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Abstract

In this paper, we consider the numerical approximation of high order Partial
Differential Equations (PDEs) by means of NURBS–based Isogeometric Analysis
(IGA) in the framework of the Galerkin method, for which global smooth basis
functions with degree of continuity higher than C0 can be used. We derive a pri-
ori error estimates for high order elliptic PDEs under h–refinement, by extending
existing results for second order PDEs approximated with IGA and specifically
addressing the case of errors in lower order norms. We present some numerical
results which both validate the proposed error estimates and highlight the accu-
racy of IGA. Then, we apply NURBS–based IGA to solve the fourth order stream
function formulation of the Navier–Stokes equations; in particular, we solve the
benchmark lid–driven cavity problem for Reynolds numbers up to 5,000.

Key words. High order Partial Differential Equations; Isogeometric Analysis; a
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1 Introduction

The numerical approximation of high order Partial Differential Equations (PDEs) represents a challenging
task for the classical Galerkin Finite Element Methods due to the need to use trial and test functions
featuring high degree of continuity. This issue has been addressed by adapting existing finite element
schemes or developing new numerical schemes. Specifically, the Discontinuous Galerkin (DG) [40] and local
discontinuous Galerkin (LDG) methods, firstly introduced in [15], were developed and adapted for solving
high order PDEs; see e.g. [34] for fourth order PDEs and the references therein for more general cases.
Analogously, non–conforming discretizations have been used to achieve the needed global regularity [13];
additionally, ad hoc techniques as continuous/discontinuous finite element approximations for fourth order
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PDEs have been developed in [21] in order to overcome the issue of defining C1-continuous basis for arbitrary
shaped elements in dimensions greater than one. Currently, the golden standard in the framework of the
standard Galerkin method with Lagrangian basis functions, consists in resorting to mixed formulations [24].
Spectral or pseudo-spectral domain decomposition techniques have also been used to approximate fourth
order PDEs resulting from the Navier–Stokes equations in stream function formulation, see [36].

Isogeometric Analysis (IGA) is a recently developed computational methodology initiated with the work
of Hughes et al. in [16] aiming at closing the existing gap between Computed Aided Design (CAD) and Finite
Element Analysis (FEA). Based on the isogeometric paradigm, for which the same basis functions used to
represent the known geometry are then used to approximate the unknown solution of the PDEs, IGA has been
successfully used for the numerical approximation of a wide range of problems providing accurate and efficient
solutions. An extensive discussion on the solution of both linear and nonlinear equations governing elasticity
or fluid dynamics problems by means of IGA is provided in [17]. Moreover, IGA provides advantages in the
numerical approximation of high order PDEs within the framework of the standard Galerkin formulation,
since in IGA globally smooth basis functions can be eventually used. In particular, we refer to NURBS–based
IGA, due to the large use of NURBS (Non–Uniform Rational B-Splines) [37] within the CAD technology, and
above all, for the mathematical properties of these basis functions. We observe that, besides the possibility
of offering simplified refinements procedures, NURBS allow to exactly represent some common geometries
in engineering design, e.g. conic sections.

One of the major features of NURBS, which allows efficient numerical approximations of high order PDEs
in the framework of the Galerkin method, consists in the fact that NURBS basis functions can be globally
Ck–continuous in the computational domain, with k ≥ 0. This property allows a direct discretization of
the weak form of the problem without the need to resort to mixed formulations, as typically is the case of
FEA. In this respect, NURBS–based IGA has already been successfully used to solve high order PDEs. In
[27, 32] the fourth–order Cahn–Hillard equations have been solved, while in [9, 19, 28] high order phase field
models have been used for fracture modeling, topology optimization, and crystal growth, respectively. In
[7, 8] structural problems for shell and plates have been solved with IGA, specifically Kirchhoff-Love models.
In [2] a stream function, high order formulation has been used to solve planar elastic problems within the
IGA framework, for which an estimation of the convergence rates of the errors with respect to the mesh size
has been performed numerically. However, despite a significant numerical evidence, a complete, theoretical
error analysis for high order PDEs has not been performed yet, especially for errors in lower order norms.

In this work, we provide a priori error estimates under h–refinement for the NURBS–based IGA approx-
imation of high order scalar elliptic PDEs, extending the results presented in [3] for second order PDEs.
Specifically, we review some approximation results presented in [3] and we focus on the derivation of the
errors in lower order norms by means of Aubin–Nietsche’s arguments [35, 43]. We highlight the dependence
of the convergence rates on the order of the spatial differential operators, the regularity of the solutions,
and the degree of the basis functions used. The convergence rates of the approximation errors of the IGA–
Galerkin method with respect to the global mesh size h are verified by means of numerical tests with fourth
and sixth order scalar PDEs.

As application, we consider the numerical approximation of the Navier–Stokes equations in stream func-
tion formulation [39], for which the incompressibility condition is fulfilled exactly in the computational
domain; in this case, the standard Galerkin formulation yields a stable problem by construction. Specifi-
cally, we present a numerical study by means of NURBS–based IGA for the benchmark lid–driven cavity
problem by comparing the results, up to Reynolds number 5,000, with those available in literature. Namely,
we refer to [10], which considers a spectral Chebychev collocation method, [22], where divergence–conforming
B–Splines discretizations in the framework of IGA are developed, and [25], where a multigrid technique ap-
plied to finite difference approximations of the vorticity–stream function formulation of the Navier–Stokes
equations is used.

The outline of this work is as follows. In Section 2, we recall the basic notions of NURBS–based IGA
in the framework of the Galerkin method, specifically for high order scalar elliptic PDEs. In Section 3, we
derive the a priori error estimates. In Section 4, we present, in view of the numerical tests, some high order
PDEs and discuss the numerical approximation schemes. Finally, in Section 5, we report and discuss the
numerical results. Conclusions follow.
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2 NURBS–based Isogeometric Analysis

In this section, we recall the basic concepts of the B–Splines and NURBS basis functions and geometrical
representation. Then, in Section 2.2, we briefly describe NURBS–based IGA in the framework of the Galerkin
method for the solution of high order PDEs. For an extensive overview of B–Splines and NURBS, see for
instance [17, 37]; for more details related to NURBS–based IGA, we refer the interested reader to e.g.
[16, 17, 18]. The notation used in this work is similar to the one used in [3, 6].

2.1 B–Splines and NURBS

A knot vector is a set of non–decreasing real numbers, representing coordinates in the parameter space.
We indicate the knot vector as Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi is the i–th knot, with the knot index
i ∈ {1, . . . , n+ p+1} characterized by the polynomial degree p and the number of basis functions n defining
the B–Splines basis, respectively. By convention, we assume that ξ1 = 0 and ξn+p+1 = 1, such that the

parametric domain is defined as Ω̂ := (ξ1, ξn+p+1) = (0, 1) ⊂ R. Knots may be repeated with the number of
repetitions indicating its multiplicity. A knot vector is said to be open if its first and last knots appear p+1
times; specifically, in this work we consider this case. In order to introduce the concept of mesh elements
in the parametric domain, we collect all the r distinct and ordered knots of Ξ, say ζj for j = 1, . . . , r, into
a vector Z = {ζ1, . . . , ζr}, with ζ1 ≡ ξ1 = 0 and ζr ≡ ξn+p+1 = 1. In particular, the one dimensional mesh

over Ω̂, say Qh, is defined as the collection of the subdomains bounded by two distinct knots, i.e.:

Qh := {Q = (ζj , ζj+1) : j = 1, . . . , r − 1}; (2.1)

we indicate with ĥ := max{ĥQ : Q ∈ Qh} the global mesh size in the parametric domain Ω̂, where ĥQ :=
diam(Q) for all Q ∈ Qh. Moreover, since the multiplicity of the knots has important implications in the
regularity properties of the basis functions, an auxiliary vector is defined in relation with Z; specifically, we
introduce the vector M := {m1, . . . ,mr}, with mj ≥ 1 representing the multiplicity of the knot value ζj , for
j = 1, . . . , r.

By means of the Cox–de Boor recursion formula [17, 37], univariate B–Splines basis functions Ni :

Ω̂ → R for i = 1, . . . , n, are built as piecewise polynomials of degree p with compact support over the
interval (ξi, ξi+p+1). The basis functions are everywhere pointwise nonnegative and C∞–continuous, except
in the knot values ζj , where they are only Cp−mj–continuous. In particular, we define for all j = 1, . . . , r,
the smoothness integer parameters kj = p − mj + 1 such that 0 ≤ kj ≤ p, we collect them in a vector
K = {k1, . . . , kr}, and we introduce the minimum integer parameter kmin := min

j=2,...,r−1
{kj}. We observe

that, according to the definition of the vector K, in the knot ζj , for j = 1, . . . , r, the basis functions are

Ckj−1–continuous. The B–Splines space built from the basis functions in the parametric domain Ω̂ reads:

Sh := span {Ni}
n
i=1 . (2.2)

By definition, the B-Splines in Sh are globally Ckmin–continuous. An example of B–Splines basis functions
of degree p = 2, exhibiting different regularities across the knots, is provided in Figure 1.

The tensor product structure allows to extend the definition of the B–Splines space to the κ–dimensional
case. Starting from κ knot vectors Ξα = {ξα1 , ξ

α
2 , . . . , ξ

α
nα+pα+1} for α = 1, . . . , κ, we provide the correspond-

ing vectors Zα = {ζα1 , . . . , ζ
α
rα
} and Mα = {mα

1 , . . . ,m
α
rα
}. A mesh Qh in the parametric domain Ω̂ = (0, 1)κ

is defined by its partition into κ–dimensional elements, as:

Qh :=
{
Q := ⊗κ

α=1(ζ
α
jα
, ζαjα+1), 1 ≤ jα ≤ rα − 1

}
. (2.3)

Moreover, as for the univariate case, having set the element size ĥQ := diam(Q) for all Q ∈ Qh , the global

mesh size reads ĥ := max
Q∈Qh

{ĥQ}. For each multi–index i := (i1, . . . , iκ) in the set I = {i = (i1, . . . , iκ) :

0 ≤ iα ≤ nα, for 1 ≤ α ≤ κ}, we define the multivariate B–Splines basis functions as:

Ni : Ω̂ → R, Ni(η) :=
κ∏

α=1

Nα
iα
(ηα), (2.4)
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Figure 1: B–Splines basis functions of degree p = 2 obtained from the open knot vector
Ξ = {0, 0, 0, 1/4, 1/2, 3/4, 3/4, 1, 1, 1} with n = 7, Z = {0, 1/4, 1/2, 3/4, 1}, M = {3, 1, 1, 2, 3}, and
K = {0, 2, 2, 1, 0}. The basis functions are only C0–continuous in the knot value ζ4 = 3/4, while C1–
continuous in the knot values ζ2 = 1/4 and ζ3 = 1/2.

and we denote the tensor product B–Splines space, as:

Sh := span {Ni}i∈I . (2.5)

The (directional) regularity of each basis function Ni can be deduced by the regularity of the univariate
functions defining Ni in virtue of the tensor product structure. In particular, in parallel with the one
dimensional case, we can refer to smoothness integer parameters and define for each parametric direction α =
1, . . . , κ the vectors Kα = {kα1 , . . . , k

α
rα
} and the minimum integer parameters as kαmin := min

jα=2,...,rα−1
{kαjα}.

The basis functions are C∞–continuous in the interior of each element Q ∈ Qh, while, across each internal
non-zero dimensional face separating the elements, the regularity can be still defined by referring to the
(directional) regularity in each parametric α–direction. Specifically, by considering an integer l ≤ κ and a

set B ⊆ {1, . . . , κ} such that |B| = l, a (κ − l)–dimensional face is identified by l fixed knots ζβjβ for each
β–parametric direction such that β ∈ B and with 1 ≤ jβ ≤ rβ − 1. Across such face, a basis function is

Ck−1–continuous, with k := min
β∈B

kβjβ , i.e. the regularity is equal to the minimum over each parametric α–

direction of the maximum regularity across this face for each parametric direction. Moreover, by defining the
regularity constant kmin := min

α=1,...,κ
{kαmin}, it is straightforward to deduce that the B-Splines basis functions

of Sh are at least globally Ckmin–continuous.
Uni– and multivariate NURBS basis functions are defined on the parametric domain Ω̂ = (0, 1)κ once

provided κ knot vectors Ξα for α = 1, . . . , κ and the corresponding B–Splines basis {Ni}i∈I , by introducing
a set of real numbers ω = {ωi}i∈I , called the weights. We assume that the weights are positive and we define
a positive scalar piecewise polynomial function, called weighting function, as:

W : Ω̂ → R, W (η) :=
∑

i∈I

ωiNi(η). (2.6)

The i-th multivariate NURBS basis function is defined as:

Ri : Ω̂ → R, Ri(η) =
Ni(η)ωi

W (η)
∀i ∈ I, (2.7)

and the corresponding NURBS space over the parametric domain Ω̂ reads:

Nh := span {Ri}i∈I . (2.8)

In the framework of NURBS–based IGA the computational domain Ω, in which the PDEs are defined,
is represented by a NURBS entity; specifically, we consider the case of geometries that can be modeled as
a single patch. NURBS geometrical entities of dimension κ ≥ 1 are defined in the physical space R

d with



Isogeometric Analysis for high order PDEs 5

1 ≤ κ ≤ d; for more details see e.g. [20]. In particular, by considering the NURBS space over the parametric

domain Ω̂ of Eq. (2.8) and a set of control points {P i}i∈I ⊆ R
d, a NURBS geometry Ω in R

d is defined from

the parametric domain Ω̂ = (0, 1)κ by means of the geometrical mapping :

x : Ω̂ → Ω ⊆ R
d, x(η) =

∑

i∈I

Ri(η)P i. (2.9)

In virtue of the geometrical mapping (2.9), we define the physical mesh in the physical domain Ω, whose
elements are obtained from Eq. (2.9) as the image of the elements in the parametric domain, i.e.:

Kh := {K = x(Q) : Q ∈ Qh}. (2.10)

Moreover, we define the space of NURBS in the domain Ω as the push–forward of the space Nh of Eq. (2.8),
i.e.:

Vh := span
{
Ri ◦ x

−1
}
i∈I

= span {Ri}i∈I , (2.11)

where {Ri}i∈I is the NURBS basis in the physical domain, with Ri := Ri◦x
−1 for all i ∈ I. The geometrical

mapping (2.9) is assumed to be invertible a.e. in Ω, with smooth inverse on each element K of the physical
mesh Kh.

In our analysis we restrict to the case in which the dimension d of the physical space R
d is equal to the

dimension κ of the parameter space R
κ, i.e. d = κ. The case κ < d is addressed e.g. in [20].

2.2 NURBS-based Isogeometric Analysis: the Galerkin method

We recall NURBS–based IGA in the framework of the Galerkin method for the approximation of PDEs by
considering the case of high order scalar elliptic PDEs.

Let us consider a domain Ω ⊂ R
d described by NURBS and a well–posed scalar elliptic PDE of order

2m, with m ≥ 1, whose variational formulation reads:

find u ∈ V : a(u, v) = F (v) ∀v ∈ V, (2.12)

where V ⊆ Hm(Ω) is a Hilbert space endowed with the norm of V and whose functions satisfy the homoge-

neous counterpart of the essential boundary conditions; specifically, Hm(Ω) :=
{
v ∈ L2(Ω) : D(ι)v ∈ L2(Ω)

for all ι = (ι1, . . . , ιd) ∈ N
d with 0 ≤ |ι| = ι1 + . . .+ ιd ≤ m

}
, where D(ι) is the distributional partial deriva-

tive, see e.g. [1]. Moreover, a : V × V → R is a continuous, (strongly) coercive, and bilinear form with
continuity and coercivity constantsM and αc, respectively; F : V → R is a linear and continuous functional.
In this manner the hypotheses of the Lax–Milgram Lemma (see for instance [35, 40]) hold, ensuring the
existence and uniqueness of the solution of problem (2.12).

When considering NURBS–based IGA, we look for an approximate solution of problem (2.12) which is
an element of the NURBS space Vh of Eq. (2.11). In particular, the real valued approximate solution of
problem (2.12) is expressed as:

uh : Ω → R, uh(x) =
∑

i∈I

Ri(x)di =
∑

i∈I

Ri(x
−1(x))di, (2.13)

where {Ri}i∈I is the NURBS basis in the physical domain Ω, while {di}i∈I ⊆ R are the control variables.

Remark 2.1. The subscript h in Eq. (2.13) refers to the characteristic size of the mesh elements, introduced
in Section 2.1 and highlights the definition of functions over the finite dimensional NURBS space Vh of
Eq. (2.11). Usually, the computational domain Ω is represented at the coarsest level of discretization and re-
finement procedures are performed according to accuracy requirements aiming at improving the approximation
of the solution by enriching the NURBS space Vh. With NURBS basis functions, three kinds of refinement
can be performed, namely h–, p–, k–refinements; we refer the reader to [16, 17] for a detailed description.
We recall that these refinements allow to control the element size, the degree, and the regularity of the basis
functions in a flexible manner. Moreover, we remark that the refinement procedures are performed in such a
way that the geometrical mapping (2.9) is preserved at the coarsest level of discretization.
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In the framework of the finite-dimensional Galerkin method, the approximate solution uh of prob-
lem (2.12) is obtained by solving the following problem:

find uh ∈ V h : a(uh, vh) = F (vh) ∀vh ∈ V h, (2.14)

with V h ⊆ V a nontrivial and finite dimensional subspace, specifically defined as V h := V ∩ Vh, where Vh

is the NURBS space introduced in Eq. (2.11). The well–posedness of problem (2.14) is determined in the
following approximation theorem (see for instance [35, 40]).

Theorem 2.1. Let the hypotheses of Lax–Milgram Lemma be satisfied, i.e. a(·, ·) and F (·) are a continuous,
strongly coercive and bilinear form and a linear and continuous functional, respectively (see Eq. (2.12)).
Then, there exists a unique solution uh ∈ Vh of problem (2.14) and the following stability estimate holds:

∥uh∥V ≤
1

αc

∥F∥V ′ . (2.15)

Moreover, the approximation error eh := u − uh, with u the unique solution of problem (2.12), satisfies the
optimal error estimate:

∥u− uh∥V ≤
M

αc

inf
vh∈V h

∥u− vh∥V . (2.16)

Remark 2.2. When considering (high order) PDEs of order 2m, with m > 1, the weak form of prob-
lem (2.12) exhibits derivatives of the solution and test functions up to the order m. The numerical approx-
imation of problem (2.12) by means of the Galerkin method (2.14) requires that the basis functions are at
least globally Cm−1–continuous in Ω. However, in the standard FEA setting, the Lagrangian basis functions
are only globally C0–continuous, for which it is necessary e.g. to increase the number of variables, as it is
the case of mixed formulations. Conversely, NURBS–based IGA, for which we can build basis functions with
the required regularity up to the Cm−1–continuity, allows the use of the standard Galerkin formulation in a
straightforward and efficient manner.

3 A priori error estimates for high order PDEs

In this section we provide the a priori error estimates for the errors associated to the NURBS–based IGA
approximation of linear scalar elliptic PDEs of order 2m. The result generalizes the a priori error estimate pro-
vided in [3] for second order elliptic operators and it is based on the use of the Aubin–Nietsche’s argument for
the derivation of the error in lower order norms; see for instance [35, 43]. For simplicity, we consider the case
of high order (2m) scalar elliptic PDEs endowed with homogeneous essential boundary conditions. Their vari-

ational formulation reads as in Eq. (2.12) with V ≡ Hm
0 (Ω) :=

{
v ∈ Hm(Ω) : γ(ι)

∂Ω
v = 0 for 0 ≤ ι ≤ m− 1

}
,

where γ(ι)
∂Ω

is the trace operator of order ι on ∂Ω; see for reference [1].
We present the error estimates under h–refinement and, as in [3], we assume that the family of meshes

{Qh}h is generated under h–refinement starting from a coarsest mesh Qh0
representing the computational

domain. All the meshes are assumed to be (uniformly) shape regular and locally quasi–uniform [3]. Moreover,
we define the NURBS space in the physical domain Ω, Vh, by means of NURBS basis functions of degree
pα ≡ p for all α = 1, . . . , d = κ.

In the following, we will generically denote with Cshape a positive constant independent of the mesh size
h and the unknown solution u of problem (2.12), but dependent on the shape of the domain Ω and its
parametrization.

3.1 The interpolation error estimate for NURBS

We start by recalling some results concerning the interpolation theory of NURBS, as reported in [3]. The
interpolation error estimate in norm Hm is based on the introduction of a support extension Q of an element
Q of the mesh Qh in the parametric domain, defined as the union of the supports of basis functions whose
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support intersect the element Q. Similarly, we define the physical support estension of an element K = x(Q)
of the physical mesh Kh (2.10), as the image of Q through the geometrical mapping x (2.9) and we denote it

as K, i.e. K := x(Q). Given a function v̂ ∈ L2(Ω̂) defined in the parametric domain Ω̂, we use the projective
operator over the B–Splines space Sh, say ΠSh

, introduced in [3, 42] and defined as:

ΠSh
: L2(Ω̂) → Sh, ΠSh

v̂ :=
∑

i∈I

λi(v̂)Ni, (3.1)

where the linear functionals λj ∈ L2(Ω̂)′ determine the dual basis for the set of B-Splines [42], i.e. they are
such that λj(Ni) := δj,i for i, j ∈ I. The corresponding projective operator over the NURBS space Nh in
the parametric domain (2.8), say ΠNh

, is defined by means of ΠSh
and the definition of the NURBS basis

functions of (2.7) through the weighting function W of Eq. (2.6). In particular, ΠNh
reads:

ΠNh
: L2(Ω̂) → Nh, ΠNh

v̂ :=
ΠSh

(Wv̂)

W
, (3.2)

for all v̂ ∈ L2(Ω̂). In this manner, the projective operator over Vh, the NURBS space in the physical domain
Ω defined in Eq. (2.11) as the push–forward of the space Nh, is given by:

ΠVh : L2(Ω) → Vh, ΠVhv := (ΠNh(v̂)) ◦ x−1. (3.3)

Firstly, we recall the estimate for the local interpolation error presented in [3]; then, we provide a global
estimate taking into account the minimum global regularity of the basis functions kmin.

Theorem 3.1 (Local interpolation error estimate). Given the integers l and s such that 0 ≤ l ≤ s ≤ p+ 1
and s ≥ m, for a function u ∈ L2(Ω) ∩Hs(K), the estimate for the local interpolation error reads:

|u−ΠVhu|Hl(K) ≤ Cshape h
s−l
K

s∑

i=0

∥∇x∥i−s

L∞(Q)
|u|Hi(K), (3.4)

where hK is the element size of K ∈ Kh and ∇x denotes the deformation tensor of the geometrical mapping
x provided in Eq. (2.9).

By extending the results of [3] and using similar arguments, we provide the following result.

Proposition 3.1. Given the integers l and s such that 0 ≤ l ≤ s ≤ p + 1 and s ≥ m, and a function
u ∈ Hs(Ω), then: ∑

K∈Kh

|u−ΠVhu|2Hl(K) ≤ Cshape h
2(s−l) ∥u∥2Hs(Ω). (3.5)

Proof. Firstly, we consider the local interpolation error estimate (3.4). By embedding the term related to
the geometrical mapping (∥∇x∥L∞(Q)) into the constant Cshape and by elevating to the square, we obtain:

|u−ΠVhu|2Hl(K) ≤ Cshape h
2(s−l)
K

(
s∑

i=0

|u|Hi(K)

)2

≤ Cshape h
2(s−l)
K


∥u∥2Hs(K) +

s∑

i,j=0

|u|Hi(K)|u|Hj(K)




≤ Cshape h
2(s−l)
K ∥u∥2Hs(K),

(3.6)
where the third inequality holds since |u|Hj(K) ≤ ∥u∥Hs(K) for all j = 0, . . . , s and having included the term

(s + 1)2 + 1 into the last of the constants Cshape. By summing the terms in inequality (3.6) over all the
elements K in the physical mesh Kh, we deduce from Eq. (3.6):

∑

K∈Kh

|u−ΠVhu|2Hl(K) ≤
∑

K∈Kh

Cshape h
2(s−l)
K ∥u∥2Hs(K) ≤ Cshape h

2(s−l)
∑

K∈Kh

∑

K′∈K

∥u∥2Hs(K′). (3.7)
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For each element K ∈ Kh we define a constant ẼK equal to the number of support extensions to which K
belongs. Due to the property of compact supports of the NURBS basis functions (for which the supports
are the union of a finite set of elements, whose cardinality is bounded by the degree p and the dimension
d of the parametric domain Ω̂), there exists a constant Ẽ such that Ẽ ≥ max

K∈Kh

ẼK , with Ẽ depending only

on the degree p and the dimension d of the parametric domain. In this manner, the double sum in the last

inequality of Eq. (3.7) is bounded as
∑

K∈Kh

∑

K′∈K

∥u∥2Hs(K′) ≤ Ẽ
∑

K∈Kh

∥u∥2Hs(K). Then, by embedding the

constant Ẽ in Cshape, we obtain:

∑

K∈Kh

|u−ΠVhu|2Hl(K) ≤ Cshape h
2(s−l)

∑

K∈Kh

∥u∥2Hs(K), (3.8)

from which the estimate (3.5) follows.

Proposition 3.2 (Global interpolation error estimate). Under the hypotheses of Proposition 3.1, if in
addition we have l ≤ kmin, we obtain:

|u−ΠVhu|Hl(Ω) ≤ Chs−l∥u∥Hs(Ω). (3.9)

Proof. Under the additional hypothesis l ≤ kmin, the semi–norm inH l(Ω) of the interpolation error (u−ΠVhu)
is well-defined on the whole space Ω and the result (3.9) follows from Eq. (3.5).

Corollary 3.1. Let u ∈ Hr(Ω) be a function defined in the physical domain Ω. Given an integer l such that
0 ≤ l ≤ p+ 1, l ≤ r, and l ≤ kmin, then:

|u−ΠVhu|Hl(Ω) ≤ Chδ−l∥u∥Hr(Ω). (3.10)

where δ := min{r, p+ 1}.

Proof. By assuming u ∈ Hr(Ω), the estimate (3.10) follows directly from Proposition 3.2 and from the
Sobolev inclusions Hr(Ω) ⊆ Hs(Ω) for r > s. Indeed, if r ≤ p + 1 the hypotheses of Proposition 3.2
are satisfied by taking s = r and δ equals r, while if r ≥ p + 1 the larger s satisfying the hypotheses in
Proposition 3.2 is s = p+ 1 and we have δ = p+ 1.

Remark 3.1. The approximation results of Propositions 3.1, 3.2 and Corollary 3.1 highlight the dependence
of the error on the mesh size h, considering the family of meshes undergoing the h–refinement procedure.
The explicit dependence of the interpolation error on the degree p and on the global regularity of the basis,
expressed in terms of the smoothness integer parameter defining the vector K, is provided in [6]. However,
the results presented therein are obtained under more restricting hypotheses.

3.2 A priori error estimate

We provide the error estimate for NURBS–based IGA in the Hm norm for elliptic PDEs of order 2m, with
m ≥ 1. The result extends the one provided in [3] for second order PDEs.

Theorem 3.2 (A priori error estimate in norm Hm). Let u ∈ Hr(Ω) be the exact solution of problem (2.12)
and uh ∈ V h the approximate solution obtained with the NURBS–based IGA method with basis functions of
global regularity kmin ≥ m. Then, the following a priori error estimate holds:

∥u− uh∥Hm(Ω) ≤ Cshape h
γ∥u∥Hr(Ω), (3.11)

where γ := min{p+ 1, r} −m.
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Proof. By means of the optimal error estimate (2.16) of Theorem 2.1 and the approximation result (3.10) of
Corollary 3.1, we have:

∥u− uh∥Hm(Ω) ≤
M

αc

inf
vh∈V h

∥u− vh∥Hm(Ω) ≤ Cshape ∥u−ΠVhu∥Hm(Ω)

≤ Cshape |u−ΠVhu|Hm(Ω) ≤ Cshape h
min{r,p+1}−m∥u∥Hr(Ω).

(3.12)

The third inequality is the generalization of Poincaré inequality, being the domain Ω bounded and featuring
a regular boundary ∂Ω; see for reference Corollary 6.31 in [1]. Then, the result (3.11) follows by definition
of γ.

In order to derive error estimates in lower order norms of the NURBS–based IGA approximation, we use
arguments similar to those typically applied for the FEA; see e.g. [35, 40, 43]. In particular, we consider
the Aubin–Nietsche’s argument by introducing the adjoint problem and we use a generalized form of the
Lax–Milgram Lemma, namely the Nec̆as–Babus̆ka Theorem; see, e.g., [35, 41, 43].

Theorem 3.3 (A priori error estimate in lower order norms). For the elliptic PDE of order 2m (2.12), with
m ≥ 1, let σ be an integer such that 0 ≤ σ ≤ m and the linear functional F ∈ H−σ(Ω). Let u ∈ Hr(Ω), with
r ≥ m, be the exact solution of problem (2.12) and uh the approximate solution obtained with NURBS–based
IGA with basis functions of degree p, and kmin ≥ m. Then, the following a priori error estimate holds:

∥u− uh∥Hσ(Ω) ≤ Cshape h
β∥u∥Hr(Ω), (3.13)

where β := min{δ − σ, 2(δ −m)} with δ := min{r, p+ 1}.

Proof. The adjoint problem associated with problem (2.12) and functional F (·), reads:

find ϕF ∈ V : a∗(ϕF , v) = F (v) ∀v ∈ V, (3.14)

where the bilinear form a∗ : V × V → R is defined as a∗(v, w) := a(w, v) for all w, v ∈ V (see for instance
[29, 35, 40]). The elliptic regularity of the adjoint problem follows from problem (2.12). Moreover, by
means of the space embedding rule V ⊆ Hσ ⊆ H−σ ⊆ V ′ and the hypothesis F ∈ H−σ(Ω), the adjoint
problem (3.14) satisfies the hypotheses of the Nec̆as–Babus̆ka Theorem [35, 41, 43]; thus, there exists a

unique solution ϕF ∈ V of the adjoint problem (3.14) and ∥ϕF ∥H2m−σ(Ω) ≤ C̃∥F∥H−σ(Ω), for some constant

C̃ dependent on the weakly coerciveness of a(·, ·). By means of the generalized Poincaré inequality and the
approximation result of Corollary 3.1, there exists a projection operator ΠVh (see Eq. (3.3)) onto the NURBS
space Vh, for which:

∥ϕF −ΠVhϕF ∥Hm(Ω) ≤ Chθ∥ϕF ∥H2m−σ(Ω), (3.15)

with C a positive constant independent of the mesh size h, but dependent on the shape of the domain Ω
and θ defined as:

θ :=

{
min{m− σ, p+ 1−m} if r ≥ 2m− σ,

min{r −m, p+ 1−m} if r < 2m− σ.
(3.16)

The inequality (3.15) follows by considering, for the case r ≥ 2m − σ, ϕF ∈ Hr(Ω) as an element of
H2m−σ(Ω) in virtue of the inclusion Hr(Ω) ⊆ H2m−σ(Ω), while for r < 2m − σ we simply observe that
∥ϕF ∥Hr(Ω) ≤ ∥ϕF ∥H2m−σ(Ω).

By definition of the Hσ norm and by choosing v = u− uh in Eq. (3.14), we have:

∥u− uh∥Hσ(Ω) = sup
F∈H−σ(Ω)

|⟨F, u− uh⟩H−σ(Ω),Hσ(Ω)|

∥F∥H−σ(Ω)

= sup
F∈H−σ(Ω)

|a∗(ϕF , u− uh)|

∥F∥H−σ(Ω)

.
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By means of the Galerkin orthogonality of the error with respect to Vh and the continuity of the bilinear
form a∗(·, ·), we obtain:

∥u− uh∥Hσ(Ω) = sup
F∈H−σ(Ω)

|a∗(ϕF −ΠVhϕF , u− uh)|

∥F∥H−σ(Ω)

≤M∥u− uh∥Hm(Ω) sup
F∈H−σ(Ω)

∥ϕF −ΠVhϕF ∥Hm(Ω)

∥F∥H−σ(Ω)

.

(3.17)

Then, by applying the error estimate (3.11) of Theorem 3.2 and the upper bound (3.15), we have:

∥u− uh∥Hσ(Ω) ≤ Cshape h
γ+θ∥u∥Hr(Ω) sup

F∈H−σ

∥ϕF ∥H2m−σ(Ω)

∥F∥H−σ(Ω)

.

Finally, by considering the inequality ∥ϕF ∥H2m−σ(Ω) ≤ C̃∥F∥H−σ(Ω) and summing the exponents of hγ+θ,

we obtain the result (3.13).

From Theorems 3.2 and 3.3, we deduce that the convergence rate of the error with respect to the global
mesh size h depends on the order of problem m, the regularity r of the exact solution u ∈ Hr(Ω), and the
degree p of the NURBS basis functions used to represent the approximate solution uh ∈ V h. Moreover, when
considering the a priori error estimate in lower order norms, the rate of convergence β in Eq. (3.13) depends
also on the norm Hσ(Ω) used for the estimation of the error u− uh. We observe that the smaller is σ, the
larger is the expected convergence rate of the error with the mesh size h, provided that p is large enough
with respect to m for u ∈ Hr(Ω), with r ≥ p + 1. In fact, this consideration does not hold when using a
degree p ≤ 2m− 1, for which we obtain that the rate of convergence β is constant and equal to 2(p+1−m)
for all σ ≤ 2m− 1− p. For example, for m = 2 we obtain that:

∥u− uh∥L2(Ω) ≤ Chmin{p+1, 2p−2}∥u∥Hr(Ω),

∥u− uh∥H1(Ω) ≤ Chmin{p, 2p−2}∥u∥Hr(Ω),

∥u− uh∥H2(Ω) ≤ Chmin{p−1, 2p−2}∥u∥Hr(Ω).

(3.18)

If p = 2, the convergence rates for the errors in norms L2(Ω) and H1(Ω) are coincident and equal to 2. In
the case m = 3, we obtain:

∥u− uh∥L2(Ω) ≤ Chmin{p+1, 2p−4}∥u∥Hr(Ω),

∥u− uh∥H1(Ω) ≤ Chmin{p, 2p−4}∥u∥Hr(Ω),

∥u− uh∥H2(Ω) ≤ Chmin{p−1, 2p−4}∥u∥Hr(Ω),

∥u− uh∥H3(Ω) ≤ Chmin{p−2, 2p−4}∥u∥Hr(Ω).

(3.19)

We conclude that, for m = 3, the same convergence rates of the errors in low order norms are obtained up
to the degree p = 4; in fact, if p = 3, the convergence rates for the errors in norms L2(Ω), H1(Ω) and H2(Ω)
are equal to 2, while if p = 4, only the convergence rates in norms L2(Ω) and H1(Ω) are equal to 4.

4 Examples of high order PDEs

In this section we provide some examples of high order (fourth and sixth order) scalar elliptic PDEs and we
consider the Navier–Stokes equations in stream function formulation (fourth order scalar PDEs). We recall
the governing equations and the corresponding variational forms, which we will solve numerically by means
of NURBS–based IGA in the framework of the Galerkin method. Moreover, in Section 4.1 we briefly discuss
the strong imposition of essential boundary conditions for high order PDEs solved with the above specified
method.
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4.1 Strong imposition of essential boundary conditions and lifting functions

We consider the model problem:

find w : Ω → R :

{
Lw = f in Ω, (4.1a)

BEss
ι w = gι+1 on ∂Ω for all ι = 0, . . . ,m− 1, (4.1b)

where L is a scalar linear elliptic partial differential operator of order 2m, withm ≥ 1, and
{
BEss
ι

}m−1

ι=0
is a set

of essential boundary operators. Moreover, gι+1 for ι = 0, . . . ,m− 1 and f are functions satisfying suitable

regularity hypotheses; see [35]. We define the trial affine space Vg :=
{
v ∈ Hm(Ω) : γ(ι)

∂Ω
v = gι+1 for

0 ≤ ι ≤ m− 1
}
⊂ Hm(Ω) (see [1]) and we introduce a lifting function ḡ ∈ Hm(Ω) satisfying all the essential

boundary conditions (4.1b) in the sense of the traces, i.e. such that γ(ι)
∂Ω
ḡ = gι+1 for all ι = 0, . . . ,m − 1;

see [1] and [31]. Moreover, ḡ is such that for all functions w ∈ Vg there exists a unique u ∈ V ≡ Hm
0 (Ω) for

which w = ḡ + u. In this manner, we recast problem (4.1) in the weak formulation (2.12) by introducing a
bilinear form a : V × V → R corresponding to the differential operator L and a linear functional F : V → R

depending on the source term f and on the lifting function ḡ, i.e. such that F (v) = ⟨f, v⟩L2(Ω) − a(ḡ, v) for
all test functions v ∈ V .

In view of the numerical approximation of problem (2.12) by means of NURBS–based IGA in the frame-
work of the Galerkin method, we look for a numerical solution of problem (2.14), uh belonging to the space
V h = V ∩Vh, where Vh is the NURBS space (see Eq. (2.11)). If the functions gι+1 for ι = 0, . . . ,m−1 do not
belong to a subspace of Vh, say Vh

∂Ω, defined as the space of the traces of the functions in Vh on ∂Ω, we con-
sider an approximation gι+1,h ≈ gι+1 such that gι+1,h ∈ Vh

∂Ω for each ι = 0, . . . ,m−1, e.g. obtained by means

of an L2 projection technique onto the NURBS space Vh
∂Ω. Once provided the set of functions {gι+1,h}

m−1
ι=0 ,

we define the trial discrete affine space V h
g :=

{
vh ∈ Vh : γ(ι)

∂Ω
vh = gι+1,h for 0 ≤ ι ≤ m− 1

}
⊂ Vh, whose

NURBS functions satisfy the discrete approximation of the essential boundary conditions (4.1b) in the sense
of the traces. We observe that, if gι+1 ∈ Vh for all ι = 0, . . . ,m−1 (i.e. if gι+1,h ≡ gι+1), we have V

h
g ≡ Vg∩V

h.

Then, we introduce the approximate lifting function ḡh ∈ V h
g such that γ(ι)

∂Ω
ḡh = gι+1,h for all ι = 0, . . . ,m−1

and for all wh ∈ V h
g there exists a unique uh ∈ V h for which wh = ḡh + uh. In this manner, we can recast

the discrete problem in the form of Eq. (2.14), where the linear functional F (·) is replaced by Fh : V h → R,
which includes the term associated to the discrete lifting function, i.e. Fh(vh) = ⟨f, vh⟩L2(Ω) − a(ḡh, vh) for

all test functions vh ∈ V h.

We recall that the strong imposition of the essential boundary conditions (4.1b), or possibly their ap-
proximation in terms of the functions gι+1,h, is facilitated in the NURBS framework. Indeed, due to the
locality and the tensor product construction of the NURBS basis functions, the m homogeneous essential
boundary conditions are enforced simply by setting equal to zero the m outermost control variables along
the parametric direction normal to the boundary ∂Ω. Similarly, the lifting function ḡh ∈ V h

g is determined
by setting the values of the same m outermost control variables accordingly with the functions gι+1,h for all
ι = 0, . . . ,m − 1 and the other control variables equal to zero. For more details and an extensive overview
of the topic, we refer the reader to [19, 32, 44].

4.2 Biharmonic and Triharmonic problems

The biharmonic problem is governed by a fourth order partial differential operator △2 := △△, often called
bilaplacian. Since we restrict to the case of essential boundary conditions on the whole boundary ∂Ω, the
problem in strong form reads:

find w : Ω → R :





△2w = f in Ω, (4.2a)

w = g1 on ∂Ω, (4.2b)

∇w · n = g2 on ∂Ω. (4.2c)
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We define the trial and test function spaces as, respectively:

Vg =
{
v ∈ H2(Ω) : γ(0)

∂Ω
v = v|∂Ω = g1, γ(1)

∂Ω
v = (∇v · n)|∂Ω = g2

}
, (4.3a)

V =
{
v ∈ H2(Ω) : γ(0)

∂Ω
v = v|∂Ω = 0, γ(1)

∂Ω
v = (∇v · n)|∂Ω = 0

}
. (4.3b)

We consider a suitable lifting function ḡ ∈ H2(Ω) satisfying the essential boundary conditions (4.2b–4.2c) in
the sense of the traces, i.e. such that γ(0)

∂Ω
ḡ = ḡ|∂Ω = g1 and γ

(1)
∂Ω
ḡ = (∇ḡ·n)|∂Ω = g2. In this manner, we recast

problem (4.2) in the weak formulation (2.12) in terms of the unknown u ∈ V ≡ H2
0 (Ω) such that w = ḡ+ u,

with the bilinear form a(u, v) :=

∫

Ω

△u△vdΩ and the linear functional F (v) :=

∫

Ω

fvdΩ−a(ḡ, v). Following

the procedure described in Section 4.1, the discrete counterpart of problem (2.12) reads as in Eq. (2.14) in
the unknown function uh ∈ V h. By considering the differentiability requirements on the unknown uh ∈ V h

and test functions, the numerical approximation by means of the Galerkin method requires that the NURBS
space Vh must be defined by means of basis functions which are at least globally C1–continuous.

The triharmonic problem is governed by the sixth order partial differential operator △3 := △△2, called
trilaplacian; if complemented by essential boundary conditions on the whole boundary ∂Ω, it reads:

find w : Ω → R :





−△3w = f in Ω, (4.4a)

w = g1 on ∂Ω, (4.4b)

∇w · n = g2 on ∂Ω, (4.4c)

△w = g3 on ∂Ω. (4.4d)

Problems involving a sixth order partial differential operator arise e.g. in phase field crystal models [28],
geometrical PDEs for surface modeling [33], and fracture modeling [46].

In order to provide the variational formulation of problem (4.4), we define the trial and test function
spaces as:

Vg =
{
v ∈ H3(Ω) : γ(0)

∂Ω
v = v|∂Ω = g1, γ(1)

∂Ω
v = (∇v · n)|∂Ω = g2, γ(2)

∂Ω
v = △v|∂Ω = g3

}
, (4.5a)

V =
{
v ∈ H3(Ω) : γ(0)

∂Ω
v = v|∂Ω = 0, γ(1)

∂Ω
v = (∇v · n)|∂Ω = 0, γ(2)

∂Ω
v = △v|∂Ω = 0

}
, (4.5b)

respectively. We consider a suitable lifting function ḡ ∈ H3(Ω) satisfying the essential boundary condi-
tions (4.4b–4.4d) in the sense of the traces, i.e. such that γ(0)

∂Ω
ḡ = ḡ|∂Ω = g1, γ

(1)
∂Ω
ḡ = (∇ḡ · n)|∂Ω = g2,

and γ(2)
∂Ω
ḡ = △ḡ|∂Ω = g3. In this manner, we recast problem (4.4) in the weak formulation (2.12) in

terms of the unknown u ∈ V ≡ H3
0 (Ω) such that w = ḡ + u, where the bilinear form is given by

a(u, v) :=

∫

Ω

∇ (△u) · ∇ (△v) dΩ and the linear functional is F (v) :=

∫

Ω

fv dΩ − a(ḡ, v). Following Sec-

tion 4.1, the numerical approximation of problem (4.4) reads as in Eq. (2.14) with uh ∈ V h being the
unknown approximate solution. As already discussed in Remark 2.2, by considering the differentiability
requirements on the unknown uh ∈ V h and test functions, the numerical approximation by means of the
NURBS–based IGA–Galerkin method applied to problem (4.4) requires that the NURBS space Vh must be
defined by means of basis functions which are at least globally C2–continuous in Ω.

4.3 Navier–Stokes equations

We consider the Navier–Stokes equations governing the flow of an incompressible fluid in a domain Ω ⊂ R
2

and in the time interval (0, T ). We recall the dimensionless strong form of the problem expressed in terms
of the primitive variables velocity and pressure (u, p), which reads:
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find u : Ω× (0, T ) → R
2 and p : Ω× (0, T ) → R such that:





u̇+ (u · ∇)u+∇p− 2∇ ·

(
1

Re
D(u)

)
= f in Ω, t ∈ (0, T ), (4.6a)

∇ · u = 0 in Ω, t ∈ (0, T ), (4.6b)

u(0) = u0 in Ω, (4.6c)

σfn = h on ΓN , t ∈ (0, T ), (4.6d)

u = g on ΓD, t ∈ (0, T ), (4.6e)

where Re is the Reynolds number, σf = −pI + 2
1

Re
D (u) is the Cauchy stress tensor, with D(u) :=

(∇u+∇uT )

2
the strain tensor, and I the identity tensor. The vector field f : Ω × (0, T ) → R

2 indicates

the body forces and u0 : Ω → R
2 is the initial condition. Neumann (4.6d) and Dirichlet (4.6e) boundary

conditions are provided in terms of the vector fields h and g, defined on the subsets ΓN ,ΓD ⊆ ∂Ω, respec-

tively, with ΓD ∪ ΓN = ∂Ω and
◦
ΓD ∩

◦
ΓN = ∅; n indicates the outward directed unit vector normal to ΓN .

Moreover, we denote by u̇ :=
∂u

∂t
.

4.3.1 Navier–Stokes equations in stream function formulation

We briefly recall the stream function formulation of the Navier–Stokes equations; we follow the same ap-
proach described in [2] for the plane linear elasticity problem for a homogeneous isotropic incompress-
ible material. Specifically, we start from the variational formulation of problem (4.6), by defining the

trial and test function spaces as Vg :=
{
v ∈

[
H1(Ω)

]2
: v|ΓD

= g
}

(this is indeed an affine manifold),

V :=
{
v ∈

[
H1(Ω)

]2
: v|ΓD

= 0
}
, and Q := L2(Ω). We introduce the spaces of divergence–free func-

tions, subsets of the corresponding spaces Vg and V , defined as Wg := {v ∈ Vg : ∇ · v = 0} ⊂ Vg and
W := {v ∈ V : ∇ · v = 0} ⊂ V , respectively. Then, the weak form of the Navier–Stokes equations reads:

find, for all t ∈ (0, T ), u(t) ∈Wg such that:

{
m(u̇(t),v) + a(u(t),v) + c(u(t),u(t),v) = F (v) +H(v) ∀v ∈W , (4.7a)

u(0) = u0 in Ω, (4.7b)

where m(u̇,v) :=

∫

Ω

u̇ ·v dΩ, a(u,v) :=
2

Re

∫

Ω

D(u) : D(v) dΩ, b(v, p) := −

∫

Ω

p ∇·v dΩ and c(w,u,v) :=
∫

Ω

((w · ∇)u) · v dΩ, while F (v) :=

∫

Ω

f · v dΩ and H(v) :=

∫

ΓN

h · v dΓ.

Moreover, we consider over the space of scalar functions H2(Ω) the equivalence relation ∼ for which
ϕ ∼ ψ if and only if ψ − ϕ ∈ R, for all ϕ,ψ ∈ H2(Ω); the resulting quotient space of scalar functions in
H2(Ω) identified up to a constant is denoted by X := {[ϕ] : ϕ ∈ H2(Ω)} 1. In the additional hypothesis that
Ω is a simply connected domain, for a given v ∈W there exists a unique ϕ ∈ X such that v = curlϕ, where
the partial differential operator curl of scalar fields is defined as:

curl : X → [H1(Ω)]2, curlϕ :=

(
∂ϕ

∂y
,−

∂ϕ

∂x

)
; (4.8)

see for reference [2, 26]. In particular, the operator curl provides an isomorphism between the spacesWg, W
and the following spaces Φg := {ψ ∈ X : curlψ|ΓD

= g} and Φ := {ϕ ∈ X : curlϕ|ΓD
= 0}, respectively.

In this manner, we can rewrite problem (4.7) in term of the scalar function ψ ∈ Φg, called stream function,

1For the sake of simplicity, we identify each element of X with its equivalence class, i.e. ϕ ∈ X is intended as ϕ ∈ [ϕ], with
[ϕ] ∈ X.
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which reads:
find, for all t ∈ (0, T ), ψ(t) ∈ Φg such that:

{
m̄(ψ̇(t), ϕ) + ā(ψ(t), ϕ) + c̄(ψ(t), ψ(t), ϕ) = F̄ (ϕ) + H̄(ϕ) ∀ϕ ∈ Φ, (4.9a)

ψ(0) = ψ0 in Ω , (4.9b)

where m̄(ψ̇, ϕ) :=

∫

Ω

curlψ̇ ·curlϕdΩ, ā(ψ,ϕ) :=
2

Re

∫

Ω

D(curlψ) : D(curlϕ) dΩ, c̄(ψ,ψ, ϕ) :=

∫

Ω

(
(curlψ ·

∇)curlψ
)
· curlϕ dΩ, F̄ (ϕ) :=

∫

Ω

f · curlϕ dΩ, H̄(ϕ) :=

∫

ΓN

h · curlϕ dΓ. The initial condition (4.9b) is

chosen in such a way that curlψ0 = u0. Problem (4.9) is the stream function formulation of the Navier–
Stokes equations (4.6) and it represents a time dependent fourth order nonlinear PDE. By construction,
u = curlψ is the velocity field solving problem (4.7) and it is, by definition, divergence free. The pressure
field, unknown in Eq. (4.6), can be recovered by solving a second order PDE depending on the stream
function ψ [26].

Remark 4.1. By definition of the spaces Φg and Φ, the scalar field ψ ∈ Φg solution of problem (4.9) is not
strictly a scalar function, but a class of equivalence of functions determined up to a constant. We enforce the
uniqueness of the solution of problem (4.9) in a classical sense e.g. by enforcing a prescribed value in a point
in the domain. Moreover, we recast the essential boundary condition (curlψ) |ΓD

= g in the form of essential
boundary conditions for fourth order PDEs, i.e. given d1, d2 : ΓD → R, we set ψ|ΓD

= d1, ∇ψ · n|ΓD
= d2.

In particular, by means of the relation curlψ = u, a Dirichlet boundary condition u|ΓD
= g = (gx, gy)

yields a condition of the form ∇ψ · n|ΓD
= (−gy, gx) · n. Moreover, by means of the fundamental theorem of

calculus [38], the data d1 associated to the essential boundary condition of zero order for the stream function
ψ (ψ|ΓD

= d1) can be deduced from the set of boundary conditions for primitive variables.

4.3.2 Navier–Stokes equations: numerical approximation

We provide the semi-discretized spatial approximation of problem (4.9) by means of the NURBS-based
IGA–Galerkin method presented in Section 2.2. Moreover, we use the generalized–α method [14, 30] for the
approximation in time.

Let the two–dimensional computational domain Ω be represented by a NURBS geometry. We consider
the finite dimensional space of NURBS in the physical domain, say Vh, given in Eq. (2.11) and we define
the finite dimensional subspaces of the trial and test function spaces Φg and Φ as the NURBS spaces given

respectively by Φh := Φ ∩ Vh and Φh
g := Φg ∩ Vh, with Ns := dimΦh the dimension and {Ri}

Ns

i=1 the set of

NURBS basis functions of Φh, respectively. The IGA–Galerkin approximation of problem (4.9) reads:
find, for all t ∈ (0, T ), ψh(t) ∈ Φh

g such that:

{
m̄(ψ̇h(t), ϕh) + ā(ψh(t), ϕh) + c̄(ψh(t), ψh(t), ϕh) = F̄ (ϕh) + H̄(ϕh) ∀ϕh ∈ Φh, (4.10a)

ψh(0) = ψ0 in Ω, (4.10b)

where the forms and the functionals are the same used for problem (4.9). In view of the discretization in
time, we rewrite Eq. (4.10a) in residual form as:

find, for all t ∈ (0, T ), ψh(t) ∈ Φh
g such that:

{
Rh(ϕh, ψ̇h(t), ψh(t)) = 0 ∀ϕh ∈ Φh, (4.11a)

ψh(0) = ψ0 in Ω, (4.11b)

with Rh(ϕh, ψ̇h, ψh) := m̄(ψ̇h, ϕh) + ā(ψh, ϕh) + c̄(ψh, ψh, ϕh) − F̄ (ϕh) − H̄(ϕh); we define the vector of
discrete residuals whose components are the residuals Rh(·, ψ̇h, ψh) evaluated in the NURBS basis functions

for the function space Φh (Ri, for i = 1, . . . , Ns), i.e. R
(
ψ̇h(t), ψh(t)

)
:=
{
Rh(Ri; ψ̇h(t), ψh(t))

}Ns

i=1
for
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Figure 2: Computational domains: a square Ω = (0, 1)2 (a) and a quarter of an annulus, Ω = (1, 4)×
(
0,
π

2

)

in radial coordinates (b).

all t ∈ (0, T ). Moreover, we introduce the vectors of control variables for all t ∈ (0, T ) for the function ψh

and its time derivative ψ̇h, given by Ψ̇(t) =
{
ψ̇i(t)

}Ns

i=1
and Ψ(t) =

{
ψi(t)

}Ns

i=1
, respectively. We define a

discrete time vector {tn}
Nt

n=0, subdividing (0, T ) in a set of Nt time intervals of size ∆tn = tn+1 − tn; for the
sake of simplicity, we replace the evaluation in tn with the subscript n in the vectors of control variables.

In this framework, we perform the discretization in time by means of the generalized–α method (see
[14, 30]): at time step tn, given Ψ̇n, Ψn, find Ψ̇n+1, Ψn+1, Ψ̇n+αm

, Ψn+αf
such that:

R
(
Ψ̇n+αm

, Ψn+αf

)
= 0, (4.12a)

Ψ̇n+αm
= Ψ̇n + αm

(
Ψ̇n+1 − Ψ̇n

)
, (4.12b)

Ψn+αf
= Ψn + αf

(
Ψn+1 −Ψn

)
, (4.12c)

Ψn+1 = Ψn +∆tnΨ̇n + δ∆tn

(
Ψ̇n+1 − Ψ̇n

)
, (4.12d)

where the parameters αm, αf , δ ∈ R
+
0 defining the generalized–α method, are chosen on the basis of

accuracy and stability considerations; see [14, 30, 32]. Moreover, we deal with the nonlinearity of the system
of equations (4.12) by using a predictor–multicorrector algorithm as done e.g. in [32].

5 Numerical results

We solve by means of NURBS–based IGA the high order PDEs described in Section 4, for which we verify
the convergence rates predicted by the a priori error estimate of Eq. (3.13). Then, we solve the Navier–
Stokes equations in stream function formulation for the benchmark lid–driven cavity problem; we compare
the results with those available in literature, namely [10, 22] and [25].

5.1 High order elliptic PDEs: biharmonic and triharmonic problems

We consider two tests for the biharmonic problem (4.2) and an example for the triharmonic problem (4.4)
for which the exact smooth solution is known. The problems are defined in the physical domains Ω ⊂ R

2

described in Figure 2 with homogeneous essential boundary conditions on the whole boundary ∂Ω ≡ Γ1 ∪
Γ2 ∪ Γ3 ∪ Γ4.

5.1.1 Biharmonic Problem

Case 1. By referring to Eq. (4.2), we consider a problem defined in the domain Ω = (0, 1)2 as given
in Figure 2a. In particular, we set g1(x, y) = g2(x, y) = 0 and the source term f(x, y) yielding the exact
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(a) case 1 (b) case 2

Figure 3: Biharmonic problem: exact solutions of problems described in case 1 (a) and case 2 (b).

solution u(x, y) = sin2(πx) sin2(πy). The domain Ω is described by B–Splines on uniform meshes with a

total number of elements Nel =
(
2N
)2
, for which h =

1

2N
with N = 2, . . . , 6; we consider different choices

of degree of the basis, namely p = 2, 3 and 4, yielding globally C1, C2 and C3–continuous basis functions,
respectively. The hypotheses in Theorem 3.3 are satisfied for each degree p. In Figure 3a we show the exact
solution u and in Figure 4 the convergence rates of the errors in norms L2, H1 and H2 vs. the mesh size
h. The comparison with the theoretical convergence rates numerically validate the a priori error estimate
provided in Theorem 3.3. Moreover, by looking at Figure 4a, we observe that the considerations highlighted
in Eq. (3.18) for m = 2 and p = 2 hold, leading the convergence rates for the errors in norms L2(Ω) and
H1(Ω) both equal to 2.

Case 2. We consider the biharmonic problem (4.2) defined in the domain Ω represented by a quarter of
an annulus with inner radius rin = 1 and outer radius rout = 4 as depicted in Figure 2b. The computational
domain is exactly represented by means of NURBS basis function. In particular, we consider two different
choices of degree of the basis, namely p = 2 and 3, and define uniform meshes with number of elements

Nel =
(
2N
)2
, where N = 2, . . . , 6 for p = 2, while N = 2, . . . , 5 for p = 3. The global mesh size h is

represented in terms of the characteristic length of Ω, i.e. H =

√
π

4
(r2

out
− r2

in
), and reads h =

H

2N
for each

N . Then, problem (4.2) is defined by setting g1(x, y) = g2(x, y) = 0 on the whole boundary ∂Ω and the

source term f(x, y) yielding the exact solution u(x, y) =
1

ς
x2y2

(
x2 + y2 − r2

in

)2 (
x2 + y2 − r2

out

)2
, with ς ∈ R

such that ∥u∥L∞(Ω) = 1. In Figure 5 we show the convergence rates of the errors vs. the mesh size h, from
which we observe that the theoretical convergence rates expected from Theorem 3.3 are confirmed.

5.1.2 Triharmonic Problem

We consider the triharmonic problem (4.4), for which we set homogeneous essential boundary conditions
on the whole boundary ∂Ω (g1(x, y) = g2(x, y) = g3(x, y) = 0), and the source term f(x, y) such that the
exact smooth solution is u(x, y) = sin3(πx) sin3(πy). The problem is solved on k–refined uniform meshes

with number of elements Nel =
(
2N
)2
, for N = 3, . . . , 7, and for the degrees p = 3 and 4, yielding basis

functions which are globally Cp−1–continuous. The hypotheses in Theorem 3.3 are satisfied and the plots of
errors vs. the mesh size h in Figure 6 confirm the theoretical results provided in Eq. (3.13). As reported in
Eq. (3.19), we observe that for p = 3 the convergence rates of the errors in norms L2, H1, and H2 are equal
to 2. For p = 4 the convergence rates of the errors in norms L2 and H1 are instead equal to 4, as expected
from Theorem 3.3.
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Figure 4: Biharmonic problem, case 1: errors in norms L2(◦), H1(�) and H2(⋄) vs. the mesh size h for basis
functions of degree p = 2 (a), p = 3 (b) and p = 4 (c); comparisons with the theoretical convergence rates.
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Figure 5: Biharmonic problem, case 2: errors in norms L2(◦), H1(�), and H2(⋄) vs. the mesh size h for
basis functions of degree p = 2 (a) and p = 3 (b); comparisons with the theoretical convergence rates.
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Figure 6: Triharmonic problem: errors in norms L2(◦), H1(�), H2(⋄), and H3(∗) vs. the mesh size h for
basis functions of degree p = 3 (a) and p = 4 (b); comparisons with the theoretical convergence rates.

u = 0

u = 0 u = 0

-
u = (1, 0)

Ω

Γ1

Γ2

Γ3

Γ4

Figure 7: Lid–driven cavity problem: problem setting and data. Ω = (0, 1)2, Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 = ∂Ω.

5.2 The lid–driven cavity problem

By considering the Navier–Stokes equations in stream function formulation (4.9), we solve the benchmark
lid–driven cavity problem for different values of the Reynolds number (Re). In Figure 7 we highlight the
setting of the problem defined in the domain Ω = (0, 1)2 in terms of the unknown velocity field u. By
recalling Remark 4.1, we impose the uniqueness of the solution ψ of problem (4.9) in a classical sense, by
imposing that ψ(t) = 0 in (0, 0)T for all t ∈ (0, T ); the (non–homogeneous) boundary conditions for the
stream function thus read: ψ|∂Ω = 0, ∇ψ · n|Γ3

= 1 and ∇ψ · n|Γi
= 0 for i = 1, 2, 4, for all t ∈ (0, T ) 2.

We represent the computational domain Ω = (0, 1)2 by means of C1–continuous B–Splines basis functions
of degree p = 2 on uniform meshes. We perform the discretization in time by means of the generalized–α
method, described in Section 4.3, by setting the time step ∆t = 0.1 and by choosing the parameters of the

method similarly to [14, 30, 32], i.e. δ =
1

2
+ αm − αf , αm =

1

2

(
3− ρ∞
1 + ρ∞

)
, αf =

1

1 + ρ∞
, where ρ∞ = 0.5.

The initial condition for the stream function is ψ(0) = ψ0 = 0 in Ω.

2By referring to the notation in Remark 4.1, we impose the essential boundary conditions d1, d2 : ∂Ω× (0, T ) → R by using

a ramp function in time, i.e. we write d1(x, t) = d1,S(x)dT (t) and d2(x, t) = d2,S(x)dT (t), with dT (t) =







t

0.2
if t ≤ 0.2,

1 if t > 0.2
,

d1,S(x) = 0 and d2,S(x) =

{

1 if x ∈ Γ3,

0 otherwise
.



Isogeometric Analysis for high order PDEs 19

(a) Streamlines and position of
vortex centers.

(b) Streamlines in [25]. (c) Vorticity contour lines. (d) Vorticity contours in [25].

Figure 8: Lid–driven cavity problem, Re = 100: comparison of the results at the steady state (t = 16) with
[25]; positions of vortex centers (�) compared with those in [25] (�) (vortex centers overlap).

(a) Streamlines and position of
vortex centers.

(b) Streamlines in [25]. (c) Vorticity contour lines. (d) Vorticity contours in [25].

Figure 9: Lid–driven cavity problem, Re = 400: comparison of the results at the steady state (t = 40) with
[25]; positions of vortex centers (�) compared with those in [25] (�) (vortex centers overlap).

For each value of the Reynolds number under consideration, namely Re = 100, 400, 1,000, and 5,000,
we compare the solutions obtained at the steady state with the results in [10], [22] and [25]. We recall
that the results in [25] are obtained by means of a multigrid technique ([45]) applied to finite difference
schemes (specifically, a second–order accurate central finite difference scheme for second order derivatives
and a first–order accurate upwind difference scheme for the convective terms); these results constitute a
classical reference. In addition, similar results have been obtained in [10] by means of a spectral Chebychev
collocation method. More recently, in the framework of IGA, the solution of the steady Navier–Stokes equa-
tions in primitive variables for the benchmark lid–driven cavity problem has been proposed in [22]; in this
work, a divergence–conforming B–Splines discretization is used, leading to the exact pointwise satisfaction
of the mass conservation property. We observe that the latter approach considers the definition of a com-
patible divergence–free B–Splines (NURBS) function space, whose construction is based on stream function
arguments. On the other hand, we recall that when approximating the Navier–Stokes equations (4.7) in the
classical weak formulation in the primitive variables u and p, suitable stabilization terms should be added in
order to satisfy the discrete inf–sup condition or a compatible pair of function spaces should be introduced.

In Figures 8, 9, 10 and 11 we compare the streamlines, the vorticity contour lines, and the positions of the
vortex centers with those reported in [25]. Our results are obtained with a uniform mesh of size h = 1/256
and a number of elements Nel = 256× 256, which corresponds to a total number of degrees of freedom equal
to 66,564. In [25], the results for Re = 100, 400 and 1,000 are obtained with a grid with 129 × 129 nodes,
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(a) Streamlines and position of
vortex centers.

(b) Streamlines in [25]. (c) Vorticity contour lines. (d) Vorticity contours in [25].

Figure 10: Lid–driven cavity problem, Re = 1,000: comparison of the results at the steady state (t = 40)
with [25]; positions of vortex centers (�) compared with those in [25] (�) (vortex centers overlap).

(a) Streamlines and position of
vortex centers.

(b) Streamlines in [25]. (c) Vorticity contour lines. (d) Vorticity contours in [25].

Figure 11: Lid–driven cavity problem, Re = 5,000: comparison of the results at the steady state (t = 192)
with [25]; positions of vortex centers (�) compared with those in [25] (�) (vortex centers overlap).

while for Re = 5,000 a grid comprised of 257 × 257 nodes has been used in order to capture the secondary
vortexes. The values of the stream function and the vorticity contour lines used for Figures 8, 9, 10 and 11
are the same highlighted in Table III of [25]. We observe that the results are qualitatively similar to those
reported in [25], even for high Reynolds numbers. A qualitative difference can be observed in the vorticity
contour lines obtained for Re = 5,000; however a profile similar to the one shown in Figure 11c is reported
in the more recent work [11], where the authors consider a finite difference discretization for the spatial
approximation and a multigrid solver with a cell–by–cell relaxation procedure. Specifically, we refer to the
results reported in [11] for Re = 5,000 which are computed on a (much finer) grid of 2048× 2048 nodes.

As reported in [11, 25], the number of regions in which the vortexes develop increases with the Reynolds
number, specifically at the corners of the domain. For example, for Re = 5,000, we can observe in Figure 11
that two secondary vortexes in the bottom corners and a third vortex in the upper right corner appear with
respect to lower Reynolds numbers. When the Reynolds number increases, the centers of the primary and
the secondary vortexes move towards the center of the domain. Moreover, the vortexes are progressively
generated starting from the primary vortex. For Re = 5,000, we show in Figure 12 the evolution of the
streamlines from the initial condition towards the steady state. We notice that the generation of all the
vortexes occurs in a relative short interval of time; then, progressively, the solution approaches to the steady
state. Moreover, we observe that the two vortexes developing at the bottom right corner in Figure 12b
progressively merge into a unique vortex in Figure 12c, identified as the first bottom–right vortex.
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(a) t = 2.5. (b) t = 5. (c) t = 10. (d) t = 15.

(e) t = 23. (f) t = 50. (g) t = 100. (h) t = 192.

Figure 12: Lid–driven cavity problem, Re = 5,000: streamlines computed at different time steps.
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Table 1: Lid–driven cavity problem: vortex centers compared with [25]. Results for B–Splines basis functions
of degree p = 2 on uniform mesh of size h = 1/256.

Re = 100 Re = 400

vortex property result [25] result [25]

Primary ψmin −1.03518 · 10−1 −1.03423 · 10−1 −1.14031 · 10−1 −1.13909 · 10−1

coordinate x 0.6150 0.6172 0.5550 0.5547
coordinate y 0.7350 0.7344 0.6050 0.6055

First
BL ψmax 1.74945 · 10−6 1.74877 · 10−6 1.40617 · 10−5 1.41951 · 10−5

coordinate x 0.0341 0.0313 0.0512 0.0508
coordinate y 0.0346 0.0391 0.0472 0.0469

First
BR ψmax 1.26045 · 10−5 1.25374 · 10−5 6.43012 · 10−4 6.42352 · 10−4

coordinate x 0.9400 0.9453 0.8850 0.8906
coordinate y 0.0600 0.0625 0.1200 0.1250

Re = 1,000 Re = 5,000

vortex property result [25] result [25]

Primary ψmin −1.18511 · 10−1 −1.17929 · 10−1 −1.20245 · 10−1 −1.18966 · 10−1

coordinate x 0.5300 0.5313 0.5118 0.5117
coordinate y 0.5650 0.5625 0.5355 0.5352

First
T ψmax – – 1.41812 · 10−3 1.45464 · 10−3

coordinate x – – 0.0600 0.0625
coordinate y – – 0.9100 0.9102

First
BL ψmax 2.28653 · 10−4 2.31129 · 10−4 1.382460 · 10−3 1.36119 · 10−3

coordinate x 0.0834 0.0859 0.0750 0.0703
coordinate y 0.0777 0.0781 0.1350 0.1367

First
BR ψmax 1.71599 · 10−3 1.75102 · 10−3 3.05023 · 10−3 3.08358 · 10−3

coordinate x 0.8650 0.8594 0.8100 0.8086
coordinate y 0.1100 0.1094 0.0750 0.0742

Second
BL ψmin – – −3.40715 · 10−8 −7.08860 · 10−8

coordinate x – – 0.0100 0.0117
coordinate y – – 0.0050 0.0078

Second
BR ψmin −1.36433 · 10−8 −9.31929 · 10−8 −1.26084 · 10−6 −1.43226 · 10−6

coordinate x 0.9930 0.9922 0.9800 0.9805
coordinate y 0.0070 0.0078 0.0199 0.0195

In Table 1 we compare the positions of the vortex centers and the corresponding values assumed by the
stream function ψ with the results reported in [25]. We observe that there are not significant quantitative
differences both for the values of the stream function and for the positions of the vortex centers. The notation
is the same reported in [25]; in particular, when referring to the vortexes the letters B, L, and R denote the
bottom, left, and right corners, respectively.
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Table 2: Lid–driven cavity problem: velocities computed through the centerlines of the cavity compared
with [10] and [25], where available. Results for B–Splines basis functions of degree p = 2 on uniform mesh
of size h = 1/256.

Re = 100 Re = 400

centerline property result [10] [25] result [25]

Vertical uxmin
−0.21402 −0.21404 −0.21090 −0.32880 −0.32726

(x = 0.5) coordinate y 0.4600 0.4581 0.4531 0.2800 0.2813

Horizontal uy
min

−0.25371 −0.25380 −0.24533 −0.45386 −0.44993
(y = 0.5) coordinate x 0.8100 0.8104 0.8047 0.8600 0.8594

uy
max

0.17953 0.17957 0.17527 0.30393 0.30203
coordinate x 0.2350 0.2370 0.2344 0.2250 0.2266

Re = 1,000 Re = 5,000

centerline property result [10] [25] result [25]

Vertical uxmin
−0.38754 −0.38853 −0.38289 −0.44804 −0.43643

(x = 0.5) coordinate y 0.1700 0.1717 0.1719 0.0750 0.0703

Horizontal uy
min

−0.52582 −0.52707 −0.51550 −0.57339 −0.55408
(y = 0.5) coordinate x 0.9100 0.9092 0.9063 0.9550 0.9531

uy
max

0.37572 0.37694 0.37095 0.44724 0.43648
coordinate x 0.1600 0.1578 0.1563 0.0799 0.0781

In Table 2 we report a comparison between the horizontal component of the velocity field ux along the
vertical centerline of the domain and the vertical component of the velocity field uy along the horizontal
centerline of the domain with respect to data in [10] and [25], where available. Our results are obtained for
uniform meshes of size h = 1/256. The results of [25] are computed with the same discretization already
mentioned for the comparisons of Figures 8–11, whereas we consider the results presented in [10] obtained by
using a pure single–domain spectral method [12] using a Gauss-Lobatto grid with 97×97 nodes, corresponding
to the degree 96 for the polinomial approximation.

Moreover, in Table 3 we compare the velocities values computed for different mesh sizes in order to
evaluate the sensitivity of the results with respect to the discretization, in parallel with the analysis performed
in [22]. Specifically, we use B-Splines basis of degree p = 2 on uniform meshes of size h = 1/(2N ) for
N = 6, 7, 8, while in [22] divergence–conforming B-Splines discretizations of polynomial degree p = 1 on
uniform meshes of size h = 1/(2N ), for N = 5, 6, 7, are used. For the sake of completeness, we recall that
we are solving the lid–driven cavity problem in terms of the stream function, whereas in [22] the problem
is formulated in primitive variables u and p. We notice that, as in [22], the absolute values of both the
minimum of ux along the vertical centerline and the maximum and minimum of uy along the horizontal
centerline tend to decrease when increasing the number of degrees of freedom. The analogies highlighted
in Table 3 between our results and [22] could be explained by the fact that both the approaches consider
NURBS–based IGA in the framework of the Galerkin method for the spatial approximation with the exact
mass conservation property satisfied by construction.

In Figure 13 we plot the components of the velocity along the respective axes for the different meshes
considered, namely with mesh size h = 1/(2N ), for N = 6, 7, 8. As underlined in [25], these plots highlight
the thinning of the wall boundary layer, for increasing Reynolds numbers. As in the case of the streamlines
and the vorticity contour lines, we can observe that they are in agreement with the profiles reported in
literature, namely [22] and [25]. In particular, despite the presence of high gradients near the boundary, we
are able to properly capture the correct behavior of the solution without resorting to stretched meshes, as in
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Table 3: Lid–driven cavity problem: velocities computed through the centerlines of the cavity compared
with [22] (where available) for different mesh sizes h = 1/(2N ), with N = 5, 6, 7, 8. Results for B–Splines
basis functions of degree p = 2, whereas in [22] compatible B–Splines basis of degree p = 1 are used.

Re = 100

result [22]

mesh size (h) uxmin
uy

min
uy

max
uxmin

uy
min

uy
max

1/32 – – – −0.21551 −0.25472 0.18054
1/64 −0.21442 −0.25398 0.17992 −0.21443 −0.25409 0.17991
1/128 −0.21411 −0.25380 0.17963 −0.21414 −0.25387 0.17966
1/256 −0.21402 −0.25371 0.17953 – – –

Re = 400

result [22]

mesh size (h) uxmin
uy

min
uy

max
uxmin

uy
min

uy
max

1/32 – – – −0.33651 −0.45768 0.31039
1/64 −0.33126 −0.45682 0.30628 −0.33150 −0.45659 0.30605
1/128 −0.32929 −0.45439 0.30442 −0.32989 −0.45470 0.30471
1/256 −0.32880 −0.45386 0.30393 – – –

Re = 1,000

result [22]

mesh size (h) uxmin
uy

min
uy

max
uxmin

uy
min

uy
max

1/32 – – – −0.40140 −0.54261 0.39132
1/64 −0.39580 −0.53468 0.38436 −0.39399 −0.53353 0.38229
1/128 −0.39027 −0.52873 0.37873 −0.39021 −0.52884 0.37856
1/256 −0.38754 −0.52582 0.37572 – – –

Re = 5,000

result [22]

mesh size (h) uxmin
uy

min
uy

max
uxmin

uy
min

uy
max

1/64 −0.48586 −0.61218 0.48570 – – –
1/128 −0.45774 −0.58422 0.45796 – – –
1/256 −0.44804 −0.57339 0.44724 – – –
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(a) Re = 100.

(b) Re = 400.

(c) Re = 1,000.

(d) Re = 5,000.

Figure 13: Lid–driven cavity problem: velocities computed through the centerlines of the cavity with different
mesh sizes h = 1/(2N ), with N = 6 (−), 7 (−), 8 (−) and for B–Splines basis functions of degree p = 2.
Horizontal component ux of the velocity field along the vertical centerline vs. the coordinate y (left) and
vertical component uy of the velocity field along the horizontal centerline vs. the coordinate x (right), for
different values of the Reynolds number Re = 100 (a), Re = 400 (b), Re = 1,000 (c), and Re = 5,000 (d).
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(a) Re = 100. (b) Re = 400. (c) Re = 1,000. (d) Re = 5,000.

Figure 14: Lid–driven cavity problem: streamlines computed with different mesh sizes h = 1/(2N ) for
N = 6 (−), 7 (−), 8 (−) and for B–Splines basis functions of degree p = 2. Different values of the Reynolds
number Re = 100 (a), Re = 400 (b), Re = 1,000 (c), and Re = 5,000 (d) have been considered.

e.g. [25]. We can also observe that the velocity profiles tend to exhibit a significant sensitivity with respect
to the mesh size, especially for high Reynolds numbers (Re = 5,000). Nevertheless, as observed in [25], the
sensitivity to the mesh size h increases especially in relation with the counter-rotating vortexes near the
cavity corners for high Reynolds numbers. Specifically, for the cases herein discussed, we observe that the
secondary vortexes for Re = 5,000 can only be captured when using fine meshes. With this aim, in Figure 14
we compare the streamlines at the steady state for different values of the mesh size, namely with mesh size
h = 1/(2N ), with N = 6, 7, 8. We observe that there are significant differences between the contour lines of
the stream function in the region proximal to the primary vortex for high Reynolds numbers (Re = 1,000
and Re = 5,000). Moreover, we notice that for h = 1/64 the secondary bottom–right vortex is not captured,
while it is well captured when using a mesh size h = 1/128. We remark that we are able to capture this
feature with a coarser discretization than [25], where 66,049 degrees of freedom have been used for the case
Re = 5,000, conversely to our case for which the total number of degrees of freedom is equal to 15,876.

6 Conclusions

In this work, we reviewed the numerical approximation of high order PDEs by means of NURBS–based
IGA in the framework of the Galerkin method. We proposed a priori error estimates for high order PDEs
extending the existing results for the NURBS–based IGA–Galerkin method for the approximation of second
order PDEs [3]. In particular, we focused on error estimates in lower order norms under h–refinement.
We validated our error estimates by numerically solving benchmark high order elliptic PDEs, from which
we obtained the expected theoretical convergence rates. As application, we considered the solution of the
Navier–Stokes equations in stream function formulation, which yields a fourth order scalar problem in two
dimensions. We solved the benchmark lid–driven cavity problem by means of IGA and compared the results
with those available in literature, namely [10, 22] and [25], for which we highlighted the accuracy of the
numerical procedure even for high Reynolds numbers, up to 5,000, and using very coarse meshes.
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[28] H. Gómez and X. Nogueira. An unconditionally energy–stable method for the phase field crystal equa-
tion. Computer Methods in Applied Mechanics and Engineering, 249–252:52–61, 2012.

[29] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover
Publications, Mineola, New York, 2000.

[30] K.E. Jansen, C.H. Whiting, and G.M. Hulbert. A generalized–α method for integrating the filtered
Navier–Stokes equations with a stabilized finite element method. Computer Methods in Applied Me-
chanics and Engineering, 190:305–319, 2000.
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