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Abstract

Reduced-order modeling techniques enable a remarkable speed up in the solution of the parametrized
electromechanical model for heart dynamics. Being able to rapidly approximate the solution of this problem
allows to investigate the impact of significant model parameters querying the parameter-to-solution map
in a very inexpensive way. The construction of reduced-order approximations for cardiac electromechanics
faces several challenges from both modeling and computational viewpoints, because of the multiscale nature
of the problem, the need of coupling different physics, and the nonlinearities involved. Our approach relies
on the reduced basis method for parametrized PDEs. This technique performs a Galerkin projection onto
low-dimensional spaces built from a set of snapshots of the high-fidelity problem by the Proper Orthogonal
Decomposition technique. Snapshots are obtained for different values of the parameters and computed,
e.g., by the finite element method. Then, suitable hyper-reduction techniques, in particular the Discrete
Empirical Interpolation Method and its matrix version, are called into play to efficiently handle nonlinear
and parameter-dependent terms. In this work we show how a fast and reliable approximation of both the
electrical and the mechanical model can be achieved by developing two separate reduced order models where
the interaction of the cardiac electrophysiology system with the contractile muscle tissue, as well as the
sub-cellular activation-contraction mechanism, are included. Open challenges and possible perspectives are
finally outlined.

1 Introduction

Cardiac electromechanics refers to a model for the description of the coupling of the electrophysiology model,
which describes the propagation of the signal triggering the heart contraction, and the mechanical model,
which describes the contraction and relaxation of the muscle tissue, including the sub-cellular activation-
contraction mechanism. Solving such a coupled problem is crucial to investigate how clinically relevant
processes affect different features of the heart beat [69].

Cardiac electromechanics is a challenging problem from both a mathematical and a numerical viewpoint,
because of the coupling of different physical problems which take place at different spatial and temporal
scales. Indeed, a model for the cardiac electrophysiology has to describe on one hand the sub cellular
activity (1-100µm) which gives rise to the cellular depolarization, on the other hand the spreading of the
electrical signal through the whole myocardium (1-10cm). The modeling of these processes yields a two-
way coupled problem involving a PDE with a nonlinear reaction term and a system of nonlinear ODEs. To
correctly track the propagation of the action potential, in the form of wave-front solutions, fine computational
grids are needed, thus yielding large-scale algebraic problems to be solved. Moreover, the description of the
mechanics of the cardiac tissue requires complex constitutive laws, characterized by an exponential strain
energy function and the presence of muscular fibers and sheets, resulting in a complex highly nonlinear
model. This turns into the need of assembling involved Jacobian matrices when relying, e.g., on the Newton
method for the solution of nonlinear systems of equations. Furthermore, the heart muscle contracts after
being electrically activated without the need of an external load, and this active behavior of the cardiac
cells has to be properly taken into account when coupling the electrical and the mechanical models. To
describe these processes different works have proposed more and more accurate electromechanical models
[31, 28, 53, 73, 80, 36], very often yielding overwhelming computational costs.

Computational complexity is even more exacerbated if one is interested in going beyond a single, direct
simulation. Indeed, when simulating cardiovascular problems, several input data affect the problem under
investigation, often varying within a broad range and possibly affected by uncertainty. Addressing the
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impact of input variations on outputs of clinical interest is thus of paramount importance in order to (i)
obtain reliable results, (ii) calibrate the numerical solver and/or (iii) personalize the mathematical model.
In fact, model parameters have to be specifically tuned to fit subject-specific clinical data in order to take
into account inter-patient variability. To correctly calibrate cardiac models and estimate the unknown
input parameters, such as muscular fibers orientation or parameters affecting the signal propagation, several
numerical simulations have to be carried out, thus calling for multiple queries of the parameter-to-solution
map in fast and accurate ways. Beyond parameter estimation, this requirement also arises when dealing
with sensitivity analysis, control and optimization, and uncertainty quantification, noteworthy classes of
problems whose importance in cardiovascular modeling is growing faster and faster.

The need of solving these problems efficiently calls for the development of efficient and accurate reduced
order modeling (ROM) techniques in electromechanics. These techniques are designed to provide accurate
and reliable solutions to PDEs depending on several parameters at a greatly reduced computational cost.
In particular, the reduced basis (RB) method replaces the original large-scale numerical problem (or high-
fidelity approximation) originated by applying, e.g., a finite element (FE) method, with a reduced problem
of substantially smaller dimension; this latter is generated through a projection of the high-fidelity problem
upon a low-dimensional subspace, spanned by a set of high-fidelity solutions corresponding to suitably chosen
parameters [68, 40].

In this work we show how to solve both the electrophysiology and the mechanical problems, when these
depend on a set of parameters, in the framework of RB methods, also taking into account active mechanics
triggered by the cellular depolarization. Because of the nonlinear nature of these problems, computational
efficiency is obtained by combining a general-purpose technique to generate the low-dimensional subspace,
such as proper orthogonal decomposition, and suitable hyper-reduction techniques allowing to assemble
the algebraic structures required by the ROM independently of the high-fidelity arrays. This is required,
e.g., when dealing with Newton iterations while solving cardiac mechanics – for which the global Jacobian
matrix would have to be entirely reassembled at each Newton step – as well as time stepping in cardiac
electrophysiology, for which nonlinear terms have to be evaluated at each time step, also involving the
contribution from the cell model. Among recent applications of ROM techniques to problems related with
the cardiovascular system, we also mention haemodynamics, for the sake of simulating blood dynamics in
different flow conditions [25, 54, 26] or geometrical configurations [7, 8], also in view of the optimal design
of prosthetic devices [50, 47] or parameter identification [48, 69]. Cardiac electrophysiology has also been
tackled in the last decade[15, 20, 35, 30, 88], however by performing reduction only with respect to the time
independent variable, thus avoiding the main difficulties related with the efficient handling of parameter-
dependent problems. Recent results for parametrized problems in cardiac electrophysiology, also in view of
the efficient solution of uncertainty quantification problems, can be found in [59]. Instead, regarding cardiac
mechanics, this subject has only been addressed in a recent paper by the authors [14] and in [13], where
also first results about one-way and two-ways coupled electromechanical problems have been obtained. The
reduction of coupled problems, however, is still matter of investigation and therefore are not included in this
paper.

The structure of this paper is as follows. After a brief recall (Sect. 2) on the mathematical modeling
of cardiac electromechanics, we describe the high-fidelity FE approximation we start from (Sect. 3). We
then introduce the key tools of the proposed ROM technique (Sect. 4): the Galerkin-POD method and
suitable hyper-reduction strategies. Then, we show how to combine them to derive a ROM for both cardiac
electrophysiology (Sect. 5) and mechanics (Sect. 6), independently. Numerical results dealing with patient-
specific left ventricle configurations in the systolic phase are then shown (Sect. 7), and finally open critical
issues and future perspectives are outlined (Sect. 8).

2 Mathematical models

In this section we present an overview of the electromechanics mathematical models. We consider the
minimal Bueno-Orovio model for describing the cellular behavior, the monodomain model for cardiac elec-
trophysiology, and the hyperelastic Holzapfel-Ogden model for the passive ventricular mechanics, adopting
an active-strain formulation to take into account active mechanics. This latter requires a dynamical system
for the variable which describes fiber shortening as a function of calcium concentration (and then electrical
activation).

2.1 Cardiac Electrophysiology

A mathematical model for cardiac electrophysiology has to include processes arising at different scale, ranging
from subcellular activity, which originates the cellular depolarisation to the spreading of the signal in the
whole myocardium. To model the whole heart, several works have considered continuous models, where
the myocardium is approximated as a syncytium, that is a domain where the intra and extracellular spaces
coexist at each point [31, 44, 63, 76]. These continuous models describe the spreading of the signal in the
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heart tissue and are usually coupled to a ionic model which describes the evolution of ion concentrations and
ionic currents inside the cells. In this section we first introduce a general framework for the ionic models,
focusing on the Bueno-Orovio model [17], and we show how to couple it to the bidomain and monodomain
models, widely adopted continuous tissue models.

2.1.1 Cell models

Cell models describe the evolution of the transmembrane potential across the cell membrane of a single
cardiomyocyte. Several ionic models have been proposed, most of which are based on the well-studied
Hodgkin-Huxley model [42]; see e.g. [58] for a review. They are all based on the assumption that the
electrical properties of the cell membrane can be modeled as an electrical circuit, which connects in parallel
a resistor and a capacitance: the latter describes the cell membrane which separates the intra and the extra
cellular space, while the former models the ionic channels and pumps regulating ionic fluxes through the
membrane. The conservation of currents across the cell membrane can be expressed through the relation

Cm
∂v

∂t
+ Iion(v,w, c) = Iapp,

where v is the transmembrane potential, Cm the membrane capacitance, Iapp an external applied current
density and Iion the sum of the current densities through the membrane, that can be written using the
general Hodgkin-Huxley formalism introduced in [42] as

Iion(v,w, c) =

p∑
k=1

gk(c)

q∏
j=1

w
pjk
j (v − vk(c)) + I0(v,w, c). (1)

Here w is a vector of gating variables taking values in [0, 1] that represent the portion of open channels on
the membrane, whereas c is a vector describing the concentration of ionic species within the cell. We denote
by gk(c) and vk(c) the conductance and the Nernst equilibrium potential associated to the k-th ion, and by
pjk the number of sub-units composing each ionic channel, so that the ion k can flow through a ionic channel
if all the sub-units forming the channel are opened. Thus,

∏q
j=1 w

pjk
j represents the probability that the

ions k flow through the cellular membrane. The term I0(v,w, c) represents possible time independent ionic
fluxes. The dynamic of a single cell can thus be described in general by a ionic model under the form:

Cm
∂v

∂t
+ Iion(v,w, c) = Iapp in Ω0 × (0, T ),

∂w

∂t
= s(v,w) in Ω0 × (0, T ),

∂c

∂t
= r(v,w, c) in Ω0 × (0, T ),

w(t0) = w0, c(t0) = c0 in Ω0

(2)

where we denote by Ω0 the computational domain, here representing the cell. The first set of ODEs is
related to the evolution of the gating variables while the second set characterizes the evolution of the
ionic concentrations during the cardiac cycle. The number of equations, the functions s and r and the
overall complexity depend on the considered model. In this work, we focus on the so-called minimal model
introduced by Bueno-Orovio in [17], developed to reproduce physiological action potential morphologies, at
moderate computational costs.

The minimal model is a 4 variables model, able to reproduce experimental measures characteristics of
human ventricular transmembrane potential. It can be expressed as:

Cm
∂v

∂t
+ Ifi(v, w1) + Iso(v) + Isi(v, w2, w3) = Iapp, in Ω0 × (0, T )

∂w1

∂t
+H(v − θw1)

w1

τ+
w1

− [1−H(v − θw1)]
w1,∞ − w1

τ−w1

= 0, in Ω0 × (0, T )

∂w2

∂t
+H(v − θw2)

w2

τ+
w2

− [1−H(v − θw2)]
w2,∞ − w2

τ−w2

= 0, in Ω0 × (0, T )

∂w3

∂t
− [1 + tanh(ks(v − vs))]/2− w3

τw3

= 0, in Ω0 × (0, T )

(3)

where the three currents Ifi, Isi and Iso represent the fast inward, the overall slow outward and the slow
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inward currents, respectively. In particular, we have:

Ifi(v, w1) = w1
(v − θw1)(cv − v)H(v − θw1)

τfi
,

Is0(v) =
(v − v0)(1−H(v − θw2))

τ0
+
H(v − θw2)

τso
,

Isi(v, w2, w3) = w2w3
H(v − θw)

τsi
,

where H(·) is the Heaviside function. The model parameters, provided in [17], allow to reproduce the
action potential morphologies and the dynamics of more complex models, such as the Ten Tusscher model
or the O’Hara and Rudy model [72]. The evolution of the transmembrane potential v and the gating
variables w1, w2 and w3 obtained with the considered parameters are reported in Figure 1. In particular, we
observe that the variable v correctly reproduces the action potential shape characteristic of the ventricular
cardiomyocytes. We notice that the variable v is dimensionless and it can be rescaled to dimensions of mV
using the equations vmv = 87.5v − 84.
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Figure 1: From top left to bottom right: transmembrane potential v and gating variables w1, w2 and w3 of the
minimal model during a heart beat

Note that this model does not provide specific informations about intracellular calcium concentration.
However, the variable w3 can be assumed to be responsible of calcium dynamics, as it shows a phenomeno-
logical behavior which is really similar to the one of the calcium ions in the cardiac cells [72]. In what follows,
we refer to w3 as the calcium concentration c and denote by w = (w1, w2, c).

2.1.2 Tissue models

To describe the propagation of the activation front in the cardiac muscle, we rely on a tissue model able
to characterize the evolution of the transmembrane potential. This latter plays indeed a crucial role in
the description of the heart contraction. In particular, the bidomain and the monodomain models have
been widely used to study the cardiac electrophysiology (see e.g. [24], [66] and reference therein). These
models arise from a homogenization process applied to the cardiac tissue and simulate the propagation of
the electrical signal through the myocardium; a complete derivation of the two models can be found in [27].

The bidomain model, first proposed in [83], represents the cardiac tissue as a syncytium composed of
intracellular and extracellular domains coexisting at every point of the tissue. Each domain is thus considered
as a continuum, rather than a group of discrete cells connected with each other. Denoting by ve and vi the
extracellular and the intracellular potential, respectively, and by v = vi − ve the transmembrane potential,
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the bidomain model can be expressed as:

Cm
∂v

∂t
+ Iion(v,w, c)−∇ · (Di∇vi) = 0 in Ω0 × (0, T ),

Cm
∂v

∂t
+ Iion(v,w, c) +∇ · (De∇ve) = Iapp in Ω0 × (0, T ),

∂w

∂t
= s(v,w),

∂c

∂t
= r(v,w, c) in Ω0 × (0, T ),

Di∇vi · n = 0, De∇ve · n = 0 on ∂Ω0 × (0, T ),

v(t0) = v0, w(t0) = w0, c(t0) = c0 in Ω0,

(4)

where the Neumann boundary conditions express the condition that the cardiac tissue is electrically insulated.
Here, Cm is the membrane capacitance, Iion is the sum of the density currents through the membrane and
Iapp is an external applied density current. The domain Ω0 now represents a portion of myocardium; in
the case of the left ventricle, its boundary ∂Ω0 = Γendo ∪ Γepi ∪ Γbase is made by the endocardium, the
epicardium and the base, respectively. The conductivity tensors Di ∈ R3 and De ∈ R3 model the anisotropy
of the cardiac tissue, characterized by a higher conductivity in the fiber direction, and can be expressed as:

Di,e = σi,e
f f0 ⊗ f0 + σi,e

s s0 ⊗ s0 + σi,e
n n0 ⊗ n0,

where σi,e
f , σi,e

s and σi,e
n are the electrical conductivities in the intracellular and extracellular domains. Here,

f0 denotes the fibers direction, s0 the sheets direction and n0 is orthogonal to both f0 and s0.
The bidomain model is currently the most complete mathematical model for describing the electrical

signal propagation in the heart. However, it is computationally demanding, since to capture the rapid
dynamics of the cellular reactions high resolutions in space and time is required. For this reason, a common
approach in the literature is to reduce the bidomain equations to simpler tissue models. In particular,
the monodomain model can be obtained by assuming that the intra and extracellular domains have equal
anisotropy ratios, σi

f/σ
e
f = σi

s/σ
e
s = σi

n/σ
e
n. The monodomain model is not suitable for the description of

pathological situations, such as, cardiac arrhythmias or fibrillation, since in these situations the extracellular
domain influence the transmembrane potential and the ionic currents. However, it provides an accurate
description of the cardiac tissue in physiological situations [66, 29], at reduced computational costs. From
now on, we adopt the monodomain model as we are only interested, for the time being, to capture the
relevant phenomena for describing the electromechanical coupling in healthy conditions.

The monodomain model reads as follows:

Cm
∂v

∂t
+ Iion(v,w, c)−∇ · (D∇v) = Iapp in Ω0 × (0, T ),

∂w

∂t
= s(v,w),

∂c

∂t
= r(v,w, c) in Ω0 × (0, T ),

D∇v · n = 0 on ∂Ω0 × (0, T ),

v(t0) = v0, w(t0) = w0, c(t0) = c0 in Ω0,

(5)

where D ∈ R3 is the conductivity tensor. In particular, we assume that

D = σf f0 ⊗ f0 + σss0 ⊗ s0 + σnn0 ⊗ n0 (6)

where we denote by σf , σs and σn the electrical conductivities in the direction f0, s0 and n0, respectively.

2.2 Cardiac Mechanics

The description of cardiac mechanics involves both a passive and an active contribution; besides the hyper-
elastic behavior of the tissue, the active contraction of the muscular fibers has to be included in the force
balance when modeling the systolic part of the cardiac cycle.

We consider a reference configuration Ω0 and an actual configuration Ω at the current time t. We
denote by X the position vector in Ω0 and by x the position vector in Ω. We can now introduce the body
deformation as the map ϕ : Ω0 → Ω from the reference to the actual configuration, such that x = ϕ(X) for
any X ∈ Ω0, x ∈ Ω. The deformation gradient tensor F is defined as

F =
∂ϕ

∂X
, [Fij ] =

∂ϕi

∂Xj
, i, j = 1, 2, 3. (7)

By denoting u : Ω0 → Ω, u(X) = ϕ(X) − X the displacement field, the deformation gradient tensor can
be written as F = I +∇u. We also denote by J = det(F) the determinant of F and by C = FTF the left
Cauchy-Green strain tensor.
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2.2.1 Passive Mechanics

We first provide a description of the passive ventricular mechanics, by recalling the hyperelastic model
proposed by Holzapfel and Ogden in [43]. Cardiac deformations can be modeled by considering the my-
ocardium as orthotropic, hyperelastic, and incompressible with passive properties characterized by means of
an exponential strain energy function.

The equations of motion for the cardiac tissue express the balance of linear momentum in material
coordinates, which reads as

ρ0
d2u

dt2
−∇0 ·Pp = b0,

where ρ0 is the tissue density and b0 are the body forces. Here, Pp is the first (passive) Piola(-Kirchhoff)
tensor, which is related to the surface tractions t0 through the relation t0 = Ppn, where n is the normal
to the boundary of the reference domain. As usual in cardiac mechanics literature (see e.g. [37, 72, 28]),
inertial forces can be neglected, since they are about two orders of magnitude smaller than other terms [86],
thus obtaining the quasi-static problem

−∇0 ·Pp = b0. (8)

We impose Neumann boundary conditions on the endocardium (ΓN = Γendo) to model the effect of blood
pressure1, and Robin boundary conditions on the epicardium and on the base (ΓR = Γepi ∪ Γbase); the
boundaries are reported for a patient-specific left ventricle geometry in Figure 4. We also neglect the body
forces b0 because their contribution is negligible [72]. In conclusion, the cardiac deformation u solves:

−∇0 ·Pp(u) = 0 in Ω

Pp(u)n = g on Γendo

Pp(u)n + αu = 0 on Γepi ∪ Γbase.

(9)

The myocardium is considered as an hyperelastic material: there exists a strain energy function W :
Ω0 → R related to the Piola tensor through the relation

Pp(u) =
∂W(u)

∂F
. (10)

The description of the cardiac muscle mechanics faces a number of difficulties. Indeed, the myocardium is
non-homogeneous and it is composed by several layers; moreover, fibers have different orientation in each
layer and rotate across the heart wall, featuring a complex mechanical characterization. To model this com-
plex behavior we consider the orthotropic model proposed by Holzapfel and Ogden in [43], characterized by a
simple invariant-based formulation. This model hinges upon the idea that for an orthotropic, incompressible
material the strain energy density function can be written as

W =W1(I1) +W4,f0(I4,f0) +W4,s0(I4,s0) +W8,f0s0(I8,f0s0),

where f0, s0 are the two (fibers and sheets respectively) preferred directions and I1, I4,f0 , I4,s0 , I8,f0s0 are
invariants of the right Cauchy-Green strain tensor,

I1 = tr(C), I4,f0 = f0 ·Cf0, I4,s0 = s0 ·Cs0, I8,f0s0 = f0 ·Cs0,

respectively. In particular, we have

W1(I1) =
a

2b

[
eb(I1−3) − 1

]
, W4,f0(I4,f0) =

af
2bf

[
ebf (I4,f0−1)2 − 1

]
,

W4,s0(I4,s0) =
as
2bs

[
ebs(I4,s0−1)2 − 1

]
, W8,f0s0(I8,f0s0) =

afs
2bfs

[
e
bfsI28,f0s0 − 1

]
.

(11)

The coefficients of the Holzapfel-Ogden constitutive law are taken from [33] and are reported in Table 1.

a = 3.33 kPa af = 18.47 kPa as = 2.481 kPa afs = 0.417 kPa
b = 8.023 bf = 16.026 bs = 11.120 bfs = 11.436

Table 1: Parameters of the Holzapfel-Ogden model

In order to describe myocardium deformations, we consider a quasi-incompressible formulation [77, 39],
which offers several advantages with respect to a full incompressible one, from both a modeling and a numer-
ical viewpoint. Indeed, taking into account limited volumetric changes is possible according to experimental

1More specifically, we would have g = pendo(t)n where n is the unit normal vector to the boundary, and pendo = pendo(t) is
the external load applied by the fluid at the endocardium wall, which in this context is assumed to be prescribed.
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evidence since the volume of cardiac tissue can vary until 7% during systolic contraction [6]. Moreover, a
quasi-incompressible formulation leads to a simpler numerical problem with respect to a full incompress-
ible one [65]. The adopted formulation can be obtained by introducing a multiplicative decomposition
F = FisoFvol of the deformation gradient tensor, where we impose det(Fiso) = 1 and det(Fvol) = J . This
formulation leads to an additive decomposition of the isotropic part W1 of the strain energy function, which
reads as

W1 =W1,iso +Wvol =
a

2b

[
eb(J

− 2
3 I1−3) − 1

]
+
κ

2
JF−T (J − J−1) (12)

where κ > 0 denotes the Bulk modulus, which measures the material resistance to a uniform compression.

2.2.2 Active Mechanics

The cardiomyocytes of the heart muscle contract after being electrically activated, without the need of an
external load. This behavior can be modeled by including the active contraction of the muscular fibers
in the force balance (9); however, this is a challenging task because muscular contraction occurring at the
macroscale is caused by release of energy at the microscale, inside each cardiomyocyte. Different approaches
have been investigated in order to obtain accurate mathematical description of the active mechanics; the
most popular ones are the active stress [52, 78, 53, 37, 61] and the active strain approaches; see [4, 74] for
numerical comparisons. Both strategies allow to couple electrophysiology and mechanics, defining a modified
first Piola-Kirchhoff tensor P which involves a passive component describing the stress required to obtain a
given deformation of the passive myocardium, and an active component denoting the tension generated by
the depolarization of the propagating electrical signal that provides the internal active forces responsible for
the contraction. Thus, equation (9) becomes

−∇0 ·P(u(t); t, c) = 0 in Ω

P(u(t); t, c) n = g on Γendo

P(u(t); t, c) n + αu(t) = 0 on Γepi ∪ Γbase.

(13)

This leads to a coupled electromechanical problem, where the electrical solution affects cardiac deformations.
Here we focus on the active strain approach [81, 51, 23, 3], which is based on a multiplicative decomposition
of the deformation gradient tensor, under the form

F(u, t) = Fe(u)Fa(t).

Fe describes the elastic deformation of the myocardium and Fa(t) is the anelastic deformation due to the
fibers contraction. The active strain decomposition is based on the idea that fibers inside the muscle contract
and shorten; the deformation Fa can thus be seen as a prescribed distortion of the microstructure, whereas
the deformation at the macroscale Fe is needed to ensure compatibility of F.

In particular, the anelastic deformation takes the form

Fa(t) = I + γf (t)f0 ⊗ f0 + γs(t)s0 ⊗ s0 + γn(t)n0 ⊗ n0,

where n0 is a vector normal to f0 and s0; γf , γs and γn are time-dependent coefficients describing the cell
shortening respectively in the f0, s0 and n0 directions. The fibers shortening γf can be computed from the
following evolution law µAγ̇f = fA(c) +

2I4,f

(1 + γf )3
− 2I4,f |c=c0 in Ω0 × (0, T ),

γf (0) = γf,0 in Ω0,
(14)

where c(t) is the calcium concentration. We remark that the anelastic deformation Fa depends on the
calcium concentration through the coefficients γf , γs and γn. Here, fA(c(t)) = α(c(t) − c0)2RFL(I4,f ),
where we assume α = −2.5 [72], and RFL is the sarcomere force-length relationship of the cardiac cells given
by

RFL(I4,f ) = χ[SLmin,SLmax](I4,f )

{
c0
2

+

3∑
n=1

[cn sin(nI4,f l0) + dn cos(nI4,f l0)]

}
;

here, l0 represents the initial length of a single contractile unit (sarcomere) and we assume l0 = 1.95µm,
whereas the coefficients cn and dn are parameters of a truncated Fourier series fitted to match the exper-
imental length-force relations reported in [79]; see [75] for further details. Moreover, χ[SLmin,SLmax](·) is
the characteristic function of the interval [SLmin, SLmax], which represent the minimum and maximum
sarcomere length, respectively; here we assume SLmin = 0.87µm SLmax = 1.33µm [72]. Here c0 represents
the calcium concentration at the end of the diastolic phase.
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The other two coefficients γs and γn can be directly derived from the expression of γf , relying on an
orthotropic activation model, as

γs = κfγf , γn =
1

(1 + γf )(1 + γs)
− 1.

The parameter κf allows to correctly describe the thickening occurring during myocardial contraction in the
sheets direction. In the mechanical equations, the Piola tensor takes the following form

P = det(Fa)
∂W(Fe)

∂Fe
F−T

a

leading to the following full mechanical problem, where we highlight the dependence on γf (t):
−∇0 ·P(u(t); γf (t)) = 0 in Ω

P(u(t); γf (t)) n = g on Γendo

P(u(t); γf (t)) n + αu(t) = 0 on Γepi ∪ Γbase.

(15)

We point out that in the active strain approach the solution of the mechanical problem depends on the
calcium concentration c, rather than on the transmembrane potential. However, we need to compute the
solution of the full electrical problem in order to characterize the mechanical displacement, since c is coupled
to the transmembrane potential v, e.g., in the monodomain model (5). A schematic representation of the
model describing the electromechanical coupling is reported in Figure 2.



∂w

∂t
= s(v,w) in Ω0 × (0, T ),

∂c

∂t
= r(v,w, c) in Ω0 × (0, T ),

w(t0) = w0, c(t0) = c0 in Ω0

Iion =
∑p

k=1 gk(c)
∏q

j=1 w
pjk
j (v − vk(c)) + I0(v,w, c)

Ionic model


Cm

∂v

∂t
+ Iion(v,w, c)−∇ · (JF−1DF−T∇v) = Iapp in Ω0 × (0, T ),

(F−1DF−T∇v) · n = 0 on ∂Ω0 × (0, T ),

v(t0) = v0 in Ω0

Monodomain model

v w, c

Electrical model

µAγ̇f = fA(c) +
2I4,f

(1 + γf )3
− 2I4,f |c=c0

Mechanical activation

c


−∇0 ·P(u(t); γf (t)) = 0 in Ω0

P(u(t); γf (t))n = g on Γendo

P(u(t); γf (t))n + αu(t) = 0 on Γepi ∪ Γbase

Mechanical model

γf

(Feedback u)

Figure 2: Schematical representation of the cardiac electromechanical model
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2.3 Parameters of interest

ROM techniques allow to efficiently solve the problems introduced so far in different scenarios in order assess
the effect of clinically relevant parameters on their solutions by taking into account a possible inter-patient
variability. We denote by µ ∈ P ⊂ Rp the set of p selected parameters.

In particular, we are interested in analyzing how the electrical conductivities – σf , σs and σn introduced
in (5) – and the fibers orientation f0 affect heart contraction. Electrical conductivities significantly influence
the propagation of the electrical signal and, consequently, the displacement of the cardiac muscle; fibers
orientation highly varies among subjects and can have a crucial impact on the correct torsion and shortening
of the ventricle. We will restrict our attention to these parameters in this work; note that fibers’ orientation
affects both the electrophysiology and the mechanics since it directly enters in the monodomain equation (5)
as well as in the constitutive law (11). Instead, electrical conductivities affects primarily the monodomain
equation through the conductivity tensor D, and only indirectly the myocardium displacement. Additional
parameters of interest are, for instance, the (isotropic) coefficient a(µ) introduced in (11), related to the
stiffness of the cardiac muscle, as well as the Bulk modulus κ defined in (12), related to the material
incompressibility; more can be found in [13, 14].

Regarding electrophysiology, we thus have D = D(µ) and the parametrized electrical model reads as:

Cm
∂v(µ)

∂t
+ Iion(v(µ),w(µ))−∇ · (D(µ)∇v(µ)) = Iapp in Ω0 × (0, T ),

∂w(µ)

∂t
= s(v(µ),w(µ)) in Ω0 × (0, T ),

D(µ)∇v(µ) · n = 0 on ∂Ω0 × (0, T ),

v(t0) = v0 w(t0) = w0 in Ω0.

(16)

If D is µ-dependent, also the variables v and w will depend on parameters. Since the activation equation
depends on the solution of the electrical problem, we also have γf = γf (µ), so that (14) reads as

µAγ̇f (µ) = fA(c(µ)) +
2I4,f

(1 + γf (µ))3
− 2I4,f |c=c0 in Ω0 × (0, T ).

As for the mechanical problem, we have u = u(µ), either if we consider parameters directly affecting
mechanics or parameters which directly enter only in the electrophysiology, so that (13) modifies as:

−∇0 ·P(u(t,µ); γf (t,µ)) = 0 in Ω

P(u(t,µ); γf (t,µ)) n = g on Γendo

P(u(t,µ); γf (t,µ)) n + αu(t,µ) = 0 on Γepi ∪ Γbase.

(17)

In this work, we neglect the influence of the blood in the ventricular chamber, thus taking g = 0 – that
is, pendo(t) = 0, by assuming that no information on the blood inside the ventricle are available. Note that
the problem is not trivial: indeed, even if external loads are zero, stress (and then deformation) originates
because of the presence of a term depending on the fiber shortening γf .

3 Full-order model: finite element method

Before addressing the reduction of the electrophysiology and the mechanical problems, we sketch their finite
element (FE) approximation [31, 38, 82, 84], which the reduced order model is built on, and plays the role of
full-order model (FOM). For the sake of notation the dependence on the parameter vector µ is understood
in this section.

3.1 Electrical model

After deriving the weak formulation of problem (16), we introduce the discretization Tep of the domain Ω0

and the finite dimensional spaces Zh and Qh with dim(Zh) = Nz <∞ and dim(Qh) = Nq <∞, respectively,
for the approximation of the potential v and the ionic variables w ∈ Rd, d = 3. We denote by {ϕi}Nz

i=1,

ϕi ∈ Zh and {ψi}Nq

i=1, ψi ∈ Qh, their FE bases, so that the approximated potential vh and ionic variables
wh can be expressed under the form

vh(x, t) =

Nz∑
i=1

vi(t)ϕi(x) and wh(x, t) =

w1,h(x, t)
w2,h(x, t)
ch(x, t)

 =

Nq∑
i=1

wi(t) ◦ψd
i (x); (18)
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here ψd
i are the basis functions of the space Qd

h and the operator ◦ is the element-wise vector product. We
denote the components of wi ∈ R3, i = 1, . . . , Nq, as w1,i, w2,i, ci, respectively. The FE approximation of
the monodomain model (5) turns into the following nonlinear system of algebraic equation

Nz∑
i=1

(
Cm

∂vi
∂t

(ϕi, ϕj) + via(ϕi, ϕj)
)

+ I(

Nz∑
i=1

viϕi,

Nq∑
i=1

wi ◦ψd
i ;ϕj) = 0 ∀j = 1, . . . , Nz,

Nq∑
i=1

∂wi

∂t
(ψi,ψj) =

(
s(

Nz∑
i=1

viϕi,

Nq∑
i=1

wi ◦ψd
i ),ψj

)
∀j = 1, . . . , Nq

(19)

by defining the bilinear form a and the functional I as

a(v, z) =

∫
Ω0

D∇v · ∇zdΩ0, I(v,w; z) =
(
Iion(v,w)− Iapp, z),

respectively, with

(v, w) =

∫
Ω0

vwdΩ0, (v,w) =

∫
Ω0

v ·wdΩ0.

Here we restrict ourselves to the case of linear (P1) finite elements, so that Nz = Nq = Ne
h. We denote by

V = (v1, . . . , vNe
h
)T , W = (W1,W2,C), where W1 = (w1,1, . . . ,w1,Ne

h
)T , W2 = (w2,1, . . . ,w2,Ne

h
)T and

C = (c1, . . . , cNe
h
)T . Moreover, Mij = (ϕj , ϕi), Md

q,ij = (ψj ,ψi) and Kij = a(ϕj , ϕi) denote the mass
matrices and the stiffness matrix associated to problem (19), respectively. To treat the nonlinear term I, we
rely on the so-called ionic current interpolation (ICI) method, which introduces a linear interpolation of the
ionic currents,

I(

Ne
h∑

i=1

viϕi,

Ne
h∑

i=1

wi ◦ψd
i ;ϕj) ≈

∫
Ω0

I(vj ,wi)ϕj(x)ϕj(x) = I(V,W) (20)

and makes the assembling of the ionic currents term straightforward, only requiring a matrix-vector multipli-
cation, I(V,W) = MĨ(V,W), where Ĩ(V,W) = (I(v1,w1), . . . , I(vNe

h
,wNe

h
))T . A further enhancement of

this procedure can be obtained by considering a lumped version of the ICI strategy (L-ICI) where the ionic
currents are interpolated nodally or, equivalently, the mass matrix arising in the ICI method is lumped,
thus yielding I(V,W) = MLĨ(V,W). We remark that a possible alternative to the ICI method is the
so-called state variable interpolation (SVI) method, in which the transmembrane potential and the variables
of the ionic model are computed on the quadrature points and then used to evaluate the ionic current in
the monodomain equation. The SVI method turns out to be more accurate than the ICI, since it does
not approximate the nonlinear term with piecewise linear functions. However, the ICI method represents
a reasonable trade-off between accuracy and computational cost; a detailed comparison between the two
approaches can be found in [62]. Moreover, the ICI method better fits with the matrix formulation of the
hyper-reduction techniques we have exploited, thus making the coupling between the monodomain equation
and the ionic model more efficient when dealing with the reduced order model for electrophysiology. We also
point out that when using coarse meshes, the L-ICI method underestimates the propagation velocity of the
electrical signal. However, this problem can be solved by artificially increasing the electrical conductivities
σf , σs and σn in the L-ICI method, as done in [72].

The nonlinear function s appearing in the ionic model is approximated as

(
s(

Ne
h∑

i=1

viϕi,

Ne
h∑

i=1

wi ◦ψd
i ),ψj

)
≈

Ne
h∑

i=1

s(vi,wi)(ψ
d
i ,ψ

d
j ) = S(V,W), (21)

so that S(V,W) = Md
q S̃(V,W), where S̃(V,W) = (s(v1,w1), . . . , s(vNe

h
,wNe

h
))T . Since the ionic variables

can be computed at each node independently, the second equation of (19) yields to a system of Ne
h uncoupled

ODEs, Ẇ − S̃(V,W) = 0.
The spatial FE discretization of (19) thus leads to the following system:{

CmMV̇ + KV + MLĨ(V,W) = 0

Ẇ − S̃(V,W) = 0
(22)

Let us now introduce a time discretization of (22), denoting by ∆te = T/nt the time step, with tn = n∆te,
n = 1, . . . , nt; the superscript n denotes a quantity evaluated at time tn. We adopt a forward Euler scheme
to solve the ODEs representing the ionic model, with a sufficiently small ∆t to preserve the stability of the
method. To discretize in time the monodomain equation, we rely on a semi-implicit scheme; in particular,
we treat the diffusion term implicitly and the reaction term explicitly. This strategy allows us to solve, at
each time step, a linear system instead of a nonlinear one, as it would have been instead required by an
implicit method.
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We finally assume a weak coupling between all the electrophysiology fields, that is we consider an explicit
algorithm to compute the solution of (22), solving sequentially two separate problems in order to compute
the ionic variables w and the potential v. In conclusion, we obtain the following system: given V0,W0, for
n = 0, . . . , nt − 1 computeWn+1 = Wn + ∆tS̃(Vn,Wn)(Cm

∆t
ML + K

)
Vn+1 =

Cm

∆t
MLVn + MLĨ(Vn,Wn+1),

(23)

where mass lumping is commonly used (note the presence of the matrix ML) to reduce possible oscillations
near the wave-front [70, 46].

3.2 Activation equation

Regarding the activation equation (14), we first perform a Taylor series expansion around γf = 0 of the
quantity

F(γf ) =
2I4,f

(1 + γf )3
=

∞∑
j=0

−1j(j + 1)(j + 2)I4,fγ
j
f (24)

appearing at the right-hand side of the ODE in (14). Since F(u, 0) = 2I4,f |c=c0 , we can approximate the
ODE under the form

µAγ̇f = fA(c) +

M∑
j=1

−1j(j + 1)(j + 2)I4,fγ
j
f =: F (c, γf ); (25)

the choice M = 5 ensures that ||F(u, γf ) −
∑M

j=1−1j(j + 1)(j + 2)I4,fγ
j
f || < 0.005, see [72]. Similarly to

the discretization of the ionic model (21), the spatial semidiscretization reads

µAMqĠf = F(C,Gf ) :=

Ne
h∑

i=1

F (ci, γfi)(ψi, ψj),

where linear finite elements have been chosen to approximate γf . Here Gf = (γf1 , . . . , γfN )T ∈ RNe
h and

C ∈ RNe
h denote the vectors of degrees of freedom (dofs) related to γf and to the calcium variable c,

respectively. The fully discretized problem, obtained by adopting the forward Euler scheme for the time
discretization, then reads as follows: given G0

f , for n = 0, . . . , nt − 1 compute

MqG
n+1
f = MqG

n
f +

∆t

µA
F(Cn+1,Gn

f ). (26)

3.3 Mechanical model

We now turn to the FE approximation of the mechanical subproblem (15), which is a fully nonlinear, quasi-
static problem since it depends on time through the coupling with the electrical subproblem. We rely on
the Newton method to solve, at a given time instant, such a nonlinear problem. Performing a Newton step
at the continuous level around a generic displacement û(t) yields a weak problem under the following form
to be solved: find δu(t) such that

Jû(t)(δu(t),v) = −(Rû(t),v) ∀v ∈ V, t ∈ [0, T ), (27)

where

Jû(t)(δu(t),v) =

∫
Ω0

[
∂P

∂F
(û(t)) : ∇δu(t)

]
: ∇vdΩ +

∫
ΓR

αδu(t) · vdσ

and

(Rû(t),v) =

∫
Ω0

P(û(t)) : ∇vdΩ +

∫
ΓR

αû(t) · vdσ −
∫

ΓN

g · vdσ.

This problem arises after integrating (15) by parts over Ω0 and linearizing the resulting problem; recall that
F is the deformation gradient tensor defined in (7).

The FE approximation of problem (27) over a suitable triangulation Tm of the domain Ω0 can be obtained
in a straightforward way; in this work, we use linear (P1) finite elements to approximate the mechanical
displacement, denoting by Nm

h the dimension of the FE space for the approximated displacement. We then
obtain the following algebraic form of the Newton problem: for each tn, n = 0, . . . , Nt − 1, given U(0)(tn),
for every k ≥ 1 we search δU(tn) satisfying{

J(U(k−1)(tn))δU(k)(tn) = −R(U(k−1)(tn)),

U(k)(tn) = U(k−1)(tn) + δU(k)(tn)
(28)

until ||R(uk
h(tn))||2 < ε, being ε > 0 a small fixed tolerance. Here, for any U ∈ RNm

h ,
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[J(U(t))]ij = Ju(t)(ϕj ,ϕi), i, j = 1, . . . , Nm
h

[R(U(t))]i = (Ru(t),ϕi), i = 1, . . . , Nm
h

(29)

are the components of the Jacobian J(U) ∈ RNm
h ×Nm

h and the residual R(U) ∈ RNm
h evaluated at U ∈

RNm
h ; {ϕi, i = 1, . . . , Nm

h } denote the (vector) basis functions of the FE space for the displacement and
U(t) = (u1(t), . . . , uNm

h
(t))T the vector of dofs of its high-fidelity approximation u(t) - here denoted, with a

slight abuse of notation, in the same way as the displacement at the continuous level.
A segregated algorithm is finally chosen for the solution of the electromechanical problem, in which the

governing equations are solved sequentially – that is, segregated from one another; see Algorithm 1. This
approach is shown to be appropriate when considering a model which is independent on the fibers stretch
or which depends on the stretch but not on the stretch-rate [61]. In particular:

• we consider two different time steps for the electrical and the mechanical problem. The electrophysiol-
ogy requires a significantly small time-step ∆te = T/nt in order to correctly capture the propagation
front of the electrical potential. Since the mechanical displacement is slower (of a factor ranging be-
tween 10 and 100) than the electrical signal propagation, for the mechanical model it is sufficient to
consider a time step ∆tm = T/Nt small enough to guarantee the convergence of the Newton method.
In particular, we set them so that ∆tm = D∆te, that is, nt = DNt. Since we are discretizing the
activation equation with the forward Euler method, we need to solve (26) using the time step ∆te of
the electrical model to guarantee the stability of the overall numerical scheme. Therefore, D time steps
for the electrical subproblem (23) and the activation equation (26) are evaluated between two time
instants in which the mechanical subproblem is solved;

• different meshes Tep, Tm are employed for the electrical and mechanical problems, respectively; the
latter problem requires less mesh-size restrictions than the former and can thus be solved on a coarser
mesh [67]. This implies the need of transferring information between the two meshes: to impose
the activation in the mechanical problem we need to evaluate the solution of the electrophysiology
problem on Tm, whereas the electromechanical feedback (which here is not considered) would require
to evaluate the solution of the mechanical problem on Tep. This inter-grid transfer is performed by
means of a rescaled localized radial basis functions (RBF) interpolation technique introduced in [32];
see also [9, 72].

Algorithm 1 FOM for the (one-way) coupled electromechanical model

INPUT: v0, w0, H0 and u0

OUTPUT: u
1: for m = 0, ..., T/∆tm do
2: for n = mD, ..., (m+ 1)D − 1 do solve
3:

Wn+1 = Wn + ∆tS̃(Vn,Wn) (ionic model)(Cm
∆t

ML + K
)
Vn+1 =

Cm
∆t

MLVn + MLĨ(Vn,Wn+1) (monodomain model)

MqG
n+1
f = MqG

n
f + ∆t

µA
F(Cn+1,Gn

f ) (activation model)

4: end for
5: Interpolate Gn+1

f on the mesh Tm using the RBF strategy

6: while ||R(U(k−1)(tm+1); Gn+1
f )||L2 < ε do solve (Newton step)

7: {
J(U(k−1)(tm+1); Gn+1

f )δU(k)(tm+1) = −R(U(k−1)(tm+1); Gn+1
f ),

U(k)(tm+1) = U(k−1)(tm+1) + δU(k)(tm+1)
(30)

8: end while
9: end for

4 Reduced order modeling techniques

The reduced basis (RB) method allows to speed up the approximation of a parameter-dependent PDE in
the case multiple evaluations of its solution are required for several values of the parameter µ ∈ P. The
basic idea of the RB method is to seek the solution of a problem in a subspace of much smaller dimension
than the one, Nh, of the FOM space. During the offline stage, the parameter domain is explored, and a
set of high-fidelity solutions (snapshots) is computed to generate a low dimensional RB space of dimension
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N � Nh. This space can be built by means of either a greedy algorithm (if suitable a posteriori error
estimators are available and can be efficiently evaluated) or, in more general situations, proper orthogonal
decomposition (POD) technique; see Sect. 4.1. Then, during the online phase, for each new value of µ, the
RB approximation is rapidly computed by combining (possibly few) arrays stored offline, whose complexity
must no longer depend on Nh.

The technique is well-established for linear PDEs (both of elliptic and parabolic type) showing an affine
dependence on µ; see, e.g., [68] for an in-depth presentation of the methodology. Under the assumption
of affine parametric dependence, the differential operators and data can be expressed as a linear combina-
tion of µ-independent forms (which can thus be precomputed) weighted by µ-dependent coefficients, which
can be inexpensively evaluated. The RB method in its classical formulation, however, is no longer effi-
cient when dealing with nonlinear (and/or nonaffinely parametrized) problems, unless we employ suitable
hyper-reduction techniques to perform system approximation in addition to solution-space reduction; in the
nonlinear case, these two operations shall be performed at the same time.

We first address the issue of solution-space reduction, which is achieved by means of the POD technique.
We consider the case of a nonlinear stationary problem, a class which the mechanical subproblem fits in, for
the sake of general exposition. We postpone the case of time-dependent nonlinear problems – albeit treated
in a semi-implicit way, thus requiring the solution of a linear system at each time step – to Sect. 5, where
we address the reduction of the monodomain equation. For the sake of exposition, we formulate everything
in a purely algebraic form.

4.1 POD-Galerkin method

Let us consider the following, abstract, nonlinear µ-dependent algebraic system

R(U(µ);µ) = 0. (31)

and the associated Newton method: given U(0)(µ) ∈ RNh , for k ≥ 1, find δU(µ) ∈ RNh s.t.{
J(U(k−1)(µ);µ)δU(k)(µ) = −R(U(k−1)(µ);µ),

U(k)(µ) = U(k−1)(µ) + δU(k)(µ)
(32)

and iterate until ||R(U(k)(µ);µ)||2 < ε, being ε > 0 a small, given tolerance. As before, J(U(µ);µ) ∈
RNh×Nh denotes the µ-dependent Jacobian matrix (with linearization around U(µ)) and R(U(µ);µ) ∈ RNh

the µ-dependent residual vector.
In the case of mechanical problems characterized by complex nonlinear constitutive laws, the computa-

tional burden in solving (32)1 is represented by the assembling of the Jacobian matrix, which can consume
almost the entire CPU time required by each Newton step. To reduce the computational complexity of prob-
lem (32), the RB method seeks, for any µ ∈ P, an approximation of U(k)(µ) given by a linear combination
of (possibly few) basis functions,

U(k)(µ) ≈ Zu
(k)
N (µ), ∀k ≥ 1, N � Nh, (33)

where u
(k)
N (µ) ∈ RN and Z ∈ RNh×N is a matrix whose N � Nh columns contained the nodal values of the

RB functions. Problem (32) is then replaced by the following: given u
(0)
N (µ) ∈ RN , for k ≥ 1, find δuN ∈ RN

s.t. {
ZTJ(Zu

(k−1)
N (µ);µ)ZδuN (µ) = −ZTR(Zu

(k−1)
N (µ);µ),

u
(k)
N (µ) = u

(k−1)
N (µ) + δuN (µ),

(34)

and iterate until ||ZTR(Zu
(k)
N (µ);µ)||2 < εRB , being εRB > 0 a small, given tolerance. If (34) converges,

ZuN (µ) can be regarded as an approximation of U(µ) in the RB space, with uN = limk→∞ u
(k)
N . Problem

(34)1 is obtained by requiring that the Galerkin projection over VN of the FOM residual computed on the
ansatz (33) vanishes, where VN has to be intended as the space spanned by the columns of Z.

The POD technique – through the so-called method of snapshots – can be used to compute the reduced
basis Z (and, as we shall see in Sect. 4.2, for the construction of both DEIM and MDEIM bases). In the
case of a stationary, µ-dependent nonlinear problem, POD performs the singular value decomposition of a
matrix

S = [U(1)(µ1) U(2)(µ1) . . . U(1)(µns) U(2)(µns) . . .]

of snapshots of the high-fidelity problem and returns an orthonormal basis of the RB space made by the first
N right singular vectors of S. Here snapshots are represented by Newton steps obtained for ns parameter
vectors µi ∈ D, i = 1, . . . , ns, randomly sampled over P; more ad-hoc strategies, such as e.g. latin hypercube
sampling or sparse grid, could be exploited especially for high-dimensional parameter spaces.

Hence, from the factorization S = ZΣΛT , where Λ = diag(σ1, σ2, . . .) is the matrix of singular values
of S, the POD basis ZN of dimension N ≤ ns is obtained by collecting the first N columns of Z (i.e. the
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first N left singular vectors), corresponding to the first N (largest) singular values; we can set the basis
dimension N as the minimum integer such that∑N

i=1 σ
2
i∑ns

i=1 σ
2
i

≥ 1− εPOD,

given a suitable, small tolerance εPOD > 0. The reduced basis provided by POD is optimal, in the sense
that it minimizes the sum of the squared distances between each snapshot and the corresponding projection
onto the subspace. When denoting by Z the POD basis, its dimension N will be understood.

4.2 Hyper-reduction techniques

When using Newton iterations to solve nonlinear problems, assembling the ROM for any new parameter
would require to assemble (also in the online phase) the FOM arrays first and then to project them onto the
reduced space, thus calling into play high-fidelity arrays at the online stage, too. This issue is even more
relevant when dealing with fully nonlinear problems, for which the global Jacobian matrix has to be entirely
reassembled at each Newton step.

Hyper-reduction (or system approximation) techniques aim to recover an approximate affine structure
of nonlinear terms to guarantee an efficient offline-online decomposition. The archetypical hyper-reduction
technique introduced in the RB framework is the empirical interpolation method (EIM), developed in [10, 49]
to approximate nonaffinely parametrized functions. Its discrete variant, the so-called Discrete EIM (DEIM),
was originally proposed in [21] to efficiently deal with nonlinear problems, but has also been applied to
nonaffinely parametrized linear operators. More recently, a matrix version of DEIM (MDEIM) has been
developed [19, 87], and then further explored in [55] to approximate the full-order parametrized operators
in a purely algebraic way.

4.2.1 DEIM for residual approximation

For the problem at hand, at each Newton step, DEIM [21] allows to efficiently express the residual vector
as a linear combination of (possibly few) µ-independent terms so that the µ-dependent weights of this
combination can be efficiently computed by solving an interpolation problem. In particular, we project the
residual vector R(Zu

(k)
N (µ);µ) onto a low-dimensional subspace spanned by a basis ΦR ∈ RNh×mR such

that, ∀k ≥ 1
R(Zu

(k)
N (µ);µ) ≈ Rm(Zu

(k)
N (µ);µ) = ΦRθR(Zu

(k)
N (µ),µ) (35)

where θR(Zu
(k)
N (µ),µ) ∈ RmR is a coefficient vector to be determined. In particular:

• the basis ΦR can be computed (once for all) by performing POD on a set of snapshots

SR = {R(Zu
(k)
N (µi);µi) i = 1, . . . , ns, k = 1, . . .}.

To obtain the residual snapshots R(Zu
(k)
N (µi);µi), we need to solve the reduced problem (34) for

different values of µ and, at each Newton iteration, to store the computed residual vectors;

• the coefficient vector θR(Zu
(k)
N (µ),µ) can be evaluated for each new value of µ by imposing mR

interpolation constraints on a subset ℘ = [℘1, . . . , ℘mR ] of entries of R(Zu
(k)
N (µ);µ) (the so-called

magic points, introduced in [49]), selected by the DEIM algorithm, see Algorithm 2. For ease of
notation, we introduce the matrix

P = [e℘1 , · · · , e℘mR
] ∈ RNh×mR , (36)

where e℘i = [0, · · · , 0, 1, 0, · · · , 0]T ∈ RNh is the ℘i-th column of the identity matrix I ∈ RNh×Nh , for

i = 1, · · · ,mR. The coefficient vector θR(Zu
(k)
N (µ),µ) is then obtained as the solution of

PTΦRθR(Zu
(k)
N (µ),µ) = PTR(Zu

(k)
N (µ);µ);

PTΦR and PTR(Zu
(k)
N (µ);µ) are the restrictions of ΦR and R(Zu

(k)
N (µ);µ) to the subset of indices

℘, respectively.

The approximation of the reduced residual vector in (34) can be obtained by projecting (35) onto the
reduced space yielding

ZTR(Zu
(k)
N (µ);µ) ≈ ZTΦR(PTΦR)−1PTR(Zu

(k)
N (µ);µ) := RN,m(Zu

(k)
N (µ);µ). (37)

All the quantities appearing in (37) which do not depend on µ can be precomputed offline; in the online

stage we only need to assemble PTR(Zu
(k)
N (µ);µ), which is the restriction of the residual to the subset of

DEIM nodes. In the FE context, this restriction can be computed by simply integrating the residual only
on the quadrature points belonging to those mesh elements which provide a non-zero contribution to the
entries ℘; this set of elements is usually referred to as reduced mesh [18].
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Algorithm 2 DEIM algorithm (as originally proposed in [21])

INPUT: Φ = [φ1, . . . ,φm] ∈ RNh×m made by linearly independent columns
OUTPUT: ℘ = [℘1, . . . , ℘m] ∈ Rm

1: ℘1 = maxpos{φ1}
2: Φ = [φ1], P = [e℘1 ]
3: for k = 2, . . . ,m do
4: Solve (PTΦ)c = (PTφk)
5: r = φk −Φc
6: ℘k = maxpos{r}
7: Φ← [Φ φk], P← [P e℘k

]
8: end for

4.3 Jacobian approximation

An affine approximation of the reduced Jacobian matrix JN (Zu
(k)
N (µ);µ) can be obtained by relying on

either the DEIM algorithm or a MDEIM alternative technique.
The classical DEIM approach to tackle nonlinear problems (see e.g. [11, 22, 45, 64]) computes the reduced

Jacobian JN (ZwN (µ);µ), for any wN ∈ RN , as the derivative of the reduced approximated residual vector
(i.e. the right-hand side of (37)),

JN,m(ZwN (µ);µ) =
∂RN,m(ZwN (µ);µ)

∂wN
= ZTΦR(PTΦR)−1PTJ(ZwN (µ);µ)Z. (38)

As for the residual vector, we can precompute the µ-independent quantities offline, while online we have
to assemble PTJ(ZwN (µ);µ) ∈ RmR×Nh , that is the restriction of the Jacobian matrix to the rows which
correspond to the indices in ℘. Consequently, we need to assemble online, at each Newton step, a matrix of
dimension mR ×Nh, which still depends on the dimension Nh of the FE problem, which is unfeasible when
mR becomes large. Note that since the reduced Jacobian matrix is obtained as the derivative of the reduced
residual, DEIM yields the application of the exact Newton method (i.e. with the exact reduced Jacobian
matrix) although on an approximated version of problem (34).

When a large number mR of DEIM terms is obtained, a matrix version of DEIM (MDEIM) can be
employed to perform hyper-reduction of the Jacobian matrices arising in (34). The idea is to directly

approximate the reduced Jacobian ZTJ(Zu
(k)
N (µ);µ)Z by relying on a different basis than the one used

for the residual. This yields a quasi-Newton method since the reduced Jacobian matrix is not the exact
derivative of the reduced residual; nevertheless, since the µ-dependent Jacobian matrix usually varies in a
significantly smaller range compared to the residual vector, few (much less than mR) terms are required.

MDEIM provides an approximation of the Jacobian matrix J(Zu
(k)
N (µ);µ) ∈ RNh×Nh under the form

J(Zu
(k)
N (µ);µ) ≈ Jm(Zu

(k)
N (µ);µ) =

mJ∑
i=1

θiJ(µ)Ji, (39)

being {Ji ∈ RNh×Nh , i = 1, . . . ,mJ} a set of µ-independent matrices that can be computed once for
all and θJ (µ) = (θ1

J(µ), · · · , θmJ
J (µ))T a coefficient vector. This approximation is obtained by defin-

ing j(Zu
(k)
N (µ);µ) = vec(J(Zu

(k)
N (µ);µ) ∈ RN2

h as the vector obtained by stacking all the columns of

J(Zu
(k)
N (µ);µ), and approximating j(Zu

(k)
N (µ);µ) by its DEIM counterpart

j(Zu
(k)
N (µ);µ) ≈ jm(Zu

(k)
N (µ);µ) = ΦJθJ(µ), ΦJ = (φ1, . . . ,φn)T ∈ RN2

h×mJ .

Then, the matrices Ji can be computed transforming each column φi ∈ RN2
h of ΦJ into a matrix Ji ∈

RNh×Nh by reverting the vec operation, as Ji = vec−1(φi), so that Jm(Zu
(k)
N (µ);µ) = vec−1(jm(Zu

(k)
N (µ);µ)).

The basis ΦJ and the coefficient vector θJ(µ) are determined following the same procedure used for the

residual vectors, relying on a set of snapshots SJ = {J(Zu
(k)
N (µi);µi), i = 1, . . . , ns, k = 1, . . .}, evaluated

on the reduced solution. Finally, the reduced Jacobian matrix in (34) can be approximated as

ZTJ(Zu
(k)
N (µ);µ)Z ≈

mJ∑
i=1

θiJ(µ)ZTJiZ. (40)
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4.3.1 Efficient assembling on a reduced mesh

By using DEIM and MDEIM as above, the POD solution-space reduction is first performed, while the bases
associated to the DEIM and MDEIM approximations of R and J are computed at a later time. The major
drawback of this strategy is that problem (34) must be solved ns times. To avoid this, we can rely on an
intermediate problem where the Jacobian matrix is replaced by its MDEIM approximation and the residual
is exact: given u

(0)
N,m ∈ RN , at each Newton step we search δu

(k)
N,m ∈ RN , k ≥ 1 satisfying

mJ∑
i=1

θJi (µ)ZTJiZ δuN,m(µ) = −ZTR(Zu
(k−1)
N,m (µ))

u
(k)
N,m(µ) = u

(k−1)
N,m (µ) + δuN,m(µ)

(41)

and iterate until ||ZTR(Zu
(k)
N (µ);µ)||2 < εRB . Solving this problem is significantly faster than solving

problem (34), since J is assembled only onto the reduced mesh. Moreover, problem (41) is very fast to solve
since it requires almost the same effort of the full hyper-reduced problem. The complete procedure for the
ROM construction is reported in Algorithm 3.

Algorithm 3 ROM construction (stationary, nonlinear problem)

INPUT: ns combinations of parameters {µ1, . . . ,µns
}

OUTPUT: Z, ΦJ , ΦR

1: for i = 1, . . . , ns do
2: Solve problem (32) for µi
3: At each Newton iteration k:
4: SU ← [SU U(k)(µi)], SJ ← [SJ vec(J(U(k−1)(µi),µi))]
5: end for
6: Z = POD(SU ; ε), ΦJ = POD(SJ ; εJ)
7: for i = 1, . . . , ns do
8: Solve problem (41) for µi
9: At each Newton iteration k:

10: SR ← [SR R(Zu
(k−1)
N (µi),µi)]

11: end for
12: ΦR = POD(UR; εR).

5 RB Methods for cardiac electrophysiology

We now apply the techniques introduced in the previous section to the electrical problem. The parametrized
version of problem (23) reads: given µ ∈ D, V0(µ) and W0(µ), for each n = 0, . . . , nt − 1 solveWn+1(µ) = Wn(µ) + ∆tS̃(Vn(µ),Wn(µ))(Cm

∆t
ML + K(µ)

)
Vn+1(µ) =

Cm

∆t
MLVn(µ) + MLĨ(Vn(µ),Wn+1(µ)).

(42)

A ROM for the monodomain equation (42)1, exploits the POD technique for the construction of the
reduced space, and on the DEIM technique to approximate the nonlinear terms. Moreover, we exploit the
MDEIM technique to efficiently recover an affine decomposition for the µ-dependent stiffness matrix, and
use the DEIM technique to reduce the computational cost associated to the ionic model (42)2.

We consider a vector of physical parameters µ ∈ P as in equation (16) affecting the conductivity tensor
D = D(µ) (and possibly the initial data); this yields a µ-dependent stiffness matrix K(µ) ∈ RNe

h×Ne
h ; in

the case we considered a geometrical parametrization of the domain where the problem is set, also the mass
matrix ML would be µ-dependent. Moreover, for the sake of simplicity we do not consider the case of
parameters affecting the ionic terms; see [59] for more about this subject.

5.1 Monodomain equation

We rely on the POD-Galerkin method recalled in Sect. 4.1: for each value of µ ∈ P, we approximate the
FE discretization of the potential at time tn as

Vn(µ) ≈ ZeV
n
Ne(µ), n = 0, . . . , nt, (43)

where VNe(µ) ∈ RNe

denotes the reduced transmembrane potential and Ze denotes the matrix whose
columns span the RB space for the monodomain equation. By substituting (43) in (23)1 and projecting the
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resulting residual onto the reduced space spanned by the columns of Ze, we obtain the following problem:
given µ ∈ P and V0

Ne(µ), for each n = 0, . . . , nt − 1 solve

ZT
e

(Cm

∆t
ML + K(µ)

)
ZeV

n+1
Ne (µ) =

Cm

∆t
ZT

e MLZeV
n
Ne(µ) + ZT

e MLĨ(ZeV
n
Ne(µ),Wn+1(µ)). (44)

Since the matrix ZT
e K(µ)Ze depends on µ, it has to be reassembled for each new value of µ; to avoid this,

we replace K(µ) by an approximate affine expansion

K(µ) ≈
mK∑
i=1

θiK(µ)Ki (45)

obtained through the MDEIM technique. Here {Ki ∈ RNe
h×Ne

h , i = 1, . . . ,mK} are a set of µ-independent
matrices that can be computed once for all and θK(µ) = [θ1

K(µ), · · · , θmK
K (µ)] a vector of coefficients to be

evaluated for any µ ∈ P. In this way, no matter which kind of µ-dependence is considered in the expression of
the diffusion tensor (6), the ROM stiffness matrix can be assembled using a set of precomputed quantities; in
particular, if µ also includes the maximum fibers rotation angle θmax, the vector defining the fiber direction
f0(µ) cannot be written under affine form; see [13]. We point out that K(µ) is time-independent, hence it has
to be assembled only once for each value of µ; in particular, during the online stage, we can compute θK(µ)
and the corresponding approximation (45) of K(µ) when selecting a new µ, and then use the computed
quantities for all time instants.

Using approximation (45), problem (44) becomes: given µ ∈ P and V0
Ne(µ), for each n = 0, . . . , nt − 1

solve [
Cm

∆t
ZT

e MLZe +

mK∑
i=1

θiK(µ)ZT
e KiZe

]
Vn+1

Ne (µ) =
Cm

∆t
ZT

e MLZeV
n
Ne(µ)

+ ZT
e MLĨ(ZeV

n
Ne(µ),Wn+1(µ)).

(46)

Since the term describing the ionic current is nonlinear, we replace it by its DEIM approximation. We
introduce a basis ΦI ∈ RNe

h×mI , and express

Ĩ(ZeV
n
Ne(µ),Wn+1(µ)) ≈ ΦIθI(Vn

Ne(µ),Wn+1(µ)). (47)

The basis ΦI ∈ RNe
h×mI has to be precomputed during the offline phase by performing a POD on a set of

snapshots {Ĩ(ZeV
n
Ne(µi),W

n+1(µi)), i = 1, . . . , ns}; instead, the coefficient vector θI(Vn
Ne(µ),Wn+1(µ)) ∈

RmI has to be computed online, by solving the interpolation problem

PT
I ΦIθI(Vn

Ne(µ),Wn+1(µ)) = PT
I Ĩ(ZeV

n
Ne(µ),Wn+1(µ)), (48)

where PT
I = [e℘I,1 , · · · , e℘I,mR

]T ∈ RNe
h×mI is the restriction matrix to the set of DEIM indices ℘I defined

in (36). The DEIM approximation of (47) is thus

Ĩ(ZeV
n
Ne(µ),Wn+1(µ)) ≈ ΦI(PT

I ΦI)−1PT
I Ĩ(ZeV

n
Ne(µ),Wn+1(µ)). (49)

To obtain the second term of the right hand side of (44) we can simply project (49) onto the reduced
space spanned by Ze, thus getting

ZT
e MLĨ(Vn

Ne(µ),Wn+1(µ)) ≈ ZT
e MLΦI(PT

I ΦI)−1PT
I Ĩ(ZeV

n
Ne(µ),Wn+1(µ)). (50)

We point out that the matrices ZT
e MLΦI ∈ RNe×mI and PT

I ΦI ∈ RmI×mI can be precomputed during the
offline stage, since they are µ-independent. For the sake of system approximation, during the online stage we
only need to evaluate (only once) the restriction of Ĩ to the indices ℘I , that is, PT

I Ĩ(ZeV
n
Ne(µ),Wn+1(µ)) ∈

RmI .
Relying on (50), instead of (44) we thus obtain the following hyper-reduced monodomain equation: given

µ ∈ P and V0
Ne(µ), for each n = 0, . . . , nt − 1 solve[
Cm

∆t
ZT

e MLZe +

mK∑
i=1

θiK(µ)ZT
e KiZe

]
Vn+1

Ne (µ) =
Cm

∆t
ZT

e MLZeV
n
Ne(µ)

+ ZT
e MLΦI(PTΦI)−1PT

I Ĩ(ZeV
n
Ne(µ),Wn+1(µ)).

(51)

The construction of the reduced basis Ze and the snapshots selection strategy will be addressed in Section
5.3.
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5.2 The full electrophysiology problem

In this section we aim at developing an efficient ROM for the full electrical problem (42), which involves a
PDE (monodomain equation) and a system of ODEs (ionic model). Replacing the second equation of (42)
with the ROM (51) derived in the previous section, we obtain the following problem: given µ ∈ D and
V0

Ne(µ) and W0(µ), for each n = 0, . . . , nt − 1 solve

Wn+1(µ) = Wn(µ) + ∆tS̃(Vn(µ),Wn(µ))[
Cm

∆t
ZT

e MLZe +

mK∑
i=1

θiK(µ)ZT
e KiZe

]
Vn+1

Ne (µ) =
Cm

∆t
ZT

e MLZeV
n
Ne(µ)

+ ZT
e MLΦI(PT

I ΦI)−1PT
I Ĩ(ZeV

n
Ne(µ),Wn+1(µ)).

(52)

Since the ODEs still depend on the high-fidelity approximation of the potential Vn at each time tn, n =
1, . . . , nt, we should in principle compute the matrix-vector product Vn = ZeV

n
Ne at each time tn to

evaluate S̃(Vn(µ),Wn(µ)) and solve the ionic model. To avoid this operation, we can again rely on a
DEIM approximation. In fact, we can express the restriction of Ĩ(V,W) to the subset of DEIM indices ℘I

as
PT

I Ĩ(ZeV
n
Ne(µ),Wn+1(µ)) = Ĩ(ZeV

n
Ne(µ),Wn+1(µ))|℘I

= Ĩ(ZeV
n
Ne(µ)|℘I ,W

n+1(µ)|℘I ).
(53)

In particular, we observe that in order to solve (52)2, only the restriction of the ionic variables vector
Wn+1(µ) to the indices ℘I is required. Hence, (52) becomes: given µ ∈ D, V0

Ne(µ) and W0(µ), for each
n = 0, . . . , nt − 1 solve

Wn+1(µ)|℘I = Wn(µ)|℘I + ∆tS̃(Vn(µ),Wn(µ))|℘I[
Cm

∆t
ZT

e MLZe +

mK∑
i=1

θiK(µ)ZT
e KiZe

]
Vn+1

Ne (µ) =
Cm

∆t
ZT

e MLZeV
n
Ne(µ)

+ ZT
e MLΦI(PTΦI)−1Ĩ(ZeV

n
Ne(µ)|℘I ,W

n+1(µ)|℘I ).

(54)

As done in (53) for the ionic current, we write

S̃(Vn(µ),Wn(µ))|℘I = S̃(ZeV
n
Ne(µ)|℘I ,W

n(µ)|℘I )

so that, exploiting the approximation Vn(µ) ≈ ZeV
n
Ne(µ), n = 0, . . . , nt−1, the hyper-reduced order model

for the electrical problem reads as follows: given µ ∈ D, V0
Ne(µ) and W0(µ), for each n = 0, . . . , nt − 1

solve 
Wn+1(µ)|℘I = Wn(µ)|℘I + ∆tS̃(ZeV

n
Ne(µ)|℘I ,W

n(µ)|℘I )[Cm

∆t
ZT

e MLZe +

mK∑
i=1

θiK(µ)ZT
e KiZe

]
Vn+1

Ne (µ) =
Cm

∆t
ZT

e MLZeV
n
Ne(µ)

+ ZT
e MLΦI(PTΦI)−1Ĩ(ZeV

n
Ne(µ)|℘I ,W

n+1(µ)|℘I ).

(55)

Hence, instead of solving the ODEs (54)1 for each degree of freedom of Tep, we compute their solution only
at mI nodes, with mI � Ne

h. Indeed, both the ionic model and the monodomain equation only depend on
the restriction of the potential to the indices ℘I ; in particular, by recalling that

ZeV
n
Ne(µ)|℘I = PT

I ZeV
n
Ne(µ),

we notice that the matrix PT
I Ze ∈ RmI×Ne

can be precomputed offline. Solving the ODEs system at
each node of the mesh would have been required if the activation equation underwent a similar reduction
prcocedure and a ROM for the coupled electromechanical problem was built; see [13] for more on this subject.

5.3 Snapshots selection strategy

To build Ze and ΦI we rely on a POD-POD strategy, namely we perform POD with respect to both the
time and the parameter vector. In particular:

• for each parameter value µ1, . . . ,µns randomly chosen in P, we solve the high-fidelity problem (42)
and perform a POD in time to compress the snapshots Vn(µi), n = 1, . . . , nt, thus obtaining a basis
Zi; finally, we obtain the POD basis Ze performing a POD on the ns bases Z1, . . . , Znt ;

• regarding the nonlinear term, we collect the snapshots Ĩ(ZVn
Ne(µi),W

n+1(µi)), n = 1, . . . , nt, i =
1, . . . , ns by solving the following problem: given V0

Ne(µi) and W0(µi), i = 1, . . . , ns, for each n =
0, . . . , nt − 1 compute
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Algorithm 4 ROM construction (electrophysiology)

INPUT: ns parameter values {µ1, . . . ,µns
}, V0(µi), W0(µi), i = 1, . . . , ns

OUTPUT: Ze, ΦI , ΦK

1: for i = 1, . . . , ns do
2: SK ← [SK vec(K(µi))]
3: for n = 0, . . . , Nt − 1 do
4: Solve problem (42) for µi
5: SV ← [SV Vn+1(µi)]
6: end for
7: Zi = POD(SV , ε)
8: end for
9: Ze=POD(Z1, . . . ,Zns ; ε)

10: ΦK=POD(SK ; εMDEIM ), Kl = vec−1(ΦK(l, :)), l = 1, . . . ,mK

11: for i = 1, . . . , ns do
12: for n = 0, . . . , Nt − 1 do
13: Solve problem (56) for µi
14: SI ← [SI Ĩ(ZVn

Ne(µ),Wn+1(µ))]
15: end for
16: Φi = POD(SI ; εDEIM )
17: end for
18: ΦI=POD(Φ1, . . . ,Φns

; εDEIM )


Wn+1(µ) = Wn(µ) + ∆tS̃(Vn(µ),Wn(µ))[Cm

∆t
ZTMLZ +

mK∑
i=1

θiK(µ)ZTKiZ
]
Vn+1

Ne (µ) =
Cm

∆t
ZTMLZVn

Ne(µ)

+ ZTMLĨ(ZVn
Ne(µ),Wn+1(µ))

(56)

and then perform the same POD-POD procedure with respect to time and parameters as in the previous
case; see Algorithm 4.

Here we rely on global reduced bases; considering local bases obtained by partitioning the snapshot set
either with respect to time or the parameters, or, alternatively, produced by a clustering procedure in the
physical space, represents a further improvement, currently under investigation; see [59] for further details.

6 RB Methods for cardiac mechanics

We now show how to take advantage of the techniques presented in Sect. 4 in order to build a ROM for the
mechanical problem. This latter is a time-driven problem, since its solution depends on time only through
its coupling with the electrophysiology model, which is intrinsically unsteady. Relying on the RB method
provides a twofold advantage, since the problem has to be solved not only for different parameters, but also
at several time instants.

The parametrized version of problem (28) reads: given U(0)(tn;µ) = U(tn−1;µ), for n = 1, . . . , Nt,
Nt = T/∆tm, for k ≥ 1 solve:{

J(U(k−1)(tn,µ); Gm
f (µ))δU(tn;µ) = −R(U(k−1)(tn;µ); Gl

f (µ)),

U(k)(tn;µ) = U(k−1)(tn;µ) + δU(tn;µ),
(57)

until ||R(U(k−1)(tn;µ); Gl
f (µ)||2 < ε, where k is the index of the Newton iterations, tn denotes the time

instant which the mechanical problem is computed at, and l = (n+ 1)D − 1, with D = ∆tm/∆te. Here we
also have made the dependence on the (discrete representation of the) fibers shortening Gf ; recall that the
time stepping for this latter variable follows the one of the electrical problem.

For the mechanical problem, time is instead considered as an additional parameter, although with peculiar
features. Indeed, as we are not interested in solving problem (57) for generic values of t selected online, we
use the same time step ∆tm in both the offline and online stages; in particular, online we solve the reduced
problem associated with (57) only in the time instants of the form tn = n∆tm used during the offline stage
for the snapshots computation.
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6.1 Jacobian approximation by the Broyden method

When dealing with time dependent (and/or large scale) problems, (M)DEIM might be not efficient enough
to guarantee a rapid approximation of the Jacobian matrix during the online phase. In particular, the
classical DEIM technique (see Sect. 4.3) provides moderate computational speed-up when dealing with
nonlinear problems which require a large number of terms mR. On the other hand, MDEIM may require
an overwhelming amount of CPU time and memory to store the snapshots J(U(k−1)(tn;µi); G

l
f (µi)), and

to build the basis ΦJ during the offline phase. For these reasons, a possible alternative to approximate the
reduced Jacobian matrix (38) is to rely on a purely algebraic technique such as the Broyden method [16],
developed to effectively approximate the Jacobian matrix when its analytic form is unknown, or it is too
expensive to compute. This approach has been applied for the reduction of nonlinear structural problems
in [71] and further improved in [13].

This yields the following hyper-reduced order model for the mechanical problem: for each tn, n =
1, . . . , Nt, given u

(0)
N,m(tn;µ), for k ≥ 1 solve:{
JB
N (u

(k)
N,m(tn;µ); Gl

f (µ))δu
(k)
N,m(tn;µ) = −RN,m(Zu

(k)
N,m(tn;µ); Gl

f (µ)),

u
(k+1)
N,m (tn;µ) = u

(k)
N,m(tn;µ) + δu

(k)
N,m(tn;µ),

(58)

and iterate until ||RN,m(Zu
(k)
N,m(tn;µ); Gl

f (µ))||2 < εRB ; as in (57), here l = (n + 1)D − 1. We underline
that the high-fidelity approximation of the fibers shortening variable Gf is considered, that is, we do not
deal in this work with the reduction of the coupled electro-mechanical problem; rather, we focus on the
efficient reduction of the mechanical problem only.

At each Newton step, the Broyden approximation of the reduced Jacobian matrix is computed as

JB
N (u

(k)
N,m(tn;µ)) = JB

N (u
(k−1)
N,m (tn;µ)) +

∆R̄N,m − JB
N (u

(k−1)
N,m (tn;µ))∆ūN,m

∆ūT
N,m∆ūN,m

∆ūT
N,m, (59)

where
∆R̄N,m = RN,m(Zu

(k)
N,m(tn;µ); tn,µ)−RN,m(Zu

(k−1)
N,m (tn;µ); tnµ)

and
∆ūN,m = u

(k)
N,m(tn;µ)− u

(k−1)
N,m (tn;µ).

The method is based on a rank-one update of the Jacobian matrix JB
N (u

(k)
N,m(tn;µ)); indeed, the second

term of the right hand side of (59) is a rank one matrix since every column is a scalar multiple of ∆ūT
N,m,

and only require simple operations between vectors of dimension N . Therefore, at the online stage each
Newton step only requires a residual assembling, since the update of the reduced Jacobian matrix and the
solution of the low dimensional linear system are extremely fast. On the other hand, the initialization of
the Jacobian matrix JB

N (u
(0)
N,m(tn;µ); γf (tn,µ)) at step k = 0 represents a critical aspect of the Broyden

technique. To provide a suitable approximation of the exact Jacobian matrix, we consider a finite finite
difference approximation of the form

[JB
N (u

(0)
N,m(tn;µ))]i,j =

[RN,m(Z(u
(0)
N,m(tn;µ) + ηei))]j − [RN,m(Zu

(0)
N,m(tn;µ))]j

η
,

where ei is the i-th column of the identity matrix and η ∈ R is a coefficient to be properly chosen (here we
take η = 10−5). η shall be small enough to guarantee an accurate approximation of the derivatives, however
an excessively small value may lead to undesired cancellation errors. Note that the initialization requires
to assemble online N times the residual vector – an affordable operation if N is relatively small. Instead,
if N > mR, relying on DEIM to initialize the Jacobian matrix is more convenient than the finite difference
approximation. In general, problems characterized by a large dimension of the reduced space N can be
efficiently reduced exploiting the MDEIM technique, provided a small number mJ of terms can be selected
to accurately approximate the Jacobian matrix.

We close this section by pointing out that, during the online stage, only the reduced basis Z and a DEIM
basis ΦR for the residual approximation are required. To build this latter, we rely on a strategy similar to
the one described in Sect. 4.3.1, introducing the following intermediate problem similar to (41): for each tn,

n = 0, . . . , Nt, given u
(0)
N (tn;µ) ∈ RN , for k ≥ 1 solve:{

J̃B
N (u

(k)
N (tn;µ); Gl

f (µ))δu
(k)
N (tn;µ) = −ZTR(Zu

(k)
N (tn;µ); Gl

f (µ)),

u
(k+1)
N (tn;µ) = u

(k)
N (tn;µ) + δu

(k)
N (tn;µ),

(60)

and iterate until ||ZTR(Zu
(k)
N (tn;µ); Gl

f (µ))||2 < εRB .
Precisely, we first solve the high-fidelity problem (28) ns times to compute the reduced basis Z; then, we

solve (60) to store the residual snapshots R(Zu
(k)
N (tn;µi)) needed to build the DEIM basis ΦR. Problem
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(60)1 is an inexact Newton step, for which the Jacobian matrix J̃B
N is approximated through the Broyden

technique, however relying on the projection of the high-fidelity residual onto the RB space – rather than
on the reduced residual, as in (59). Solving (60) is significantly faster than solving (28) since the only
operation to perform is the assembling of the high-fidelity residual.The full snapshots selection procedure is
summarized in the next section (see Algorithm 5).

6.2 Local-in-time reduced basis

If the µ-dependent solution of a non stationary problem significantly varies throughout the time interval
[0, T ], describing the whole set of solutions for µ ∈ P may require a large number of RB functions and, in
particular, a large number of terms mR when considering nonlinear problems where the residual vector is
approximated by DEIM. To overcome this issue, we build local-in-time bases of smaller dimension, instead
than a unique (larger) global basis on [0, T ], thus yielding a strong reduction in terms of online computational
time, still retaining the same cost during the offline stage. In particular, we split the full time interval [0, T ]
into nb subintervals

I1 = [0, T1], I2 = [T1, T2], . . . , Inb = [Tnb−1, T ]

and we build different bases on each subinterval. In particular, we compute nb set of bases {Zs,Φs
R},

s = 1, . . . , nb (and Φs
J if using MDEIM), and each basis associated to the s-th interval is obtained by

performing the POD only on the set of snapshots related to Is = [Ts−1, Ts].
We remark that the mechanical problem is solved in correspondence of evenly spaced time instants

{tn}Nt
n=0, whereas the new partition in subintervals Is is not necessarily uniform. This means that, denoting

by τs = {tn | tn ∈ Is}, the number of elements of τs can be different from the number of elements of τr when
s 6= r; in particular, larger subintervals Is are taken if the solution features a small variability in time, while
narrow subintervals where the solution rapidly changes. The choice of number and width of the different
subintervals is not trivial and multiple options can be considered. Here, we opt for an heuristic choice of
the subintervals Is, s = 1, . . . , nb; a more-in-depth investigation is required in this respect. More general
strategies to obtain multiple, local bases have been proposed in the literature; see e.g. [5, 85] for the use
of proper clustering algorithms. They require to compute and store the solution snapshots, when varying
time and parameters, and then to apply a clustering algorithm in order to build different bases, one for each
cluster. While guaranteeing a satisfactory accuracy, snapshots storage can be quite large. Promising results
in the case of cardiac electrophysiology can be found in [59].

The local-in-time basis approach combined with a POD-POD strategy allows to avoid the storage of all
snapshots. Following this approach, for each µi, i = 1, . . . , ns, we perform a full time-driven simulation and
we store separately the snapshots U(k)(tn;µi) associated with the subintervals Is, s = 1, . . . , nb. Then, for
each subinterval Is, we apply the POD algorithm to the local snapshots U(k)(tn;µi), tn ∈ Is, obtaining the
POD bases Zi,s. Once we have performed the high-fidelity simulations for all µi and we have computed all
the POD bases, we build our final bases for each subinterval Is as:

Zs = POD(Zi,s, ε).

A schematic representation of the method is reported in Figure 3. The same procedure is used also to build
Φs

R and, if required, Φs
J . In this way, different snapshots can be computed simultaneously; at the end of each

simulation, we can only retain the POD bases {Zi,s,Φis
R ,Φ

is
J }, thus saving significant memory resources.

The procedure described above has to be integrated with the generation of snapshots (and bases) to
approximate residual vectors and Jacobian matrices; in particular, we split in two different stages the
construction of {Zs,Φs

J} and Φs
R. The full procedure is described in Algorithm 5 in the case either MDEIM

or Broyden approximations are considered.

7 Numerical results

We apply the strategies described in the previous sections for the reduction of an electrical and a mechanical
problem, both solved on a patient-specific left ventricle geometry, by focusing on the systolic phase of
the heart beat. This geometry was generated from medical images using the semi-automatic segmentation
method proposed in [34]. Fibers and sheets have been computed according to the algorithm proposed in [73];
this procedure is based on the assumption that sheets are lying along the radial direction s0 and requires
the solution of a Laplace problem over the ventricular domain to compute the sheets direction.

We rely on two different computational meshes: Tep with 248216 elements and Ne
h = 45817 dofs for the

electrical problem and Tm with 31027 elements and Nh = 18567 dofs freedoms for the mechanics. In Figure
4 we show the two meshes, as well as the fibers distribution computed using the algorithm proposed in
[73] with maximum fibers orientation on the epicardium and endocardium of θepi = −60◦ and θendo = 60◦,
respectively. For both problems we consider as high-fidelity full-order model (FOM) the approximation
obtained with linear (P1) finite elements.
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Solve problem (57)
for tn ∈ I1

SU ← [SU U(k)(tn;µ1)]

Z1,1 = POD (SU ; ε)

· · ·
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Solve problem (57)
for tn ∈ Inb

SU ← [SU U(k)(tn;µ1)]

Z1,nb = POD (SU ; ε)
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Solve problem (57)
for tn ∈ I1

SU ← [SU U(k)(tn;µns )]
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Solve problem (57)
for tn ∈ Inb

SU ← [SU U(k)(tn;µns )]

Zns,nb = POD (SU ; ε)

⇓
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Figure 3: Flowchart of the POD-POD procedure combined with local-in-time bases to compute the bases Zs,
s = 1, . . . , nb, of the reduced space

Figure 4: Computational grids adopted for the electrical problem (left) and the mechanical problem (center);
fibers orientation (right)

7.1 Test case 1: Electrophysiology

In the case of the electrophysiology problem, the parameters that we consider are those representing the
electrical conductivities:

• σf ∈ [30 kΩ−1cm−1, 80 kΩ−1cm−1];

• σs = σn ∈ [10 kΩ−1cm−1, 30 kΩ−1cm−1].

in the fibers direction (σf ) and in the plane orthogonal to the former (σs = σn), see equation (6). For the time
discretization of the monodomain equation and the ionic model we employ a time step ∆te = 0.02ms. The
depolarization wave is initialized on a layer in the bottom part of the endocardium; this choice is motivated
by the fact that the Purkinje fibers terminations are mainly located near the apex of the ventricle.

By employing the POD-Galerkin method with DEIM/MDEIM approximations for the nonlinear ionic
terms/parametrized diffusion matrix described in Sect. 5 we reduce the two-way coupled electrical problem
(42), which involves a PDE (monodomain equation) and a system of ODEs (ionic model). The proposed
ROM yields a speed-up of more than one order of magnitude, since it takes about 0.01s for each time step,
while the FOM takes 0.12s. The RB solutions have been computed using Ne = 217 basis functions for the
solution and mI = 363 DEIM terms to approximate the ionic currents, as specified in Table 2.
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Algorithm 5 ROM construction (mechanics)

INPUT: ns combinations of parameters {µ1, . . . ,µns
}, nb time subintervals {I1, . . . , Inb

}
OUTPUT: Zs, Φs

R, Φs
J (only for MDEIM), s = 1, . . . , nb

1: for i = 1, . . . , ns do
2: for s = 1, . . . , nb do
3: for tn ∈ τs do
4: Solve problem (57) for tn,µi
5: At each Newton step k: SU ← [SU U(k)(tn;µi)]
6: At each Newton step k: SJ ← [SJ vec(J(U(k)(tn;µi)))] (only for MDEIM)
7: end for
8: Zi,s = POD(SU ; ε); Φs ← [Φs Zi,s]; delete [SU ]
9: Φi,s

J = POD(SJ ; ε); Φs
J ← [Φs

J Φi,s
J ] (only for MDEIM); delete [SJ ]

10: end for
11: end for
12: for s = 1, . . . , nb do
13: Zs = POD(Φs; ε)
14: Φs

J ← POD(Φs
J ; ε) (only for MDEIM)

15: end for
16: for i = 1, . . . , ns do
17: for s = 1, . . . , nb do
18: for tn ∈ τs do
19: Solve problem (41) (for MDEIM) or (60) (for Broyden) for tn,µi
20: At each Newton step k: SR ← [SR R(U(k)(tn;µi))]
21: end for
22: Φi,s

R = POD(SR; ε), Φs
R ← [Φs

R Φi,s
R ]; delete [SR]

23: end for
24: end for
25: for s = 1, . . . , nb do
26: Φs

R ← POD(Φs
R; ε)

27: end for

Provided a sufficient number of basis functions Ne, mI is considered, the front propagation captured by
the ROM is similar to the one obtained with the FOM. However, depending on the chosen parametrization,
this achievement might be more difficult to obtain; for instance, if parameters describe local variations of
tissue properties (such as, for instance, the presence of a scar) the behavior of the solution is much more
involved, thus requiring a larger number of basis functions to reach a good accuracy.

A comparison between the high-fidelity and the reduced solutions is reported in Figure 5, where we
observe that the two models provide very similar results from a qualitative point of view. The average
relative error between the ROM and the FOM is shown in Figure 6 for three different values of mI and is
about 5%. The error has been computed over a test set of 50 randomly chosen parameters different than
the values of the training sample used to compute the snapshots.

POD tolerances 10−4/5 · 10−1 RB dofs 217
DEIM tolerances 10−4/5 · 10−1 MDEIM tolerance 10−10

DEIM terms 363 MDEIM terms 5
FE time ionic model 0.022 RB time ionic model 0.001s
FE time monodomain 0.09s RB time monodomain 0.0085s
FE time 0.12s RB time 0.01s

Table 2: Test case 1: numerical data

Moreover, we report in Figure 7 the activation maps obtained for different parameter values. The
electrical signal first activates the central area of the epicardium, then it spreads towards the apex and finally
reaches the base. As expected, the duration of the depolarization phase is longer if electrical conductivities
are smaller. The depolarization time as a function of σf is reported in Figure 8.
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Figure 5: Test case 1: FOM and ROM solutions computed at different time instants for µ1 = [30, 10] and
µ2 = [80, 30]
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Figure 6: Test case 1: average L2(0, T ;H1(Ω0)) relative error between FOM and ROM solutions

Figure 7: Test case 1: activation maps for µ1 = [30, 10], µ2 = [45, 10], µ3 = [65, 30] and µ4 = [80, 30]
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Figure 8: Test case 1: whole depolarization times (ms) when varying σf , considering σs = σn = 20

7.2 Test case 2: Mechanics

We now turn to the reduction of the mechanical problem, recalling that for the case at hand, the electrome-
chanical coupling is not included in the ROM – that is, for each parameter value queried online we rely on
the FOM approximation of the electrophysiology model and, in particular, of the fibers’ shortening variable.

We consider as parameters the electrical conductivities (similarly to test case 1) and the orientation of
the fibers:

• σf ∈ [30 kΩ−1cm−1, 80 kΩ−1cm−1];

• σs = σn ∈ [10 kΩ−1cm−1, 30 kΩ−1cm−1];

• θmax ∈ [30◦, 80◦];

• t ∈ [0, 100ms].

Time can be seen as an additional parameter, since the problem is quasi-static, and needs to be solved
at different time steps. In particular, we split the [0, 100ms], corresponding to the systolic phase of the
heart beat, into nb = 4 subintervals: [0, 30ms], [30ms, 60ms], [60ms, 90ms], [90ms, 100ms]. Such a partition
is introduced heuristically, taking into account the fact that the solution changes very rapidly during the
last part of the systole; for this reason the last interval is smaller than the others. We consider a time
step ∆te = 0.02ms for the time discretization of the electrical problem, and time instants equispaced with
∆m = 3ms for t ∈ [0, 90) and ∆m = 0.5ms for t ∈ [90, 100] for the mechanical problem. This latter is then
solved, for different parameter values, at these time instants.

In Figures 9 and 10 we show the displacement of the myocardium obtained with the FOM and the ROM
on the whole ventricle and on a longitudinal section for two different parameters.

Employing the POD-Galerkin method with DEIM/Broyden approximations for the residual vector and
the Jacobian matrix described in Sect. 6 we obtain also in the case of the mechanical problem even more
promising results: the proposed ROM yields a speed-up of about 20, since the ROM takes about 20 seconds
while the FOM requires 7 minutes for each solution of the mechanical problem at a single time instant, on
a single-core processor. In particular, the Broyden technique turns out to be really appropriate since to
efficiently reduce the cardiac mechanical problem we have to choose mR significantly bigger than N .

The proposed ROM correctly captures the high-fidelity solution, as it can be seen also from the behavior
of the average relative error shown in Figure 11; the difference between the FOM and the ROM solutions is
about 2%. Numerical data associated to this test case are reported in Table 3.

POD tolerances 10−3 − 0.05 RB dofs 22
Residual DEIM tolerances 10−5 − 10−2 Residual DEIM terms 72
Newton iterations 8 Newton tolerance 10−7

FE time residual assembling 4s RB time residual assembling 0.52s
FE Time 7min RB Time 20s

Table 3: Test case 2: numerical data
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Figure 9: Test case 2: displacement at different time instants, µ1 = [60, 10, 78◦] (first two rows), µ2 =
[80, 30, 34◦] (last two rows), obtained with the FOM and the ROM
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Figure 10: Test case 2: section of the ventricle at different time instants, µ1 = [60, 10, 78◦] (first two rows),
µ2 = [80, 30, 34◦] (last two rows), obtained with the FOM and the ROM
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Figure 11: Test case 2: average L2(0, T ;H1(Ω0)) relative error

We show in Figure 12 the variation of the volume inside the ventricular cavity for different values of θmax

and σf . In particular, the cases σf = 60, σs = σn = 20 (left) and θmax = 60◦, σs = σn = 20 (right) have
been considered. The associated ejection fraction has been reported in Figure 13, where also the ventricular
shortening is shown. These analyses have been carried out by varying θmax and σf since σs and σn have
a moderate effect on the solution. The quantity of blood ejected by the ventricle is larger when θmax and
σf assume large values. On the contrary, shortening is higher when considering small values of θmax. This
behavior appears counterintuitive since we may expect that higher shortening corresponds to higher ejection
fraction. To explain this phenomenon, we report in Figure 14 the displacement of the muscle for two different
values of θmax: even if for θmax = 80◦ the shortening is smaller, the cavity is more shrunk due to a larger
wall thickening.

The model is able to reproduce the wall thickening and the ventricular shortening of the heart contraction.
In particular, we obtain a ventricular shortening ranging from 13% to 23%, coherent with physiological
values. The ejection fraction, usually measured by an echocardiogram, varies between 50% and 55% in
healthy patients.
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Figure 12: Test case 2: internal volume variation when varying θmax (left) and σf (right)

8 Challenges & perspectives

The proper integration of several techniques to perform both solution-space reduction (Galerkin-POD
method) and system approximation (DEIM/MDEIM or, alternatively to this latter, Broyden approxima-
tion) has enabled the application of the reduced basis method for parametrized PDEs to problems arising
in cardiac electromechanics. Cardiac electrophysiology and mechanics problems pose several challenges to
ROM techniques, because of their complex, nonlinear, multiscale (both in space and time) nature; moreover,
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Figure 13: Test case 2: ejection fraction and ventricular shortening as functions of σf and θmax

Figure 14: Displacement of the myocardium for θmax = 30◦ (up) and θmax = 80◦

parameter dependence might be extremely involved, for instance when aiming at describing subject-specific
clinical data and exploring inter-patient variability. On the other hand, ROM techniques provide a unique
opportunity to solve relevant problems related with data-model integration, such as model calibration, un-
certainty characterization and propagation, parameter identification and inverse problems, data assimilation.

All these problems are of primary importance in order to translate mathematical models into clinical care.
Quantitive insights coming from the repeated solution of electrophysiology corresponding to different values
of material parameter could provide better understanding of heart (mis)functionality; parameter identifica-
tion has potential to improve the diagnosis of cardiovascular diseases; model calibration may be beneficial
to develop therapies tailored to the subject characteristics. All these problems would be computationally
unaffordable when relied only on high-fidelity techniques, aiming at considering variability of geometries, a
wide number of scenarios to explore, and several parameters to deal with.

The roadmap to make ROM techniques even more efficient to tackle these challenging problems needs to
address several bottlenecks. Among these, we mention those which, in our opinion, are the most relevant:

1. local ROMs. Using a global reduced basis for the whole parameter set and the whole time interval
can be an extremely limiting approach. For instance, if the solution shows moving fronts and this
latter is highly sensible with respect to parameter variations (as it might happen in the case of cardiac
electrophysiology), applying the standard ROM techniques can become unfeasible. Local-in-time bases,
as shown in this paper, can partially cure this problem, however more general and robust techniques
to build local ROMs are required. As shown in [59, 60], a k-means clustering in the state space of
the snapshots for both the solution and the nonlinear term can be a viable strategy to overcome this
bottleneck;

2. time behavior. So far, POD has been applied also with respect to the time independent variable, to
compress information carried by a set of solution snapshots computed at different time steps, no matter
which is the time behavior characterizing the problem. In general, however, reduction of parametrized
PDEs becomes much more difficult when passing from elliptic (or dissipative time-dependent) to hy-
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perbolic problems (for instance pure transport equations). More ad-hoc strategies, able for instance
to detect time invariances, or to track traveling waves, should be considered in the case of cardiac
electrophysiology, because of the sharpness of the front and its extremely rapid dynamics;

3. coupled and multiphysics problems. Designing efficient ROMs (either monolithic or segregated) to
couple different problems, such as cardiac electrophysiology and mechanics, is still an open issue,
and almost untouched in the field of cardiovascular applications; preliminary investigations on the
electromechanical case can be found in [13]. In this latter work it is also shown a possible strategy
to realize a fully coupled electromechanical problem by including the mechano-electrical feedback only
during the online stage, and relying on different ROMs for the two subproblems; Similarly, in this work
the choice of using the monodomain model is performed. Such a model is adequate in physiological
conditions, however the richer - but more complicated - bidomain model is required for treating some
pathological conditions. The methods described in the previous sections can also apply to the bidomain
model, however entailing an extra burden from a computational standpoint, because of the presence
of two fields to be computed, and the different overall nature of the PDEs system.

4. multiscale problems. The multiscale nature of the electromechanical model should be properly taken
into account in a ROM aiming at describing multiple behaviors at different scales. Among the men-
tioned open problems, this is by far the most involved one, because of the intrinsic difficulty of the
models at the cellular scale. Several extensions of the RB method to multiscale problems showing
highly oscillating coefficients have been considered in the last decade, however only focusing on elliptic
problems [57, 1, 2, 41]. When applied to these problems, the RB method enables to speed up a large
number of similar computations on the fine local mesh for each new realization of the coefficient; its
application to complex nonlinear materials, however, is still completely open.

5. multi-fidelity problems. In view of exploiting reduced order modeling techniques to solve uncertainty
quantification problems, the use of models characterized by different fidelities is also foreseen. Fol-
lowing, e.g., the approach relying on multi-fidelity sampling and a Bayesian formulation proposed in
[12], information from an approximate, low-fidelity model can be rigorously exploited and incorporated
to perform output evaluations, estimates on their variability and, ultimately, parameter studies. In
this respect, the eikonal model and a recently proposed reaction-eikonal source model [56], this latter
offering the computational advantages of the eikonal model while preserving the full biophysical details
of a computationally costly reaction-diffusion model, could be considered as an extremely cheap, yet
detailed, low-fidelity model.

The investigation and development of reliable and efficient reduced-order modeling techniques is a very
active field of numerical analysis and scientific computing; with no doubt, cardiovascular applications rep-
resent one of the most challenging and significant environments.
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