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ABSTRACT

With the impressive growth of available data and the flexibility of network modelling, the problem of devising effective quantitative
methods for the comparison of networks arises. Plenty of such methods have been designed to accomplish this task: most of
them deal with undirected and unweighted networks only, but a few are capable of handling directed and/or weighted networks
too, thus properly exploiting richer information. In this work, we contribute to the effort of comparing the different methods for
comparing networks and providing a guide for the selection of an appropriate one. First, we review and classify a collection of
network comparison methods, highlighting the criteria they are based on and their advantages and drawbacks. Then, we test
the methods on synthetic networks and we asses their usability and the meaningfulness of the results they provide. Finally, we
apply the methods to two real-world datasets, the European Air Transportation Network and the FAO Trade Network, in order to
discuss the results that can be drawn from this type of analysis.

Introduction
The research on complex networks has exploded in the last two decades, thanks to the great power and flexibility of network
models in describing real-world applications coming from very diverse scientific and technological areas, including social
sciences, economics, biology, computer science, telecommunications, transportation, and many others1–3. A typical data-driven
study begins with modelling or interpreting real-world data with a network, and then continues by exploiting a broad set of
algorithmic tools, in order to highlight a number of network features from the local scale (nodes and edges) to the global
scale (the overall network), passing through an intermediate (meso-)scale where the important structure and role of suitable
subnetworks is possibly evidenced4, 5.

With the dramatic growth of available data, and the corresponding growth of network models, researchers often face the
problem of comparing networks, i.e., finding and quantifying similarities and differences between networks. In whatever
application area, it is straightforward to find relevant examples where this problem is truly of interest: in international economics,
one may want to compare the trade structure of different product categories; in transportation, the flight networks of different
airlines; in biology, the interaction structure of different protein complexes; in social media, the propagation cascade of news;
etc.. Or, when temporally-stamped data are available, one may want to spot anomalous instants in a temporal series of graphs –
e.g., an event that abruptly modifies the connection pattern among the users of a social media. Defining metrics for quantifying
the similarity/difference between networks opens the door to clustering, i.e., grouping networks according to their similarity:
for example, given a set of brain networks derived from NMR data, find whether and how ill-subjects’ networks are different
from healthy-subjects’ ones.

To perform network comparison, a measure of the distance between graphs needs to be defined. This is a highly non
trivial task, which requires a trade off among effectiveness of the results, interpretability, and computational efficiency, all
features that, in addition, are often sensitive to the specific domain of application. Not surprisingly, the literature on this topic is
extremely abundant, and plenty of different methods have been proposed. Yet much work has still to be done in terms of their
comparative analysis, namely classifying which methods are the best and in which situations, and understanding the insights
they can provide when used to compare a set of real-world networks. A few critical reviews of the literature on this subject have
already been compiled (e.g., Soundarajan et al.6, Emmert-Streib et al.7, and Donnat and Holmes8). Our aim is to complement
these works by systematically testing many of the available methods in a comparative fashion.

This paper is organised as follows. In the next section, we discuss the general problem of network comparison and we



recall the definition and main features of many of the methods available in the literature, from naı̈ve approaches to a few of the
most recent ones. This gives an overview of the state-of-the-art tools and of the strategies for network comparison. Then we
restrict our attention to a subset of such methods, and we analyse them with a suitably designed battery of tests on synthetic
networks, in order to highlight pros and cons of each method. We subsequently illustrate two examples of the use of network
comparison methods on real-world data, specifically the European Air Transportation Network and the FAO Trade Network.
We conclude by summarizing the results of our work and by highlighting which methods reveal to be the most effective and in
which situations. All the analyses are carried out using the codes made available by the authors of each method (see the SI file
for details).

Measuring the distance between networks
The network comparison problem derives from the graph isomorphism problem. Two (undirected, unweighted) graphs
G1(V1,E1) and G2(V2,E2) are isomorphic if there exists a one-to-one correspondence Φ mapping the node set V1 onto V2 such
that the edge (u,v) ∈ E1 if and only if the edge (Φ(u),Φ(v)) ∈ E2

9. The complexity of the graph isomorphism problem, i.e.,
checking whether two finite graphs are isomorphic, is unknown in rigorous terms10–12: nonetheless, efficient algorithms exist
for many classes of graphs13. In any case, isomorphism is an exact graph matching: if used as a distance for comparison, it
gives a binary outcome: the graphs are either isomorphic, i.e., identical, or not. This information is poor, however, because
networks are almost never identical in applications, and one is interested in assessing to what extent they are similar. To
effectively compare networks, we need to move to inexact graph matching, i.e., define a real-valued distance which, as a
minimal requirement, has the property of converging to zero as the networks approach isomorphism.

Searching for accurate and effective tools to compare networks has pushed the research in many different directions, leading
to a wide variety of methods and algorithms. We present a short review of several of the most used approaches to network
comparison, acknowledging that the literature is very abundant and we cannot cover it exhaustively neither want to repeat
already established results. Following previous approaches6, we partition the comparison methods based on whether the
induced distances are dependent from the correspondence of nodes. In the former case – Known Node-Correspondence (KNC) –
the two networks have the same node set (or at least a common subset), and the pairwise correspondence between nodes is
known. Thus, typically, only graphs of the same size and coming from the same application domain can be compared. In the
latter case – Unknown Node-Correspondence (UNC) – ideally any pair of graphs (even with different sizes, densities, or coming
from different application fields) can be compared: typically these methods summarize the global structure into one or more
statistics, which are then elaborated to define a distance. This latter notion of distance thus reflects the difference in the global
structure of the networks.

For example, imagine that one wants to compare the European air transportation networks of the airlines A and B. The
node sets (i.e., the European airports) are the same, thus a KNC method can be applied to quantify to what extent the two sets
of edges are similar, i.e., to what extent the two airlines offer the same set of flights. If the exercise is (pairwise) extended to
all airlines, the overall results will allow one to cluster airlines supplying similar sets of connections. But the same dataset
could alternatively be analysed, with a different aim, by a UNC method, to highlight pairs of airlines whose network is globally
structurally similar. Then, for example, one might discover that airlines A and B have both a markedly star-like flight network,
but the first is based in Amsterdam (the centre of the star) and the second in Berlin. Here, extending the analysis to all airlines
might cluster sets of airlines with similar strategies or business models.

A screening of the literature reveals that the latter problem is far more studied – and that biology is the most popular
application field – so that the number of available UNC methods is much larger than that of the KNC ones. Below we present
several methods used for network comparison, briefly explaining the details of their approach. In doing that, we will mostly
privilege methods of general use, that is, applicable to directed and weighted networks too – this significantly narrows the set of
candidates. In the next section, we will numerically compare the performance of a subset of these methods.

Known Node-Correspondence (KNC) methods
Difference of the adjacency matrices. The simplest and näive measures are obtained by directly computing the difference
of the adjacency matrices of the two networks. Then any matrix norm can be used, e.g., Euclidean, Manhattan, Canberra, or
Jaccard14. All of them are suitable to compare all kinds of graphs (directed or not, weighted or not), with the exception of the
Jaccard distance which needs to be extended to the Weighted Jaccard distance15 (the definitions of the four norms are recalled
in the SI). Although this straightforward approach is rarely used in network comparison, we include it in the pool and consider
it as a baseline approach.

DeltaCon16, 17. It is based on the comparison of the similarities between all node pairs in the two graphs. The similarity
matrix of a graph is defined by S = [si j] = [I+ε2D−εA]−1, where A is the adjacency matrix, D = diag(ki) is the degree matrix,
ki is the degree of node i, and ε > 0 is a small constant. The rationale of the method is that just measuring the overlap of the
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two edge sets might not work in practice, because not all edges have the same importance. Instead, the difference between
r-step paths, r = 2,3, . . ., provides a much more sensitive measure. As a matter of fact, it can be shown16 that si j depends on all
the r-paths connecting (i, j). The DeltaCon distance between the n×n similarity matrices S1 = [s1

i j] and S2 = [s2
i j] is finally

defined using the Matusita distance:

d =

(
n

∑
i, j=1

(√
s1

i j−
√

s2
i j

)2
)1/2

. (1)

Equation (1) assures that DeltaCon satisfies the usual axioms of distances. Moreover, it can be shown16, 17 that it also satisfies a
few desirable properties regarding the impact of specific changes. Such properties are: Changes leading to disconnected graphs
are more penalized; In weighted graphs, the bigger the weight of the removed edge is, the greater the impact on the distance; A
change has more impact in low density graphs than in denser graphs with equal size; Random changes produce smaller impacts
than targeted ones.

The computational complexity of the DeltaCon algorithm is quadratic in the number of nodes. To improve execution speed,
an approximated version was proposed, which restricts the computation of the similarity matrices to groups of randomly chosen
nodes16: this version has linear complexity in the number of edges and groups. Finally, DeltaCon was extended17 to make it
able to find which nodes or edges are most responsible of the differences between the two graphs.

Cut Distance12. It is based on the notion of cut weight, which is standard in graph theory and also used in community
detection4. Given a (possibly directed, weighted) graph G = (V,E) with edge weights wi j, i, j ∈V , and two disjoint node sets
S,T ⊂V , the cut weight is defined as eG(S,T ) = ∑i∈S, j∈T wi j, i.e., the total weight of the edges crossing the cut from S to T .
The cut distance between two graphs G1(V,E1) and G2(V,E2) with the same node set is then defined as

d(G1,G2) = max
S⊂V

1
|V |
|eG1(S,S

C)− eG2(S,S
C)|, (2)

where SC = V \S. Thus two networks are similar if they have similar cut weight for all possible network bipartitions. The
maximization is performed through genetic algorithms, which makes the comparison of large networks (thousands of nodes and
larger) unfeasible. On the other hand, this is one of the few methods able to compare directed, weighted graphs.

Unknown Node-Correspondence (UNC) methods
Global statistics18, 19. Simple metrics can be obtained by comparing the value of a few network statistics, such as the
clustering coefficient, the diameter, or the degree distribution. Although being intuitive and typically computationally efficient,
in general this approach does not yield robust results. As a matter of fact, similar values of network statistics do not necessarily
imply similar network structures (e.g., see the discussion in Ref20) and indeed, the comparison often fails in catching important
local features.

Mesoscopic Response Functions (MRFs)21. This method exploits the information carried by the mesoscopic properties of
the networks, i.e., their modular structure. Three functions – called MRFs – are defined, the Hamiltonian H(λ ), the partition
entropy S(λ ), and the number of communities η(λ ), which describe the properties of a given network at different mesoscopic
scales: the parameter λ tunes the fragmentation of the network into communities. The network distance is defined for a given
set of graphs: for each network pair, the distances between corresponding MRFs are defined by standard function metrics, then
the first principal component obtained from PCA is taken as distance. This entails non-comparability among different datasets,
since the distance between two networks depends on the dataset they are part of. On the other hand, it is the only available
method based on mesoscale properties, and allows one to consider both weighted and unweighted undirected networks. The
computational efficiency of the method depends on the efficiency of the community detection algorithm used, and on the
quadratic complexity related to the computation of all the pairwise distances in the dataset.

MI-GRAAL11. This method creates a mapping between the nodes of the two graphs, trying to maximize the induced edge
matching. This class of methods is denoted as alignment-based in biological applications11, 22, 23. Given the graphs G1 = (V1,E1)
and G2 = (V2,E2) with |V1| ≤ |V2|, a node-mapping f : V1→V2 is defined, which induces an edge-mapping g : V1×V1→V2×V2
such that g(E1) = {( f (u), f (v)) : (u,v) ∈ E1} (note that in the cited paper11 and in the related literature the same symbol f is
often used, with abuse of notation, to denote both f and g). The quality of the node alignment f is then expressed by the edge
correctness

EC =
|g(E1)∩E2|
|E1|

, (3)
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Figure 1. Graphlets (2- to 5-node) in undirected, unweighted networks (from Ref.20). The 30 graphlets defined by Pržulj et
al.18 are labeled G0 to G29. In each graphlet, nodes with the same shading belong to the same automorphism orbit O0 to O72,
i.e., they have the same characteristics and are indistinguishable to each other19.

i.e., the fraction of edges in E1 aligned to edges in E2. The alignment problem, i.e., finding f that maximizes EC, is solved with
an heuristic algorithm: a confidence score, computed by taking into account various node statistics (e.g., degree, clustering
coefficient, etc.) is assigned to each pair of nodes (u1,u2) ∈V1×V2. Then nodes are aligned starting from the pairs with highest
confidence score. The final value of EC is taken as the measure of network similarity. The method is customizable, since any
node statistics can be used to compute the confidence score – this allows one the comparison of directed and weighted networks.
The main drawback of the method is its computational efficiency, which scales more than quadratically with the number of
nodes.

Graphlet-based methods. Graphlets are small, connected, non-isomorphic subgraphs of large undirected, unweighted
networks18. They encode important information about the structure of the network and provide a valuable tool for comparison.
The different types of graphlets need to be enumerated, and this can be done in two ways, i.e., by taking into account or not
their automorphism orbits20, which differentiate the roles of the nodes in each graphlet (see Figure 1, where graphlets are
enumerated from G0 to G29 and orbits from O0 to O72). Usually graphlets with more than five nodes are not considered, both
for computational reasons and due to repetition of smaller graphlets within their structure.

Counting all graphlets of a network is, in principle, a very demanding task: given a graph with N nodes and L edges,
the worst-case running time for counting 2- to k-node graphlets (for both the undirected and directed case) with a complete
enumeration strategy is O(Nk): a tighter upper bound gives O(Nkk−1

max ), where kmax is the maximum node degree of the
graph23, 24. In practice, these pessimistic bounds are never reached: thanks to the sparsity of real-world networks, and exploiting
wiser counting strategies, large improvements are possible. Hočevar and Demšar25 proposed the ORCA algorithm, based on a
particular counting strategy. Its complexity is O(Lkmax +T4) for the enumeration of 2- to 4-node graphlets, and O(Lk2

max +T5)
for 2- to 5-node graphlets, where T4 and T5 are terms which are negligible in most situations. Aparicio, Ribeiro and Silva26

proposed another approach based on a particular data structure, the G-Trie27: it demonstrated higher performances with respect
to ORCA, but its theoretical upper bound is not provided.

Graphlet-based network distances are based on graphlet counts, which can be organized in several ways:

• Relative Graphlets Frequency Distance (RGFD)18. The 29 graphlets from 3 to 5 nodes are counted in each network. Then
the distance is defined as d(G1,G2) = ∑

29
i=1 |Fi(G1)−Fi(G2)|, where Fi(·) denotes the count of graphlet i normalized

with respect to the total number of graphlets in the graph.

• Graphlet Degree Distribution Agreement (GDDA)20. The 73 automorphism orbits of graphlets from 2 to 5 nodes are
counted in each network G. For each orbit j = 0,1, . . . ,72, the graphlet degree distribution (GDD) d j

G(k), which is
the number of nodes in G touching k times that orbit, is computed. This quantity is first scaled as d j

G(k)/k, and then
normalized by the total area T j

G under the j-th GDD, obtaining N j
G(k) = (d j

G(k)/k)/T j
G. Then, the agreement of the j-th
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GDD between networks G1 and G2 is defined as

A j(G1,G2) = 1−

√
1
2

∞

∑
k=1

(
N j

G1
(k)−N j

G2
(k)
)2
, (4)

and the final GDDA distance is taken as the geometric or arithmetic mean of all the 73 agreements A j(G1,G2).

• Graphlets Correlation Distance (GCD): Yaveroglu et al.19 investigated the dependencies among graphlets and found
that some orbits are redundant, i.e., their count can actually be obtained from the counts of other orbits. Discarding the
redundant orbits led to the definition of a more sensible and efficient measure. For instance, graphlets up to 4 nodes have
4 redundant orbits, and discarding them reduces the number of orbits to 11 from the original 15. For a given N-node
network G, the N graphlets degree vectors,28 i.e., the count of the considered orbits that each node touches, are appended
row by row to form a N×11 matrix. Then, the Spearman’s correlation coefficient is computed between all column pairs,
obtaining the 11× 11 Graphlet Correlation Matrix GCMG. The GCD distance between graphs G1 and G2 is finally
defined as the Euclidean distance between the upper triangular parts of the matrices GCMG1 and GCMG2 . Yaveroglu et
al. showed that GCD-11 (the distance with non-redundant orbits) outperformed GCD-15 (with redundant orbits), but
also GCD-73 and GCD-56, the distances based on 5-node graphlets with or without reduntant orbits, respectively. Also,
GCD-11 performed better than other graphlet-based distances in recognizing different network models.

• NetDis29: It compares graphlet counts in overlapping neighbourhoods of nodes, rather than in the entire network: more
specifically, it considers the 2-step ego-network of each node. The rationale comes from the observation that network
size and density strongly influence global graphlet counts, and that such effect can be attenuated by restricting to local
subnetworks. Graphlet counts (from G0 to G29) are computed for each ego-network and then normalized with respect
to the expected counts from a null model. Denote by Sw(G) the sum over all ego-networks of the normalized count of
graphlet w in graph G. Then, for a given size k ∈ {3,4,5} of the graphlets:

netDS
2(k) =

1
M(k) ∑

w of size k

(
Sw(G1)Sw(G2)√

Sw(G1)2 +Sw(G2)2

)
, (5)

where M(k) is a normalizing constant forcing netDS
2(k) ∈ [−1,1]. Finally, the NetDis distance for k-node graphlets is

defined as

netdS
2(k) =

1
2
(
1−netDS

2(k)
)

, k = 3,4,5 . (6)

Note that the NetDis measure actually depends on k, which is therefore a parameter to be selected. Yaveroglu et al.23

pointed out a few critical aspects of the method, such as the choice of a null model, the computational efficiency, and the
performances, which are overall inferior to those of other graphlet-based distances.

• GRAFENE22. In this method, the graphlet degree vectors for graphlets G0 to G29 are first computed for each node, and
then scaled in [0,1] dividing each component by the total counts of the corresponding graphlet in the whole network.
Principal Component Analysis is then performed over the rescaled graphlet degree vectors, and the first r components
that account for at least 90% of the total variability are kept. The distance between the two networks is defined as
1−dcos(R1,R2), where dcos is the cosine similarity and R1,R2 are the first r principal components for the two graphs. The
use of PCA is a novel idea within the graphlet-based methods, that improves the quality of results and the computational
performances. Tests on synthetic networks showed that GRAFENE performs at least as well as the other alignment-free
methods, and outperforms all other methods on real networks22.

Saralić et al.24 extended the applicability of graphlet-based methods introducing directed graphlets, with the aim of comparing
directed (yet unweighted) networks. This allowed to define directed versions of a few of the existing distances: the Directed
Relative Frequency Distance (DRGFD), the Directed Graphlet Degree Distribution Agreement (DGDDA) and the Directed
Graphlets Correlation Distance (DGCD).

Spectral Methods. Here the rationale is that, since the spectrum of the representation matrix of a network (adjacency or
Laplacian matrix) carries information about its structure, comparing spectra provides metrics for comparing networks. Different
approaches are used: Wilson and Zhu30 proposed to simply take the Euclidean distance between the two spectra, while Gera et
al.31 proposed to take as distance the p-value of a nonparametric test assessing whether the two spectra come from the same
distribution. Despite the ease of use, spectral methods prove to suffer from many drawbacks, including cospectrality between
different graphs, dependence on the matrix representation, and abnormal sensitivity (small changes in the graph’s structure can
produce large changes in the spectrum).
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Portrait Divergence It is a recent method32 based on a graph invariant which encodes the distribution of the shortest-
path lengths in a graph: the network portrait33 is a matrix B whose entry Blk, l = 0,1, . . . ,d (d is the graph diameter),
k = 0,1, . . . ,N−1, is the number of nodes having k nodes at shortest-path distance l. The definition also extends to directed and
weighted networks – in the weighted case, a binning strategy is needed to manage real-valued path lengths. The network portrait
is a powerful summary of the topological features of the graph – e.g., the number of nodes and edges, the degree distribution,
the distribution of the next-nearest neighbours, and the number of shortest paths of length l can straightforwardly be recovered
from B. The Portrait Divergence distance between graphs G1 and G2 is then defined as follows. First, the probability P(k, l)
(and similarly Q(k, l) for the second graph) of randomly choosing two nodes at distance l and, for one of the two nodes, to have
k nodes at distance l, is computed:

P(k, l) = P(k|l)P(l) = 1
N

Blk
1

∑c n2
c

N

∑
k′=0

k′Blk′ , (7)

where nc is the number of nodes in the connected component c. Then, the Portrait Divergence distance is defined using the
Jensen-Shannon divergence:

D(G1,G2) =
1
2

KL(P||M)+
1
2

KL(Q||M) , (8)

where M = (P+Q)/2 is the mixture distribution of P and Q, and KL(·||·) is the Kullback-Liebler divergence. The method is
computationally efficient for small and medium size graphs, since it is quadratic in the number of nodes, and can naturally
handle disconnected networks.

Bayes’ modeling of a network population. The network comparison problem can be addressed using a Bayesian nonpara-
metric approach. Durante et al.34 proposed a mixture model to describe a population of networks, interpreted as realizations of
a network-valued random variable, and in particular to infer the parameters of the probability mass function of such variable.
This is not a distance-based method, since no explicit distance is define to compare networks. Instead, the use of a Dirichlet
process prior naturally yields a clustering of the input networks thanks to the discreteness of the resulting measure. More
powerful Bayesian models can then be used to fully exploit this feature of the model.

Persistent homology. Homology is an algebraic-topological measurement of the structure of an undirected unweighted
network which, based on the number and dimension of cliques and cycles, exploits the information carried by the mesoscale
structure of the network. The generalization to weighted graphs is possible by considering persistent homology, which tracks
the evolution of cycles when a sequence of unweighted graphs is obtained by thresholding the network at distinct edge weights.
This technique was used by Sizemore et al.35, where suitable quantities derived from persistent homology are jointly used as
features to classify networks via hierarchical clustering, showing a superior performance with respect to using standard graph
statistics. In the paper, however, no network distance is explicitly defined.

Results
In this section, we select some of the previously described methods and we define and carry out tests on synthetic networks to
assess the performance of each method. Finally we illustrate the application to real-world network data. As a general rule, we
only consider methods for which a source/executable code is freely made available by the authors of the method (details of the
used codes are in the SI), in order to fairly test each method in terms of correctness (exceptions are those methods requiring the
computations of simple distances, which were directly coded by ourselves).

More specifically, among the KNC methods we included:

– The difference of the adjacency matrices (with Euclidean, Manhattan, Canberra and Jaccard norms), as a baseline
approach;

– DeltaCon, due to its desirable properties above described, and with the aim of testing a non-trivial KNC method. We also
tested the implementation for directed networks.

Among the UNC methods, we selected:

– For alignment-based methods, MI-GRAAL, which allows to extract additional information from the node mapping;

– For graphlet-based methods, GCD-11 and DCGD-129s. The first one is for undirected networks and it was proved to be
very effective in discriminating synthetic networks of different topologies19. The second one is the directed version of
GCD-11, except that, differently from GCD-11, DGCD-129 does not exclude redundant orbits;
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– For spectral methods, the Wilson and Zhu30 approach: we define three distances by computing the Euclidean distance
between the spectra of the adjacency matrices, Laplacians, and Symmetric Normalized Laplacians36 (SNLs) (the approach
by Gera et al.31 was discarded since no code was available).

– Finally, Portrait Divergence, which is naturally able to deal with undirected and directed networks.

The method based on using global statistics was discarded a priori due to its well known poor performances18–20. No
source/executable code was available for Cut Distance and Persistent Homology. The Bayesian method was excluded since no
direct comparison is possible with the other approaches, due to its inherently different nature. Finally, GRAFENE was excluded
because, despite it is defined for general networks, the executable provided by the authors is strongly domain-dependent, i.e., it
requires a biologically-based network definition.

We summarize in Table 1 the methods selected for testing, classified with respect to the type of network they can manage
and to the nature of the method itself. We point out that the tests we carried out on synthetic networks are restricted to the
unweighted case: the definition of suitable weighted benchmark networks and of adequate testing strategies for them is a
complex and delicate task that goes beyond the scope of the present work. Note that, in the unweighted (binary) case, the MAN
and CAN distances actually yield the same result as the (square of the) EUC distance; thus the three distances are actually the
same and only the EUC distance will be considered in the analysis.

Table 1. Classification of network distances

Network type Known Node-Correspondence (KNC) Unknown Node-Correspondence (UNC)

UNDIRECTED
UNWEIGHTED

– Euclidean (EUC), Manhattan (MAN),
Canberra (CAN), Jaccard (JAC) distances
– DeltaCon (DCON)

– Spectral Adjacency (EIG-ADJ), Laplacian
(EIG-LAP), SNL (EIG-SNL) distances
– GCD-11
– MI-GRAAL
– Portrait Divergence (PDIV)

DIRECTED
UNWEIGHTED

– Euclidean, Manhattan, Canberra, Jaccard
distances
– DeltaCon

– DGCD-129
– MI-GRAAL
– Portrait Divergence

UNDIRECTED
WEIGHTED

– Euclidean, Manhattan, Canberra distances
– Weighted Jaccard distance (WJAC)

– Spectral Adjacency, Laplacian, SNL distances
– MI-GRAAL
– Portrait Divergence

DIRECTED
WEIGHTED

– Euclidean, Manhattan, Canberra distances
– Weighted Jaccard distance

– MI-GRAAL
– Portrait Divergence

Perturbation tests
We perform successive perturbations starting from an original graph and we measure, after each perturbation, the distance
of the obtained graph from the original one. This is aimed at checking to what extent the considered network distance has a
“regular” behaviour. As a matter of fact, we expect that whatever distance we use, it should tend to zero when the perturbations
tend to zero, i.e., the distance is small between very similar graphs; moreover, the distance should increase monotonically with
the number of perturbations, meaning that fluctuations, if any, should be very limited. In addition, for perturbations that tend to
randomize the graph (see below), the distance should saturate to some asymptotic value after a large number of perturbations,
because when the graph has become fully randomized it remains such for any further perturbation (see Ref.16 for a formal
discussion on the properties of similarity measures).

The following types of perturbations are considered:

– Removal (pREM-test): a connected node pair is picked uniformly at random and the edge is removed (the graph density
decreases).

– Addition (pADD-test): a non-connected node pair is picked uniformly at random and an edge is added (the graph density
increases).

– Random switching (pRSW-test): combines the previous two: a connected node pair is picked uniformly at random and
the edge is removed; then a non-connected node pair is picked uniformly at random and an edge is added (the graph
density does not change).

– Degree-preserving switching (pDSW-test): two edges are picked uniformly at random and swapped: if we pick (i, j) and
(u,v), we delete them and insert the new edges (i,v) and ( j,u), provided they are not already existing (the graph density
and the degree distribution do not change).
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In addition, for directed networks:

– Change of direction (pDIR-test): a connected node pair is picked uniformly at random and the edge direction is reversed
(the graph density does not change).

We consider two classes of networks, i.e., undirected and directed, and three models for each class, i.e., Erdős-Rényi (ER)37,
Barabási-Albert (BA)38 and Lancichinetti-Fortunato-Radicchi (LFR)39, 40 (see Ref.16 for alternative proposals of synthetic test
networks). For each class/model pair, we create two graphs with 1 000 nodes, respectively with density 0.01 and 0.05 (see SI
for details on the creation of undirected and directed networks). On each network, we perform 10 different replications of 1 000
successive perturbations of the types above defined. For the undirected and directed cases, respectively, we test the methods in
the first and second row of Table 1. For density 0.05 and for all directed networks, we exclude MI-GRAAL from the analysis
because it turns out to be computationally too heavy.

Figures 2 and 3 summarize the results obtained on undirected networks with density 0.01 (see SI for density 0.05). We
notice that essentially all distances have a “regular” behaviour, in the sense above discussed. Confidence bands are generally
tight, except for MI-GRAAL and GCD-11 which fluctuate more. In a few cases, the distances tend to saturate – this is especially
evident in switching tests (pRSW-test and pDSW-test). Overall, these results denote that all distances are well defined and can
be properly used for comparison.

At the same time, the tests reveal a different behaviour for the two classes of distances KNC and UNC (Table 1). KNC
distances (top row in Figures 2 and 3) turn out to be practically insensitive to the network model and even to the type of
perturbation: for these distances, a perturbation acts in the same way in all the considered models. This is not unexpected:
for example, EUC simply measures the (square root of the) number of edges that have been added, removed or switched,
disregarding the topology in which these changes happen: a very weak characterization of the effects of the perturbations.

UNC distances (middle and bottom rows in Figures 2 and 3), on the contrary, show quite different values and patterns
for different models and perturbations. The three spectral distances (middle row) behave quite differently from one test to
another. The trend is linear in pADD-test and pREM-test and independent on the network model, while for pRSW-test and
pDSW-test the distance is definitely larger for LFR networks, in almost all cases. This behaviour captures the higher sensitivity
of LFR networks to random rewiring, due to the progressive destruction of the built-in community structure via removal of
intra-communities edges and creation of inter-community connections. On the other hand, pRSW-test affects BA networks too,
because hubs will easily lose connections. Noticeably, ER networks are weakly affected by random rewiring of both types, if
measured by spectral distances: random rewiring yields of course different graphs, but structurally equivalent to the original
one.

Coming to the last UNC distances (bottom row in Figures 2 and 3), we notice the comparatively large variability of GCD-11.
PDIV, on the other hand, has a peculiar behaviour: the distance has a steep increase in the very first perturbations, then either
it increases further but at a slower rate, or it immediately saturates. The latter is the case, e.g., of ER and BA models under
pDSW-test: under random rewiring, the ER topology yields equivalent graphs that are almost equally distant from the original
one, but interestingly the same happens for the BA structure: we argue that after some pDSW-test steps the shortest paths
distribution is almost the same for all the perturbed graphs, so that the PDIV distance becomes constant.

The MI-GRAAL distance shows a behaviour different from all the other distances. The confidence bands reveal a large
variability, as above pointed out. In a few extreme cases (e.g., pREM-test and pDSW-test on LFR graphs, or pADD-test and
pDSW-test on ER graphs), the confidence band spans almost the entire [0,1] range, namely, a few perturbations may lead to a
graph apparently equal or totally different from the original one, depending on which edges are perturbed. This unpleasant
behaviour is probably due to the large sensitivity to perturbations of the local (node) features. Recall that MI-GRAAL distance
builds a map between the most similar nodes of the compared networks. Perturbations induce differences in the individual
node features, i.e., degree, clustering coefficient, and betweenness centrality, that can obscure and shuffle the correct node
correspondence. Incidentally, ER networks seem the most suffering ones, presumably because nodes are weakly characterized.

Finally, Figure 4 summarizes the results of the change of direction (pDIR-test) test on directed networks with density 0.01
(see SI for density 0.05). Again, for the same reasons as above, the simplest distances (EUC and JAC) show a behaviour which
is very regular and insensitive to the network model. What emerges in the three UNC distances, on the other hand, is their
strong sensitivity in the case of BA networks, where (see DGCD-129 and PDIV panels) even the first few perturbations yield
large distances. To explain this effect, it should be emphasized that in our directed BA networks, by construction, hubs are
nodes having systematically large in-degree while the out-degree is homogeneously distributed (see SI for details). It turns out
that few changes in the edge directions are sufficient to dramatically change the number and type of graphlets (DGCD-129)
and the structure of the shortest paths (PDIV). Such a strong sensitivity could be an issue in some applications, although it is
certainly amplified by the specific structure of our benchmark networks.
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Figure 2. Perturbations tests: results of the Removal (pREM-test) and Addition (pADD-test) tests for the 9 distances and the 3
undirected models ER, BA, LFR (density 0.01). Solid (dashed) lines are the mean (±3 std) values obtained over the 10
replications of the perturbation histories.
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Figure 3. Perturbations tests: results of the Random switching (pRSW-test) and Degree-preserving switching (pDSW-test) tests
for the 9 distances and the 3 undirected models ER, BA, LFR (density 0.01). Solid (dashed) lines are the mean (±3 std) values
obtained over the 10 replications of the perturbation histories.
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Figure 4. Perturbations tests: results of the Change of direction (pDIR-test) test for the 5 distances (see Table 1, MI-GRAAL
excluded for computational reasons) and the 3 directed models ER, BA, LFR (density 0.01). Solid (dashed) lines are the mean
(±3 std) values obtained over the 10 replications of the perturbation histories.

Clustering tests
Clustering tests are aimed at assessing the effectiveness of each method in recognizing and grouping together networks with the
same structural features, i.e., originated from the same model. In other words, to yield a good clustering performance, a method
should be able to assign small distance to network pairs coming from the same model but large distance to pairs coming from
different models. Note that only UNC methods are suitable for this task, since we assume that no node correspondence is
available. Thus, with reference to Table 1, we test the methods of the UNC column, in the first and second row, respectively, for
undirected and directed networks. In both cases we exclude MI-GRAAL, which proved to be computationally too heavy in
most of the experimental settings below described.

We choose again ER, BA, and LFR network models. For each model, we consider two sizes (1 000 and 2 000 nodes), two
densities (0.01 and 0.05), and the two variants undirected/directed (see SI for details), and we generate 5 networks for each one
of the 3×2×2 model/parameter set, for a total of 60 undirected and 60 directed networks. We then compute all the pairwise
distances for each method, ending up with two (i.e., undirected/directed) 60×60 distance matrices.

In Figures 5 and 6 we visualize the results by means of dendrograms (built with ward.D2 linkage41 and Optimal Leaf
Ordering42) where, to aid interpretation, we label each leaf (=network) with two colours, one denoting the network model and
the other the size/density. As above emphasized, an effective method should ideally be able to cluster all networks coming from
the same model class, without being disturbed from the different sizes and densities.

In the undirected case (Figure 5), we observe that all methods are able to correctly group networks of the same class, but
only if they have the same size/density. This is the case for EIG-ADJ, EIG-LAP, EIG-SNL and PDIV. Only GCD-11 achieves a
better performance, as it proves able to group all LFR networks, along with the BA graphs with low densities, and by identifying
two other clear clusters: one containing ER graphs with low density, and the other BA and ER graphs with high densities.
Overall, the results reveal a dependence of spectral methods and PDIV distance on size and density of the graphs, a result not
fully satisfactory.

In the directed case (Figure 6), PDIV behaves better than in the undirected case, since it is able to group together all the BA
graphs, while ER and LFR graphs are grouped together in another large cluster within which density becomes the discriminating
factor. On the other hand, DGCD-129 is able to achieve a perfect clustering of the network models.

A systematic approach to comparatively quantify the performance of different methods is the Precision-Recall frame-
work19, 23, 24: for a given network distance, one defines a threshold ε > 0 and classifies two networks as belonging to the same
model class if their distance is less than ε . Given that the correct classes are known, the accuracy of classifying all network pairs
can be quantified by Precision and Recall. The procedure is then repeated by varying ε , obtaining the Precision-Recall curve
(Figure 7) which, ideally, should have Precision equal to 1 for any Recall value. Overall, the curves highlight the superiority of
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Figure 5. Clustering tests: dendrograms for the undirected case. Left: Spectral adjacency distance EIG-ADJ (the
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the graphlet-based approaches (GCD-11 and DGCD-129, respectively) in comparison to all other methods we have tested –
their curve is systematically above all the others.

A quantification of the performance of each method can be obtained by the Area Under the Precision Recall curve (AUPR),
which should be 1 in the ideal case. For the left panel of Figure 7, AUPR ranges from 0.391 (EIG-SNL) to 0.688 (GCD-11), for
the right panel AUPR is 0.685 for PDIV and 0.928 for DGCD-129. We note that all methods perform better than a random
classifier (AUPR equal to 0.322), but the improvement is very moderate for spectral methods. Moreover, the AUPR measure
can be used to confirm that all the analysed methods yield an essentially correct classification, if only networks of the same
size/density are considered, a feature already highlighted above when discussing the dendrograms. Indeed, we report that in this
case all methods of Figure 7 obtain an AUPR larger than 0.8 in the undirected case, and practically equal to 1 in the directed
case.
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Tests on real-world networks
In this section we assess the performance of the above methods in the task of clustering sets of real-world networks: our aim is
to understand more deeply how these methods work and which type of results one should expect from their use. We analyse
multiplex networks, since their layers can be seen as individual (ordinary) networks defined over the same node set. This is a
desirable property for our analysis, because it enables the use of both KNC and UNC methods. One can therefore ascertain
whether the two classes of methods provide different insights of the same problem.

European Air Transportation Network. This network has 448 nodes, representing European airports, and 37 layers, corre-
sponding to the airline companies (see SI for the list), for a total of 3588 undirected and unweighted edges43. We test all the
distances of the first row of Table 1, namely three KNC distances (recall that MAN and CAN are equivalent to EUC in this
setting) and six UNC distances.

Figure 8 displays the nine 37×37 (symmetric) distance matrices (the corresponding dendrograms are in the SI). We firstly
observe that the two classes of distances yield qualitatively different output: KNC distances are almost uniform over the entire
matrix (JAC above all), while UNC methods obtain different degrees of differentiation, remarkably for EIG-SNL and GCD-11.
EUC and DCON essentially identify one single (trivial) cluster including all the networks except Ryanair (#2). This is not
unexpected, since the Ryanair layer differs from the others in having by far the largest number of edges and (non isolated)
nodes. In turn, this demonstrates that KNC distances are strongly affected by size and density: two graphs with different sizes
or densities are classified as distant just because of edge counting, regardless of their topological properties.
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Figure 8. European Air Transportation Network: Distance matrices for three KNC distances (top row) and six UNC distances
(middle and bottom row). The colour in entry (i, j) is the distance between layers i and j of the multiplex air transportation
network. Distances are coded by colours from blue (large distance) to red (small distance).

The three spectral distances have similar behaviour. Dendrograms identify two main clusters, a small one containing airlines
#1, #2, #3, and, according to the method, #5, #6 or #26, and a large one containing all the rest (actually EIG-SNL reveals a third,
small cluster, which however has no clear interpretation). The small cluster groups together the airlines with the highest number
of nodes and connections (> 75 nodes, > 110 edges). This confirms the strong dependence of the three spectral distances on
size and density, as highlighted in the synthetic tests.

MI-GRAAL and PDIV distances do not show any meaningful clustering, except that the former groups together three
pure-star networks (#9, #31, #33) but misses the fourth one existing in the database (#18), and the latter groups a few networks
having the same maximum degree (#17, #19, #23, and #13, #20, #31, #34) but in fact misses a few others. Finally, the distance
matrix and the dendrogram for GCD-11 show three main clusters. One of them contains all the four pure-star layers in the
dataset (#9, #18, #31, #33), while the second groups seven of the eight airlines with comparatively large (> 0.15) clustering

13/18



2 10 7 18 17 23 4 11 9 8 13 34 19 20 31 33 14 15 22 21 12 30 37 26 27 28 35 16 36 32 24 29 25 5 1 6 3

EU Air Transportation − DeltaCon distance

Germany
Ireland
UK
Turkey
France

Scandinavia
Netherlands
Italy
Switzerland
Spain

Austria
Hungary
Portugal
Belgium
Poland

Others
Greece
Czech Republic
Latvia

9 18 31 33 28 4 34 12 19 14 17 37 25 30 8 29 1 11 5 20 7 36 22 23 32 24 13 10 27 6 21 3 15 26 35 2 16

EU Air Transportation − GCD−11 distance

Germany
Ireland
UK
Turkey
France

Scandinavia
Netherlands
Italy
Switzerland
Spain

Austria
Hungary
Portugal
Belgium
Poland

Others
Greece
Czech Republic
Latvia

Figure 9. European Air Transportation Network: dendrograms for DCON and GCD-11, with airlines coloured according to
the nations they are based in. Contrarily to UNC distances (e.g. GCD-11), KNC distances (e.g., DCON) are able in many cases
to group airlines which are based in the same nation.

coefficient (#2, #3, #6, #15, #16, #21, #26, #35). The third cluster contains all the remaining layers. In addition, airlines #4
and #28 are also paired to form a small but well identified cluster: it turns out that they both have zero clustering coefficient
without being a star graph. Overall, these results denote that GCD-11 is quite effective in classifying networks based on purely
topological features.

We pointed out above that KNC distances are unable to extract meaningful clusters of networks. Nonetheless they provide
some useful result, as they pair networks on a regional basis, i.e., they put at a comparatively small distance airlines based in
the same nation/region. For example, EUC dendrogram pairs #1 with #6 (Germany), #8 with #13 (Scandinavia), #30 with
#37 (Greece), and #9 with #27 (Netherlands). JAC pairs together the aforementioned airlines and, in addition, #3 with #4
(UK), #12 with #22 (Spain), #2 with #23 (Ireland), and #16 with #33 (Hungary). DCON (see Figure 9) groups #8 with #13
(Scandinavia), #12, #21, #22 (Spain), #30 with #37 (Greece), #1 with #6 (Germany), and #24 with #29 (Germany again). This
kind of grouping is not recovered by UNC distances (see, e.g., DCON vs GCD-11 in Figure 9). As a matter of fact, KNC
distances are all based on some sort of node similarity. Airlines based in the same nation share the same national airports;
moreover, in many instances the two airlines paired by KNC methods are the leading national company and a low-cost company,
offering different journey and price conditions on the same routes. Consequently the nodes of two airlines based in the same
nation are typically similar and this reduces the distance between the corresponding networks.

FAO Trade Network. We now consider the FAO Trade Network of food, agricultural and animal products44. It is composed
of 364 layers, each one representing a different product, sharing 214 nodes, corresponding to countries, for a total number
of 318346 connections. If layers/products are matched with the WTO Harmonized System classification45, we find that FAO
products belong to seven out of the fifteen major HS categories: Animals and Animal Products; Vegetable Products; Foodstuffs;
Chemicals; Plastic and Rubbers; Raw Hides, Skins and Leathers; Textiles. Each layer is directed and weighted, the weights
representing the export value (thousands of USD) of a product from one country to another. Here we discuss a few results
derived on the binarized version of the network, which is obtained, for each product p, by retaining only the links departing
from countries c having Revealed Comparative Advantage RCAcp > 1, i.e., countries which are significant exporters of that
product (Refs46, 47 and SI for details). We test the distances of the second row of Table 1, namely three KNC distances (since
MAN and CAN are equivalent to EUC) but only two UNC distances, because as usual we exclude MI-GRAAL due to the high
computational cost.

The cluster analysis summarized by the dendrograms of Figure 10 clearly shows that the naive expectation that products
organize in groups according to their category is not fulfilled: HS categories turn out to be too broad and diversified to
induce similar trade topologies. Vegetable Products, for example, is the most represented category: it includes such a
diversity of products that the corresponding networks are also extremely diverse, not only in terms of number and location
of producing/consuming countries, but also for the possible existence of intermediate countries where products are imported,
transformed, and eventually re-exported.

Nonetheless, cluster analysis is able to spot interesting similarities. For example, some agricultural products (such as
tropical fruits or citrus fruits) can be produced only in specific regions of the world and thus only by few countries. Thus,
we expect that the distance between the corresponding layers will be small – this obviously holds true if KNC distances are
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used. This expectation is indeed confirmed. All KNC distances group together (see the bottom colour bars in Figure 10) all the
citrus fruits (namely Oranges; Lemons and limes; Grapefruit; Tangerines, mandarins, clementines, satsumas) present in the
dataset, and EUC also puts Olives preserved and Oil, olive, virgin close to them. This is not surprising, since the latter are
mostly produced in the same areas as citrus, for climatic reasons. Most of the tropical fruits are also gathered together: EUC
mainly finds two groups, one which contains Cocoa, beans; Cocoa, powder and cake; Cocoa, paste; Cocoa, butter; Bananas;
Pineapples; Mangoes, mangosteens, guavas; and the other one which contains Vanilla; Coconuts; Coconuts, desiccated;
Cinnamon; Nutmeg; Pepper; Coffee, green. Similarly, DCON also identifies two major groups of tropical fruits. In addition,
another group of specific products, namely those related to juices, are grouped together by KNC distances. Notably, the groups
of citrus fruits and citrus juices are not adjacent to each other, revealing that production and processing of fresh fruit mostly
take place in different countries thus yielding different trade networks.

Finally, UNC distances, applied to the FAO dataset, identify those few products with a very peculiar trade pattern. For
example, the leftmost leaves of the DGCD-129 dendrogram (Figure 10), which have large distance from all other leaves,
correspond to trade networks with a pronounced star-like structure. They relate to very peculiar products, such as Bulgur;
Maple sugar and syrups; Margarine, liquid; Beehives; Camels; and others. Some of them are produced and exported by only
one country (e.g., Maple sugar and syrup) or are imported significantly by very few countries (e.g., Beehives) and thus their
trade patterns are highly centralized.

Discussion and concluding remarks
We reviewed a broad set of the methods available in the literature for network comparison, assessing their performances both
on synthetic benchmarks and on real-world multilayer networks. We relied on a well-accepted dichotomy of the methods based
on their functioning. The first class (Known Node-Correspondence) gathers all the methods, such as Euclidean, Jaccard or
DeltaCon distances, which require a priori to know the correspondence between the nodes of the compared networks: they are
suitable to quantify the differences between graphs representing various connection patterns among the same node set, as in the
EU Air Transportation case, or to quantify changes or spotting anomalies occurring in a graph subject to temporal evolution.
The second class (Unknown Node-Correspondence) collects all the methods which do not require any a priori knowledge of
the correspondence between nodes. Methods of this class, such as spectral distances, graphlet-based measures, and Portrait
Divergence, are specifically suited for structural comparison, namely to provide information about how much, and in what
sense, the structures of the graphs differ.

To evaluate the performance of each method, we carried out two classes of tests – perturbation and clustering – with the
use of synthetic networks. All methods demonstrated a fairly good behaviour under perturbation tests, in the sense that all
distances tend to zero as the similarity of the networks increases, tend to a plateau after a large number of perturbations, and do
not fluctuate too much if perturbations are repeated. On the contrary, the clustering tests highlighted different behaviours and
performances. When networks of the same size and density are considered, in both the undirected and directed case all methods
are able to discriminate between different structures, often achieving a perfect classification (actually, the spectral SNL distance
never achieves a perfect classification and it is the worst performing method in all situations). However, when considering
networks of different sizes and densities, the results change considerably. In the undirected case, the graphlet-based measure
GCD-11 is the best performing distance in discriminating between different network topologies and clearly outperforms all the
other methods. The spectral SNL distance remains the worst performing method, being only slightly better than a random
classifier; the other two Spectral distances and Portrait Divergence have comparable performances. In the directed case, the
graphlet-based measure DGCD-129 is able to achieve an almost perfect classification, whereas Portrait Divergence distance
performs much better than in the undirected case. Therefore, since in many real-world applications density and size of the
graphs may vary considerably, graphlet-based measures prove to be by far the most reliable tools to investigate the differences
between networks structures.

The methods analysed were able to recover important features in the real-world case studies analysed. For example, in the
European Air Transportation Network they paired at small distances airlines based in the same nation, which are expected
to have high nodes similarities since they share the same airports and routes. In the FAO Trade Network, they were able to
group specific products whose countries of production are in common due to climate reasons. In this latter case, results were
obtained after the original weighted network was reduced to a binary (unweighted) version. In this respect, considerable work
is still needed to develop and systematically test methods able to fully exploit the available information on weights, an effort
that could potentially yield a significant improvement in network classification. A common feature of methods with Known
Node-Correspondence, that emerged from the analysis of real-world case studies, is their strong dependence on density and size
of the graphs – a feature that could be a strength or a weakness according to the application. More in general, the analysis
of real-world datasets has shown that, even when a network measure is unable to induce a clear partition of the entire set of
networks, it can nonetheless highlight important subsets. In this sense, using different methods – based on different notions of
network similarity – can provide rich and diversified information.
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Figure 10. FAO Trade Network: cluster analysis for the five methods under test. In the upper colour bar, products are
classified according to WTO Harmonized System. In the bottom bar, a few specific categories are evidenced.
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