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Abstract

We consider an Extended Finite Element method to solve fluid-structure interac-
tion problems in the case of an immersed thick structure described by non-linear
finite elasticity. This method, that belongs to the family of the Cut Finite Ele-
ment methods, allows to consider unfitted meshes for the fluid and solid domains
by maintaining the fluid mesh fixed in time as the solid moves. We review the
state of the art about the numerical methods for fluid-structure interaction prob-
lems and we present an overview of the Cut Finite Element methods. We describe
the numerical discretization proposed here to handle the case of a thick immersed
structure with size comparable or smaller than the fluid mesh element size in the
case of non-linear finite elasticity. Finally, we present some three-dimensional
numerical results of the proposed method.

1 Introduction

The interaction between a fluid and an immersed structure may be significant in many
applications, for example in aeronautic engineering to study the response of the air on
the aircraft [11, 32, 33, 61], in civil engineering to understand the effect of wind on
bridges [20, 74, 92], towers [54], and suspended cable [13, 81], in energy engineering
to study the modeling of wind-turbines, heat exchangers and hydro-turbines [9, 80, 85],
in sport engineering to investigate the impact of the waves over a rowing boat [34,
35] or the flow around a sailing yatch [78], in biomedical application, for instance in
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hemodynamics to study the stresses exerted by blood flow to the leaflets of an heart
valve [67, 89], or to study the blood pressure exerted to the retinal vessels walls [3, 5].

In some cases, it may be interesting to consider a full three-dimensional (3D) model
for the structure, even though the thickness of the structure is small with respect to the
characteristic size of the domain. For example, in the simulation of heart valves, one
should consider the interaction between the blood and the valve leaflets. Often, for
clinical purposes, there is the need to accurately evaluate the internal structural stresses,
which can be computed only by means of a full 3D geometric model.

The numerical simulation of such a fluid-structure interaction problem is very chal-
lenging. First of all, the structure undergoes large displacements, thus its movement
cannot be ignored from the geometric point of view. Second, the immersed structure
is very thin, often smaller than the characteristic mesh size of the fluid problem, and
this leads to numerical and computational difficulties due to the cut of some fluid mesh
elements.

In this work, we propose an Extended Finite Elements discretization for FSI prob-
lem with an immersed 3D non-linear elastic structure in the regime of large displace-
ments. In Sect. 2 we briefly review the most important numerical strategies introduced
so far to handle this problem, whereas in Sect. 3 we specifically focus on the family of
Cut Finite Elements, to which our method belongs. Then, in Sect. 4 we introduce the
mathematical problem and the proposed numerical approximation, whereas in Sect. 5
we give some detail on the algorithm for the solution of the non-linear system arising
after discretization. Finally, in Sect. 6 we present some numerical results.

2 State of the art

Several numerical methods have been developed so far to solve the FSI problem with
an immersed structure. We subdivide them depending on the treatment of the compu-
tational meshes. Accordingly, we arrange them into two main categories: body-fitted
mesh methods and fixed/unfitted mesh methods.

In the first category, we place all the methods that use a conforming and fitted mesh
at the fluid-structure interface. Among them, we cite the Arbitrary Lagrangian Eulerian
approach introduced in [29,55,58]. In presence of very large displacements, this method
may fail due to the high distortion of the fluid mesh, so that a remeshing procedure is
required. Moreover, this procedure has the disadvantage that may introduce an artificial
diffusivity due to the need of interpolating from one mesh to the new one. Nonetheless,
the ALE method has been used by some authors to deal with immersed structures. For
example, in [64] an ALE approach with remeshing is proposed to simulate heart valve
closure on a 2D simplified geometry, in [75] a synthetic 3D model was employed to
study the valve opening, in [63] a 3D model is used to study the influence of the sinus
of Valsalva in the aortic valve, in [91] a 2D simulation of the aortic valve is performed
on a plane of symmetry along the center of a leaflet for an entire cardiac cycle. A similar
approach based on local adaptation is presented in [8]. This “Extended ALE” method
allows the structure mesh to move independently of the fluid one that is kept fixed,
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resulting in a pair of meshes that are not fitted at the interface. Then, the fitting between
the two meshes is obtained via local remeshing or local changes in the connectivity.

Another fitted method is given by Space-Time Finite Elements [30,57,59,76]. The
basic idea is to divide the time domain into slabs and then to use the Finite Element
(FE) basis functions on each slab for both the spatial and temporal discretizations.

In the second family of numerical methods, we place the methods based on a fixed
background mesh and on an overlapped unfitted mesh for the fluid and the solid, respec-
tively. These approaches were developed to avoid the movement, or the remeshing, of
the fluid mesh. In particular, they have been specifically designed for treating the case
of large deformations.

The first fixed/unfitted mesh method proposed in the literature is the Immersed
Boundary (IB) method, introduced in [79] in the context of Finite Differences for an im-
mersed membrane and specifically realized for studying the fluid-dynamics in the heart.
In this framework, the fluid is represented in Eulerian coordinates, while the structure
in Lagrangian coordinates by means of a forcing term for the fluid problem that acts on
the fluid-structure interface. The extension of the IB approach to the FE method is pre-
sented in [15, 16]. The FE formulation is extendable to the case of thick structures and
allows to easily manage the forcing term given by the action of the structure on the fluid,
see, e.g., [17, 90, 94]. As regards the applications, the Finite Difference IB method has
been used in [47] to simulate the blood dynamics in a realistic domain of the heart and
in [46, 48] to simulate the dynamics of the heart valves. The Finite Element IB method
has been employed in [93] to study an immersed structure interacting with a viscous
fluid and in [66] for several biological applications regarding valve dynamics, vessel
stents, red blood cells interaction and cells migrations. See also [56] for an application
to bioprosthetic heart valves. Another IB approach widely used in the context of heart
valves is the Curvilinear Immersed Boundary (CURVIB) method [36] which is partic-
ularly suited for the 3D case. The CURVIB method was successfully employed for FSI
problems for simulating the dynamics of prosthetic heart valves, see [18, 19, 36, 65].

A different approach in the category of the fixed/unfitted mesh methods is the Fic-
titious Domain (FD) method. This method was introduced in [43] for solving the
viscous-plastic flow equations inside complex domains, then in [14, 44] it was used
for solving the Navier-Stokes equations around immersed objects, and in [45] it was
extended to treat the case of moving rigid bodies inside incompressible viscous flows
with applications to particle flows, see also [41, 42]. Several works based on the FD
method have been produced for the solution of FSI problems with immersed structures:
in [86, 87] an application to FSI for heart valves including contact with rigid bodies is
presented; in [7] a procedure for dealing with the interaction of an incompressible fluid
and different structures is proposed, allowing the contact among the deformable bodies;
in [83] an application for heart valves is compared with experimental data; in [62] an
application to bioprosthetic heart valves is considered; in [88] a comparison of some
FD approaches with the ALE one is presented for several FSI problems. A variant to
the FD approach for dealing with valve dynamics is proposed in [26, 27]. In the latter
works, the FD approach is combined with the ALE one in order to exploit their advan-
tages: the ALE approach is used to describe the movement of the root of the valve, that
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undergoes a limited displacement, so that no remeshing is necessary, allowing to build
a fitted mesh at the fluid-structure interface; the FD approach is instead used to describe
the leaflets of the valve that, on the contrary, undergo large displacements.

3 Cut Finite Element methods

The methods presented above feature two main limitations:

• the body-fitted mesh methods require the remeshing of the fluid domain due to
the highly distorted fluid elements that appear when the displacement of the im-
mersed structure is too large;

• the fixed/unfitted mesh methods require the implementation of ad-hoc strategies
to sharply capture the interface. Indeed, in the case of “diffuse interface” meth-
ods (such as the IB method), the interface conditions are imposed through forc-
ing terms which spread the effect of such conditions on a cluster of neighbouring
cells. This results in a lack of sharpness in capturing the boundaries and the in-
ability of enforcing boundary conditions for strongly fluctuating quantities, such
as in turbulent flows, see, e.g., [72].

Here, we consider a specific class of methods belonging to the fixed/unfitted family
that tries to overcome these limitations. The advantages of this class, referred to as Cut
Finite Element (CFE) methods, are that they maintain the accuracy of classical FEM
and can be developed by extending the features of FEM, see, e.g., [22] for a review of
this class of methods.

Let us consider a finite set of domains Ωi ∈ Rd , with i = 1, . . . ,N, and d = 3. We
indicate with

• background domain, a domain Ω such that Ω⊇
⋃N

i=1 Ωi, i.e. a domain that covers
all the domains Ωi;

• foreground domain, each of the domains Ωi, i = 1, . . . ,N, that overlaps the back-
ground domain Ω;

• interface, a curve Σi, i = 1, . . . ,N, of co-dimension one that separates the back-
ground domain Ω to the foreground domain Ωi.

Moreover, we distinguish the foreground domains into three categories, depending
on their thickness:

• zero-thickness domain, a foreground domain of co-dimension one (contained in
the background domain Ω) that divides Ω into two parts (Σ in Figure 1);

• thin domain, a foreground domain such that its thickness is smaller than the char-
acteristic size of the background mesh (Ω1 in Figure 1);

• thick domain, a foreground domain Ωi such that the thickness of the domain is
comparable with its characteristic size (Ω2 in Figure 1).
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Figure 1: The background domain Ω (white) contains the zero-thickness domain Σ, the
thin foreground domain Ω1 (grey) and the thick foreground domain Ω2 (grey). The
interfaces Σ1 and Σ2 delimit Ω1 and Ω2, respectively.

With the final aim of describing how the physical processes are related to the do-
mains and the meshes, in what follows we consider two processes, PB and PF , that
represent the background and foreground processes, respectively. Process PB occurs
in the background process domain ΩBP, while process PF occurs in the foreground
domain ΩF , see Figure 2 (top). The union of the domains ΩBP and ΩF generates the
background domain Ω, see Figure 2 (bottom).

For each of these three domains we generate the corresponding mesh. In particu-
lar, for the background domain Ω, we generate the background mesh Th, and for the
foreground domain ΩF , we generate the foreground mesh T F

h , see Figure 3 (top). The
background process mesh T BP

h is instead generated by considering only the portions of
the elements of the background mesh Th that belong to the background process domain
ΩBP, see Figure 3 (bottom), i.e.

T BP
h = {K : K = K′|ΩBP ,∀K′ ∈Th}. (1)

We have indicated by h > 0 the mesh size. Notice that the background process mesh
contains elements of arbitrary shape, in particular polygons. We also define by T̃ BP

h
the smallest mesh contained in Th that covers the background process domain ΩBP as

T̃ BP
h = {K ∈Th : K∩Ω

BP 6= /0}, (2)

i.e. T̃ BP
h is composed by the elements K that belong (also partially) to the domain ΩBP,

see Figure 4 (left). Finally, we define by Ω̃BP the domain associated with the mesh
T̃ BP

h , see Figure 4 (right), i.e.

Ω̃
BP = int

 ⋃
K∈T̃ BP

h

K

 . (3)
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ΩBP
ΩF

Ω

Figure 2: Top, left: the background process domain ΩBP associated with the process
PB. Top, right: the foreground domain ΩF associated with the process PF . Bottom:
the background domain Ω is the union of the background process domain ΩBP and the
foreground domain ΩF .
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Th
T F

h

T BP
h

Figure 3: Top, left: the background mesh Th related to the background domain Ω. Top,
right: the foreground mesh T F

h related to the foreground domain ΩF . Bottom: the
background process mesh T BP

h (grey) associated with the background process domain
PB.

T̃ BP
h Ω̃BP

Figure 4: Left: the mesh T̃ BP
h (grey). Right: the domain Ω̃BP (grey).
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With the above definitions, we can provide the following statement:

The common idea of Cut Finite Element methods is

i) to take a fixed background mesh overlapped by foreground meshes,

ii) to cut the elements of the background mesh with the zero-thickness mesh or with
the interfaces of the thin and thick foreground meshes, generating elements of
arbitrary shape (polytopes), and

iii) to write a suitable weak formulation within the background process and foreground
domains.

We stress that the nature of the foreground domain may be either geometric or
physical. In particular:

• for a geometric foreground domain, the zero-thickness domain describes a dis-
continuity in the properties of the background domain, but it is not subject to a
process; instead, the thin and thick domains may represent i) either a portion of
the space with different physical properties with respect to the background one,
however being described by the same process, ii) or a “hole” in the background
geometry that is not subject to any process (empty process);

• for a physical foreground domain, the zero-thickness, thin and thick domains
represent a different physical process with respect to the background one, repre-
sented by a different partial differential equation, as it happens in the FSI prob-
lem.

Different formulations have been proposed depending on the thickness and nature of
the foreground domains, and each of these leads to a different CFE method. A graphical
representation of all the possible combinations in the case of two processes is shown in
Table 1. In the literature, the geometric cases are considered in the following works: the
zero-thickness case is treated in [4, 12, 49, 73] for elliptic problems, in [10, 50, 77] for
solid mechanics and in [52] for the Stokes problem; the thin case is treated in [82] for
solving the Navier-Stokes equations; the thick case is considered in [51, 68] for elliptic
problems and in [69] for the Stokes problem. The physical cases have been studied
in the following works for FSI problems: the zero-thickness case in [2]; the thin case
in [37–39] in a two-dimensional framework and in [95] for 3D problems; the thick case
in [23] in two-dimensions, and in [37, 40, 70, 71] in three-dimensions. A particular
physical case is considered in [53, 60] for solving PDEs only on the zero-thickness
foreground domain, i.e. on immersed surfaces.

In particular, the thickness of the foreground domain has a strong effect on the
approach employed to tackle the problem in the background process domain. In fact,
when a foreground domain crosses the elements of the background mesh, three different
configurations may appear, see Figure 5.

In the case of a zero-thickness domain Σ, see Figure 5 (left), the background element
K is split into two parts and a numerical approximation is required on each portion of
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Geometric Physical

zero-
thickness

P1P1

empty

P1P1

P2

thin P1P1

P1 or empty

P1P1

P2

thick P1 or empty
P1 P1 P2

Table 1: Schematic representation of possible scenarios when considering overlapping
background (white) and foreground (grey) domains. On each resulting domain, we have
indicated the underlying process (P1, P2 or empty).

K. In the case of a thin domain Ω1, see Figure 5 (center), the background element K
is partially overlapped and is divided into three parts: only the two parts that belong to
the background process domain require a numerical approximation for the background
process. Finally, in the case of thick domain Ω2, see Figure 5 (right), the background
element K is divided into two portions and the numerical solution for the background
process is required only on the background process mesh.

In any case, conforming grids at the interface between the background and fore-
ground domains are difficult to generate, since the immersed foreground domain pro-
vides a severe constraint for the mesh generation. For this reason, unfitted overlapping
meshes are considered in order to avoid the computational issue that may arise when
generating fitted meshes.

The conditions to couple the problem at the interface are usually imposed via the
Discontinuous Galerkin (DG) method (or, as some authors refer to, the Nitsche’s method).
Lagrange multipliers are also considered, see, e.g., [37–40].
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K
Σ

K K

Ω2Ω1

Figure 5: Configurations of the background element K depending on the thickness
of the foreground domain. Left: a foreground zero-thickness domain Σ intersects the
background element K. Center: a thin foreground domain Ω1 overlaps the background
element K. Right: a thick foreground domain Ω2 overlaps the background element K.
In white, the background process element.

The majority of the methods presented above allow to consider a background do-
main overlapped by a thick foreground domain or crossed by a zero-thickness fore-
ground domain. However, they do not deal with the case of a thin foreground domain
immersed in the background one and, in fact, the extension of these methods to the
thin case is not straightforward, since the thickness of the foreground domain is smaller
than the characteristic size of the background mesh elements. Some works in this di-
rection has been proposed in the literature: in [38–40], the authors consider two and
three-dimensional approaches that are able to combine the feature of the Extended Fi-
nite Element method (XFEM) with overlapping meshes in the case of thin and thick
foreground domains, by employing Lagrange multipliers for imposing the interface
conditions; in [82] a method has been proposed to solve the Navier-Stokes equation
solely with immersed fixed obstacles in a three-dimensional framework, where the in-
terface conditions are imposed via the Nitsche’s method. Recently, in [95], an XFEM
method to handle the case of a thin foreground domain for 3D computations has been
proposed for a linear structure.

The goal of this work is to describe a method for solving three-dimensional FSI
problems with a non-linear immersed thin structure that combine the features of the
approaches presented above, i.e. i) the possibility of considering a numerical solution
in each portion of the fluid background elements split by the interface and ii) the em-
ployment of composite grids to represent two domains, see Figure 6.

4 The continuous problem and the Extended Finite Elements
approximation

We consider a fluid background process domain ΩBP = Ω f and a structure foreground
domain ΩF = Ωs such that Ω = Ω f ∪Ωs ⊂Rd , d = 2,3, is the background domain and
Σ = Ω

f ∩Ω
s is the fluid-structure interface, see Figure 7. We denote by ∂Ω f and ∂Ωs

the boundaries of the fluid and solid domains, respectively, and we define Γ f = ∂Ω f \Σ
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Ω f ,1 Ω f ,2
Σ Σ

Ωs

T s
h

Th

Figure 6: Left: the background domain is overlapped by a thin foreground domain
Ωs. The interface Σ separates the fluid background process domains (Ω f ,1 and Ω f ,2)
to the solid foreground domain. Right: The solid foreground mesh T s

h overlaps the
background mesh Th that covers the entire domain. The thickness of T s

h is smaller
than the size of the background mesh elements.

and Γs = ∂Ωs \Σ. Finally, we indicate by n f and ns the outward unit normal to the
domain Ω f and Ωs, respectively. On the interface Σ we have n f =−ns = n.

ns

Ω f

Γs

n f

Γ f

Ωs

Σ

Figure 7: Sketch of the fluid and structure domain Ω f and Ωs with the fluid-structure
interface Σ.

The continuous fluid-structure interaction problem reads as follows: Find for any
t ∈ (0,T ], the fluid velocity u(t) : Ω f (t)→ Rd , the fluid pressure p(t) : Ω f (t)→ R, the
solid displacement d̂(t) : Ω̂s→ Rd , and the fluid domain displacement d f (t) : Σ→ Rd ,
such that
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• Fluid problem:

ρ f ∂tu+ρ f u ·∇u−∇ ·T f (u, p) = 0 in Ω f (d f ),

∇ ·u = 0 in Ω f (d f ),

u = g on Γ
f
D(d

f ),

T f (u, p)n f = h on Γ
f
N(d

f );

(4)

• Solid problem:
ρs∂tt d̂−∇ · T̂s(d̂) = 0 in Ω̂s,

d̂ = 0 on Γ̂s;
(5)

• Coupling conditions:
u = ∂td on Σ(d f ),

T f (u, p)n f =−Ts(d)ns on Σ(d f );
(6)

• Geometric condition:

d f = d on Σ(d f ), (7)

where (4) are the Navier-Stokes equations, (5) are the equations of elasto-dynamics,
(6) are the physical coupling conditions (kinematic and dynamic, respectively), and
(7) is the condition that guarantees the geometric adherence between the fluid and solid
domains. We have highlighted the dependence of the fluid domain and of its boundaries
on the interface displacement d f , which in fact couples geometrically the fluid and
the structure sub-problems. We point out that the fluid problem (4) is written in an
Eulerian framework, i.e. in the deformed configuration, while the solid problem (5)
is written in the Lagrangian framework, i.e. in the reference configuration. We have
indicated with the superscript ·̂ the quantities evaluated in the reference configuration.
The quantities without ·̂ are referred to the current instant t. We have Γ f = Γ

f
D∪Γ

f
N and

we have considered a Dirichlet boundary condition on Γ
f
D and a Neumann condition

on Γ
f
N , with g and h suitable functions with the required regularity. . Moreover, ρ f

and ρs are the fluid and structure densities, T f (u, p) = −pI+ 2µ f D(u) is the fluid

Cauchy stress tensor, with µ f the fluid viscosity and D(w) =
∇w+∇T w

2
, T̂s(d̂) is

the first Piola-Kirchhoff solid stress tensor. Moreover, T̂s = JTsF−T is the formula to
pass from the solid Cauchy stress tensor Ts to the Piola-Kirchhoff tensor, with F = ∇x
the deformation gradient, i.e. the gradient of the coordinates in the current position
with respect to the reference space coordinates, and J = det(F) is its determinant. For
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the sake of simplicity we have considered homogeneous Dirichlet conditions on Γ̂s.
Moreover, the FSI problem given by equations (4)-(7) has to be completed with initial
conditions for the fluid and solid velocity and displacement.

The mechanical behaviour is described by a second order exponential model defined
by the following the strain energy function:

W (I1) =
κ

4

(
(J−1)2 + ln2 (J)

)
+

α

2γ

(
eγ(I1−3)2

−1
)
, (8)

where I1 = tr (C), C = FT F is the right Cauchy-Green tensor, α is the shear modulus
that represents the mechanical stiffness of the material, κ is the bulk modulus and γ is a
positive parameter that represents the level of non-linearity of the mechanical response
of the body. The corresponding first Piola-Kirchhoff solid stress tensor reads as follows:

T̂s(F) =
κ

2
(
J2− J− ln(J)

)
F−T

+2α

(
J−2/3I1−3

)
eγ(J−2/3I1−3)

2

J−2/3

(
F−

1
3
I1F−T

)
.

In what follows, with the aim of writing the Extended Finite Elements/Discontin-
uous Galerkin (XFEM/DG) discrete formulation, we follow [95] and we introduce the
meshes and the numerical spaces. To ease the presentation, we assume that Ω f , Ωs and
Σ are polyhedral. Referring to the notation of Sect. 3, we denote by T F

h = T s
h the

solid foreground mesh that covers the domain Ωs and is fitted to ∂Ωs, and by Th the
background mesh that covers the whole domain Ω and is fitted to Γ f , but in general not
to Σ and Γs. We indicate by h > 0 the space discretization parameter, which is a func-
tion that may vary among the elements K of the meshes and between the background
and foreground meshes. As a result, the solid foreground mesh T s

h overlaps the back-
ground mesh Th, see Figure 8 (left). Then, accordingly to definition (1), we denote by
T BP

h = T f
h the fluid background process mesh, i.e. the mesh generated by considering

the restriction of Th to Ω f , defined as

T f
h = {K : K = K′|Ω f ,∀K′ ∈Th}.

In the case of a thin foreground structure, the elements of the background mesh Th
could be cut by the foreground mesh and divided into several disconnected polyhedra,
with a portion of the background elements overlapped by the foreground mesh, see
Figure 8. We refer to these elements as split elements.

We introduce the following mesh

Gh = {K : K ∈Th, K∩Σ 6= /0, K∩Ω
f is a non-connected set},

that consists of all the elements K in Th cut by the interface Σ which are split elements,
see Figure 9 (left). This means that each element K ∈ Gh is split into NK ≥ 2 fluid sub-
parts, which in general are polyhedra. We denote by PK

i , i = 1, . . . ,NK , the polyhedra of
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T f
h

T s
h

Figure 8: Left: the structure foreground mesh T s
h overlaps the background mesh Th.

Right: representation of a background element split into three disconnected polyhedra
(in blue/dark) by the solid foreground mesh (in grey/light).

a split element K. We define by G P
h the union of all such polyhedra PK

i , for i= 1, . . . ,NK

and for each K ∈ Gh, see Figure 9 (right) where NK = 2. More precisely

P ∈ G P
h ←→ ∃K ∈ Gh s.t. P⊂ K∩Ω

f is a connected set.
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G P
h

Figure 9: Left: representation of the mesh Gh. Notice that Gh contains also the portion
of the elements overlapped by the structure. Right: representation of the non-connected
mesh G P

h .

The set G P
h in now partitioned into its N f = maxK NK connected subsets Ω

f ,i
h . For

example, by considering the same configuration in Figure 10 (left), we have N f = 2
connected subregions (Ω f ,1

h and Ω
f ,2
h ).

Moving from these definitions, we set

Ω
f ,0
h = Ω

f \
⋃

K∈Gh

K.

Notice that Ω f =
⋃

i=0,...,N f Ω
f ,i
h and that Ω

f ,i
h ∩Ω

f , j
h = /0,∀i 6= j. We denote by T f ,0

h the
smallest mesh composed of the elements K ∈Th that covers the set Ω

f ,0
h , i.e.

K ∈T f ,0
h ←→ K∩Ω

f ,0
h 6= /0.
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Figure 10: Left: sketch of the background (Th) and foreground (T s
h ) meshes (top) and

the sets Ω
f ,0
h (blue), Ω

f ,1
h (pink) and Ω

f ,2
h (yellow) (bottom). Right: the shaded regions

represent the meshes T f ,0
h (top) and T f ,i

h (bottom).

Finally, we denote by T f ,i
h , for i = 1, . . . ,N f , the smallest mesh that consists of all the

elements of Gh that covers the set Ω
f ,i
h , i.e.

K ∈T f ,i
h ←→ K∩Ω

f ,i
h 6= /0, i = 1, . . . ,N f .

Thus, each element K ∈ Gh belongs to NK different meshes T f ,i
h , and this will allow us

to duplicate the dofs of K NK times. The idea is to build the classical FEM approxi-
mation in T f ,0

h , i.e. by using the classical dofs and shape functions, and to employ the
XFEM strategy in T f ,i

h , i = 1, . . . ,N f , so that the dofs associated with the elements in
T f ,i

h , i = 1, . . . ,N f , are duplicated: a set of dofs is used to compute the solution over
each mesh T f ,i

h .
The unfitted nature of the fluid and solid meshes requires a specific treatment of the

coupling conditions between the corresponding fluid and solid problems at the interface
Σ. A possibility, considered here, is to employ a Discontinuous Galerkin (DG) mortar-
ing, see, e.g., [23, 25], in order to weakly impose the continuity of the fluid solution
between the elements of the meshes T f ,i

h , i = 1, . . . ,N f , see below. On the contrary, in
T f ,0

h it is possible to use either a non-conforming or a conforming discretization. For
the sake of simplicity, we consider a conforming discretization, thus we impose a strong
continuity in T f ,0

h . We also notice that some operators of the discrete formulation will
act on the domains Ω

f ,i
h ⊂ Ω f , while other operators, such as the stabilization terms,

will act on the meshes T f ,i
h , as we explain later on.
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We observe that the set covered by T f ,i
h is larger than the one covered by the corre-

sponding Ω
f ,i
h , see Figure 10 (right) for the case N f = 2. More complex configurations

may happen for realistic three-dimensional domains.

Remark 4.1 We point out that the elements of the background mesh crossed by the in-
terface Σ may be arbitrarily small due to the overlapping of the foreground domain.
This may generate instabilities in the numerical solution and lead to an ill-conditioned
matrix. For these reasons, to prevent instabilities and to maintain the robustness of the
method, a possible strategy consists in the introduction of the ghost-penalty stabiliza-
tion, see below and [21].

We classify the faces involved in the discrete formulation as follows:

• the faces belonging to the fluid-structure interface Σ, where we impose weakly
the continuity of the velocity and stresses by means of the DG formulation, see,
e.g., [23, 25];

• F f ,i
h,p, the faces in T f ,i

h , i = 1, . . . ,N f , that belong to the background process
domain Ω f , where we impose weakly the continuity of the fluid velocity and
stresses by means of the DG formulation, see below and, e.g., [6, 28];

• F f ,i
h,Σ, the faces of T f ,i

h , i = 1, . . . ,N f , cut by the interface Σ, where the ghost
penalty stabilization term (10) is applied, see below and [21].

For a representation of these faces, we refer to Figure 11.

Σ

F f ,1
h,p F f ,2

h,p F f ,1
h,Σ F f ,2

h,Σ

Figure 11: Representation of the sets of faces involved in the discrete formulation (high-
lighted in red): (left) faces of the interface Σ; (center) faces F f ,1

h,p and F f ,2
h,p for the

mortaring in the background process domain; (right) faces F f ,1
h,Σ and F f ,2

h,Σ for the ghost
penalty stabilization.

After a suitable time discretization of the FSI problem (4)-(5)- (6)-(7), we denote
by Ω f ,n the approximation of Ω f at time tn. The discrete spaces for the fluid velocity
and pressure read as follows:

Vn
h = {vh ∈ [X f ,n

h ]d : vh|Γ f = 0}, Qn
h = {qh ∈ X f ,n

h },
Wh = {wh ∈ [X s

h ]
d : wh|Γs = 0},
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where

X f ,n
h = {vh ∈ L2(Ω f ,n) : vh ∈ C 0(Ω f ,0,n

h ),vh|K ∈ P1(K),

∀K ∈T f ,i,n
h for i = 0, . . . ,N f },

and
X s

h = {vh ∈ C 0(Ω̂s) : vh|K ∈ P1(K),∀K ∈T s
h }.

To write the discrete formulation, we introduce the trace operators defined over an
interface I that separates a generic domain Ω1,2 into Ω1 and Ω2. For a (scalar or
vectorial) function q, we denote by J·KI the jump and by {{·}}I ,ε the ε-weighted mean
across the interface I , defined as

JqKI = q1−q2, {{q}}I ,ε = εq1 +(1− ε)q2, (9)

where q1 and q2 are the traces of q at the two sides of the interface and ε ∈ [0,1]. If the
subscript ε is not indicated, we assume that ε = 1

2 .
We consider a DG mortaring on Σ to impose the coupling conditions (6) and on the

faces F f ,i
h,p to impose the continuity of the background fluid solution, by mimicking the

(symmetric) interior penalty method, introduced for example in [6, 31] for the Poisson
problem. Moreover, a ghost penalty term, see [21], is applied on F f ,i

h,Σ to guarantee
robustness of the method with respect to the elements crossed by the interface Σ, defined
as

gh(uh,vh) = γg

N f

∑
i=1

∑
F∈F f ,i

h,Σ

µ
f hF

∫
F
J∇uhKF n · J∇vhKF n, (10)

with γg > 0;
We also introduce a stabilizing term sh to handle spurious pressure and velocity

instabilities due to equal order Finite Elements and to dominating convection regimes,
respectively. In this work we considered the interior penalty (IP) stabilization, see [24],
as done in [82].

We now introduce the following forms.

- Fluid form collecting the classical Navier-Stokes terms and the ghost and IP sta-
bilizations:

A f (z,u, p;v,q)r =
ρ f

∆t
(u,v)Ω f ,r +2µ

f (D(u),D(v))Ω f ,r

− (p,∇ ·v)Ω f ,r +(q,∇ ·u)Ω f ,r +ρ
f (z ·∇u,v)Ω f ,r

+ sh(u, p;v,q)r +gh(u,v)r;

- Structure form:

A s
(

d̂; ŵ
)
=

ρs

∆t2(d̂, ŵ)
Ω̂s +(T̂s(d̂),∇ŵ)

Ω̂s ;
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- Form related to the DG terms involving only the fluid unknowns and test func-
tions:

D f f (u, p;v,q)r =−
N f

∑
i=1

∑
F∈F f ,i,r

h,p

({{
T f (u, p)

}}
F n,JvKF

)
F

−
N f

∑
i=1

∑
F∈F f ,i,r

h,p

(
JuKF ,

{{
T f (v,−q)

}}
F n
)

F

+
N f

∑
i=1

∑
F∈F f ,i,r

h,p

γpµ f

hF
(JuKF ,JvKF)F ,

−
(
εT f (u, p)n,v

)
Σr −

(
u,εT f (v,−q)n

)
Σr +

γΣµ f

h
(u,v)

Σr ;

(11)

- Form related to the DG terms involving only the structure unknowns and test
functions:

D ss
(

d̂; ŵ
)
=−

(
(1− ε)T̂s(d̂)n,−ŵ

)
Σ̂

−

(
−

d̂
∆t
,(1− ε)T̂s(ŵ)n

)
Σ̂

+
γΣµ f

h

(
−

d̂
∆t
,−ŵ

)
Σ̂

;

(12)

- Form related to the DG terms involving mixed (fluid and structure) unknowns
and test functions:

D f s (u, p,d;v,q,w)r =−
(
εT f (u, p)n,−w

)
Σr − ((1− ε)Ts(d)n,v)

Σr

− (u,(1− ε)Ts(w)n)
Σr −

(
−

d
∆t
,εT f (v,−q)n

)
Σr

+
γΣµ f

h
(u,−w)

Σr +
γΣµ f

h

(
−

d
∆t
,v

)
Σr

;

(13)

- Right hand side given by terms coming from time discretization and forcing
terms:
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F (um, pm,dm;v,q,w)r =
ρ f

∆t
(um,v)Ω f ,r +

2ρs

∆t2(d̂
m, ŵ)

Ω̂s−
ρs

∆t2(d̂
m−1, ŵ)

Ω̂s

+

(
dm

∆t
,εT f (v,−q)n+(1− ε)Ts(w)n

)
Σr

−
γΣµ f

h

(
dm

∆t
,v−w

)
Σr

+(f f ,m+1,v)Ω f ,r +(̂fs,m+1, ŵ)
Ω̂s .

Notice that the DG mortaring terms introduce two penalty parameters, γp > 0 and γΣ >
0. The first parameter appears in the term D f f and it is related to the mortaring on the
faces in F f ,i,r

h,p , while the latter appears in terms D f f ,D f s,D ss and it is related to the
mortaring on the fluid-structure interface Σ.

Thus, the XFEM/DG approximation of the monolithic FSI problem (4)-(5)- (6)-(7)
reads: For each n, find (un+1

h , pn+1
h , d̂n+1

h ) ∈ Vn+1
h ×Qn+1

h ×Wh such that

A f
(
un+1

h ,un+1
h , pn+1

h ;vh,qh
)n+1

+A s
(

d̂n+1
h ; ŵh

)
+D f f

(
un+1

h , pn+1
h ;vh,qh

)n+1
+D ss

(
d̂n+1

h ; ŵh

)
+D f s

(
un+1

h , pn+1
h ,dn+1

h ;vh,qh,wh
)n+1

= F
(
un

h, pn
h,d

n
h;vh,qh, ŵh

)n

(14)
for all (vh,qh, ŵh) ∈ Vn+1

h ×Qn+1
h ×Wh. In compact form we write

H
(

un+1
h , pn+1

h , d̂n+1
h ;vh,qh, ŵh

)n+1
= 0

for all (vh,qh, ŵh) ∈ Vn+1
h ×Qn+1

h ×Wh

Remark 4.2 Notice that in the previous formulation we could consider also a correc-
tion in the trilinear form to maintain the condition that the latter vanishes for z = u
at the discrete level [28, 84] and a term to maintain the consistency of the formula-
tion [95]. This is what we did in the numerical experiments. However, to simplify the
notation and focus on the XFEM/DG discretization, we omitted these terms in (14).

5 An inexact-Newton method for the solution of the FSI prob-
lem

For the solution of the FSI problem (14), we introduce in what follows an inexact
Newton-Krylov method, used in combination with a block Gauss-Seidel preconditioner.

To this aim, we indicate by δy(k) = y(k)− y(k−1) the increment of a quantity y and
we consider the following linearized forms:

19



-

Ã s
(

δ d̂(k); ŵ
)
=

ρs

∆t2

(
δ d̂(k), ŵ

)
Ω̂s

+
(

DF T̂s(d̂(k−1)) : δ d̂(k),∇ŵ
)

Ω̂s
,

where DF indicated the Gateaux derivative with respect to F;

-

D̃ ss
(

δ d̂(k); ŵ
)
=−

((
(1− ε)DF T̂s(d̂(k−1)) : δ d̂(k)

)
n,−ŵ

)
Σ̂

−

(
−

δ d̂(k)

∆t
,
(
(1− ε)DF T̂s(d̂(k−1)) : ∇ŵ

)
n

)
Σ̂

+
γΣµ f

h

(
−

δ d̂(k)

∆t
,−ŵ

)
Σ̂

;

-

D̃ f s (u(k), p(k),δd(k);v,q,w
)r

=−
(
εT f (u(k), p(k))n,−w

)
Σr

−
((
(1− ε)DFTs(d(k−1)) : ∇δd(k)

)
n,v
)

Σr

−
(

u(k),
(
(1− ε)DFTs(dm

(k−1)) : ∇w
)

n
)

Σr

−

(
−

δd(k)

∆t
,εT f (v,−q)n

)
Σr

+
γΣµ f

h

(
u(k),−w

)
Σr +

γΣµ f

h

(
−

δd(k)

∆t
,v

)
Σr

.

Moreover, we consider the approximated form ̂̃
D

f s
instead of D̃ f s obtained by con-

sidering the following approximation

∂Ts

∂F
=

∂

∂F
(J−1T̂sFT ) ≈ J−1 ∂ T̂s

∂F
FT .

This, together with the fixed point iteration strategy (instead of the full Newton method)
used for the fluid problem (see (15)) leads to an inexact Newton method.

Finally, we point out that at each iteration of the inexact Newton method, we have
to update the fluid mesh obtained by the intersections generated by the moving struc-
ture mesh onto the background fixed one (see Figure 4), and, accordingly, the velocity
and pressure spaces. In particular, we introduce the compact notation updatedDomain-
sAndSpaces() that at time tn+1, iteration k, performs the following steps:

1. given the displacement at the previous iteration d̂n+1
h,(k−1), computation of the new

position of the solid mesh (T s
h )

n+1
(k−1);
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2. computation of the new fluid mesh (T f
h )n+1

(k−1). This is done by intersecting the

background mesh Th and the solid mesh (T s
h )

n+1
(k−1);

3. definition of the new discrete spaces Vn+1
h,(k−1) and Qn+1

h,(k−1).

The FSI problem (14) is solved by means of the following algorithm:

Algorithm 1 Inexact Newton method for the FSI problem (14)

At time tn+1, given an initial solution un+1
h,(0), pn+1

h,(0), d̂n+1
h,(0):

for k = 1 : kmax do
1. updateDomainsAndSpaces();

2. Find (un+1
h,(k), pn+1

h,(k),δ d̂n+1
h,(k)) ∈ Vn+1

h,(k−1)×Qn+1
h,(k−1)×Wh such that

A f
(

un+1
h,(k−1),u

n+1
h,(k), pn+1

h,(k);vh,qh

)n+1

(k−1)
+ Ã s

(
δ d̂n+1

h,(k); ŵh

)
+D f f

(
un+1

h,(k), pn+1
h,(k);vh,qh

)n+1

(k−1)
+ D̃ ss

(
δ d̂n+1

h,(k); ŵh

)
+
̂̃
D

f s(
un+1

h,(k), pn+1
h,(k),δdn+1

h,(k);vh,qh,wh

)n+1

(k−1)

=−H
(

un+1
h,(k−1), pn+1

h,(k−1),d
n+1
h,(k−1);vh,qh, ŵh

)n+1

(k−1)
,

(15)

for all (vh,qh, ŵh) ∈ Vn+1
h,(k−1)×Qn+1

h,(k−1)×Wh;

3. d̂n+1
h,(k) = d̂n+1

h,(k−1)+δ d̂n+1
h,(k).

end for

Remark 5.1 Notice that in this case, due to the fixed nature of the background mesh,
we do not have any geometric problem, thus no shape derivatives appear in the exact
Jacobian.

6 Numerical results

In this section, we present some numerical results for the FSI problem given by equa-
tions (4)-(7). We consider Algorithm 1 for its numerical solution. We present the
following test cases:

- Blocked channel: A time-dependent FSI problem with an immersed non-linear elastic
structure that completely blocks a channel;

- Non-linear elastic slab: A time-dependent FSI problem with an immersed non-linear
elastic slab with a high Reynolds number;

- Ideal aortic valve: A time-dependent FSI problem in the case of three immersed linear
elastic leaflets.
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The proposed examples are simulated in a three-dimensional (3D) framework, and
for the structure we use the non-linear strain energy function (8) for the blocked channel
and non-linear elastic slab tests, whereas the Hooke law for the ideal aortic valve. The
mortaring parameter ε for the fluid-solid coupling in the forms D f f , D f s, D ss and in
functional F is set equal to 1, see [23]. Moreover, we point out that at iteration k of
Algorithm 1, the fluid velocity un

h at the previous time step appearing in the term com-
ing from time discretization (which is defined in Ω f ,n) and the fluid velocity un+1

h,(k−1) at

the previous iteration used in the convective term (which is defined in Ω
f ,n+1
(k−2) ) are not

defined in the current domain Ω
f ,n+1
(k−1) (remember that at iteration k the fluid problem

is solved in Ω
f ,n+1
(k−1) ). Thus, these terms should be properly defined in the new compu-

tational domain Ω
f ,n+1
(k−1) in order to be used in the discrete formulation. In particular,

issues may occur when the uncovered portion of a fluid element change between time
n and n+1 and/or between iteration k−1 and k. For the numerical treatment of these
cases, we employ the procedure proposed in [95].

The simulations have been performed with the Finite Element library LifeV [1].

6.1 Blocked channel

In this experiment we consider a thick membrane placed in the middle of a channel
so that the structure completely blocks the flow in the channel, see Figure 12. The
aim of this example is to assess the validity of the proposed method. We consider a
background domain Ω = 0.4cm× 0.2cm× 0.00625cm and a structure domain Ωs =
0.01cm×0.2cm×0.00625cm. The resulting fluid domain is Ω f = Ω\Ωs. Notice that,
to ease the computational cost, we reduce the size of the domain along the z-axis. We
impose T f n = (−1000,0,0)dyne/cm2 at the inlet Γin, T f n = 0 at the outlet Γout , u = 0
on Γ

f
wall , and u · k̂ = 0, (T f n) · l̂ = 0, l = {i, j}, on the remaining portions of the fluid

boundary, i.e. for z= {0,0.00625}. Notice that the latter choice allows the fluid to move
in the xy-plane at the extreme surfaces z = {0,0.00625}. The solid is fixed at Γs

wall , i.e.
d = 0, and, like the fluid, is allowed to move in the xy-plane on the remaining portions
of the boundary, i.e. d · k̂ = 0, (Tsn) · l̂ = 0, l = {i, j}, for z = {0,0.00625} . As initial
conditions, we set u(x,0) = d(x,0) = ḋ(x,0) = 0. We also use the following values for
the parameters: ρ f = 1g/cm3, ρs = 1.2g/cm3, µ f = 0.035 poise, α = 1 ·108 dyne/cm2,
κ = 1.034 ·107 dyne/cm2, γ = 1, and T = 0.02s.

We employ a background mesh Th composed of 16·103 tetrahedra (have = 0.00571cm)
and a solid mesh T s

h composed of 1.4 ·103 tetrahedra (have = 0.00377cm). Notice that,
the thickness of the structure domain (0.01cm) is higher than the average size of the
fluid elements, so that we are in the thick case. The time step ∆t is 2 · 10−4 s. We
choose γΣ = 104 (see equations (11)-(13)), γp = 103 (see equation (11)) and γg = 1 (see
equation (10)).

In Figure 13 and 14, we show the numerical solution at different time steps. In par-
ticular, we plot the velocity and the pressure fields in the fluid domain and the structure
displacement in the solid domain. A quantitative plot of the displacement of the center
of mass of the structure is reported in Figure 15.
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Figure 12: Top view of the fluid Ω f and structure Ωs domains. Blocking channel test.

Finally, in Figure 16 (left), we plot the behaviour in time of the total amount of
fluid (in cm3) that goes through Γin (indicated by Vin) and Γout (indicated by Vout), the
variation of the structure volume (in cm3) with respect to the initial time (indicated by
∆V s), and the sum of these three quantities (indicated by Vbalance) which represents the
error with respect to the balance of volume. In Figure 16 (right), we plot relative error
of the balance of volume, i.e. the ratio r = Vbalance/V f

e f f , where V f
e f f is the effective

volume available for the fluid. We see that the error committed by the method is very
small compared to the total amount of volume.

6.2 Non-linear elastic slab

We consider a background domain Ω=(0,0.5)3 cm and a structure domain Ωs =(0.025,0.425)cm×
(0.15,0.35)cm× (0.10,0.13)cm, so that the fluid domain is Ω f = Ω \Ω

s, see Fig-
ure 17. We impose u = (0,0,100)cm/s at the inlet Γin, T f n = 0 at the outlet Γout ,
u · î = 0, (T f n) · l̂ = 0, l = {j,k}, at Γsymm, and u = 0 on the remaining portions of
the fluid boundary. The structure is fixed at x = 0.025cm, i.e. d = 0 at Γs

wall . The
fluid-structure interface is given by Σ = ∂Ωs \ Γs

wall . As initial conditions, we set
u(x,0) = d(x,0) = ḋ(x,0) = 0. We also use the following values for the parame-
ters: ρ f = 1g/cm3, ρs = 1.2g/cm3, µ f = 0.035 poise, α = 1.667 · 108 dyne/cm2,
κ = 1.724 · 107 dyne/cm2, γ = 1, and T = 0.015 · 10−3 s. The Reynolds number is
equal to Re = 1400.

We employ a background mesh Th composed of 56·103 tetrahedra (have = 0.025cm)
and a solid mesh T s

h composed of 30 · 103 tetrahedra (have = 0.0078cm). Notice that,
the thickness of the structure domain (0.03cm) is comparable to the average size of the
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Figure 13: Plot of the fluid velocity magnitude (in cm/s) and structure displacement
magnitude (in cm) at different time steps. Top: t = 0.0026s. Center: t = 0.0040s.
Bottom: t = 0.0066s. Blocking channel test.
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Figure 14: Plot of the fluid pressure filed (in dyne/cm2) and structure displacement
magnitude (in cm) at different time steps. Top: t = 0.0026s. Center: t = 0.0040s.
Bottom: t = 0.0066s. Blocking channel test.
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Figure 15: Plot of the x-displacement (in cm) at the center of mass of the structure.
Blocking channel test.
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of the relative error of the volume in time. Blocking channel test.
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Figure 17: Sketch of the fluid Ω f and structure Ωs domains. Non-linear elastic slab test.

fluid elements. The time step ∆t is 10−3 s. We choose γΣ = 102 (see equations (11)-
(13)), γp = 103 (see equation (11)) and γg = 1 (see equation (10)).

In Figure 18, we show the fluid velocity (in cm/s) and the structure displacement
(in cm) at four different time steps. The maximum velocity is about 160cm/s and the
maximum displacement reached by the structure is 0.35cm. We see that the method is
able to deal with high Reynolds number and large displacement.

In Figure 19, we show the z-displacement (in cm) of the tip of the structure, i.e. at
xtip = (0.425,0.25,0.115)cm, in time.

In Figure 20, we plot the velocity field in the fluid domain and we represent the
moving structure accordingly to the computed displacement at different time-steps. We
see that the fluid elements crossed by the structure may change in time. We point out
that the refinement appearing near the structure is made only for a visualization purpose,
in fact the background fluid mesh never changes.

6.3 Ideal aortic valve

In this example, we consider the domain Ω defined by a cylinder of radius 0.5cm and
height 1cm and three linear immersed structures that are an ideal representation of the
leaflets of an aortic valve, see Figure 21. The thickness of the leaflets is 0.02cm. We
impose the velocity profile u = (0,0,50sin(π

8 t))cm/s at the inlet Γin, we set T f n = 0
at the outlet Γout , and u = 0 on the remaining portions of the fluid boundary. At the
fluid-structure interface, we impose the kinematic and dynamic coupling conditions,
except on Γwall where the leaflets are fixed, i.e. d = 0. As initial conditions, we set
u(x,0)=d(x,0)= ḋ(x,0)= 0. We use the following values for the physical parameters:
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Figure 18: Solution at two different time steps. We plot the fluid velocity (in cm/s) and
the solid displacement (in cm). Top, left: t = 1 ·10−3. Top, right: t = 2 ·10−3. Bottom,
left: t = 4 ·10−3. Bottom, right: t = 6 ·10−3. Non-linear elastic slab test.
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Figure 19: Plot of the z-displacement (in cm) at the tip of the structure in time. Non-
linear elastic slab test.
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Figure 20: Velocity magnitude on the slice y = 0.25cm at time t = 1 · 10−3s (top) and
at time t = 2 · 10−3s (bottom). The element highlighted in red at time t = 1 · 10−3s is
partially overlapped by the interface, while at time t = 2 · 10−3s is not crossed by the
structure. Non-linear elastic slab test.
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ρ f = 1g/cm3, ρs = 1.2g/cm3, µ f = 0.035 poise, α = 1.667 ·108 dyne/cm2, κ = 1.724 ·
107 dyne/cm2 and γ = 1. We simulate only the initial phase of the movement of the
leaflets, i.e. T = 0.45s. The Reynolds number is equal to Re = 1430.
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l

Figure 21: Sketch of the fluid background domain Ω f and the three foreground domains
Ωs. To the right, we report the top view of the domains. Notice in black the region Γwall
where the leaflets are clamped. Ideal aortic valve test.

For the numerical simulation, we employ a background mesh Th of 110 · 103 ele-
ments with the average size of the mesh elements have = 0.035cm, while each structure
mesh is composed of 16 · 103 elements with have = 0.011cm. We set ∆t = 0.05s. We
choose γΣ = 102 (see equations (11)-(13)), γp = 103 (see equation (11)) and γg = 1 (see
equation (10)).

In what follows we report preliminary results for this test. At the instant where the
fluid flow reverses, numerical instabilities occurs. For this reason, we have reported
the numerical results until the solution features a stable beaviour. The study of such
oscillations is under investigation. A qualitative representation of the solution at time
t = 0.4s is shown in Figure 22. More specifically, in Figure 23 (left), we plot the z-
displacement at the tip (point A in Figure 21) of the three leaflets in time. We observe
that the three leaflets behave very similarly during time. In Figure 23 (right), we plot
the fluid pressure along line l : x = 0cm, y = 0.25cm, 0≤ z≤ 1cm at two different time
steps, namely, t = 0.20s and t = 0.45s. From this result, we see the different value of
the fluid pressure upstream and downstream the leaflet. Notice that, the position of the
leaflet (dashed lines) has changed in time.

The maximum z-displacement reached by the leaflets is 0.24cm and the maximum
value of fluid velocity is 17.5cm/s.

In Figure 24, we show the pressure field (in dyne/cm2) and the structure displace-
ment (in cm) on the slice y = 0.5cm at time t = 0.20s and t = 0.45s. In particular, we
observe the different position of the leaflets with respect to their initial position outlined
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Figure 22: Solution at time t = 0.4s. We plot the fluid velocity (in cm/s) and the
structure displacement (in cm). Ideal aortic valve test.
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Figure 23: Left: evolution of the displacement (in cm) at the tip of the three leaflets.
Right: fluid pressure (in dyne/cm2) along the line l at two different time steps. The
position of the leaflet is denoted by the dashed lines. Ideal aortic valve test.
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in black. Again, it is possible to see the different values of the fluid pressure upstream
and downstream the leaflets.

Figure 24: Fluid pressure (in dyne/cm2) and structure displacement (in cm) at slice
y = 0.5cm. The initial position of the leaflets is denoted by the black lines. Left: time
t = 0.2s. Right: time t = 0.45s. Ideal aortic valve test.
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tion of wind turbine rotors at full scale. Part II: Fluid–structure interaction mod-
eling with composite blades. International Journal for Numerical Methods in
Fluids, 65(1-3):236–253, 2011.

[10] R. Becker, E. Burman, and A. Hansbo. A Nitsche extended finite element method
for incompressible elasticity with discontinuous modulus of elasticity. Computer
Methods in Applied Mechanics and Engineering, 198(41-44):3352–3360, 2009.

[11] A. Beckert and H. Wendland. Multivariate interpolation for fluid-structure-
interaction problems using radial basis functions. Aerospace Science and Tech-
nology, 5(2):125–134, 2001.
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[73] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineering,
46:131–150, 1999.

[74] G. Morgenthal. Fluid Structure Interaction in Bluff-body Aerodynamics and Long-
span Bridge Design: Phenomena and Methods. University of Cambridge, Depart-
ment of Engineering Cambridge, 2000.

[75] Y. S. Morsi, W. W. Yang, C. S. Wong, and S. Das. Transient fluid–structure cou-
pling for simulation of a trileaflet heart valve using weak coupling. Journal of
artificial organs, 10(2):96–103, 2007.

38



[76] H. Nguyen and J. Reynen. A space-time least-square finite element scheme for
advection-diffusion equations. Computer Methods in Applied Mechanics and En-
gineering, 42(3):331–342, 1984.

[77] S. Nicaise, Y. Renard, and E. Chahine. Optimal convergence analysis for the
extended finite element method. International Journal for Numerical Methods in
Engineering, 86(4-5):528548, 2011.

[78] N. Parolini and A. Quarteroni. Mathematical models and numerical simulations
for the America’s cup. Computer Methods in Applied Mechanics and Engineering,
194(9):1001–1026, 2005.

[79] C. Peskin. Flow patterns around heart valves: A numerical method. Journal of
Computational Physics, 10(2):252–271, 1972.

[80] M. J. Pettigrew and C. E. Taylor. Vibration analysis of shell-and-tube heat ex-
changers: an overview - Part 1: flow, damping, fluidelastic instability. Journal of
fluids and structures, 18(5):469–483, 2003.

[81] G. Rega. Nonlinear vibrations of suspended cables–Part I: Modeling and analysis.
Applied Mechanics Reviews, 57(6):443–478, 2004.

[82] B. Schott and W. A. Wall. A new face-oriented stabilized XFEM approach for 2D
and 3D incompressible Navier-Stokes equations. Computer Methods in Applied
Mechanics and Engineering, 276:233–265, 2014.

[83] J. M. A. Stijnen, J. De Hart, P. H. M. Bovendeerd, and F. N. van de Vosse. Evalua-
tion of a fictitious domain method for predicting dynamic response of mechanical
heart valves. Journal of Fluids and Structures, 19(6):835–850, 2004.

[84] R. Temam. Navier-Stokes Equations. 1977.

[85] C. Trivedi and M. J. Cervantes. Fluid-structure interactions in francis turbines:
A perspective review. Renewable and Sustainable Energy Reviews, 68:87–101,
2017.

[86] R. van Loon. A 3D method for modelling the fluid-structure interaction of heart
valves. PhD thesis, Technische Universiteit Eindhoven, 2005.

[87] R. van Loon, P. D. Anderson, and F. N. van de Vosse. A fluid–structure interaction
method with solid-rigid contact for heart valve dynamics. Journal of Computa-
tional Physics, 217(2):806–823, 2006.

[88] R. van Loon, P. D. Anderson, F. N. van de Vosse, and S. J. Sherwin. Comparison of
various fluid–structure interaction methods for deformable bodies. Computers &
Structures, 85(11-14):833–843, 2007. Fourth MIT Conference on Computational
Fluid and Solid Mechanics.

39



[89] E. Votta, T. B. Le, M. Stevanella, F. Fusini, E. G. Caiani, A. Redaelli, and
F. Sotiropoulos. Toward patient-specific simulations of cardiac valves: State-
of-the-art and future directions. Journal of Biomechanics, 46(2):217–228, 2013.
Special Issue: Biofluid Mechanics.

[90] X. Wang and W. K. Liu. Extended immersed boundary method using FEM
and RKPM. Computer Methods in Applied Mechanics and Engineering,
193(12):1305–1321, 2004.

[91] E. J. Weinberg, P. J. Mack, F. J. Schoen, G. Garcı́a-Cardeña, and M. R. K.
Mofrad. Hemodynamic environments from opposing sides of human aortic valve
leaflets evoke distinct endothelial phenotypes in vitro. Cardiovascular engineer-
ing, 10(1):5–11, 2010.

[92] H. Zhang, L. Liu, M. Dong, and H. Sun. Analysis of wind-induced vibration
of fluid–structure interaction system for isolated aqueduct bridge. Engineering
structures, 46:28–37, 2013.

[93] L. T. Zhang and M. Gay. Immersed finite element method for fluid-structure in-
teractions. Journal of Fluids and Structures, 23(6):839–857, 2007.

[94] L. T. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu. Immersed finite
element method. Computer Methods in Applied Mechanics and Engineering,
193(21):2051–2067, 2004.

[95] S. Zonca, C. Vergara, and L. Formaggia. An unfitted formulation for the interac-
tion of an incompressible fluid with a thick structure via an XFEM/DG approach.
SIAM Journal on Scientific Computing, 40(1):B59–B84, 2018.

40



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

25/2018 Chave, F.;  Di Pietro, D.A.; Formaggia, L.
A Hybrid High-Order method for passive transport in fractured porous media

24/2018 Bassi, C.; Abbà, A.; Bonaventura,L.; Valdettaro,L.
Direct and Large Eddy Simulation of three-dimensional non-Boussinesq
gravity currents with a high order DG method

21/2018 Gervasio, P.; Dede', L.; Chanon, O.; Quarteroni, A.
Comparing Isogeometric Analysis and Spectral Element Methods: accuracy
and spectral properties

22/2018 Pegolotti, L.; Dede', L.; Quarteroni, A.
Isogeometric Analysis of the electrophysiology in the human heart: numerical
simulation of the bidomain equations on the atria

23/2018 Benacchio, T.;Bonaventura,L.
A seamless extension of DG methods for hyperbolic problems to unbounded
domains

20/2018 Bassi, C. ; Abbà, A.;  Bonaventura L.; Valdettaro, L.
A priori tests of a novel LES approach to compressible variable density
turbulence

19/2018 Menghini, F.; Dede', L.; Quarteroni, A.
Variational Multiscale LES modeling of blood flow in an idealized left human
heart

18/2018 Antonietti, P.F.; Bonaldi, F.; Mazzieri, I.
A high-order discontinuous Galerkin approach to the elasto-acoustic problem

17/2018 Agosti, A.; Giverso, C.; Faggiano, E.;Stamm,A.; Ciarletta, P.
A personalized mathematical tool for neuro-oncology: a clinical case study

15/2018 Simona, A.; Bonaventura, L.;  Pugnat, T.; Dalena, B.
High order time integrators for the simulation of charged particle motion in
magnetic quadrupoles


	qmox26-copertina
	mox-2018415223648
	qmox26-terza_di_copertina

