in the presence of shocks. The leading idea we follow is to properly
introduce a partition of the domain induced by the same shock so that the
restriction of the solution to each subdomain is regular.

Let a, b ∈ R, such that a < b. We denote by u(µ) the (unique) entropy
solution to the following problem:

∫
ΩT,(a,b)

(u(µ)∂v
∂t
+ f(u(µ),µ)∂v

∂x
) dxdt +∫ b

a
u0(µ)v(0, x)dx = 0 (17)

for all v ∈ C1
0((−∞, T ) × (a, b)), completed with suitable boundary conditions2.

To develop our strategy we need the following three assumptions:

(H1) both x = a and x = b are inflow boundaries for all t > 0, that is, f(u(µ, t, a),µ) >
0, f(u(µ, t, b),µ) < 0 ([18]);

(H2) u(µ) ∈ SBV (ΩT,(a,b)) and it has only one shock xs(µ) ∈ W 1,∞(t⋆(µ), T )
such that a+δ ≤ xs(µ, t) ≤ b−δ for some δ > 0, where t⋆(µ) ∈ (0, T ) denotes
the shock starting time;

(H3) we assign the following boundary conditions

u(µ, t, a) = ξa(µ, t), u(µ, t, b) = ξb(µ, t) ∀ t ∈ (0, T )
2We refer to [3] for a thorough discussion about boundary conditions for first order quasi-

linear equations.
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at a and b, respectively, where ξa(µ), ξb(µ) ∈ W 1,1(0, T ). Furthermore,
we assume that u0(µ) ∈W 1,1(a, b) and that ξa(µ,0) = u0(µ, a) as well as
ξb(µ,0) = u0(µ, b) to guarantee the continuity of the solution in (0, a) and(0, b). Since W 1,1(I) ⊂ C(Ī) with I ⊂ R (see, e.g., [30]), we have that all
these functions are also continuous up to the boundary.

Thanks to assumptions (H1) and (H2), we can rewrite problem (17) as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫
ΩT,(a,b)

(u(µ)∂v
∂t
+ f(u(µ),µ)∂v

∂x
) dxdt + ∫ b

a
u0(µ)v(0, x)dx = 0,

u(µ, t, a) = ξa(µ, t) u(µ, t, b) = ξb(µ, t), ∀ t ∈ (0, T ),
(18)

for all v ∈ C1
0((−∞, T ) × (a, b)). Now let us consider the following space-time

partition induced by the shock xs(µ) (see Figure 1, left for an example):

Ω1(µ) = {(t, x) ∈ ΩT,(a,b) ∶ t < t⋆(µ)} ,
Ω2(µ) = {(t, x) ∈ ΩT,(a,b) ∶ t > t⋆(µ), x < xs(µ, t)} ,
Ω3(µ) = {(t, x) ∈ ΩT,(a,b) ∶ t > t⋆(µ), x > xs(µ, t)} .

(19)

We observe that the restriction of the solution u(µ) to each space-time sub-
domain Ωi(µ) is regular, i.e., u(µ)∣Ωi(µ) ∈ W 1,1(Ωi(µ)), for i = 1,2,3. With a
view to the application of the proposed MOR strategy, we aim at referring each
solution restriction to a parameter-independent domain. For this purpose, we
introduce the maps Ti(µ) ∶ ΩT,(a,b) → Ωi(µ), for i = 1,2,3, given by

T1(µ, t, x) =
⎡⎢⎢⎢⎢⎢
⎣

t⋆(µ)

T
t

T 1
x (µ, t, x)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, T2(µ, t, x) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

τ(µ, t)

a +
xs(µ, τ(µ, t)) − a

b − a
(x − a)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

T3(µ, t, x) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

τ(µ, t)

xs(µ, τ(µ, t)) +
b − xs(µ, τ(µ, t))

b − a
(x − a)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(20)
respectively, with:

T 1

x (µ, t, x) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a +
2

b − a
(γ (µ, t⋆(µ)

T
t) − a)(x − a) x < a + b

2

γ(µ, t) + 2

b − a
(b − γ (µ, t⋆(µ)

T
t))(x − a + b

2
) x ≥ a + b

2
,

(21)

τ(µ, t) = t⋆(µ) + T − t⋆(µ)
T

t, γ(µ, t) = xs(µ, t⋆(µ)) + ẋs(µ, t⋆(µ)) (t − t⋆(µ)) .
(22)
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Thanks to hypothesis (H2), the maps Ti(µ) are Lipschitz and bijective for
i = 1,2,3. Then, by construction

ui(µ) ∶= u(µ) ○Ti(µ) ∈W 1,1(ΩT,(a,b)) for i = 1,2,3. (23)

Notice that functions ui(µ) correspond to the restrictions u(µ)∣Ωi(µ) introduced
above even though they are referred to a parameter independent configuration.

We observe that u1(µ) is not continuous up to the boundary. More pre-
cisely, it is not continuous in (T, a+b

2
). However, by construction this point is

independent of the parameter µ ∈ D.
This is why we expect that the convergence of the optimal Lagrangian space

associated with the manifold {u1(µ) ∶ µ ∈ D} is enough fast to motivate the
proposed reduced order strategy.

On the other hand, hypotheses (H1) and (H3) allow us to introduce the
following partition of the space time domain ΩT,(a,b):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R1(µ) = {(t, x) ∈ ΩT,(a,b) ∶ x < a + f ′(u0(µ, a),µ)t} ∩ (Ω1(µ) ∪Ω2(µ)) ,
R2(µ) = {(t, x) ∈ ΩT,(a,b) ∶ a + f ′(u0(µ, a),µ)t < x < b + f ′(u0(µ, b),µ)t} ,
R3(µ) = {(t, x) ∈ ΩT,(a,b) ∶ x > b + f ′(u0(µ, b),µ)t} ∩ (Ω1(µ) ∪Ω3(µ)) .

(24)
Figure 1 shows the difference between the two partitions. While partition{Ωi(µ)}3i=1 is induced by the shock equation and identifies a number of regions
where the solution restrictions are regular, partition {Ri(µ)}3i=1 is induced by the
boundary conditions and drives the application of the method of characteristics
performed in Proposition 3.1.

t⋆(µ)
Ω1(µ)

Ω2(µ) Ω3(µ)
xs(µ)

(0, a) (0, b)

(T,a) (T, b)

















@
@

@
@@

R2(µ)

R1(µ) R3(µ)
xs(µ)

(0, a) (0, b)

(T,a) (T, b)

Figure 1: Example of the partitions (19) (left) and (24) (right); the dotted
line (left) represents the shock curve; the continuous lines (right) represent the
characteristics issuing from (0, a) and (0, b)

We are now ready to state the main result of this paper. We first introduce
some notation. We denote by T i

t (µ) and T i
x(µ) the t-component and the x-

component of the map Ti(µ), respectively, for i = 1,2,3. Furthermore, we refer
to Gi(µ) as to the inverse map of Ti(µ), while Ji(µ) ∶= det∇Ti(µ) denotes the
Jacobian of the map Ti(µ), with i = 1,2,3.
Proposition 3.1 Let us consider the entropy solution u(µ) to (17). If the
hypotheses (H1)-(H3) are verified, the following statements hold:
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• the restrictions u1(µ), u2(µ), u3(µ) ∈W 1,1(ΩT,(a,b)) defined in (23) solve
the following problems:

∫
ΩT,(a,b)

([ui(µ), f(ui(µ))]∇Gi(µ)∇v) Ji(µ)dxdt
+∫ b

a
u0,i(µ)Ji(µ)∣t=0v∣t=0 dx = 0,

(25a)

for all v ∈ C1
0((−∞, T ) × (a, b)), where

u0,i(µ, x) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u0(µ, T 1
x (µ,0, x)) if i = 1

u1 (µ,G1(µ, T 2
t (µ,0, x), T 2

x (µ,0, x))) if i = 2
u1 (µ,G1(µ, T 3

t (µ,0, x), T 3
x (µ,0, x))) if i = 3

(25b)

completed with the following boundary conditions:

u1(µ, t, a) = ξa (µ, T 1
t (µ, t, a)) , u1(µ, t, b) = ξb (µ, T 1

t (µ, t, b)) ;
u2(µ, t, a) = ξa (µ, T 2

t (µ, t, a)) ; u3(µ, t, b) = ξb (µ, T 3
t (µ, t, b)) ,

(25c)

for t ∈ (0, T );
• if (t, x) ∈ Ri(µ) for some i = 1,2,3, the pointwise value of the entropy

solution u(µ, t, x) solves the following nonlinear equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(µ, t, x) − ξa (µ, t − x − a
f ′(u(µ, t, x),µ)) = 0 if (t, x) ∈ R1(µ)

u(µ, t, x) − u0 (µ, x − f ′(u(µ, t, x),µ)t) = 0 if (t, x) ∈ R2(µ)
u(µ, t, x) − ξb (µ, t − x − b

f ′(u(µ, t, x),µ)) = 0 if (t, x) ∈ R3(µ)
(26)

Proof. The first statement essentially follows from (18) and (23) and by applying
the change of variable in (20)-(22).

Thus, let us focus on the second statement of the proposition. We start from region
R2(µ). First, we introduce the characteristic lines, which are, generally, defined by

xξ(µ, t) = ξ + f ′(u0(µ, ξ),µ)t,
where ξ ∈ (a, b) is the so-called foot of the characteristics. Then, we introduce ξ1 =
inf{ξ ∈ [a, b] ∶ xξ(µ, t⋆(µ)) = xs(µ, t⋆(µ))} and ξ2 = sup{ξ ∈ [a, b] ∶ xξ(µ, t⋆(µ)) =
xs(µ, t⋆(µ))}. Starting from such definitions, we subdivide R2(µ) into three subregions,
i.e., R21(µ), R22(µ), R23(µ), such that

R21(µ) = {(t, x) ∈ R2(µ) ∶ x < x⋆21(µ, t)} ,
R22(µ) = {(t, x) ∈ R2(µ) ∶ t < t⋆(µ), xξ1(µ, t) < x < xξ2(µ, t)} ,
R23(µ) = {(t, x) ∈ R2(µ) ∶ x > x⋆23(µ, t)} ,

(27)
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with

x⋆
21
(µ, t) = ⎧⎪⎪⎨⎪⎪⎩

xξ1(µ, t) if t < t⋆(µ)
xs(µ, t) if t ≥ t⋆(µ) x⋆

23
(µ, t) = ⎧⎪⎪⎨⎪⎪⎩

xξ2(µ, t) if t < t⋆(µ)
xs(µ, t) if t ≥ t⋆(µ),

(see Figure 2 for an example). We observe that u(µ) ∈W 1,1(R2i(µ)) for i = 1,2,3.
Let us consider the subregion R21(µ). The solution is constant along the character-

istics and, by construction, the characteristic lines do not intersect each other in R21(µ).
As a consequence we have that,

for any ξ, ξ′ ∈ [a, ξ1], with ξ < ξ′, xξ(µ, t) < xξ′(µ, t) ∀ t < t⋆(µ).
Let (t̄, x̄) ∈ R21(µ). We have to prove that there exists ξ ∈ [a, ξ1] such that xξ(µ, t̄) = x̄.
For this purpose, let us define the two sets

A−(t̄,x̄) ∶= {ξ ∈ [a, ξ1] ∶ xξ(µ, t̄) ≤ x̄} , A+(t̄,x̄) ∶= {ξ ∈ [a, ξ1] ∶ xξ(µ, t̄) ≥ x̄}
and the two values ξ⋆ ∶= maxA−(t̄,x̄) and ξ⋆⋆ ∶= minA+(t̄,x̄). Both ξ⋆ and ξ⋆⋆ are well

defined. Indeed, thanks to the fact that xa(µ, t̄) ≤ x̄ ≤ xξ1(µ, t̄), we have that {a} ⊂A−(t̄,x̄) and {ξ1} ⊂ A+(t̄,x̄), so both the sets are not empty. Moreover, xξ(µ, ⋅) is continuous
with respect to ξ; then both A−(t̄,x̄) and A+(t̄,x̄) are closed. As a consequence, they admit
a maximum and a minimum.

Due to the fact that the characteristics do not intersect each other in R21(µ), we
have that ξ⋆ ≤ ξ⋆⋆. Now, we prove that ξ⋆ = ξ⋆⋆. By contradiction, we assume that
there exists ξ̃ ∈ (ξ⋆, ξ⋆⋆). Since ξ⋆ < ξ̃, we have that xξ̃(µ, t̄) > x̄, i.e., by definition

ξ̃ = ξ⋆⋆ which leads us to a contradiction. So ξ⋆ ≡ ξ⋆⋆.
Then, the continuity of xξ(µ, ⋅) with respect to ξ allows us to write

xξ⋆(µ, t̄) = x̄ = xξ⋆⋆(µ, t̄).
Due to the fact that the solution is constant along the characteristic lines we have

u(µ, t̄, x̄) = u0(µ, ξ⋆) = u0(µ, x̄ − f ′(u(µ, t̄, x̄),µ)t̄),
which proves (26) for (t, x) ∈ R21(µ). Subregions R22(µ) and R23(µ) as well as regions
R1(µ) and R3(µ) can be dealt in a similar way. ◻

#
#

#
#
#
#
#
#
##

�
�
�
��

l
l

l
l

l

l
l

l
l

l
l

l
l

R21(µ) R22(µ) R23(µ)

R1(µ) R3(µ)
xs(µ)

(0, a) (0, b)

(T,a) (T, b)

(0, ξ1) (0, ξ2)

Figure 2: Example of partition {R2i(µ)}3i=1. The continuous lines represent the
characteristics starting from a, ξ1, ξ2 and b.

The importance of Proposition 3.1 is twofold. First of all, if we know the
shock equation xs(µ), we are able to decouple the starting problem (18) into
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three subproblems whose solutions coincide with the smooth components of
u(µ). Moreover, due to the regularity of the manifolds associated with each
component, we can approximate these components through a linear combina-
tion of a small number of corresponding elements properly selected.

As a second consequence, equation (26) allows us the computation of point-
wise values of the entropy solution u(µ) without knowing the whole solution but
just via the functions ξa and ξb and the initial datum u0.

Moving from these remarks, we have settled the decoupling strategy for the
shock detection in such a way:

• in the offline stage we compute an approximation uδ(µj) for u(µj) for some
(properly selected) values of the parameter µj ∈ D with j = 1,⋯,N , and
for a certain space-time discretization δ = (∆t, h). Then, we approximate
xs(µj) and we compute the components ui(µj) via (23), i.e., via the maps
Ti(µj), for i = 1,2,3. Now, let

WRB
i,N ∶= span{ui(µj) ∶ j = 1,⋯,N}

denote the reduced space associated with the i-th component ui(µ) and
with the N parameters µj . Finally, for each space WRB

i,N , we define a set
of points (ti,j , xi,j) and a corresponding suitable basis {qi,j} for j = 1,⋯,N
and i = 1,2,3;

• in the online stage, for any new value of the parameter µ ∈ D, we first
reconstruct the shock {xs(µ, t) ∶ t ∈ (t⋆(µ), T )} and then we compute the
solution u(µ) in the mapped nodes:

(t̃i,j(µ), x̃i,j(µ)) ∶= Ti(µ)(ti,j , xi,j) i = 1,2,3, j = 1,⋯,N. (28)

Then, for each ui(µ), we reconstruct a corresponding approximation uRB
i (µ) ∈

WRB
i,N through an interpolation procedure where the nonlinear equation

(26) is solved through the Newton method. In this way, we are not obliged
to solve any reduced variational problem. As a consequence, we do not
need to approximate the differential operator.

The operative details about the steps in the offline and online stages will be
provided in the next section. Concerning hypotheses (H1)-(H3), we remark that
the a priori knowledge of the equation of the shock curves (hypothesis H2) is
necessary for the definition of the maps (20) and, consequently, of the smooth
problems (25). On the other hand, assumptions (H1) and (H3) lead to the
nonlinear equation (26), which represents a relevant simplification of the general
Hopf-Lax formula (see [1, Theorem 2.3]).
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4 A practical approach

In this section we focus on the solution to the model problem (18). The following
ingredients are essential:

i) an efficient algorithm to estimate xs(µ, ⋅) in the offline and in the online
stages;

ii) for a given numerical approximation uδ(µ) of u(µ) and a numerical ap-
proximation xs,δ(µ) of xs(µ), a procedure to identify the three components
of the solution ui(µ) for i = 1,2,3;

iii) a criterion to properly select the interpolation points (ti,j , xi,j) and the
bases {qi,j}, for i = 1,2,3 and j = 1, . . . ,N .

Before dealing with these issues, we introduce the truth solver adopted to
discretize the hyperbolic equation and some useful notation.

We use a finite volume conservative scheme where boundary conditions are
treated through the ghost point technique ([18, 19]). Given the space-time do-
main ΩT,(a,b), we consider the uniform space-time mesh (tk, xl), for k = 0,⋯,K
and l = 1,⋯,N , such that xl = a + (l − 1)h, tk = k∆t with h = b−a

N−1 and ∆t = T
K
,

with δ = (∆t, h) the space-time mesh size. For the problem at hand, the generic
finite volume conservative method can be written as:

uk+1δ,l (µ) = ukδ,l(µ) − ∆t

h
( F (ukδ,l−p(µ), . . . , ukδ,l+q(µ),µ)
−F (ukδ,l−p−1(µ), . . . , ukδ,l+q−1(µ),µ)),

(29)

where the solution {ukδ,l(µ)}k,l is an approximation to the average value of the

exact solution in the l-th cell and at time tk, i.e., ukδ,l(µ) ≃ 1

h ∫ xl+h
2

xl−h
2

u(µ, tk, x)dx,
while F (µ) denotes the numerical flux. Throughout this work we use the Lax-
Friedrichs and the Godunov monotone fluxes ([18]).

4.1 The shock capturing algorithm

Let us introduce the following quantities, which collect the information related
to the shock:

Λ(µ, t) ∶= (t, xs(µ, t), uleft(µ, t), uright(µ, t)), Λ(µ) ∶= {Λ(µ, t) ∶ t ≥ t⋆(µ)} ,
Λδ(µ, t) ∶= (t, xs,δ(µ, t), uleft,δ(µ, t), uright,δ(µ, t)),Λδ(µ) ∶= {Λδ(µ, t) ∶ t ≥ t⋆δ(µ)} ,

(30)
with uleft(µ, t) and uright(µ, t) as in Theorem 2.1. Aim of this section is to
define two procedures (one for the offline stage and one for the online stage)
to reconstruct Λ(µ). For this purpose, we subdivide each procedure into two
different phases:
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• the computation of Λ(µ, t⋆(µ));
• the reconstruction of the whole shock Λ(µ).

We emphasize that these two phases characterize both the offline and the online
stages.

Computation of the shock starting point

We adopt a different approach to identify the shock starting point in the offline
and in the online stages. In practice, a shock is a region (here called artificial
boundary layer) where the solution exhibits a strong - i.e., larger than a certain
constant H > 0 - gradient. Thus, we can reasonably assume that xs(µ, t) is
located inside the high-derivative region and it exactly coincides with the max-
imum of the derivative. In particular, if the shock is not originated at t = 0, we
expect that the maximum of the derivative gradually grows before stabilizing at
a certain large value. This remark justifies why, in the offline stage, to estimate
t⋆(µ) we essentially check whether such a high derivative region does exists and,
in this case, if the maximum of the derivative is monotonically increasing in
time.

In more details, let Mk
∇(µ) denote the maximum of the first order discrete

spatial derivative3 {Dlu
k
δ(µ)}Nl=1 associated with the discrete values {ukδ,l(µ)}k,l.

The approximation for the shock starting point is thus defined as

t⋆δ(µ) ∶= k⋆(µ)∆t, xs,δ(µ, t⋆δ(µ)) ∶= xlk⋆∇ (µ) (31a)

with

k⋆(µ) ∶=min

⎧⎪⎪⎨⎪⎪⎩k ∈ {0,⋯,K} ∶ M
k
∇(µ) > ctest

Ntest

Ntest∑
p=1

M
p+k
∇ (µ), Mk

∇(µ) >H
⎫⎪⎪⎬⎪⎪⎭ ,

lk
⋆
∇ (µ) ∶= argmax

l
∣Dlu

k⋆(µ)
δ

(µ)∣,
(31b)

and where ctest ∈ (0,1) and Ntest ∈ N are introduced to properly tune the oscil-
latory behaviour in time of the maximum of the spatial derivative. To compute
uleft(µ, t⋆(µ)) and uright(µ, t⋆(µ)), we solve the nonlinear equation (26), with(t, x) = (t⋆δ(µ), xs,δ(µ, t⋆δ(µ))) via the Newton method. Since the solution to the
nonlinear equation is not unique (by construction we have at least two solutions,
see Proposition 3.1), we need to properly initialize the Newton scheme. The
initial guesses are built by means of the values {ukδ,l(µ)}k,l as

u
guess
left,δ
(µ) ∶= uk

δ,lk
⋆
∇ (µ)−∆

u
guess
right,δ

(µ) ∶= uk
δ,lk

⋆
∇ (µ)+∆

(32)

3In this work the discrete spatial derivative is simply computed via a centered finite difference
method. We refer to [27] for further details.
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where ∆ ∈ N is a properly chosen index that takes into account the thickness of
the artificial boundary layer.

The previous strategy is computationally too expensive for the online stage.
As a consequence, at the end of the offline stage, we construct a polynomial
approximation for the shock starting point and for the left- and right-solution
limits by using the precomputed values for µj ∈ D, with j = 1, . . . ,N . In the
online stage, for any new parameter µ ∈ D, we approximate Λ(µ, t⋆(µ)) through
the respective polynomials built offline and finally we solve (26) to correct the
approximation of uleft(µ, t⋆(µ)) and uright(µ, t⋆(µ)).
Reconstruction of the entire shock curve

Let us now turn to the second phase, where the entire shock curve (together
with the left and right solution values) are recovered.

The two ingredients of the method here proposed for this purpose are:

• the Rankine Hugoniot condition (6);

• the characteristic equation (26).

Given the values Λδ(µ, tk), we compute xs,δ(µ, tk+1) through an explicit dis-
cretization of the ODE (6) and then we evaluate uleft,δ(µ, tk+1) and uright,δ(µ, tk+1)
directly by solving the nonlinear equation (26). We observe that this method is
independent of the spatial mesh size h and so it can be adopted both in offline
and in online stages.

Entire procedure

Algorithm 1 itemizes the whole procedure proposed for the shock capture, by
distinguishing the offline from the online phases.

The proposed method essentially depends on four constants: H > 0, used to
identify the high derivative region; ∆ measuring the extension of the artificial
boundary layer; ctest and Ntest characterizing the criterion to select k⋆(µ). A
rigorous selection of these parameters is far from the purpose of this paper.
We simply perform a numerical tuning of these constants during the numerical
validation. We can state that the choice of H and ∆t can be relatively rough: H
is required only to start the shock detection procedure, whereas ∆ is employed
simply to set the initial guesses (32) for the Newton algorithm. Finally, we
have numerically shown that definitions (31) are not particularly sensitive to the
values ctest and Ntest. In Algorithm 1 with notation u = Newton(ustart, tu, xu,µu)
we mean that we evaluate the solution u to (26) at (t, x,µ) = (tu, xu,µu) via the
Newton method, starting from the initial guess ustart.
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Algorithm 1 Shock capturing procedure

1. Approximation of Λ(µ, t⋆(µ))
Offline stage:[Λδ(µ, t⋆(µ))] = shock capturing offline step1 (uδ(µ),H,∆,Ntest, ctest)

Compute [Mk
∇(µ), lk∇(µ)] = max

l=1,⋯,N
∣Dlu

k
δ(µ)∣, for each k = 1,⋯,K.

Compute t⋆δ(µ) and xs,δ(µ, t⋆δ(µ)) through (31).
Compute the rough approximations for the left-and right-solutions uguess

left,δ
(µ)

and u
guess
right,δ

(µ) through (32).
Compute the left and right solutions:

uleft,δ(µ, t⋆δ(µ)) = Newton(uguessleft,δ
(µ), t⋆δ(µ), xs,δ(µ, t⋆δ(µ)),µ),

uright,δ(µ, t⋆δ(µ)) = Newton(uguessright,δ
(µ), t⋆δ(µ), xs,δ(µ, t⋆δ(µ)),µ).

Online stage:[Λδ(µ, t⋆(µ))] = shock capturing online step1 (µ)
Compute Λδ(µ, t⋆δ(µ)) through the pre-computed polynomial approxima-
tions.

Adjust the approximations of the left-and right-solutions:

uleft,δ(µ, t⋆δ(µ)) = Newton(uleft,δ(µ, t⋆δ(µ)), t⋆δ(µ), xs,δ(µ, t⋆δ(µ)),µ)
uright,δ(µ, t⋆δ(µ)) = Newton(uright,δ(µ, t⋆δ(µ)), t⋆δ(µ), xs,δ(µ, t⋆δ(µ)),µ)

2. Reconstruction of the shock curve for t > t⋆(µ)
[Λδ(µ)] = shock capturing step2 (Λδ(µ, t⋆(µ)))

for k = ⌊ t⋆δ(µ)
∆t
⌋,⋯,K − 1

xs,δ(µ, tk+1) = xs,δ(µ, tk) +∆t
f(uright,δ(µ, tk),µ) − f(uleft,δ(µ, tk),µ)

uright,δ(µ, tk) − uleft,δ(µ, tk)
uleft,δ(µ, tk+1) = Newton(uleft,δ(µ, tk), tk+1, xs,δ(µ, tk+1),µ)
uright,δ(µ, tk+1) = Newton(uright,δ(µ, tk), tk+1, xs,δ(µ, tk+1),µ)

end for

4.2 Smooth-jump decomposition

We now explain how to decompose the numerical solution uδ(µ) into its three
smooth components uδ i(µ), for i = 1,2,3, during the offline stage. For this
purpose, we essentially exploit (23), i.e., the maps Ti(µ).

Due to the intrinsic numerical viscosity of the adopted discretization scheme,
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Algorithm 2 Smooth-Jump decomposition[uδ 1(µ), uδ 2(µ).uδ 3(µ)] = smooth-jump decomposition(uδ(µ),Λδ(µ),∆)
Preprocessing

for k = k⋆(µ), . . . ,K
Compute lks through (33).

lkleft = arg min
l∈{lks−∆,...,lks}

∣uleft,δ(µ, tk) − ukδ,l(µ)∣,
lkright = arg min

l∈{lks ,...,lks+∆}
∣uright,δ(µ, tk) − ukδ,l(µ)∣

uδ,l(µ) = { uleft,l(µ, tk) l = lkleft, . . . , lks − 1
uright,l(µ, tk) l = lks , . . . , lkright

end for

Reconstruction

Space scaling

for k = 1,⋯, k⋆(µ) − 1
Compute lks through (33).

{uaux,k
δ 1,l
(µ)}N2 −1

l=1 = FV mapping ({ukδ,l(µ)}l,1, lks − 1,1, N2 − 1)
{uaux,k

δ 1,l
(µ)}N

l=N
2

= FV mapping ({ukδ,l(µ)}l, lks ,N , N
2
,N )

end for

for k = k⋆(µ),⋯,K
{uaux,k

δ 2,l
(µ)}Nl=1 = FV mapping ({ukδ,l(µ)}l,1, lks − 1,1,N )

{uaux,k
δ 3,l
(µ)}Nl=1 = FV mapping ({ukδ,l(µ)}l, lks ,N ,1,N )

end for

Time scaling

for l = 1,⋯,N{ukδ 1,l(µ)}Kk=0 = FV mapping ({ukδ,l(µ)}k,0, k⋆(µ) − 1,0,K)
{ukδ 2,l(µ)}Kk=0 = FV mapping({uaux,k

δ 2,l
(µ)}k, k⋆(µ),K,0,K)

{ukδ 3,l(µ)}Kk=0 = FV mapping({uaux,k
δ 3,l
(µ)}k, k⋆(µ),K,0,K)

end for

we perform a pre-processing of uδ(µ) before applying (23). More precisely, let
us consider the set of spatial indices {lks}Kk=0, given by

lks ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

arg min
l∈{1,...,N}

∣γδ(µ, tk) − xl∣ k < k⋆(µ)
arg min

l∈{1,...,N}
∣xs,δ(µ, tk) − xl∣ k ≥ k⋆(µ), (33)

where γδ(µ, tk) is a truth approximation of γ(µ, tk) defined in (22). We modify
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the solution values close to the shock so that uk
δ,lks−1

(µ) ≃ uleft,δ(µ, tk) and

uk
δ,lks
(µ) ≃ uright,δ(µ, tk).
In addition, we introduce a computational strategy that allows us to map a

function defined on a certain (space-time) partition to a different one. Let us
focus on the spatial grid. We consider two couples of indices (l1a, l1b) and (l2a, l2b)
with 1 ≤ lpa < lpb ≤ N for p = 1,2. Let vh ∈ Rl1

b
−l1a+1 be the vector collecting the

values vh,l ∶= 1

h ∫
x
l1a+l− 1

2

x
l1a+l− 3

2

v (x) dx of a real valued function v defined on (xl1a , xl1b )
for l = 1, . . . , l1b − l1a + 1. The mapping of v onto the new interval (xl2a , xl2b ) leads
us to introduce the new vector ṽh ∈ Rl2

b
−l2a+1 with components

ṽh,l ∶= 1

h
∫ x

l2a+l− 1
2

x
l2a+l− 3

2

v
⎛
⎝xl1a +

xl1
b
− xl1a

xl2
b
− xl2a (y − xl2a)

⎞
⎠ dy, for l = 1, . . . , l1b − l1a + 1. (34)

Throughout this paper we refer to the algorithm that approximates ṽh for any
given vh and any two couples of indices (lpa, lpb), p = 1,2, via the command ṽh =
FV mapping(vh, l

1
a, l

1

b , l
2
a, l

2

b). In particular, we approximate (34) through a three
point quadrature rule (see, e.g., [27]) according to which the pointwise values of
v are reconstructed through linear interpolation. With obvious modifications,
the same approach can be applied to the time partition.

Algorithm 2 summarizes the smooth-jump decomposition procedure.

4.3 A greedy approach for the selection of the interpolation

points

Unlike the other algorithms of this paper, the technique we are going to present -
the so-called Empirical Interpolation Method (EIM) (see, e.g., [4]) - is extremely
well-known. However, at the best of our knowledge, it is the first time that such
technique is applied to this framework.

Let us assume that the values {ukδ i,l(µ)}k,l for i = 1,2,3, l = 1, . . . ,N and k =
0, . . . ,K, have already been computed for some µ = µj ∈ D. Then, we can select
the interpolation points (ti,j , xi,j) and the corresponding interpolatory bases{qi,j} together with the associated matrix Bi

jj′ ∶= qi,j(ti,j′ , xi,j′) for j, j′ = 1,⋯,N
and i = 1,2,3 via the greedy strategy proposed in [4]. Our numerical simulations
show that, if the elements of the manifold exhibit regions characterized by high
derivatives, the interpolation process may produce instabilities when the number
of reduced bases grows. In particular, when we apply the procedure to the first
component {ukδ 1,l(µ)}k,l the interpolation process might be less reliable close to
the shock starting point. This is why we propose two devices to contain this
drawback.

First of all, we perform a post-processing of each snapshot via a smooth filter
to avoid spurious instabilities in the proximity of the regions close to the shock
starting point. In more detail, we use the Matlab® tool smooth ([23]), which is
based on a simple moving average smoothing. Then, it is convenient to prevent
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the greedy algorithm from selecting interpolation points associated with high
solution gradients. This is justified by the fact that the approximation of the
nonlinear equation (26) is a problem whose conditioning is good when we are
far from the incoming shock, and viceversa.

4.4 The whole algorithm

After detailing separately the main specific algorithms, we provide now the pro-
posed procedure as a whole. Algorithm 3 itemizes the main steps of the global
offline/online procedure. We remark that, so far, no detail has been provided
about the sampling strategy adopted for the smooth problems. In the RB frame-
work, the Greedy algorithm (see, for instance, [29]), is usually employed to prop-
erly select the parameters µj ∈ D. This approach is based on an inexpensive and
rigorous a posteriori error estimator. Nevertheless, such an estimator has not
yet been developed for nonlinear hyperbolic equations. For this reason, in the
numerical simulations of Section 5 we resort to equispaced µj . In Appendix A
we provide a first attempt of a posteriori error indicator.

We finally observe that, in order to solve the nonlinear equation (26) in each
mapped node (28) through an iterative method, it is necessary to properly select
the initial guess. To do this, we employ a simple polynomial fitting. The same
approach has been chosen to reconstruct t⋆(µ) and xs(µ, t⋆(µ)). However, any
other approximation technique, in principle, can be applied. Moreover, as proved
in the numerical validation, while the approximations of t⋆(µ) and xs(µ, t⋆(µ))
have to be extremely sharp, the other quantities can be roughly approximated
since they are used only as initial guess for the Newton iterative algorithm.

4.5 Input-output relationships

The Reduced Basis method can provide a significant speed-up in the computa-
tion of input-output relationships depending on the solution of the parametrized
equation.

In order to explain how to efficiently compute the input-output relation dur-
ing the online stage, let us consider the following example. Let

s(µ) = ∫
ΩT,(a,b)

w(µ)u(µ)dxdt (35)

be the linear-functional output of interest, where u(µ) is the solution to (17),
w(µ) is a weight function and ΩT,(a,b) = (0, T ) × (a, b).

Our goal is to make the computation of s(µ) independent of the spatial
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Algorithm 3 Offline-online decomposition

Offline stage

1: Compute uδ(µj), j = 1,⋯,N , through a truth method of the form (29) and
build Λδ(µj) through Algorithm 1 (shock capturing).

2: Build uδ i(µj), i = 1,2,3 through Algorithm 2 (smooth jump decomposition).

3: Compute {qi,j}j=1,⋯,N , {(ti,j , xi,j)}j=1,⋯,N and {Bi
j,j′}j,j′=1,⋯,N through the

EIM.

4: Using the precomputed values {Λδ(µj , t
⋆(µj)), compute the coefficients of

a (polynomial) approximation of {Λδ(µ, t⋆(µ)) for µ ∈ D.
5: As in Point 4, compute the coefficients of a (polynomial) approximation of

ui(µ) ○Ti(µ)(ti,j , xi,j), i = 1,2,3.
Online stage

1: Compute xs(µ, tk), k = k⋆(µ),⋯,K through Algorithm 1 (shock capturing).

2: Refer the points {(ti,j , xi,j)}j=1,⋯,N , i = 1,2,3, to the actual configuration
via (28).

3: For i = 1,2,3, j = 1,⋯,N , apply the Newton method to solve (26) for (t, x) =(t̃i,j(µ), x̃i,j(µ)) using the approximation of ui(µ)○Ti(µ)(ti,j , xi,j) as initial
guess.

4: Compute the interpolation coefficients.

mesh. By recalling the definition (23) of ui(µ), for i = 1,2,3, we have

s(µ) = ∫
ΩT,(a,b)

w(µ, t, x)u(µ, t, x)dxdt
= ∫ t⋆(µ)

0
∫ b

a
w(µ, t, x)u(µ, t, x)dxdt

+ ∫ T

t⋆(µ)
∫ xs(µ,t)

a
w(µ, t, x)u(µ, t, x)dxdt

+ ∫ T

t⋆((µ))
∫ b

xs(µ,t)
w(µ, t, x)u(µ, t, x)dxdt.

= ∫
ΩT,(a,b)

3∑
i=1
(w(µ) ○Ti(µ)Ji(µ)) (s, y)ui(µ, s, y)dyds

= ∫
Ω

T,(a, a+b
2
)
(w(µ) ○T1(µ)J1(µ)) (s, y)u1(µ, s, y)dyds,

+ ∫
Ω

T,(a+b
2

,b)
(w(µ) ○T1(µ)J1(µ)) (s, y)u1(µ, s, y)dyds

+ 3∑
i=2
∫
ΩT,(a,b)

(w(µ) ○Ti(µ)Ji(µ)) (s, y)ui(µ, s, y)dyds,
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where the last equality is due to the discontinuity of Ji(µ) at (s, a+b2 ), for all
s ∈ (0, T ). Then, by applying the EIM to each term w(µ) ○ Ti(µ)Ji(µ), we
obtain

(w(µ) ○T1(µ)J1(µ)) (s, y) ≃ M1∑
m=1

Θm
w,1(µ)w1

m(s, y) (s, y) ∈ Ω
T,(a,a+b

2
)

(w(µ) ○T1(µ)J1(µ)) (s, y) ≃ M2∑
m=1

Θm
w,2(µ)w2

m(s, y) (s, y) ∈ Ω
T,(a+b

2
,b)

(w(µ) ○Ti(µ)Ji(µ)) (s, y) ≃ Mi+1∑
m=1

Θm
w,i+1(µ)wi+1

m (s, y) (s, y) ∈ ΩT,(a,b) i = 2,3,
(36)

where Θm
w,i ∶ D → R and wi

m ∶ ΩT,(a,b) → R, i = 1,2,3,4 and m = 1, . . . ,Mi, result
from the application of the EIM.

Therefore, given the RB approximations of ui(µ), uRB
δ i (µ) = ∑N

j=1Θ
j
u,i(µ)qi,j ,

we can define the following parametrically affine approximation for the output
(35)

sRB(µ) = 2∑
i=1

Mi∑
m=1

N∑
j=1

Θm
w,i(µ)Θj

u,1(µ)Aijm + 4∑
i=3

Mi∑
m=1

N∑
j=1

Θm
w,i(µ)Θj

u,i−1(µ)Aijm,

(37a)
where A1jm = ∫Ω

T,(a, a+b
2
)
w1
m(t, x)q1,j(t, x)dxdt

A2jm = ∫Ω
T,(a+b

2
,b)

w2
m(t, x)q1,j(t, x)dxdt

A3jm = ∫ΩT,(a,b)
w3
m(t, x)q2,j(t, x)dxdt

A4jm = ∫ΩT,(a,b)
w4
m(t, x)q3,j(t, x)dxdt

(37b)

can be computed offline.
We observe that (37) guarantees an efficient offline online computational de-

composition: the online computation is independent of the spatial mesh whereas
the temporal mesh influences the algorithm only during the shock capturing al-
gorithm.

5 Numerical results

We now assess the proposed approach on different hyperbolic problems. Three
different aspects are essentially investigated. First of all, we focus only on the
shock detection phase during the offline stage. Then, we validate the whole pro-
cedure detailed in Algorithm 3. Finally, we assess the input-output relationship
discussed in Section 4.5.
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5.1 Shock detection and smooth just decomposition

First of all, we check the robustness of the whole shock detection procedure used
during the offline stage, i.e., of both the Algorithms 1 (offline part) and 2.

Consider the following example where the hyperbolic equation

∂

∂t
u(µ) + µ ∂

∂x
(u(µ)(1 − u(µ))) = 0 (38a)

is discretized in Ω6,(−3,3) = (0,6) × (−3,3), completed with the following initial
and boundary conditions

u(µ,0, x) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

3
x < 0

1

3
+ 5

12
x 0 ≤ x < 1

3

4
x ≥ 1,

u(µ, t,−3) = 1

3
, u(µ, t,3) = 3

4
. (38b)

for x ∈ (−3,3) and t ∈ (0,6), respectively. The corresponding exact solution is
given by

u(µ, t, x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
x <min{1

3
µt, 1

2
− 1

12
µt}

4 + 5x − 5µt
2(6 − 5µt) 1

3
µt ≤ x ≤ 1 − 1

2
µt, t < 6

5µ

3

4
x >max{1 − 1

2
µt, 1

2
− 1

12
µt}.

(39)

Thus, via (23), the smooth components ui(µ) of u(µ) are given by:

u1(µ, s, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
T 1

x (s, y) ≤ 1

15
s

4 + 5T 1
x (s, y) − s

2(6 − s)
1

15
s ≤ T 1

x (s, y) ≤ 1 − 1

10
s

3

4
T 1

x (s, y) ≥ 1 − 1

10
s

,

u2(µ, s, y) = 1

3
, u3(µ, s, y) = 3

4
,

(40)

where

T 1

x (s, y) ∶=
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−3 + 7 − 1

30
s

6
(y + 3) y ≤ 0

1

2
− 1

60
s + 5 + 1

30
s

6
y y ≥ 0.

Concerning the discretization scheme, we resort to the Godunov numerical flux,
while we choose a uniform space-time mesh with size δ = (2 ⋅ 10−3,10−2). The
parameters to be set in Algorithm 2 are chosen as

H = 0.3∆u(µ)
h

, ∆ = 10, Ntest = 20, ctest = 0.9, (41)
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where ∆u(µ) =max(t,x) u(µ, t, x) −min(t,x) u(µ, t, x), for (t, x) ∈ Ω6,(−3,3).
Table 1 gathers some quantitative information for three different choices of

µ. In particular, we compare the approximate values for t⋆(µ), xs(µ, t⋆(µ)),
uleft(µ, t⋆(µ)) and uright(µ, t⋆(µ)) (in the second column) with the correspond-
ing exact values (in the third column). It is evident that the proposed approach
is able to correctly detect the time and the starting point of the shock as well
as the values of solution at the left and the right of the shock.

Table 1: Main quantities involved in the shock capture: comparison between
approximated and exact values for different choices of the velocity.

(t⋆δ(µ), xs,δ(µ, t⋆δ(µ)), uguessleft,δ
(µ), uguess

right,δ
(µ)) Λ(µ, t⋆(µ))

µ = 0.6 (2.0260,0.4,0.3381,0.7419) (2, 2
5
,
1

3
,
3

4
)

µ = 1 (1.2200,0.4,0.3383,0.7413) (6
5
,
2

5
,
1

3
,
3

4
)

µ = 1.6 (0.7620,0.4,0.3381,0.7419) (3
4
,
2

5
,
1

3
,
3

4
)

Table 2: Errors in the reconstruction of the smooth components uδ 1(µ) and of
the shock starting time for three different uniform space-time meshes.∥u1(µ) − uδ 1(µ)∥L2(Ω6,(−3,3)) ∣t⋆δ(µ) − t⋆(µ)∣

δ = (2 ⋅ 10−3,10−2) 2.1 ⋅ 10−2 1.2 ⋅ 10−2

δ = (10−3,5 ⋅ 10−3) 1.2 ⋅ 10−2 4.0 ⋅ 10−3

δ = (5 ⋅ 10−4,2.5 ⋅ 10−3) 7.5 ⋅ 10−3 5.0 ⋅ 10−4

Let us focus now on the decomposition of the numerical solution uδ(µ) into
the corresponding smooth components uδ i(µ), with i = 1,2,3, provided by Algo-
rithm 2. In this case, we fix the parameter µ to 1.6 and we vary the space-time
discretization, by making three different choices for the space-time mesh size, i.e.,
δ = (2 ⋅10−3,10−2), δ = (2 ⋅10−3,10−2) and δ = (5 ⋅10−4,2.5 ⋅10−3). For each of these
choices, we compute the space-time L2-norm error associated with the approxi-
mation uδ 1(µ) as well as the error due to the approximation of the time t⋆(µ) via
the discrete prediction t⋆δ(µ). The corresponding values are collected in Table
2. As expected, it turns out that the quality of the approximations provided by
the proposed reconstruction algorithm depends on the selected space-time mesh.
In particular, since the Godunov scheme is first order accurate, we deduce that
the slight deterioration in the rate of convergence can be ascribed to the same
reconstruction process.
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Before concluding, we observe that, while the solution u(µ) depends on the
parameter µ, ui(µ) is µ-independent, for i = 1,2,3. As a consequence, if we as-
sume that the distance between the truth and the real solution is negligible, then
the whole error associated with the offline/online strategy proposed in Algorithm
3 coincides exactly with the error related to the shock detection procedure.

5.2 Validation of the whole algorithm

In this section we deal with the whole procedure, i.e., with Algorithm 3, with
particular attention to the convergence of the procedure.

5.2.1 Convergence analysis with respect to the number of basis func-

tions

Let us investigate the sensitivity of the convergence with respect to the selected
basis of functions. To this aim, we consider the following problem;

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(µ) + 1 + µ

6

∂

∂x
(u(µ)2) = 0 (t, x) ∈ Ω1,(−5,5),

u(µ,0, x) = sin(x) + µ

10
(x2 − 25) x ∈ (−5,5),

u(µ,−5, t) = − sin(5) u(µ,5, t) = sin(5) t ∈ (0,1),
(42)

with µ ∈ D = [−0.5,0.5], Ω1,(−5,5) = (0,1) × (−5,5) As truth approximation,
we choose the one obtained via the Lax-Friedrichs method ([18]) on a uniform
space-time mesh.

In order to assess the convergence of the reduction procedure, we compare
the reduced solution yielded by Algorithm 3 with the corresponding truth solu-
tion. When Galerkin projection is applied, we observe that the convergence is
independent of the selected space-time mesh. On the contrary, in the proposed
approach the space-time mesh influences the convergence of the RB solution with
respect to the truth one. This is likely due to the fact that we use two different
strategies in the offline and online stage instead of simply reducing the number
of test functions as in Galerkin projection-based methods. As a consequence,
the convergence of the reduced solution to the truth one is guaranteed by the
convergence of the reduced solution to the exact solution. Therefore, since the
difference between the exact and the truth solution depends on the space-time
mesh, we have that the convergence of the reduced solution to the truth one is
limited by the accuracy characterizing the truth solution as approximation of
the exact one.

This is shown in Table 3 which collects, for different values of the parameter
µ and for three different choices of the space-time mesh, the value of the space-
time L2-norm of the difference between the discrete reduced solution uRB

δ (µ)
and the corresponding truth approximation uδ(µ) yielded by the discrete Lax-
Friedrichs scheme. We remark that this difference decreases with a rate about
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equal to O(δ) for large N enough. Since Lax Friedrichs method is first-order
accurate, the result is in good agreement with the previous observation. The
results gathered in Table 3 show that the convergence of the reduced solution to
the real one is extremely fast.

Table 3: Values of ∥uRB
δ (µ) − uδ(µ)∥L2(Ω1,(−5,5)) for different values of N and

µ, and for three different space-time meshes: δ = (2 ⋅ 10−3,10−2) (top), δ =(10−3,5 ⋅ 10−3) (middle), δ = (5 ⋅ 10−4,2.5 ⋅ 10−3) (bottom).

µ = −0.35 µ = −0.15 µ = 0.15 µ = 0.35
∥uδ(µ)∥L2(Ω1,(−5,5)) 3.0807 2.4874 2.4976 3.0991

N = 2 1.1 ⋅ 10−1 2.2 ⋅ 10−1 2.4 ⋅ 10−1 1.5 ⋅ 10−1

N = 4 1.0 ⋅ 10−2 1.1 ⋅ 10−2 4.9 ⋅ 10−3 4.2 ⋅ 10−2

N = 8 5.0 ⋅ 10−3 6.9 ⋅ 10−3 9.4 ⋅ 10−3 1.2 ⋅ 10−2

N = 16 5.3 ⋅ 10−3 6.6 ⋅ 10−3 8.7 ⋅ 10−3 1.3 ⋅ 10−2

µ = −0.35 µ = −0.15 µ = 0.15 µ = 0.35
∥uδ(µ)∥L2(Ω1,(−5,5)) 3.0807 2.4874 2.4976 3.0991

N = 2 1.1 ⋅ 10−1 2.2 ⋅ 10−1 2.4 ⋅ 10−1 1.5 ⋅ 10−1

N = 4 1.0 ⋅ 10−2 7.1 ⋅ 10−4 1.4 ⋅ 10−3 3.6 ⋅ 10−2

N = 8 2.0 ⋅ 10−3 2.5 ⋅ 10−3 4.2 ⋅ 10−3 4.2 ⋅ 10−3

N = 16 3.6 ⋅ 10−3 3.3 ⋅ 10−3 4.8 ⋅ 10−3 5.8 ⋅ 10−3

µ = −0.35 µ = −0.15 µ = 0.15 µ = 0.35
∥uδ(µ)∥L2(Ω1,(−5,5)) 3.0807 2.4874 2.4976 3.0991

N = 2 1.1 ⋅ 10−1 2.2 ⋅ 10−1 2.5 ⋅ 10−1 1.5 ⋅ 10−1

N = 4 1.0 ⋅ 10−2 1.0 ⋅ 10−2 9.0 ⋅ 10−3 3.4 ⋅ 10−2

N = 8 2.6 ⋅ 10−3 8.3 ⋅ 10−4 4.2 ⋅ 10−4 1.7 ⋅ 10−3

N = 16 1.7 ⋅ 10−3 1.8 ⋅ 10−3 1.9 ⋅ 10−3 2.1 ⋅ 10−3

5.2.2 Convergence analysis in the presence of a shock

Let us assume now to deal with a more complex test case. We consider the
problem

∂

∂t
u(µ) + µ ∂

∂x
(u(µ)(1 − u(µ))) = 0 (t, x) ∈ Ω2,(−5,5) = (0,2) × (−5,5), (43a)
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where µ ∈ D = [0.3,1.7], completed with the following initial and boundary
conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(µ,0, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

10
+ 1

10
sin(x) −5 < x < 0.5

1

2
+ 1

10
sin(x) 0.5 < x < 5.

u(µ, t,−5) = 1

10
− 1

10
sin(5) u(µ, t,5) = 1

2
+ 1

10
sin(5) t ∈ (0,2),

(43b)

respectively. As truth approximation we refer to the discretization provided
by the Lax-Friedrichs scheme, applied on an uniform space-time mesh. For
all µ ∈ D, the solution to problem (43) exhibits only one shock propagating
from (0,0.5). Since t⋆(µ) ≡ 0 for all µ ∈ D, we refer to Ω1(µ) and Ω2(µ) as
to the two subdomains induced by the shock and, consequently, we refer to
u1(µ) and u2(µ) as to the corresponding smooth components of the solution.
Let us compare the reduced discrete solution with the truth one uδ(µ). To
better understand the corresponding values gathered in Table 4, we observe that
the norm ∥uRB

δ (µ) − uδ(µ)∥L2(Ω2,(−5,5)) actually takes into account two different
contributions:

1. the one associated with the smooth jump decomposition (i.e., the distance
related to the reconstruction of the shock and to the mapping). Since
the RB approximation is discontinuous by construction whereas the truth
solution is continuous, we expect that this component depends on the
adopted mesh and on the shock equation;

2. the one related to the approximation of the smooth problems (25) (i.e.,
linked to the interpolation procedure). This component is still linked to
the selected mesh (for the reasons explained in the previous paragraph)
but it also depends on the RB approximation of the smooth components
of the solution.

To highlight the two different components, we consider both the percentage
error associated with the global solution and the one associated with the smooth
components. More precisely, we consider the norms ∥uRB

δ (µ)−uδ(µ)∥L2(Ω2,(−5,5))/∥uδ(µ)∥L2(Ω2,(−5,5)) and ∥uRB
δ,i (µ) − uδ,i(µ)∥L2(Ω2,(−5,5))/∥uδ,i(µ)∥L2(Ω2,(−5,5)), i =

1,2, for three different values of the parameter, three different bases and two
different space-time meshes.

We observe that as in the previous test case, the discrepancy between the
truth solution and the corresponding RB approximation, when considering the
smooth components of the solution and for N large enough, is approximately
proportional to the mesh size. This is not true for the whole solution. This
is in good agreement with the considerations at the end of Section 5.1: the
contribution related to the smooth jump decomposition decreases slower than
the mesh size does.

26



Table 4: Values of the relative discrepancy between the global RB solution and
the truth solution and between the corresponding smooth components for two
different space-time meshes: δ = (2 ⋅ 10−3,10−2) (left), δ = (10−3,5 ⋅ 10−3) (right).

µ = 0.5 µ = 1 µ = 1.5
N = 2 global 3.14% 3.81% 3.46%

smooth 1 4.16% 6.91% 2.84%
smooth 2 0.67% 0.73% 0.34%

N = 4 global 3.05% 3.16% 3.24%
smooth 1 2.28% 1.71% 1.48%
smooth 2 0.99% 0.93% 0.72%

N = 8 global 3.01% 3.13% 3.24%
smooth 1 2.81% 2.22% 1.56%
smooth 2 0.89% 0.85% 0.70%

µ = 0.5 µ = 1 µ = 1.5
N = 2 global 2.29% 3.09% 2.5%

smooth 1 4.06% 6.98% 2.72%
smooth 2 0.40% 0.84% 0.41%

N = 4 global 2.06% 2.16% 2.23%
smooth 1 1.16% 0.87% 0.71%
smooth 2 0.47% 0.45% 0.33%

N = 8 global 2.06% 2.15% 2.24%
smooth 1 1.13% 0.85% 0.70%
smooth 2 0.48% 0.44% 0.38%

5.2.3 Shock that starts at t⋆(µ) > 0
Let us consider the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(µ) + µ ∂

∂x
(u(µ) log 1

u(µ)) = 0, (t, x) ∈ Ω2,(−2,4),

u(µ,0, x) = g1(x) + µg2(x) x ∈ (−2,4)
u(µ, t,−5) = 1

3
, u(µ, t,5) = 3

4
, t ∈ (0,2)

(44)

where Ω2,(−2,4) = (0,2) × (−2,4), µ ∈ D = [1.7,2.7] and with

g1(x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
x ≤ 0

1

3
+

5

48
x2 0 < x < 2,

3

4
x ≥ 2,

g2(x) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ −1
1

100
sin(πx) −1 < x < 3,

0 x ≥ 3.
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The truth approximation is based on the Godunov method on a uniform space-
time mesh. For each value of the parameter, the solution to problem (44) exhibits
only a single shock that propagates from (t⋆(µ), xs(µ, t⋆(µ))), where t⋆(µ) > 0.

As explained in Section 4.1, to properly initialize the shock capturing pro-
cedure it is necessary to estimate Λ(µ, t⋆(µ)). In this simulation we consider
a third order polynomial approximation for t⋆(µ), xs(µ, t⋆(µ)), uguessleft

(µ, t⋆(µ))
and u

guess
right
(µ, t⋆(µ)).

We evaluate the norm ∥uRB
δ (µ) − uδ(µ)∥L2(Ω2,(−2,4)) for three different values

of the parameter and by employing not necessarily the same number of reduced
bases to approximate the three components ui(µ) of the solution. In particular,
with the notation N = (N1,N2,N3) we mean that we employ N1, N2 and N3

basis functions to approximate u1(µ), u2(µ) and u3(µ), respectively. N1 is also
the number of points used to build the polynomial approximations.

Table 5 shows the results for two different meshes. As in the previous cases,
the proposed approach is able to provide rapidly convergent approximations,
whereas the value of the norm ∥uRB

δ (µ) −uδ(µ)∥L2(Ω2,(−2,4)) is dominated by the
contribution of the smooth jump decomposition.

Table 5: Values of ∥uRB
δ (µ)−uδ(µ)∥L2(Ω2,(−2,4)) for different values of the param-

eter, for different bases and for two different meshes: δ = (4 ⋅10−3,2 ⋅10−2) (top),
δ = (2 ⋅ 10−3,10−2) (bottom).

µ = 1.8 µ = 2.2 µ = 2.6
N = (4,2,2) 2.92 ⋅ 10−2 3.65 ⋅ 10−2 4.92 ⋅ 10−2

N = (6,2,2) 3.11 ⋅ 10−2 3.76 ⋅ 10−2 5.00 ⋅ 10−2

N = (4,4,4) 2.95 ⋅ 10−2 3.62 ⋅ 10−2 4.08 ⋅ 10−2

µ = 1.8 µ = 2.2 µ = 2.6
N = (4,2,2) 2.36 ⋅ 10−2 2.66 ⋅ 10−2 3.07 ⋅ 10−2

N = (6,2,2) 2.35 ⋅ 10−2 2.54 ⋅ 10−2 3.00 ⋅ 10−2

N = (4,4,4) 2.38 ⋅ 10−2 2.63 ⋅ 10−2 3.07 ⋅ 10−2

Finally, Figure 3 compares the plots of the reduced and of the truth solutions
for different values of the parameter µ.

We observe that, despite the high gradient for t ≃ t⋆δ(µ), the reduced solution
does not exhibits any spurious oscillations. This is likely related to the choice
made for the map T1(µ) in (20) and to the approach followed to select the
interpolation points.
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Figure 3: Reduced (dashed line) and truth (continuous line) solutions at different
time steps and for different values of the parameter. N = (4,4,4), . Solutions
for µ = 1.8 (top) and µ = 2.6 (bottom) at time t = t⋆δ(µ) −∆t (left) and t = T

(right.)

5.3 Input-output relationships

We finally assess the input-output relation dealt with in Section 4.5. In partic-
ular, we choose:

s(µ) = ∫
Ω1,(−5,5)

1

1 + x2u(µ)dxdt, µ ∈ D = [0.3,1.7], (45a)

where Ω1,(−5,5) = (0,1)×(−5,5) and u(µ) is the solution to the following conser-
vation law4

∂

∂t
u(µ) + µ ∂

∂x
(u(µ) log 1

u(µ)) = 0, (t, x) ∈ Ω1,(−5,5), (45b)

4This law is usually employed in hyperbolic traffic models. It was proposed by Greenbery
and supported by experimental data from the Lincoln tunnel in New York (see [12] for further
details).
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completed with the following initial and boundary conditions:

u(µ,0, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

5
+ 1

10
sin(x) −5 < x < 0.5

1

2
+ 1

10
sin(x) 0.5 < x < 5,

u(µ, t,−5) = 1

5
− 1

10
sin(5), u(µ, t,5) = 1

2
+ 1

10
sin(5).

(45c)

To discretize this problem we resort to the Godunov method applied on a uniform
space-time mesh.

In Table 6 we provide the values for the norm ∥uRB
δ (µ)−uδ(µ)∥L2(Ω1,(−5,5)) for

three different values of the parameter µ in the state equation, for two different
choices of the space-time mesh and for two different reduced bases. In Table 7
the resulting outputs and the computational time demanded to obtain these are
listed for three different values of the parameter µ. In particular, with Nw we
denote the number of terms in the affine expansion (36).

Table 6: Values of ∥uRB
δ (µ) − uδ(µ)∥L2(Ω1,(−5,5)) for three different values of

parameter µ and two different space-time meshes: δ = (2 ⋅ 10−3,10−2) (top),
δ = (10−3,5 ⋅ 10−3) (bottom).

µ = 0.5 µ = 1 µ = 1.5
N = 2 5.73 ⋅ 10−2 7.18 ⋅ 10−2 7.16 ⋅ 10−2

N = 4 5.69 ⋅ 10−2 6.90 ⋅ 10−2 6.86 ⋅ 10−2

µ = 0.5 µ = 1 µ = 1.5
N = 2 4.80 ⋅ 10−2 6.38 ⋅ 10−2 6.16 ⋅ 10−2

N = 4 4.75 ⋅ 10−2 6.05 ⋅ 10−2 5.89 ⋅ 10−2

Table 7: Relative output error and speed-up in the output evaluation.

µ = 0.5 µ = 1 µ = 1.5
Nw = 2, NRB = 2 Output error 0.4% 1.4% 0.025%

Speed-up 114.32 123.52 125.07

Nw = 4, NRB = 2 Output error 0.3% 1.1% 0.1%
Speed-up 98.74 92.51 82.12

The speed-ups associated with the proposed approach are interesting. Since
the truth method is an explicit scheme, the corresponding computational ef-
fort is proportional to O(C1NK), where C1 is the cost due to the evaluation
of the Godunov flux, N is the spatial mesh dimension and K is the temporal
mesh dimension. On the other hand, the computation of the reduced model is
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dominated by the cost associated with the shock capturing algorithm, that isO(C2K), where C2 is the cost demanded by the Newton algorithm to approxi-
mate the nonlinear equations (26).

6 Conclusions

In this paper we have presented a new reduced order strategy to deal with
parametrized nonlinear conservation laws in the presence of shocks. For this
purpose, we have essentially exploited some of the well-known analytical prop-
erties of this kind of equations, in particular the Rankine-Hugoniot condition as
well as the characteristic equation.

The application of a preliminary domain partitioning and then the employ-
ment of the standard RB method on each component of the solution has already
been exploited in the RB literature (see, e.g., [16, 17, 20, 21]). On the contrary,
at the best of our knowledge, the proposed interpolation strategy is new. Both
the domain partitioning and the interpolation step are subject to the three hy-
potheses (H1)-(H3) in Section 4. The approach presented here can be extended
in a straightforward way to different parametric conservation laws with more
than one shock.

The numerical validation in Section 5 shows that the proposed method is able
to reconstruct the solution in an efficient and reasonably reliable way. In more
detail, the example in Section 5.1 proves that, despite a slight deterioration
in the rate of convergence, the shock detection procedure is able to sharply
reconstruct the shock equation and to compute the smooth components ui(µ)
of the solution, i = 1,2,3, while the three examples in Section 5.2 show the
reliability of the whole algorithm. Finally, the input-output problem discussed
in Section 5.3 verifies the efficiency of the method. We highlight that the results
concerning the speed-up in Table 7 are particularly meaningful since the truth
numerical scheme used as benchmark is explicit.

Concerning possible future developments, we are interested in applying this
approach to more general problems, in particular to quasi-linear first-order equa-
tions.
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A An a posteriori error indicator for the greedy sam-

pling

In an RB framework the importance of an a posteriori error estimator is twofold.
First, it is employed to reduce the online computational effort without losing the
reliability of the RB approximation. Then, also the greedy sampling strategy
can benefit of an inexpensive error indicator to consider larger training sets
Ξ ⊂ D and to provide a better space exploration at a greatly reduced offline
computational cost.

With a view to both these tasks, it is crucial that the error estimator turns
out to be efficiently computable in the offline as well as in the online framework.
In more detail, whereas for the offline phase it is essential to have an error
estimator providing a rigorous bound for the error, we are allowed to employ
even non-strictly rigorous error indicators during the greedy sampling.

At the best of our knowledge, no a posteriori error estimators have been
developed in the RB framework for the type of problems we are interested in.

Viceversa, a posteriori error estimators for hyperbolic problems are available
in the context of mesh adaptation. We recall the work by L. Gosse and C.
Makridakis, (see [13]) that, starting from Kruzkov-type estimates ([5]), provides
a result for one-dimensional scalar conservation laws discretized via E-schemes
([19]).

In the sequel we propose and empirically motivate a residual based error in-
dicator, ideally suited for the greedy sampling. We first assume that the solution
does not exhibit any shock. Then, we discuss how to extend the estimator to the
case of discontinuous solutions by properly exploiting the decoupling strategy
proposed in Section 3.

Throughout this appendix we omit the dependence on the parameter µ to
simplify the notation. Furthermore, we settle our analysis in ΩT,∞ = (0, T ) ×R .

A.1 Error indicator for strong solutions

We consider the two following problems:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
u + ∂

∂x
(af(u)) + a0u = 0 (t, x) ∈ ΩT,∞

u(0) = u0 x ∈ R, (46a)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
uRB + ∂

∂x
(af(uRB)) + a0uRB = −rRB (t, x) ∈ ΩT,∞

uRB(0) = u0 + r̄RB x ∈ R, (46b)

with a ∈ W 1,∞(ΩT,∞), a0 ∈ L∞(ΩT,∞) and u0 ∈ L2(R), where r̄RB ∈ L2(R) and
rRB ∈ L2(ΩT,∞). We assume that u is the strong solution to problem (46a),

32



while uRB is the strong solution to problem (46b). We can now introduce the
error indicator

∆RB(t) ∶= (∫ t

0

∥rRB(τ)∥2L2(R) dτ + ∥r̄RB∥2L2(R))
1

2

, (47)

First, we observe that the indicator is based on the strong residual, which can
be computed through an offline-online strategy: in particular, non-polynomial
nonlinearities in the flux can be treated in a standard way via the EIM. Fur-
thermore, it is possible to prove the following result, which motivates the choice
made for the error indicator.

Proposition A.1 Let us assume that

rRB ∈ L2(ΩT,∞), r̄RB ∈ L2(R), f ∈ C2(R), u, uRB ∈W 1,1(ΩT,∞). (48)

Then, the following estimate holds:

∥u(t) − uRB(t)∥2L2(R) ≤ eλ(t) (∆RB(t))2 , (49a)

where λ(t) ∶= ∫ t
0
(1 + 2C(τ))dτ , with
C(t) ∶=max{0,− inf

x∈R
(a0(t, x) + 1

2

∂

∂x
(af ′(ξ(t,x))))} (49b)

and ξ(t,x) such that f ′(ξ(t,x)) = f(u(t, x)) − f(uRB(t, x))
u(t, x) − uRB(t, x) .

The proof of this statement consists in a straightforward application of the
following result from [28].

Lemma A.1 Let us consider the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
u + ∂

∂x
(au) + a0u = g (t, x) ∈ ΩT,∞

u(0) = u0 x ∈ R, (50)

where u0 ∈ L2(R), g ∈ L2(ΩT,∞), a ∈ W 1,∞(ΩT,∞) and a0 ∈ L∞(ΩT,∞). Then,
the following estimate holds:

∥u(t)∥2L2(R) ≤ eλ(t) (∫ t

0

∥g(τ)∥2L2(R) dτ + ∥u0∥2L2(R)) , (51a)

where λ(t) = ∫ t
0
(1 + 2C(τ)) dτ and

C(t) ∶=max{0,− inf
x∈R
(a0(t, x) + 1

2

∂

∂x
a(t, x))} . (51b)
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The sharpness of estimate (51) and consequently of (49) depends on the time
dependent function C(t), which is related to the regularity of the solution. In
addition, we observe that the exponential growth in time characterizing both es-
timates (51) and (47), which might turn to be very pessimistic in many practical
cases.

We now try to numerically validate the proposed error indicator. For this
purpose, we consider the same problem presented in Section 5.2.1. We iden-
tify uRB

δ (µ) with the reduced solution obtained by considering two equispaced
snapshots. Then, we define

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µtruth
max ∶= argmax

µ∈D
∥uδ(µ) − uRB

δ (µ)∥L2(ΩT,∞),

µres
max ∶= argmax

µ∈D
∆RB(µ,T ). (52)

In particular, µtruth
max maximizes the distance between the reduced solution and

the truth solution (computed with the Lax-Friedrichs scheme), whilst µres
max max-

imizes the error indicator ∆RB(µ,T ) proposed in (48). Figure 4 compares the
error indicator with the distance ∥uδ(µ) − uRB

δ (µ)∥L2(ΩT,∞) with respect to the
parameter µ ∈ D = [−0.5,0.5]. The indicator is able to mimic the behaviour of
the distance despite a certain discrepancy, more evident for µ ≃ µtruth

max . More
quantitatively, we have that ∣µtruth

max − µres
max∣ < 0.01.
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Figure 4: Comparison between the residual error indicator in (47) (dashed line)
and the distance ∥uδ(µ) − uRB

δ (µ)∥L2(ΩT,∞) (continuous line).

A.2 Generalization to discontinuous solutions

Let us remove now the simplifying assumption concerning the absence of shocks.
We consider the model problem (17) on the space-time domain ΩT,(a,b) ∶= (0, T )×(a, b). If we assume that the error associated with the shock capturing algorithm
is negligible with respect to the one introduced by the approximation of the
smooth problems (25), we can estimate the whole error simply by taking into
account the errors due to the approximation of each smooth problem (25).

34



Thus, we can write the a posteriori error indicator ∆RB for the global solution
as

∆RB = 3∑
i=1

∆RB,i
∼ ∥uRB − u∥L2(ΩT,(a,b)), (53)

where ∆RB,i denote the a posteriori error indicator associated with the i-th
smooth component uRB,i of the reduced solution, for i = 1,2,3.

It is easy to show that the smooth problem (25) is equivalent to problem (46a)
for a suitable choice of a and a0, and for i = 2,3. On the contrary, for i = 1 prob-
lem (25) is not equivalent to (46a), because J1 ∈ L

∞(ΩT,(a,b))∖W 1,∞(ΩT,(a,b)). A
possible solution consists in considering a different map T1(µ). More precisely,
we might require that T1(µ) ∶ ΩT,(a,b) → Ω1(µ), T1(µ) ∈W 2,∞(ΩT,(a,b);R

2) and
that T1(µ, a+b2 ) = (t⋆(µ), xs(µ, t⋆(µ))) for all µ ∈ D. This approach however is
not further investigated in this paper and makes the subject of a forthcoming
report.
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